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An analytic explanation of the spatial resolution in thermoacoustic or photoacoustic reconstruction is pre-

sented. Three types of specific recording geometries, including spherical, planar, and cylindrical surface, as

well as other general cases, are investigated. Analytic expressions of the point-spread functions ~PSF’s!, as a

function of the bandwidth of the measurement system and the finite size of the detector aperture, are derived

based on rigorous reconstruction formulas. The analyses clearly reveal that the dependence of the PSF’s on the

bandwidth of all recording geometries shares the same space-invariant expression while the dependence on the

aperture size of the detector differs. The bandwidth affects both axial and lateral resolutions; in contrast, the

detector aperture blurs the lateral resolution greatly but the axial resolution only slightly.
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I. INTRODUCTION

In the last decade, thermoacoustic or photoacoustic to-

mography of soft tissue utilizing excitation from a pulsed

electromagnetic ~EM! energy source, such as radio frequency

or laser, has attracted considerable attention @1–12#. With

this technique, it is assumed that, following a short pulse of

EM illumination, a spatial distribution of acoustic pressure

inside the tissue is simultaneously excited by thermoelastic

expansion, which acts as a source for acoustic response. The

intensity of the acoustic pressure is strongly related to the

locally absorbed EM energy. A wide range of EM absorption

coefficients in soft tissue contributes to a good contrast be-

tween different types of tissues. The effect of thermal diffu-

sion on thermoacoustic or photoacoustic waves in tissue is

always ignored, since the EM pulse duration is often so short

that the thermal conduction time is far greater than the

acoustic transit time through the heterogeneities of the EM

energy depositions. The acoustic waves from the initial

acoustic source propagate toward the surface of the tissues

with various time delays. Ultrasound detectors are placed

around the tissue to record the outgoing acoustic waves, re-

ferred to as the thermoacoustic or photoacoustic signals,
which carry information about EM absorption as well as
about the acoustic properties of the tissue. For medical im-
aging and diagnostics, an appropriate reconstruction algo-
rithm is required to map the initial acoustic sources, or EM
absorption distribution.

To detect thermoacoustic signals, one approach is to use
focused ultrasound transducers, in which the lateral resolu-
tion is determined by the focal diameter of the transducer
and the axial resolution by the bandwidth @5,6#. Another ap-
proach is to use small-aperture unfocused detectors—ideally,
point detectors—that can receive ultrasound from a large

angle of acceptance. Thus far, rigorous reconstruction algo-

rithms have been reported with point-detector measurements

from idealized recording configurations, including the fully

enclosing spherical recording surface @7#, the planar record-

ing surface of an infinite extent @3,8#, and the cylindrical

recording surface of an infinite length @9#. In these algo-

rithms, the acoustic property of the tissue is often assumed to

be homogenous as the speed of sound in soft tissue is rela-

tively constant at ;1.5 mm/ms. Details can be found in Ref.

@7# of the reconstruction formulas for spherical geometry and

in Refs. @8,9,11# for the planar and cylindrical geometries.

Spatial resolution is one of the most important parameters

in thermoacoustic reconstruction. Acoustic inhomogeneity

blurs the reconstructed image, but in some cases, the blurring

can be corrected. A limited view also affects spatial resolu-

tion due to lack of sufficient data; in this case, the recon-

struction is incomplete and reconstruction artifacts occur

@12#. These two topics will not be addressed in this paper.

There are two other main factors that limit spatial

resolution—the finite bandwidth of the detection system and

the size of the detector aperture. Past research work has only

estimated the spatial resolution in thermoacoustic tomogra-

phy based on measurements or numerical simulations. No

theoretical analysis has been reported.
In this paper, a complete theoretical explanation of the

degree of spatial resolution that results from varying the
bandwidth as well as the detector aperture will be presented.
Analytic expressions of point-spread functions ~PSF’s! on
the spherical, planar, and cylindrical recording surfaces will
be explicitly derived. The paper is organized as follows. In
Sec. II, the inverse problem and the reconstruction formulas
for thermoacoustic tomography will be briefly reviewed. De-
tailed derivations of bandwidth-limited PSF’s in the above
three measurement geometries as well as more general cases
will be presented in Secs. III A, III B, III C, and III D, respec-
tively; and resolution will be discussed in Sec. III E. In Sec.
IV, detailed derivations of PSF’s as a function of detector
aperture size will be shown in Secs. IV A, IV B, and IV C.
Section V will provide discussion and conclusions.
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II. RECONSTRUCTION FORMULAS

We will first briefly review the inverse problem and the
rigorous reconstruction formulas for thermoacoustic tomog-
raphy. It is well known that, in response to a heat source, the
pressure p(r,t) at position r and time t in an acoustically
homogeneous medium obeys the following equation @13#:

¹2p~r,t !2

1

c2

]2

]t2 p~r,t !52

b

Cp

]

]t
H~r,t !, ~1!

where Cp is the specific heat, H(r,t) is the heating function
defined as the thermal energy deposited by the EM radiation
per time and volume, b is the isobaric volume expansion
coefficient, and c is the speed of sound. The heating function
can be written as the product of a spatial absorption function
and a temporal illumination function:

H~r,t !5A~r!I~ t !. ~2!

Assuming that the illumination is a Dirac d function such as
I(t)5d(t), and taking the following Fourier transform on

variable t̄ 5ct ,

p̃~r,k !5E
2`

1`

p~r, t̄ !exp~ ik t̄ !d t̃ , ~3!

the solution of Eq. ~1! becomes the integral

p̃~r0 ,k !52ikc2hE E E
V

d3r A~r!G̃k~r,r0!, ~4!

where h5b/Cp and G̃k(r,r0) is the Green’s function satis-
fying the following equation:

~¹2
1k2!G̃k~r,r0!52d~r2r0!. ~5!

In general, the Green’s function in three-dimensional free
space can be written as @14#

G̃k~r,r0!5

exp~ ikur2r0u!

4pur2r0u
. ~6!

Actually, the initial thermoacoustic pressure excited by the
d(t) EM illumination is equal to p0(r)5G(r)A(r), where
the Grüneisen parameter G(r)5h(r)c2 may be inhomoge-
neous. Then, Eq. ~4! can be expressed by the following form:

p̃~r0 ,k !52ikE E E
V

d3r G̃k~r,r0!p0~r!. ~7!

The inverse problem is to reconstruct the absorption dis-
tribution A(r) or the initial thermoacoustic pressure distribu-
tion p0(r) from a set of data p(r0 ,t) or p̃(r0 ,k) measured at
position r0 . In general, the Green’s function can be ex-
panded in terms of some appropriate functions for the corre-

sponding recording geometries. Then, based on the orthogo-
nality of the appropriate functions, reconstruction formulas
can be derived.

In spherical recording geometry, it is assumed that the
recording surface is a spherical surface r05(r0 ,u0 ,w0) in
the spherical polar coordinates r5(r ,u ,w), where u is the
polar angle from the z axis and w is the azimuthal angle in
the x-y plane from the x axis. The sample under study lies
inside the sphere, i.e., A(r)5A(r ,u ,w) where r,r0 and
A(r)50 when r.r0 . The rigorous reconstruction formula
for A(r) can be written as @7#

A~r!5

1

2p2c2h
E E

V0

dV0E
0

1`

dk p̃~r0 ,k !

3 (
m50

`
~2m11 ! jm~kr !

hm
~1 !~kr0!

Pm~n0•n!, ~8!

where dV05sin u0 du0dw0 ; n5r/r and n05r0 /r are unit

vectors; jm(•), hm
(1)(•), and Pm(•) are the spherical Bessel

function of the first kind, the spherical Hankel function of the
first kind, and the Legendre polynomial function, respec-
tively. In addition, the integral range over variable k in Eq.
~8! can extend to from 2` to 0 by simply taking the com-
plex conjugate and using the following properties:

p̃*(r0 ,k)5 p̃(r0 ,2k), @ jn(z)#*5 jn(z), and @hn
(1)(z)#*

5hn
(2)(z) when z is real and positive, where ‘‘*’’ stands for

the complex conjugate.
In planar recording geometry, it is assumed that the mea-

surement surface is the z50 plane, i.e., r05(x0 ,y0,0) in the
Cartesian coordinates r5(x ,y ,z). The sample lies above the
plane, i.e., A(r)5A(x ,y ,z) where z.0 and A(r)50 when
z,0. The rigorous reconstruction formula for A(r) can be
written as @8,11#

A~x ,y ,z !5

1

4p3c2h
E E

2`

1`

dx0dy0E
2`

1`

dk p̃~r0 ,k !

3E E
r50

r5uku

du dn

3exp@2iz sgn~k !Ak2
2r2#exp@ iu~x02x !

1in~y02y !# , ~9!

where r5Au2
1v

2, sgn(k)51 when k.0, and sgn(k)521
when k,0.

In cylindrical recording geometry, it is assumed that the
measurement surface is a circular cylindrical surface r0

5(r0 ,w0 ,z0) in the circular cylindrical coordinates r

5(r ,w ,z). The sample lies in the cylinder, i.e., A(r)
5A(r ,w ,z) when r,r0, and A(r)50 when r.r0 . The
rigorous reconstruction formula for A(r) can be written as
@9,11#
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A~r ,w ,z !5

1

2p3c2h
E

0

2p

dw0E
2`

1`

dz0E
0

1`

dkp̃~r0 ,k !

3E
2k

1k

dg exp@ ig~z02z !#

3 (
n52`

1`

exp@ in~w02w !#
Jn~rAk2

2g2!

Hn
~1 !~r0Ak2

2g2!
,

~10!

where Jn(•) and Hn
(1)(•) are the Bessel function of the first

kind and the Hankel function of the first kind, respectively.
In addition, the integral range over variable k in Eq. ~10! can
extend to from 2` to 0, by simply taking the complex con-
jugate and using the following properties: p̃*(r0 ,k)5 p̃(r0 ,

2k), @Jn(z)#*5Jn(z), and @Hn
(1)(z)#*5Hn

(2)(z) when z is

real and positive.

III. BANDWIDTH-LIMITED PSF

As shown in Fig. 1, assuming a point source A(r)5d(r

2ra) at ra , the pressure at the recording point r0 can be
expressed as

p̃~r0 ,k !52ikc2hG̃k~ra ,r0!. ~11!

Suppose the detection system is bandlimited in the
temporal-frequency domain and characterized by a low-pass

function H̃(k). The amplitude of the acoustic wave vector
k5v/c , where v is the acoustic angular frequency. The de-
tected signal at the recording surface r0 becomes p̃8(r0 ,k)

5H̃(k) p̃(r0 ,k) instead of p̃(r0 ,k). But the reconstruction
formulas, Eqs. ~8!–~10!, for point-detector measurements in
the spherical, planar, and cylindrical recording geometries,
respectively, remain the same. Replacing p̃(r0 ,k) by
p̃8(r0 ,k) in these reconstruction formulas will give us the

bandwidth-limited analytic expressions of the PSF’s to be
derived below for the different geometries.

A. Spherical geometry

The point source at ra5(ra ,ua ,wa) in the spherical co-
ordinates can be written as

A~r!5

1

r2 d~r2ra!d~w2wa!d~cos u2cos ua!. ~12!

The Green’s function can be expanded according to the
following identity (r0.ra ,k.0) @14#:

G̃k~ra ,r0!5

ik

4p (
l50

`

~2l11 ! j l~kra!h l
~1 !~kr0!P l~na•n0!,

~13!

where na5ra /ra .
Replacing p̃(r0 ,k) by p̃8(r0 ,k) in Eq. ~8! and considering

the following identity @14#:

E E
V0

dV0P l~na•n0!Pm~n0•n!5

4p

2l11
d lmP l~na•n!,

~14!

the resulting reconstruction for A(r) is

Ab~r!5

1

2p2 E
0

1`

H̃~k !k2dk (
m50

`

~2m11 !

3Pm~na•n! jm~kra! jm~kr !. ~15!

Further, taking into account the following identity @15#:

(
m50

`

~2m11 !Pm~na•n! jm~kra! jm~kr !5

sin~kR !

kR
5 j0~kR !,

~16!

where R5Ara
2
1r2

22rar cos(na•n), one can obtain

Ab~r!5

1

2p2 E
0

1`

H̃~k ! j0~kR !k2dk . ~17!

Particularly, if H̃(k)[1 for k50→` , considering the
following identities @14#:

E
0

1`

jm~kr ! jm~kra!k2dk5

p

2r2 d~r2ra!, ~18!

(
m50

`

~2m11 !Pm~na•n!54pd~w2wa!d~cos u2cos ua!,

~19!

Eq. ~15! reduces to a point source the same as the expression
in Eq. ~12!, which actually verifies the reconstruction Eq. ~8!.

FIG. 1. Diagram of the recording geometry: a recording surface

S1 completely encloses another recording surface S0 ; there is a

point source A at ra inside S0 ; R is the distance between an arbi-

trary point at r and the point source A; r0 and r1 point to a detection

element on the surfaces S0 and S1 , respectively.
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B. Planar geometry

The point source at ra5(xa ,ya ,za) in the Cartesian coor-
dinates can be written as

A~x ,y ,z !5d~x2xa!d~y2ya!d~z2za!. ~20!

The Green’s function can be expanded as @14#

G̃k~ra ,r0!5

1

~2p !3 E E E
2`

1`

d3K
exp@ iK•~r02ra!#

K2
2k2 ,

~21!

where K5(Kx ,Ky ,Kz).
Using the detected signal at the recording surface r0 ,

p̃8(r0 ,k)5H̃(k) p̃(r0 ,k), to replace p̃(r0 ,k) in the recon-
struction Eq. ~9!, and considering the following identities:

E
2`

1`

exp@ i~u1Kx!x0#dx052pd~Kx1u !, ~22!

E
2`

1`

exp@ i~n1Ky!y0#dy052pd~Ky1n !, ~23!

E
2`

1`

dKz

exp~2iKzza!

Kz
2
1r2

2k2

5ip sgn~k !
exp@ iza sgn~k !Ak2

2r2#

Ak2
2r2

, uku.r ,

~24!

the resulting reconstruction for A(r) is

Ab~x ,y ,z !5

1

~2p !3 E
2`

1`

k dk H̃~k !E E
r50

r5uku

du dn

3exp~2iuDx2inDy !

3sgn~k !
exp@2i sgn~k !DzAk2

2r2#

Ak2
2r2

,

~25!

where Dx5x2xa , Dy5y2ya , and Dz5z2za .
In the evaluation of the integral in Eq. ~24!, we replaced k

with k1ig as suggested in Ref. @14#, where g is a small
positive real number. Since there will be some damping of
the wave in a physical system, we then complete a contour
integral in the complex plane and let g approach zero.

Changing the integration order of du dv and dk, and fur-

ther letting w5sgn(k)Ak2
2r2, Eq. ~25! reduces to

Ab~x ,y ,z !5

1

~2p !3 E E E
2`

1`

du dn dw

3exp~2iuDx2inDy2iwDz !H̃~k !,

~26!

where k2
5u2

1v
2
1w2.

Particularly, if H̃(k)[1 for 2`,k,` , Eq. ~26! be-
comes a point source as the original one in Eq. ~20!.

In general, by changing the integral from the Cartesian
coordinates into the spherical coordinates,

~u ,v ,w !→k5~k ,u ,w !,

~Dx ,Dy ,Dz !→R5~R ,a ,b !,

where R2
5(Dx)2

1(Dy)2
1(Dz)2, one can rewrite Eq. ~26!

as

Ab~x ,y ,z !5

1

~2p !3 E E E exp~2ik"R!H̃~k !d3k.

~27!

The integration of Eq. ~27! can be further simplified to

Ab~x ,y ,z !5

1

~2p !3 E
0

1`

H̃~k !k2dk

3E
0

p

exp~2ikR cos g !sin gdg2p , ~28!

where g is the angle between k and R, i.e.,

Ab~x ,y ,z !5

1

2p2 E
0

1`

H̃~k ! j0~kR !k2dk . ~29!

C. Cylindrical geometry

The point source at ra5(ra ,wa ,za) in the cylindrical co-
ordinates can be written as

A~r ,w ,z !5

1

r
d~r2ra!d~w2wa!d~z2za!

5

1

r
d~r2ra!

1

2p (
m52`

1`

exp@ im~w2wa!#

3

1

2p
E

2`

1`

exp@ ikz~z2za!#dkz . ~30!

The Green’s function can be expanded as (k.0)
@11,14,17#

G̃k~ra ,r0!5

i

8p (
m52`

1`

exp@ im~wa2w0!#

3E
2`

1`

dkz exp@ ikz~za2z0!#

3Jm~mra!Hm
~1 !~mr0!, ~31!

where m5Ak2
2kz

2 when kz
2
,k2, and m5iAkz

2
2k2 when

kz
2
.k2.

Using the detected signal at the recording surface r0 ,

p̃8(r0 ,k)5H̃(k) p̃(r0 ,k) to replace p̃(r0 ,k) in the recon-
struction Eq. ~10!, and considering the following identities:
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E
0

2p

dw0 exp@ iw0~n2m !#52pdnm , ~32!

E
2`

1`

dz0 exp@ iz0~g2kz!#52pd~g2kz!, ~33!

the resulting reconstruction for A(r) is

Ab~r ,w ,z !5

1

4p2 E
0

1`

k dk H̃~k !E
2k

1k

dkz exp@ ikz~za2z !#

3 (
m52`

1`

exp@ im~wa2w !#Jm~mra!Jm~mr !.

~34!

Changing the integration order of variables k and kz and
taking into account the following identity @15#:

(
m52`

1`

exp@ im~wa2w !#Jm~mra!Jm~mr !5J0~mD !,

~35!

where D5Ara
2
1r2

22rar cos(wa2w), one can simplify Eq.

~34! to

Ab~r ,w ,z !5

1

4p2 E
2`

1`

dkz exp@ ikz~za2z !#

3E
ukzu

1`

kH̃~k !dk J0~mD !. ~36!

By changing the integral variable k with m5Ak2
2kz

2, one

can get

Ab~r ,w ,z !5

1

4p2 E
2`

1`

dkz exp@2ikzDz#

3E
0

1`

H̃~k !m dm J0~mD !, ~37!

where k2
5kz

2
1m2, Dz5z2za .

Then, one can denote Dx5x2xa5D cos b and Dy5y

2ya5D sin b, and introduce kx5m cos a and ky5m sin a,

where D5A(Dx)2
1(Dy)2 and m5Akx

2
1ky

2, and rewrite

the far right integral in Eq. ~37! as

E
0

1`

m dm H~k !J0~mD !5

1

2p
E E

2`

1`

dkxdky

3exp~2ikxDx2ikxDy !H̃~k !,

~38!

where k2
5kz

2
1m2

5kx
2
1ky

2
1kz

2.

Therefore, Eq. ~37! can be rewritten as

Ab~r ,w ,z !5

1

~2p !3 E E E
2`

1`

dkzdzxdkyH̃~k !

3exp~2ikxDx2ikzDy2ikzDz !, ~39!

which is the same as Eq. ~26!. Thus, Ab(r ,w ,z) takes the
same form as Eq. ~29!,

Ab~r ,w ,z !5

1

2p2 E
0

1`

H̃~k ! j0~kR !k2dk , ~40!

where

R5A~Dx !2
1~Dy !2

1~Dz !2

5Ara
2
1r2

22rar cos~wa2w !1~Dz !2.

Particularly, if H̃(k)[1 for k50→` , Eq. ~39! reduces to
a point source the same as the original one.

D. General geometry

We have proved that the bandwidth-limited PSF’s in the
three different geometries share the same expression as
shown in Eqs. ~17!, ~29!, and ~40!. As described in these
equations, the PSF is independent of the position of the point
source but dependent on the distance R from the point
source. Therefore, the PSF due to bandwidth is space invari-
ant.

Actually, the space invariance of PSF due to bandwidth
can be extended to more general recording geometries. As
mentioned in Ref. @11#, the reconstruction for A(r) can be
expressed by a linear integral:

A~r!5E E
S0

dS0E
k

dk K̃k~r0 ,r! p̃~r0 ,k !, ~41!

where S0 is the recording surface, which covers the object
under study.

The inverse problem for thermoacoustic reconstruction is

to seek such an integral kernel K̃k(r0 ,r) for a particular re-
cording surface. For the spherical, planar, and cylindrical re-

cording geometries, the integral kernel K̃k(r0 ,r) can be ex-
plicitly given as shown in Eqs. ~8!, ~9!, and ~10!,
respectively. For other recording geometries, the integral ker-

nel K̃k(r0 ,r) is more complicated or even nonexistent ana-
lytically.

As shown in Fig. 1, suppose another recording surface
S1 , which could be a spherical, planar, or cylindrical record-
ing surface, can completely enclose surface S0 . Then, based
on Green’s theorem @17#, the pressure p̃(r1 ,k) at S1 can be
computed by the pressure p̃(r0 ,k) on surface S0 ,

p̃~r1 ,k !5E E
S0

dS0S p̃~r0 ,k !
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
] p̃~r0 ,k !

]n0
s D , ~42!

ANALYTIC EXPLANATION OF SPATIAL RESOLUTION . . . PHYSICAL REVIEW E 67, 056605 ~2003!

056605-5



where ]/]n0
s is the normal component of the gradient on

surface S0 and points outward away from the acoustic
source; and r0 and r1 represent detection positions on sur-
faces S0 and S1 , respectively. Since the reconstruction based
on Eq. ~41! from the measurement on surface S0 is exact, the
pressure p̃(r1 ,k) on surface S1 must be identical to the ther-
moacoustic pressure directly generated by the source A(r):

p̃~r1 ,k !5E E E
V0

dV0 A~r!G̃k~r1 ,r!, ~43!

where V0 is the volume enclosed by S0 .

Now, considering the bandwidth characterized by H̃(k),
one can rewrite the reconstruction Eq. ~41! as

Ab~r!5E E
S0

dS0E
2`

1`

dkK̃k~r0 ,r!@H̃~k ! p̃~r0 ,k !# .

~44!

In other words, Eq. ~44! gives the exact reconstruction of a

new and unique source Ab(r) from H̃(k) p̃(r0 ,k) measured
on surface S0 :

H̃~k ! p̃~r0 ,k !5E E E
V0

dV0 Ab~r!G̃k~r0 ,r!. ~45!

Based on Green’s theorem, the pressure on surface S1 can be

computed by the pressure H̃(k) p̃(r0 ,k) on surface S0 ,

which is found equal to H̃(k) p̃(r1 ,k) with considering Eq.
~42!:

E E
S0

dS0S @H̃~k ! p̃~r0 ,k !#
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
]@H̃~k ! p̃~r0 ,k !#

]n0
s D

5H̃~k !E E
S0

dS0S p̃~r0 ,k !
]G̃k~r1 ,r0!

]n0
s

2G̃k~r1 ,r0!
] p̃~r0 ,k !

]n0
s D

5H̃~k ! p̃~r1 ,k !. ~46!

This pressure must be identical to the thermoacoustic pres-
sure directly generated by the new source Ab(r) in volume
V0 ,

E E E
V0

dV0 Ab~r!G̃k~r1 ,r!5H̃~k ! p̃~r1 ,k !, ~47!

i.e.,

H̃~k ! p̃~r1 ,k !5E E E
V1

dV1Ab~r!G̃k~r1 ,r!, ~48!

since there is no source in the volume between the surfaces
S0 and S1 .

Equation ~48! indicates that the new source Ab(r) could

be restored from the value H̃(k) p̃(r1 ,k) on surface S1 , if an
exact reconstruction from data only on surface S1 does exist.
In other words, the reconstruction for A(r) from the mea-

surement with the bandwidth H̃(k) on surface S0 is identical
to the reconstruction from the measurement with the same

bandwidth H̃(k) on surface S1 that fully encloses S0 . Fortu-
nately, we have already obtained the exact reconstruction
formulas from measurements on such a surface S1 as the
spherical, planar, or cylindrical recording geometries. There-
fore, the PSF of the point source at ra as a function of band-

width H̃(k) from the measurement on surface S0 is nothing
but the same expression as Eqs. ~17!, ~29!, and ~40! for the
above three specific recording geometries, respectively.

E. Resolution

For convenience, we can denote the PSF symbolically as

Fb
PSF ,

Fb
PSF~R !5

1

2p2 E
0

1`

H̃~k ! j0~kR !k2dk , ~49!

where the subscript b represents bandwidth, and R5ur
2rau. Equation ~49! can be rewritten in another form as

Fb
SPF~R !5

21

4pR
FdH~R !

dR
1

dH~2R !

dR
G , ~50!

if we let H(2 t̄ )5H( t̄ ) and define the following Fourier
transform:

H~ t̄ !5

1

2p
E

2`

1`

H̃~k !exp~2ik t̃ !dk , ~51!

where H( t̄ ) is the corresponding temporal signal of H̃(k).

If H̃(k) has a cutoff frequency kc , H̃(k)51 when k

<kc , H̃(k)50 when k.kc , the integral in Eq. ~49! can be
carried out,

Fb
PSF~R !5

1

2p2 E
0

kc

j0~kR !k2dk

5

kc

2p2R2 S sin~kcR !

kcR
2cos~kcR ! D , ~52!

i.e.,

Fb
PSF~R !5

kc
3

2p2

j1~kcR !

kcR
5

kc
3

6p2

3 j1~kcR !

kcR
. ~53!

By normalizing the PSF of Eq. ~53!, one can get

Fb
PSF~R !5

3 j1~kcR !

kcR
. ~54!
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The full width at half maximum ~FWHM! of the PSF is often
used to represent the spatial resolution. It is easy to show
3 j1(x)/x50.5 when x52.4983. Therefore,

WFWHM523

2.4983

kc

523

2.4983

2p f c /c
50.7952c/ f c'0.8lc ,

~55!

where lc is the wavelength at the cutoff frequency of the
bandwidth. For example, if c51.5 mm/ms, f c54 MHz, then

WFWHM'0.3 mm. The corresponding Fb
PSF(R) is plotted in

Figs. 2~a! and 2~b!.
Sometimes, a detection system has a finite bandwidth

characterized by a central frequency f 0 with a low cutoff
frequency f Lc and a high cutoff frequency f Hc . For simplic-

ity, suppose H̃(k)51 is in the above frequency range, and
then the PSF can be expressed by

Fb
PSF~R !5

kHc
3

2p2

j1~kHcR !

kHcR
2

kLc
3

2p2

j1~kLcR !

kLcR
, ~56!

where kLc52p f Lc /c and kHc52p f Hc /c .

For example, a system is with f 053 MHz, and f Lc

52 MHz and f Hc54 MHz. The corresponding PSF is plot-

ted as the dotted line in Fig. 2~c!. As shown in Fig. 2~c!, the

FWHM of the PSF with a bandwidth of ~2 MHz, 4 MHz! is

slightly narrower than the FWHM of the PSF with a wider

bandwidth of ~0, 4 MHz! @solid line in Fig. 2~c!#. In other

words, due to the absence of a low frequency component, the

high frequency component will cause the FWHM to be nar-

rower. The minimum value of the FWHM can be estimated

in the PSF with a single frequency f c and zero bandwidth.

The PSF in this case is nothing but the integral kernel in Eq.

~49!: the zero-order spherical Bessel function j0(kcR). Such

an example, with f c54 MHz, is plotted as the dash-dot line

in Fig. 2~c!. Since j0(1.895)'0.5, the minimum WFWHM

'0.6lc , where lc is the wavelength at the cutoff frequency

f c . But, as shown in Fig. 2~c!, a PSF that lacks a low fre-

quency component does not concentrate in the center beam

anymore, and the side beams of the PSF slowly attenuate as

the position gets farther away from the point source, thereby
introducing significant artifacts in the investigation of large
objects.

FIG. 2. An example of the PSF as a result of the bandwidth ~0, 4 MHz!: ~a! a gray scale view and ~b! a profile through the point source.

~c! Comparison of the PSF’s with different bandwidths: dashed line, ~0, 2 MHz!; solid line, ~0, 4 MHz!; dotted line, ~2 MHz, 4 MHz!;

dot-dashed line, 4 MHz.
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In conclusion, the obtainable spatial resolution approxi-
mates to a value between 0.6lc and 0.8lc , where lc is the
wavelength at the high cutoff frequency f c . If the bandwidth
is too narrow, the reconstruction based on the wide band-
width measurement becomes inappropriate and the FWHM
of the reconstructed PSF does not properly describe the real
spatial resolution.

IV. EFFECT OF DETECTOR APERTURE

Next, let us derive the analytic expressions of the PSF’s
related to detector aperture size. As shown in Fig. 3, the real
signal detected at position r0 can be expressed as a surface
integral over the detector aperture

p̃8~r0 ,k !5E E p̃~r08 ,k !W~r08!d2r08 , ~57!

where W(r08) is a weighting factor, which represents the con-

tribution from different elements of the detector surface to
the total signal of the detector.

Since r085r01r8, Eq. ~57! can be rewritten as

p̃8~r0 ,k !5E E p̃~r01r8,k !W~r8!d2r8. ~58!

One can assume a point source at ra and then get the
detected signal at position r0 using Eq. ~57! or ~58!. If the
signal is not bandlimited, by substituting p̃8(r0 ,k) for
p(r0 ,k) in the rigorous reconstruction formulas such as Eqs.
~8!–~10!, one can get analytic expressions of the PSF’s for
the spherical, planar, and cylindrical geometries, respec-
tively. In general, the analytic expressions cannot be thor-
oughly simplified for arbitrary detector apertures. In order to
explicitly demonstrate the effects of the detector apertures on
spatial resolution, we will make some assumptions about the
detector apertures.

A. Spherical geometry

As shown in Fig. 4~a!, r0 represents the center of detector
o8 in the global spherical coordinates (r ,u ,w) with the origin
at the recording geometry center o. A local spherical coordi-
nate system aligned with r0 is used as well. Assume that the
detector is circularly symmetric about its center o8; in this
case, the weighting factor depends only on u8, W(r8)

5W(u8), where the angle u8 between r08 and r0—the polar

angle of r08 in the local coordinate system—varies from 0 to

U depending on the size of the detector. The azimuthal angle

w8 of r08 in the local coordinate system varies from 0 to 2p.

The normal of the detector surface at point o8 is assumed to
point to the center of the recording geometry o. The surface
integral in Eq. ~58! can be transformed into an integral over
a curve radiating from the center o8 on the surface l8 and the
azimuthal angle w8:

p̃8~r0 ,k !5E E p̃~r01r8,k !W~u8!r8A12~n0•n8!2dw8dl8

5E
l8

W~u8!A12~n0•n8!2r8dl8

3E
0

2p

p̃~r01r8,k !dw8, ~59!

where n85r8/r8 and

FIG. 3. Diagram of the detector surface r8 with origin o8. The

vector r0 represents the center of detector o8 in the recording ge-

ometry with origin o. The vector r08 points to an element of the

detector aperture.

FIG. 4. ~a! Diagram of the spherical recording geometry: u8 is

the angle between r0 and r08 ; dl8 is an integral element on the

detector surface; Q is the angle of the radius of the detector aperture

to the recording geometry origin o; the extension of the PSF at point

A is indicated; other denotations of the symbols are the same as in

Figs. 1 and 3. ~b! Perspective view of the lateral extension of the

PSF’s of all the point sources along a radial axis in the spherical

recording geometry.
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p̃~r01r8,k !52ikc2h
exp~ ikura2r02r8u!

4pura2r02r8u
. ~60!

Considering the expansion in the local spherical coordinates,

and denoting n085r08/r08 , n085(u8,w8), and na5(ua8 ,wa8),

one obtains

exp~ ikura2r08u!

4pura2r08u
5

ik

4p (
l50

`

~2l11 ! j l~kra!

3h l
~1 !~kr08!P l~na•n08!, ~61!

where P l(na•n08) can be expanded as @14#

P l~na•n08!5P l~cos ua8!P l~cos u8!

12 (
m51

l
~ l2m !!

~ l1m !!
P l

m~cos ua8!P l
m~cos u8!

3cos@m~wa82w8!# . ~62!

Then, one can evaluate the following integral:

E
0

2p

P l~na•n08!dw852pP l~cos u8!P l~cos ua8!. ~63!

Actually, ua8 is the angle between r0 and ra , i.e., cos ua8

5na•n0 .
Combining the results of Eqs. ~61!–~63!, Eq. ~59! can be

rewritten as

p̃8~r0 ,k !5

k2c2h

2
E

l8

W~u8!A12~n0•n8!2r8dl8

3(
l50

`

~2l11 !P l~cos u8!P l~na•n0! j l~kra!

3h l
~1 !~kr08!. ~64!

By replacing p(r0 ,k) with p̃8(r0 ,k) in the reconstruction
formula Eq. ~8! and considering identity ~14!, one obtains the
reconstruction for A(r):

Aa~r!5

1

p
E

l8

W~u8!A12~n0•n8!2r8dl8

3 (
m50

`

~2m11 !Pm~na•n!Pm~cos u8!

3E
0

1`

jm~kra! jm~kr !
hm

~1 !~kr08!

hm
~1 !~kr0!

k2dk . ~65!

Letting ũ and w̃ be the polar and azimuthal angles of
vector n with respect to vector na , and using an identity
similar to the one shown in Eq. ~63!, one can rewrite Eq. ~65!
as

Aa~r!5E E W~u8!r8A12~n0•n8!2dw8dl8

3

1

2p2 (
m50

`

~2m11 !Pm~cos g̃ !

3E
0

1`

jm~kra! jm~kr !
hm

~1 !~kr08!

hm
~1 !~kr0!

k2dk , ~66!

where cos g̃5cos ũ cos u81sin ũ sin u8 cos(w̃2w8).

1. Special spherical aperture

For simplicity, assume that the detector is a small section

of the spherical measurement surface, i.e., r085ur08u5ur0

1r8u5ur0u5r0 . Therefore, one obtains

A12~n0•n8!2r8dl85r0
2 sin u8du8, ~67!

and

hm
~1 !~kr08!/hm

~1 !~kr0!51. ~68!

Substituting the identity Eq. ~18! and the following identity
~see the Appendix! into Eq. ~65!,

(
m50

`

~2m11 !Pm~na•n!Pm~cos u8!52d~cos u82na•n!,

~69!

one obtains

Aa~r!5

r0
2

r2 d~r2ra!E
0

Q

sin u8W~u8!du8 d~cos u82na•n!.

~70!

Letting g be the angle between na and n, i.e., na•n5cos g,

Aa~r!5

r0
2

r2 d~r2ra!E
0

Q

sin u8W~u8!du8 d~cos u82cos g !

5

r0
2

r2 d~r2ra!E
0

Q

sin u8W~u8!du8
d~u82g !

sin u8

5

r0
2

r2 d~r2ra!E
0

Q

W~u8!d~u82g !du8

5

r0
2

r2 d~r2ra!W~g !. ~71!

If letting W(u8)51,

Aa~r!5

r0
2

r2 d~r2ra!@U~g !2U~g2Q !# , ~72!

where U is the step function, U(x)51 when x.0 and
U(x)50 when x,0.

Equation ~72! indicates that, in this special case, the PSF
only extends along the lateral direction, which is propor-
tional to the solid angle of the detector aperture to the origin
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of the measurement geometry. The perspective view of the
lateral extension of all the points in a radial axis looks like a
cone as shown in Fig. 4~b!. The farther the point source is
away from the origin, the more extension the PSF has.
Therefore, the lateral resolution is worse when the point is
close to the detector. But, a lateral resolution superior to the
aperture size can still be achieved if the object under study is
close to the center of the geometry.

2. Small flat aperture

Now, let us consider flat apertures. Sometimes, a set of
small flat detectors is used to form a spherical recording
surface. Suppose the detector aperture is disklike and its ra-
dius is P. Since n0•n850 in this case,

A12~n0•n8!2r8dl85r8dr8, ~73!

where r85r0 tan u8. If the aperture is small relative to the
radius of the detection surface, i.e., r8<P!r0 , the follow-
ing approximation holds:

r082r05Ar0
2
1r8

2
2r0'

r8
2

2r0

. ~74!

Neglecting the second-order and higher small quantities, one

can approximate hm
(1)(kr08)/hm

(1)(kr0)'1. Then, one can fol-

low the derivation for the special spherical aperture and ob-
tain

Aa~r!5

1

r2 d~r2ra!E
0

P

W~r8!r8dr8 d~cos u82na•n!.

~75!

Letting W(r8)51 and approximating r85r0 tan u8'r0 u8 for
the small-aperture case, one reaches

Aa~r!'
r0

2

r2 d~r2ra!E
0

P/r0

u8
d~u82g !

sin u8
du8

5

r0
2

r2 d~r2ra!E
0

P/r0

d~u82g !du8

5

r0
2

r2 d~r2ra!@U~g !2U~g2P/r0!# . ~76!

Equation ~76! indicates that, for the small flat aperture, the
extension of the PSF is primarily along the lateral axis. In
fact, if we substitute Q for P/r0 , Eq. ~76! becomes identical
to Eq. ~72! for the special spherical aperture.

Particularly, at the center of the recording geometry, i.e.,

ra50, we have jm(0)5dm0 , P0(•)51, and h0
(1)(kr)5

2i exp(ikr)/(kr). Assuming W(r8)51, Eq. ~65! reduces to

Aa~r!5

1

p
E

0

1`

j0~kr !exp~2ikr0!k2dk

3E
0

P r0

r08
r8dr8 exp~ ikr08!. ~77!

Using the relation r085Ar0
2
1r8

2, one can simplify Eq. ~77!
to

Aa~r!5

1

p
E

0

1`

j0~kr !k2dk
r0@exp~ ikAP2

1r0
2
2ikr0!21#

ik
.

~78!

Because P!r0 , the imaginary part is much less than the real
part and hence can be neglected; as a result, one can obtain

Aa~r!'
r0

p
E

0

1`

j0~kr !sin @k~AP2
1r0

2
2r0!#k dk . ~79!

Using the following identity @14#:

E
0

1`

j0~ka !sin~kb !k dk5bE
0

1`

j0~ka ! j0~kb !k2dk

5

p

2b
d~b2a !, ~80!

in the small-aperture case, i.e., P!r0 , Eq. ~79! reduces to

Aa~r !5

r0
2

P2 dS r2

P2

2r0
D . ~81!

Equation ~79! indicates that the point source at the center
becomes a circle with a diameter P2/r0 .

Next, we want to estimate the lateral extension at an ar-
bitrary point. Taking the asymptotic form of the Hankel func-
tion to approximate

hm
~1 !~kr08!

hm
~1 !~kr0!

'
exp~ ikr08!/~kr08!

exp~ ikr0!/~kr0!
5

r0

r08
exp~ ikr082ikr0!,

~82!

one can rewrite Eq. ~65! as

Aa~r!5

1

p
E

0

P

W~r8!r8dr8E
0

1` r0

r08
exp~ ikr082ikr0!k2dk

3 (
m50

`

~2m11 !Pm~na•n!

3Pm~cos u8! jm~kra! jm~kr !. ~83!

The above integral is still complicated. Here, we consider
only the spread along ra with the assumption of W(r8)
51. Substituting Pm(na•n)5Pm(1)51 into Eq. ~83! and
considering identity ~16!, and further approximating

j0(kAra
2
1r2

22rar cos u8)'j0(kur2rau) for the small-

aperture case (r8!r0 , i.e., u8!1), one obtains

Aa~rna!5

1

p
E

0

1`

j0~kur2rau!exp~2ikr0!k2dk

3E
0

P r0

r08
r8dr8 exp~ ikr08!. ~84!
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If we substitute ur2rau for r, Eq. ~84! becomes identical to
Eq. ~77!. Thus, in the small-aperture case (P!r0), Eq. ~84!
reduces to Eq. ~81! with the replacement of r by ur2rau:

Aa~rna!'
r0

2

P2 dS ur2rau2
P2

2r0
D . ~85!

Equation ~85! indicates that the point source at which ra

extends in the radial direction to a region with diameter
P2/r0 is the same as the extension of the PSF at the record-
ing geometry center as shown in Eq. ~81!. But, in most cases,
this extension is negligible. For example, when using a trans-
ducer with even a 6 mm diameter to image a 10-cm-size
breast on a recording geometry surface with a 15 cm diam-
eter, P2/r0532/15050.06 mm. However, the lateral exten-
sion at r is on the order of 2rP/r0 as shown in Eq. ~76!. For
example, even at r51 cm, 2rP/r05(2)(10)(3)/150
50.4 mm.0.06 mm.

B. Planar geometry

In this case, we reasonably assume that the detector sur-
face is flat. As shown in Fig. 5~a!, r0 represents the center of
the detector o8 in the global Cartesian coordinates ~x,y,z!
with the origin at the recording geometry center o. Let x8,

y8, and z8 be the differences of the coordinates between r08

and r0 , respectively. For the following two linear transla-
tions:

r0→r08 : x0→x01x85x08 , y0→y01y85y08 , ~86!

ra→ra8 : xa→xa2x85xa8 , ya→ya2y85ya8 , ~87!

there exist the following translational invariances, ura2r08u
5ura82r0u.

The detected signal at r0 can be written as

p̃8~r0 ,k !5E E W~r8! p̃~r01r8,k !d2r8

5E E W~x8,y8! p̃~x01x8,y01y8,k !dx8dy8.

~88!

Using p̃8(r0 ,k) to replace p(r0 ,k) in the reconstruction
formula Eq. ~9!, and following the similar derivation shown
in Sec. III B, one gets the reconstruction for A(r) as

Aa~x ,y ,z !5E E W~x8,y8!d~x2xa8!d~y2ya8!

3d~z2za!dx8dy8

5E E W~x8,y8!d~x2xa1x8!d~y2ya1y8!

3d~z2za!dx8dy8, ~89!

i.e.,

Aa~x ,y ,z !5W~x2xa ,y2ya!d~z2za!. ~90!

Assuming that the detector surface is a disk with radius P,

and W(x8,y8)51 when Ax8
2
1y8

2
,P , Eq. ~90! reduces to

Aa~x ,y ,z !5U~P2D !d~Dz !, ~91!

where D5A(Dx)2
1(Dy)2, and Dx5x2xa , etc.

Equation ~91! indicates that without considering the band-
width, the PSF does not extend along the axial direction, but
it greatly extends in the lateral direction. Moreover, the lat-
eral extension is proportional to the detector aperture. The
perspective view of the lateral extension of all the PSF’s in a
line parallel with the z axis looks like a cylinder as shown in
Fig. 5~b!. Therefore, the lateral resolution is totally blurred
by the detector aperture, no matter where the point is.

C. Cylindrical geometry

1. Special cylinder aperture

We first assume that the detector surface is a section of the
cylindrical measurement surface. As shown in Fig. 6~a!, r0

represents the center of the detector o8 in the global cylin-
drical coordinates (r ,w ,z) with the origin at the recording
geometry center o. Let w8 be the difference between the

polar angles of r0 and r08 , and r8 and z8 be the projections of

FIG. 5. ~a! Diagram of the planar recording geometry: P is the

radius of the detector aperture; the extension of the PSF at point A

is indicated; other denotations of the symbols are the same as in

Figs. 1 and 3; ~b! perspective view of the lateral extension of the

PSF’s of all the point sources along a line parallel to the z axis in

the planar recording geometry.
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r8 in the x-y plane and the z axis, respectively. Two sides of
the detector are along the z axis from 2Z to Z, and the other
two sides are parallel with the x-y plane and the polar angle
w8 varies from 2F to F. For the following two translations:

r0→r08 : w0→w01w85w08 , z0→z01z85z08 , ~92!

ra→ra8 : wa→wa2w85wa8 , za→za2z85za8 , ~93!

there exist the following translational invariances, ura2r08u
5ura82r0u.

The detected signal can be written as

p̃a~r0 ,k !5E E p̃~r01r8,k !W~r8!d2r8

5E E p̃~w01w8,z01z8,k !W~w8,z8!r0dw8dz8.

~94!

Replacing p(r0 ,k) by p̃8(r0 ,k) in the reconstruction for-

mula Eq. ~10!, and following the derivation shown in Sec.

III C, one can get the reconstruction for A(r) as

Aa~r ,w ,z !5E E 1

r
d~r2ra!d~w2wa8!

3d~z2za8!W~w8,z8!r0dw8dz8

5

r0

r
d~r2ra!E E d~w2wa1w8!

3d~z2za1z8!W~w8,z8!dw8dz8, ~95!

i.e.,

Aa~r ,w ,z !5

r0

r
d~r2ra!W~w2wa ,z2za!. ~96!

If W(w8,z8)51, w8 from 2F to F, and z8 from 2Z to Z,

Eq. ~96! can be rewritten as

Aa~r ,w ,z !5

r0

r
d~r2ra!U~F2uw2wau!U~Z2uz2zau!.

~97!

Equation ~97! indicates that the extension of the PSF in

the cylindrical geometry combines the properties of the

PSF’s in the spherical and planar geometries. In this special

case, the PSF does not extend along the radial direction. The

perspective view of the lateral extension of all the point

sources in a radial axis looks like a wedge of pie as shown in

Fig. 6~b!. In the z-axis direction, the PSF extension is pro-

portional to the detector size along the z axis, just like the

planar geometry. While parallel with the x-y plane, the lateral

extension is proportional to the angle of the detector width to

the z axis, just like in the spherical case. Therefore, a lateral

resolution that is better than the aperture size can be obtained
parallel to the x-y plane if the object under study is close to
the center of the geometry; however, the lateral resolution
along the z axis is determined by the detector size.

2. Small rectangle aperture

Sometimes a set of small rectangle detectors is used to
form a cylindrical array. The normal of the detector at the
center point o8 is assumed to point to the center of the re-
cording geometry. Two sides of the detector are along the z

axis from 2Z to Z, and the other two sides are parallel with
the x-y plane and have a length of 2P . One can follow the
similar derivation in Sec. III C, and get the reconstruction for
A(r) as

FIG. 6. ~a! Diagram of the cylindrical geometry: w8 is the dif-

ference between the polar angles of r0 and r08 ; r8 and z8 are the

projections of r8 in the x-y plane and the z axis, respectively; Z is

the half width of the detector aperture along the z axis and F is the

half angle of the width of the detector aperture parallel to the x-y

plane to the center of the recording geometry; the extension of the

PSF at point A is indicated; other denotations of the symbols are the

same as in Figs. 1 and 3. ~b! Perspective view of the lateral exten-

sion of the PSF’s of all the point sources along a radial axis in the

cylindrical recording geometry.
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Aa~r ,w ,z !5

1

2p
E

2Z

Z

d~za2z2z8!dz8E
2P

P

dr8 W~w8,z8!

3 (
m52`

1`

exp@ im~wa2w2w8!#

3E
0

1`

m dm

3Jm~mra!Jm~mr !
Hm

~1 !~mAr0
2
1r8

2!

Hm
~1 !~mr0!

, ~98!

where r85r0 tan w8. Let W(w8,z8)51.
For the small-aperture case, r8!r0 , one can approximate

Hm
~1 !~mAr0

2
1r8

2!

Hm
~1 !~mr0!

'1. ~99!

Further, taking the small-aperture approximation r8

5r0 tan w8.r0w8, and considering the following identity
@14#:

E
0

1`

m dm Jm~mra!Jm~mr !5

1

r
d~r2ra!, ~100!

one can rewrite Eq. ~98! as

Aa~r ,w ,z !5U~Z2uz2zau!
1

r
d~r2ra!

3E
2P/r0

P/r0

r0dw8 d~wa2w2w8!, ~101!

i.e.,

Aa~r ,w ,z !5

r0

r
d~r2ra!US P

r0

2uw2wau DU~Z2uz2zau!.

~102!

Equation ~102! indicates that, for the small flat aperture, the
extension of the PSF is primarily along the lateral axis. In
fact, if we substitute F for P/r0 , Eq. ~102! becomes identi-
cal to Eq. ~97! in the special cylinder aperture case.

Next, we want to estimate the lateral extension of the PSF.
One can also take the asymptotic form of the Hankel func-
tion to approximate

Hm
~1 !~mAr0

2
1r8

2!

Hm
~1 !~mr0!

'exp@ im~Ar0
2
1r8

2
2r0!# , ~103!

and then rewrite Eq. ~98! as

Aa~r ,w ,z !5

1

2p
U~Z2uz2zau!E

0

1`

m dm

3E
2P

P

dr8 exp@ im~Ar0
2
1r8

2
2r0!#

3 (
m52`

1`

Jm~mra!Jm~mr !

3exp@ im~wa2w2w8!# . ~104!

Considering identity ~35!, Eq. ~104! can be rewritten as

Aa~r ,w ,z !5

1

2p
U~Z2uz2zau!E

0

1`

m dm

3E
2P

P

dr8 exp@ im~Ar0
2
1r8

2
2r0!#

3J0„mAra
2
1r2

22rar cos~wa2w2w8!….

~105!

Equation ~105! is still complicated. Here, by only consid-
ering the points along ra , i.e., letting w5wa , and then tak-
ing the small-aperture approximation (w8!1),

J0„uAra
2
1r2

22rar cos~wa2w2w8!…'J0~mur2rau!,
~106!

and

Ar0
2
1r8

2
2r0'

r8
2

2r0

, ~107!

one can rewrite Eq. ~105! as

Aa~r ,wa ,z !5U~Z2uz2zau!E
2P

P

dr8E
0

1`

m dm

3J0~mur2rau!exp~ imr8
2/2r0!. ~108!

Because r8!r0 , the imaginary part is much less than the
real part and hence can be neglected,

Aa~r ,wa ,z !5U~Z2uz2zau!E
2P

P

dr8E
0

1`

m dm

3J0~mur2rau!cos~mr8
2/2r0!

5U~Z2uz2zau!E
2P

P

dr8S r0

r8
D ]

]r8

3E
0

1`

dm J0~mur2rau!sin ~mr8
2/2r0!.

~109!

Using the following identity @15#:
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E
0

1`

dt J0~ ta !sin~ tb !5H 1

Ab2
2a2

, 0,a,b

0 otherwise,
~110!

one can get the integral in Eq. ~109!,

E
2P

P

dr8S r0

r8
D ]

]r8
@A~r8

2/2r0!2
2ur2rau2#21

5S r0

r8
D @A~r8

2/2r0!2
2ur2rau2#21u

2P
P

2E
2P

P

@A~r8
2/2r0!2

2ur2rau2#21dS r0

r8
D .

~111!

The integral of Eq. ~111! only exists in the range P2/2r0

.ur2rau. Therefore, the PSF extends to a region with a
diameter P2/r0 , which is negligible compared to the lateral
extension as we discussed in the spherical geometry expla-
nation.

So far, we have derived the analytic PSF’s due to the
detector apertures for the specific spherical, planar, and cy-
lindrical recording geometries. The explicit expressions can
be given when the detector surfaces are assumed to have the
same geometric properties as the recording geometries. Oth-
erwise, it appears that explicitly carrying out the analytic
derivations is impossible. But, in reality, the detector aper-
ture is very small compared to the recording surface. We
have also estimated axial extension in this case and found
that it was negligible compared to lateral extension.

V. DISCUSSION AND CONCLUSIONS

In Sec. III, we proved that the PSF as a function of band-
width is space invariant. In Sec. IV, we demonstrated that the
finite aperture of the detector extends the PSF for different
recording geometries.

Finally, we attempt to analyze the combined effects of
bandwidth and detector size together. Assume that the de-

tected signal is bandlimited, characterized by H̃(k) with a
cutoff frequency kc , and the detectors have the same geom-
etries as the recording surfaces. One can then follow the
derivations in Secs. III and IV and reach the following re-
sults.

~1! Spherical geometry:

Aba~r!5E E W~u8!Fb
PSF~R8!r0

2 sin u8du8dw8,

~112!

where R85Ar2
1ra

2
22rra cos g̃, cos g̃5cos ũ cos u8

1sin ũ sin u8 cos(w̃2w8), and ũ and w̃ are the polar and azi-
muthal angles of vector n with respect to vector na , respec-
tively.

~2! Planar geometry:

Aba~x ,y ,z !5E E W~x8,y8!Fb
PSF~R8!dx8dy8, ~113!

where R85A(x2xa1x8)2
1(y2ya1y8)2

1(z2za)2.
~3! Cylindrical geometry:

Aba~r ,w ,z !5E E W~w8,z8!Fb
PSF~R8!r0dw8dz8,

~114!

where R85Ar2
1ra

2
22rra cos(w2wa1w8)1(z2za1z8)2.

Equations ~112!–~114! clearly reveal that the PSF can be
regarded as a convolution of the detector aperture with the

space invariant Fb
PSF . However, in the spherical geometry

case, the convolution becomes complicated as shown in Eq.
~112!. Further, we can imagine how complicated the convo-
lution could be with an arbitrary recording geometry using
arbitrary-aperture detectors.

Let us take the PSF in the planar geometry case as an
example, which is shown in Fig. 7. The detector aperture is
assumed to be a disk with a radius of 1 mm and a cutoff
frequency f c54 MHz. In the axial direction, the extension of
the PSF is similar to that shown in Fig. 2~b!, which is deter-

FIG. 7. An example of the PSF due to the detector aperture: ~a! a gray scale view and ~b! a lateral profile through the point source.
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mined by the bandwidth. However, as shown Fig. 7~b!, the
PSF greatly expands in the lateral direction, and its corre-
sponding WFWHM'2 mm, which is physically limited by the
detector size.

In conclusion, spatial resolution as a function of band-
width is space invariant for any recording geometry when the
reconstruction is linear and exact. The bandwidth limits the
obtainable spatial resolution. The detector aperture blurs lat-
eral resolution greatly at different levels for different record-
ing geometries but the effect on axial resolution is slight. The
results offer clear instruction for designing appropriate ther-
moacoustic imaging systems with predefined spatial resolu-
tions.
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APPENDIX

The completeness relation of the spherical harmonics
Y lm(u ,w) @14,16# is

(
l50

`

(
m521

l

Y lm
* ~u8,w8!Y lm~u ,w !

5d~w2w8!d~cos u2cos u8!, ~A1!

where

Y lm~u ,w !5A2l11

4p

~ l2m !!

~ l1m !!
P l

m~cos u !exp~ imw !.

~A2!

Then, do an integral over w from 0 to 2p of both sides of
Eq. ~A1!,

(
l50

`

(
m52l

l
2l11

4p

~ l2m !!

~ l1m !!
P l

m~cos u !P l
m~cos u8!

3E
0

2p

exp@ im~w2w8!#dw

5(
l50

`

(
m52l

l
2l11

4p

~ l2m !!

~ l1m !!
P l

m~cos u !P l
m~cos u8!2pdm0

5(
l50

`
2l11

4p
P l~cos u !P l~cos u8!2p

5d~cos u2cos u8!E
0

2p

d~w2w8!dw5d~cos u2cos u8!,

~A3!

i.e.,

(
l50

`

~2l11 !P l~cos u !P l~cos u8!52d~cos u2cos u8!.

~A4!
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@3# K. P. Köstli, D. Frauchiger, J. J. Niederhauser, G. Paltauf, H. P.

Weber, and M. Frenz, IEEE J. Sel. Top. Quantum Electron. 7,

918 ~2001!.

@4# R. O. Esenaliev, A. A. Karabutov, and A. A. Oraevsky, IEEE J.

Sel. Top. Quantum Electron. 5, 981 ~1999!.

@5# G. Ku and L.-H. V. Wang, Med. Phys. 28, 4 ~2001!.

@6# M. Xu, G. Ku, and L.-H. V. Wang, Med. Phys. 28, 1958

~2001!.

@7# M. Xu and L.-H. V. Wang, IEEE Trans. Med. Imaging 21, 814

~2002!.

@8# Y. Xu, D.-Z. Feng, and L.-H. V. Wang, IEEE Trans. Med.

Imaging 21, 823 ~2002!.

@9# Y. Xu, M. Xu, and L.-H. V. Wang, IEEE Trans. Med. Imaging

21, 829 ~2002!.

@10# M. Xu and L.-H. V. Wang, Med. Phys. 29, 1661 ~2002!.

@11# M. Xu, Y. Xu, and L.-H. V. Wang, IEEE Trans. Biomed. Eng.

~to be published!.

@12# Y. Xu and L.-H. Wang ~unpublished!.

@13# A. C. Tam, Rev. Mod. Phys. 58, 381 ~1986!.

@14# G. B. Arfken and H. J. Weber, Mathematical Methods for

Physicists ~Academic, San Diego, 1995!.

@15# M. Abramowitz and I. A. Stegun, Handbook of Mathematical

Functions with Formulas, Graphs, and Mathematical Tables

~Dover, New York, 1965!.

@16# J. D. Jackson, Classical Electrodynamics ~Wiley, New York,

1999!.

@17# P. M. Morse and K. U. Ingard, Theoretical Acoustics

~McGraw-Hill, New York, 1968!.

ANALYTIC EXPLANATION OF SPATIAL RESOLUTION . . . PHYSICAL REVIEW E 67, 056605 ~2003!

056605-15


