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Analytic expressions for the constitutive parameters of magnetoelectric metamaterials
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Electromagnetic metamaterials are artificially structured media typically composed of arrays of resonant
electromagnetic circuits, the dimension and spacing of which are considerably smaller than the free-space
wavelengths of operation. The constitutive parameters for metamaterials, which can be obtained using full-
wave simulations in conjunction with numerical retrieval algorithms, exhibit artifacts related to the finite size
of the metamaterial cell relative to the wavelength. Liu et al. [R. Liu, T. J. Cui, D. Huang, B. Zhao, and D. R.
Smith, Phys. Rev. E 76, 026606 (2007)] showed that the complicated, frequency-dependent forms of the
constitutive parameters can be described by a set of relatively simple analytical expressions. These expressions
provide useful insight and can serve as the basis for more intelligent interpolation or optimization schemes.
Here, we show that the same analytical expressions can be obtained using a transfer-matrix formalism applied
to a one-dimensional periodic array of thin, resonant, dielectric, or magnetic sheets. The transfer-matrix for-
malism breaks down, however, when both electric and magnetic responses are present in the same unit cell, as
it neglects the magnetoelectric coupling between unit cells [C. R. Simovski, Metamaterials 1, 62 (2007)]. We
show that an alternative analytical approach based on the same physical model must be applied for such
structures. Furthermore, in addition to the intercell coupling, electric and magnetic resonators within a unit cell
may also exhibit magnetoelectric coupling. For such cells, we find an analytical expression for the effective
index, which displays markedly characteristic dispersion features that depend on the strength of the coupling
coefficient. We illustrate the applicability of the derived expressions by comparing to full-wave simulations on
magnetoelectric unit cells. We conclude that the design of metamaterials with tailored simultaneous electric
and magnetic response—such as negative index materials—will generally be complicated by potentially un-

wanted magnetoelectric coupling.
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I. INTRODUCTION

A variety of numerically based retrieval approaches have
been developed over the past decade for the purpose of de-
signing and characterizing periodic arrays of scattering ele-
ments in terms of effective electromagnetic media [ 1-6]. The
goal of these methods is to remove the details associated
with the local field and current distributions that exist in and
around the individual elements by the application of an av-
eraging or homogenization scheme. Such homogenization
schemes aim to replace the local description of a collection
of elements with averaged values for the effective electric
permittivity, €, and effective magnetic permeability, p,gs.
Wave propagation within the effective medium defined by
the collection of elements can then be fully described using
the derived effective constitutive parameters in conjunction
with Maxwell’s equations. The use of effective constitutive
parameters provides a convenient means to understand wave
propagation phenomena in artificially structured metamateri-
als without the need to consider the complex quasistatic
local-field structure around the metamaterial elements.

The process of averaging the fields over a collection of
elements to arrive at a continuous medium description is a
fundamental procedure that is well established [7]. Analytic
expressions have been derived that describe effective media
with varying degrees of internal complexity, from simple
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mixtures of dielectrics to materials with much more elabo-
rate inclusions [8—11]. As the field of metamaterials has pro-
gressed, however, the need for extremely accurate models of
the effective-medium properties of complex scattering ele-
ments has also advanced. The approximate analytical consti-
tutive parameters derived for effective media comprising
conducting circuit elements [12,13], for example, provide an
intuitive, qualitative understanding of elements such as split-
ring resonator (SRR) or wire-based metamaterials, but are
inadequate for precise design. As an alternative approach,
numerical retrievals are now routinely applied to unit cells
containing arbitrary collections of metamaterial elements.
Because periodic boundary conditions can be applied in full-
wave simulations, the effective interactions among all of the
elements are correctly accounted for. From either the com-
puted local fields or the computed transmission and reflec-
tion coefficients, exact values for the effective constitutive
parameters can thus be obtained. The numerical approaches
have been successful in facilitating the design of exotic me-
dia, including metamaterials with negative refractive index
[14-20], gradient index metamaterials [21-23], and transfor-
mation optical media [24,25].

To obtain the often exotic response that has come to be
associated with metamaterials, resonant conducting elements
are typically used. These resonant circuits exhibit a dipolar
response that can be quite large and either in-phase or out-
of-phase with the incident driving electric or magnetic field.
Although quasistatic models of such metamaterials predict
Drude-Lorentz-like resonant effective constitutive param-
eters [12,13], the actual simulated elements result in far more
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complex (and seemingly unphysical) line shapes that appear
difficult to describe in a simple manner. The specific,
frequency-dependent form of metamaterial constitutive pa-
rameters has been suggested to be a consequence of spatial
dispersion [3,4,26,27 ] —that is, the finite size of the unit cell
relative to the wavelength.

In 2007, Liu et al. examined the field-averaging
approach to the homogenization of metamaterials and
arrived at relatively uncomplicated analytical expressions
that could account for the unusual line shapes associated
with metamaterial elements [5]. The resulting expressions
included a term corresponding to the averaged permittivity
(or permeability)—assumed to have a Drude-Lorentz-like
form—multiplied by a term accounting for spatial disper-
sion. The complex line shapes typically obtained by direct
numerical simulation, then, could apparently be understood
by an analytical expression having only a few free param-
eters, such as oscillator strength, resonant frequency, damp-
ing factor, and unit cell size. It was shown that with the
appropriate choice of these constants, a nearly exact match of
the analytically versus numerically determined frequency-
dependent constitutive parameters could be found.

Although not a substitute for numerical simulations, the
use of simple expressions to describe the effective constitu-
tive parameters of metamaterials provides considerable con-
venience and may be particularly useful in the development
of intelligent interpolation and optimization schemes. The
design of gradient index or transformation optical media, for
example, typically requires repetitive simulations in which
one or more geometrical parameters of a metamaterial ele-
ment are altered to produce a range of permittivity or perme-
ability values. The use of an analytic expression can poten-
tially accelerate the various design steps.

The simplicity of the expressions found by Liu er al. [5] is
compelling, as is their agreement with numerical simula-
tions. The very simplicity of these expressions in itself sug-
gests that the underlying physical model should also be rela-
tively uncomplicated. We take as an initial goal here to show
that the analytical expressions can be, in fact, found as lim-
iting approximations from a picture in which the metamate-
rial consists of a one-dimensional periodic array of polariz-
able sheets. A complete and rigorous treatment of the
problem, starting from three-dimensional arrays of polariz-
able dipoles, has been presented by Simovski [28].

A key question that has emerged in parallel with the ex-
panding field of metamaterials concerns the conditions under
which a particular retrieval method can be used to ascribe the
effective-medium properties of a large or infinite array of
scatterers to the properties of a single layer. Simovski defines
the concept of a Bloch lattice, in which the sheets interact
with each other only via the lowest-order Bloch wave, and
the polarizability of each cell is not changed by the presence
of the other layers [28]. Under these conditions, which apply
to lattices with either predominantly electric or predomi-
nantly magnetic response, a transfer-matrix model can be
used to arrive at analytical expressions that accurately de-
scribe the infinite lattice constitutive parameters. In Sec. III,
we illustrate the derivation of these approximate formulas
from the analytical transfer-matrix model. If the unit cell can
be modeled as a thin sheet that is simultaneously electrically
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and magnetically polarizable, however, then a nonlocal mag-
netoelectric coupling occurs and the properties of the single
unit cell can be strongly modified by the presence of the
neighboring sheets. Under this circumstance, the transfer-
matrix approach fails to account for the coupling and yields
unreliable or erroneous results for the bulk metamaterial. In
this case, an analytical expression can be found for the
propagation constant by an alternative approach [6,28],
which we present in Sec. IV.

The assumption of an infinitely thin magnetoelectric sheet
carries the implication that the electric and magnetic dipoles
within the same plane do not interact. However, a model in
which the unit cell consists of displaced electric and mag-
netic sheets implies the electric and magnetic dipoles within
the unit cell will be coupled. We derive a form for the propa-
gation constant in the presence of such coupling in Sec. V. In
Sec. VI, we provide illustrative examples comparing the
various analytical expressions to numerical results.

It is important to emphasize that metamaterials do not
homogenize in the manner of classical mixtures or com-
posites, but rather occupy a more nebulous realm bet-
ween homogenized materials and electromagnetic crystals—
structures designed to operate in the regime where the wave-
length is on the order of the periodicity of the lattice. The
unifying feature of all three systems is that a unique effective
refractive index n can typically be found, so, for example,
ray optics can be applied where propagating solutions are
allowed. What distinguishes homogenized materials from
electromagnetic crystals is that a well-defined wave imped-
ance Z can be defined for the former, while the latter is
characterized by a Bloch impedance Zj that varies spatially
across the unit cell. It is important to note that the retrieved
parameters for metamaterials are based on the spatially dis-
persive Bloch impedance rather than the wave impedance
[28], so that eg=n/Zy and mz=nZg, and will generally be
ill-defined at points within the unit cell. Thus, although they
can be used to conveniently describe the scattering from
metamaterial structures as well as other associated complex
behavior, the numerically determined constitutive parameters
have limits of applicability. To make clear this distinction,
we adopt the terminology of Bloch constitutive parameters
throughout this work when referring to the commonly ap-
plied metamaterial parameters.

II. TRANSFER-MATRIX MODEL

Many numerical techniques based on field averaging and
other retrieval methods have been developed to aid in the
design and analysis of metamaterial structures. It is a worth-
while endeavor, however, to seek whether the results from
full-wave simulations of the exact geometry can be obtained
by replacing the specific structures—SRRs, wires, and so
forth—by an array of polarizable electric or magnetic di-
poles. The advantage of analyzing the dipolar array is that
self-consistent, exact, semianalytical expressions can be ob-
tained that inherently account for the effects of spatial dis-
persion and can provide further insight as to the fundamental
intercell and intracell electromagnetic interactions.

The polarization of an infinite array of dipoles under ap-
plication of a static magnetic or electric field can be com-
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FIG. 1. Periodic system of electrically or magnetically polariz-
able sheets. The sheets have thickness / and are spaced a distance
d apart. An electromagnetic wave is assumed to propagate along the
direction normal to the sheets.

puted self-consistently by considering the field at the loca-
tion of one dipole formed from the summation of the
responding fields from all dipoles excluding the given dipole
[29]. The effective permittivity or permeability of the collec-
tive can then be expressed in terms of the polarizability of
the individual dipolar element. For field excitations at finite
frequency and wavelength, retardation effects lead to disper-
sion effects that can be included in the dipole model [30].

Within the scope of the dipole model, it is convenient to
first sum over planes of dipoles for periodic arrays and sub-
sequently to take into account the interaction of the planes
along the propagation direction [30,31]. Since the applied
electromagnetic field is uniform over a plane of dipoles (as-
suming the wave is incident along a principal axis), the ef-
fects of spatial dispersion occur due to the phase variation of
the field along the direction perpendicular to the planes. Un-
der these conditions, both the effective refractive index and
the impedance exhibit spatial dispersion and can explain the
structure apparent in the retrieved constitutive parameters for
metamaterials [6]. As indicated in Sec. I, we refer to the
impedance for such structures as the Bloch impedance.

The unified model followed in this paper will be to con-
sider a wave propagating in an infinite, periodic array of thin,
polarizable sheets. Although metamaterial elements certainly
have considerable physical extent along the propagation di-
rection within the unit cell, we assume here that their effec-
tive dipolar response is restricted to a plane. Though this is a
reasonable assertion based on the reflection symmetry of the
unit cell, the overall validity of this assumption must be jus-
tified by the results given that the wave vector is finite.

The geometry of the model is shown in Fig. 1. A series
of polarizable, planar sheets, of width /, is spaced apart with
periodicity d. We assume that an electromagnetic wave
propagates in the direction along the normal to the sheets,
with fields polarized in the plane of the sheets. The wave-
propagation behavior under these assumptions reduces to a
one-dimensional boundary-value problem, in which solu-
tions to the wave equation in three regions must be consid-
ered: —d/2=z<-1/2,-1/2=z<l/2,and [/2=z=d/2. The
dispersion relation and fields for the one-dimensional peri-
odic system can be determined through the use of the
transfer-matrix technique [32].
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Following the notation used in [3], we present the one-
dimensional (1D) transfer matrix, which relates the fields on
one side of a planar slab to the other. The transfer matrix can
be defined from

F'=TF, (1)
where
F=< E ) (2)
H, e

E and H,,, are the complex electric and magnetic field
amplitudes located on the right-hand (unprimed) and left-
hand (primed) faces of the slab. The magnetic field here is
a reduced magnetic field [33] having the normalization
H,,y=+iouyH. The transfer matrix for a homogeneous 1D
slab has the analytic form

cos(nkd) —isin(nkd)

T= ' , (3)
—sin(nkd)  cos(nkd)
Z

where 7 is the refractive index and z is the wave impedance
of the slab. Note that n and z are related to the local relative
permittivity and permeability in the usual manner

r/_ ’/_
n=\eu z= \’,(L/S. (4)

The fields on the two sides of a unit cell that is composed of
three distinct planar regions—vacuum/material/vacuum—
can be related by a transfer matrix that consists of the matrix
product of the transfer matrices in each region or

Tmt = TvacuumeaterialTvacuum» (5)
where
(kd) 1 (kd)
COS\ — — —Sin\ —
2 k 2
TVB.CUUIle (6)
. (kd) (kd)
k sin| — cos| —
2 2
and

cos(nkl) - isin(nkl)

Tmaterial = k . (7)
—sin(nkl)  cos(nkl)
Z

Using the transfer-matrix formalism with periodic bound-
ary conditions [3], we arrive at the following expressions for
the propagation factor and Bloch impedance:

2 COS((Xd) = Tll + T22 (8)
and
T12
Zp rod= = 9
B,red T ( )

where the latter expression is true provided the unit cell pos-
sesses reflection symmetry in the direction of propagation.
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Even though this assumption of symmetry may not hold ex-
actly throughout this analysis, we assume Eq. (9) holds ap-
proximately. The constitutive parameters determined by us-
ing Egs. (8) and (9) with Eq. (4) are termed the Bloch
constitutive parameters [28]. These material parameters are
nonlocal; though they have proven a nearly indispensable
tool for metamaterial design, they nevertheless do not repre-
sent classical homogenization parameters. Because our goal
is to develop an understanding of the numerical simulation
results, we restrict our focus here to the comparison of ana-
Iytically and numerically derived Bloch constitutive param-
eters.

Note that in the static limit, the effective-medium param-
eters should represent simple volume averages over the di-
electric and magnetic regions in the unit cell. That is, for the
static limit, we expect that

__d+sl d+ el
Tl a4
_ od+pl  d+ul
= ~ , 10
M=avl d (10)

where we have made the assumption that the thickness of the
magnetodielectric sheet is negligible. We have also assumed
the absence of magnetoelectric coupling, which we will re-
examine in a later section.

III. ELECTRIC OR MAGNETIC LATTICES

Since our goal is to find relatively simple analytic expres-
sions for the constitutive parameters in the presence of spa-
tial dispersion, we apply several approximations that we ex-
pect to be consistent with resonant metamaterials. In
particular, since the unit cell of the metamaterial is relatively
small with respect to the wavelength, we expect that kd
should be small; that is, most of the phase shifts associated
with the propagating wave will occur across the polarizable
sheet. Since we are considering very thin sheets, we take the
limit /—0, yet retain a finite-dipole moment for the thin
sheet. We must then require that the electric permittivity or
magnetic permeability (but not both) of the sheet tends to
infinity. For the case that the sheet has a predominantly elec-
tric polarizability, we require

~

el — const, Vel — 0. (11)

A similar approximation was employed in [34] to compute
the reflection and transmission properties of a thin sheet of
material. Applying this approximation to Eq. (5), we obtain

1 0
T, =T icuum @ 1 Tyacuum- (12)
Z

Multiplying out the matrix elements and applying Eq. (8), we
arrive at the dispersion relation
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ekl
cos ad = cos kd — Tsm kd, (13)

which relates the phase advance ad across the cell to the
properties of the sheet and the unit cell dimension. Equation
(13) is identical to the dispersion relation derived for trans-
mission lines with periodic shunt impedance loads [31]. If
we now assume that the phase advance in the vacuum region
is small, we can write

kd)? kd
cos ad=1—( ) —sl? (14)
or, equivalently,
d (kd\*[d+sl
sinza—=<—> ( © ) (15)
2 2 d

Using Eq. (10), we arrive at the simple expression

. ad  —kd

s1n2 —Vsz ) (16)
This form of the dispersion relation is consistent with that
obtained by field averaging homogenization methods previ-
ously reported [4]. Note that it is not possible to simplify the
expression further since we cannot assume the Bloch phase
advance to be small. Since the relationship between « and
k(=w/c) represents the dispersion relation for the periodic
system, it is reasonable to introduce an effective refractive
index defined as

0 —
A= Neff 0= Vepppk, (17)

where we have related the effective index to the Bloch con-
stitutive parameters. The average constitutive parameter £ is
not bounded (it can be described by a Drude-Lorentz-like
resonance, for example), so that the influence of spatial dis-
persion introduces artifacts into the effective index according
to

2 | kd
or=—sin \'8?=neffk (18)

by virtue of the bounded nature of the sine function. A spe-
cific difference between a continuous medium and the
metamaterial is the existence of a band-gap or staggered
mode region in the latter where the magnitude of the argu-
ment of the arcsine function exceeds unity, as has been pre-
viously pointed out [5,28]. The presence of spatial dispersion
no longer allows us to simply assume that there is only a
Bloch permittivity, so we include the possibility that the
Bloch permeability, wp, has some value distinct from unity
even though the average permeability has been assumed as

n=1.

Much of the phenomena associated with metamaterials
result from the use of structures that exhibit resonant permit-
tivity or permeability. To illustrate the behavior of such reso-
nant media, we consider example cases in which the slabs
possess Lorentzian-like constitutive parameters or
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FIG. 2. (Color online) Phase advance (6=ad) as a function of
frequency for a medium comprising electrically resonant slabs sepa-
rated by regions of free space. Solid line corresponds to the exact
dispersion relation of the slab model, Eq. (13), while dashed line
corresponds to the approximate expression found in Eq. (16).

f2
— o Jpe
A== a0 Ty
f2
@) = py - 22— (19)

P =Lon+1Tuf

Consider a medium for which the relative permeability of
the slab is equal to unity and the permittivity has the resonant
form in Eq. (19), with f,,=35 GHz, f,,=10 GHz, and T,
=0.001 GHz. The unit cell size is d=0.4 cm while the slab
thickness is /=0.02 cm. The phase advance per unit cell, 6
=ad, is plotted in Fig. 2 as a function of frequency using
both the exact expression in Eq. (13) and the approximate
Eq. (16). Because the parameters have been chosen specifi-
cally to ensure that kd<<1, we see that Eqs. (13) and (16)
agree quite well. The agreement is not general, however, and
worsens as kd becomes larger.

To obtain explicit expressions for the effective permittiv-
ity or permeability, it is necessary to find an expression for
the Bloch impedance. Using Eq. (9) with the matrix elements
in Eq. (12) leads to

(20)

after applying Eq. (13) and with some further algebraic ma-
nipulations. This expression for the impedance is consistent
with that found from transmission line models [31]. Since
H,,,=+iopoH and assuming small kd as before, we find

kd ad
2%
Zp=A|PE- 2 21)
Ep . ad
sin——
2

which, after substituting in Eq. (16), yields
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ad

cos;

M

Zg=\—=—"F. (22)
’ €p \E_

Equation (22) reveals that the wave impedance exhibits spa-
tial dispersion in the same form as was found in [5]. Com-
bining Egs. (17) and (22), we arrive at the simple expression

ad
— = 2
Nefr= NEpMp=\NE

(23)
sin—
2

for the effective index. From Egs. (22) and (23), we thus find
directly the approximate expressions for the Bloch material
parameters

ad
B 2
fB=® Cad  ad’
SIN—/COS——
2 2
ad
2 ad (24)
= cos—,
HB=0d ™ 2
SIn——
2

in agreement with [5]. We see that the Bloch permittivity is
simply the averaged permittivity multiplied by a term that
depends only on the phase advance across the cell, ad. And,
though there is no inherent averaged magnetic response, the
effective permeability is no longer equal to unity but will
exhibit structure due to the effects of the spatial dispersion
terms.

If, instead of an electric response the thin sheet has pri-
marily a magnetic response, then we can take a similar limit
as in Eq. (11), requiring

ul — const, \'Zl — 0. (25)
In this limit, the transfer matrix becomes

zql
k Tvacuum ° (26)
0 1

1 -

T, = Tyacuum

Applying Eq. (8), as before, we arrive at the expression
ki
cos ad = cos kd — %sin kd. (27)

Again, under the assumption that the phase advance in the
vacuum region is small, we can expand the trigonometric
functions to obtain

ad  —kd

sin—=\Vu—_. 28

5 = VB (28)
Likewise, following the same steps as outlined above, we
find the reduced impedance for the magnetic lattice is
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d
| tanz(%)
Zzza,red == P—kd (29)
tanz—
2

Using Eq. (29) with Eq. (27) yields

1
B g (30)

which, when following the steps that led to Eq. (23), pro-
vides the Bloch constitutive parameters as

ad
2 ad
ep= cos—,
Cad 2
SiIn——
2
ad
2
. 31
A (31)
SIN—/—COS——
2 2

Equations (24) and (31) provide a useful description of
metamaterials having either predominantly electric or pre-
dominantly magnetic response, respectively. These expres-
sions will be compared to numerical retrievals in Sec. VI.

IV. MAGNETOELECTRIC LATTICES

Although it would be appealing to consider the same ap-
proach as above to analyze lattices composed of magnetodi-
electric sheets, the use of the transfer-matrix method, in fact,
fails for such cases due to the inherent neglect of magneto-
electric interactions between the planes [6,32,33]. Were we
to follow the transfer-matrix approach, we might approxi-
mate the electric and magnetic dipolar arrays as two thin
sheets: one electrically polarizable and the other magneti-
cally polarizable. The transfer matrix for the unit cell would
then be

1 0 1 zql
Tem = Tvacuum @ k Tvacuum~ (32)
z 0 1

The dispersion relation could then be found numerically us-
ing Eq. (8) above or from the approximate expression

d kd
sin% = \/é_ﬁz (33)

Unfortunately, this expression is not correct because it ne-
glects the magnetoelectric coupling between the electric and
magnetic layers. Moreover, most metamaterial unit cells that
contain magnetic and electric components will exhibit mag-
netoelectric coupling between the components within the unit
cell, thus making the assumption of only a permittivity and a
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permeability erroneous from the outset. Still, it is of interest
to see if an analytical expression can be obtained for the
propagation constant of a magnetoelectric lattice similar to
Eq. (33).

To account for the magnetoelectric coupling between unit
cells, we follow the approach of Simovski [28] to derive the
dispersion relation directly for the magnetoelectric slab sys-
tem and deduce approximate results subsequently. Because
point electric and magnetic dipoles lying within the same
plane do not exhibit magnetoelectric coupling, we consider
first the hypothetical case of an infinite medium composed of
infinitely thin sheets that are simultaneously electrically and
magnetically polarizable.

The geometry is the same as in Fig. 1, except that the
planes now possess both magnetic and electric responses in
the form of a permeability and permittivity. If we first con-
sider just the electric response, we imagine that a displace-
ment current density is formed in the slab at x=0 in propor-
tion to the local electric field. That is,

oD
Jo=— == iweEj,. (34)

Because we expect the slabs to be very thin, so that the
thickness / is negligible, we treat the responding current as a
surface current K, or

J, =K, (35)

We thus can define an effective, local response function ac-
cording to

K,=-iwelE, = a,E,,. (36)

A uniform sheet of current located at x=0 will launch a
one-dimensional wave having a form that can be determined
from the boundary conditions. Using the curl equation, we
find the magnitude of the launched wave as

K
H=—*. 37

5 (37)
Given that the wave propagates in free space, the electric
field is easily found as E=nH=7K,/2 or

E(x) = %’ a e, (38)

where 7=\ uy/ &, The interaction of the slab at x=0 with the
infinite lattice can be found by summing over the field pro-
duced at x=0 from the responding currents in each of the
other slabs. Given that the system is periodic, the responding
surface currents must bear the following phase relationship
with respect to one another:

Ke,n = e,Oeinadv (39)

where n==*1, *2,+3 ... The total field, then, acting at x
=0 will be
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E(O) — E geikwdeinadl(e,o. (40)

The summation can be performed using standard methods
and we arrive at the following expression:

E(0)=2

[ —isin kd
2

— | K,p. 41

cos kd — cos ad] 0 (“41)
In the absence of any magnetic response, we can utilize Eq.
(41) with Eq. (38) to obtain the dispersion relation

cos ad = cos kd — i%sin kd, (42)

which is identical to Eq. (13) above. In general, however, if
there is also a magnetic response present, then it is necessary
to account for a separate, nonlocal magnetoelectric coupling.
We can define a magnetic sheet current, analogous to Eq.
(36), as

Km == iwlulHloc = amHIDC' (43)

Because the electric current launches an electromagnetic
wave, the wave will excite magnetic currents in the magne-
toelectric slabs, producing a net magnetic field back at the
origin. Following the same approach as above, we can write
that the magnetic field produced by the electric current in the
sheet is

Hx)= =+ %eik\x\, (44)

where the plus or minus sign depends whether the observa-
tion position is to the right or the left of the originating sheet
current, respectively. This magnetic field will induce mag-
netic currents in each of the sheets in the array. As before, the
periodic boundary conditions require that each sheet retains
the phase relationship

Km,n = m,()einad (45)

relative to the sheet at x=0. We then find, for the magnetic
field acting at the origin,

1. .
H(0)= >, * Ee”“”'”’e’"“dl{e,o (46)
n#0

or, summing the series as before,

H0) = —0 g 47)
" cos kd—cos ad

Now, given the cross coupling that exists between the elec-
tric and magnetic responses in the slab system, the following
system of equations must be satisfied:

K,
E=AK,+BK, =%,
(83

*
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K
H=CK,+DK, =—2. (48)

a,,

From reciprocity conditions, it must be true that A= 77D and
B=C [28]. Thus, setting the determinant of Eq. (48) to zero,
we find

cos ad = cos kd — sin kd(ﬁ + %>
4 4n
2
+ \/sin2 kd(ﬂ - %> + aeamsinz ad.
4 4n 4

(49)

Though found for a system of magnetodielectric sheets, Eq.
(49) nevertheless is identical to the expression found through
an analysis of interacting (three-dimensional) magnetic and
electric dipoles [6,32,33]. Notably, Eq. (49) is complicated
by the inherent nonlocal interaction caused by the excitation
of electric and magnetic responses in different planes. A dis-
persion relation of this form cannot be found via the transfer-
matrix procedure outline in Sec. I, which treats all responses
as local (as pointed out in [33]).

Writing Eq. (49) in terms of the relative permittivity and
permeability, we see that

. kel kul
cos ad =cos kd —sin kd| — + —
4 4
kel kul\? K12
=+ \/sin2 kd(i—i) +Lsin2 ad.
4 4 4
(50)

In general, there are no obvious approximations that should
yield generic formulas analogous to Eq. (33). However, we
might consider the case that the electric and magnetic re-
sponses are large and are roughly of the same order, in which
case we can approximate Eq. (50) as

_ad (kd)2{ (al ,ulﬂ  euki
in — |1+l =+=]|F
24" 2d

sin ad.

(51)

If the phase advance across the air portion of the unit cell is
small enough, then we can neglect the first term, arriving at
the following approximate dispersion relation:

ad I\’kd —kd
tan 5 = s,u(d> 5 = Nep (52)
Equation (52) is remarkably similar to Eq. (33), but a
tangent function appears on the left-hand side rather than the
sine function. Because the tangent function is not bounded,
the band-gap or staggered mode region is suppressed and
propagation solutions can exist at all frequencies under the
right circumstances. It should be noted, however, that Eq.
(52) is highly restricted in its use, corresponding specifically
to the case of electric and magnetic resonators that are reso-
nant at the same frequency and with similar dispersion char-
acteristics.
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FIG. 3. (Color online) Plot of phase advance 6= ad as a function
of frequency near the resonance of a magnetoelectric structure, con-
sisting of an array of thin slabs having simultaneous resonances in
the permittivity and permeability. The resonance frequencies are
both at 10 GHz, with all other parameters identical. Solid line cor-
responds to the exact dispersion relation of Eq. (50), while red
dashed line corresponds to the approximate dispersion relation in
Eq. (52). For the region where kd <1, the curves for the two cases
are nearly identical. The dispersion relation developed assuming no
magnetic electric coupling [Eq. (33)] leads to a curve with very
different behavior (short dashed orange curve).

It should also be pointed out that the term “refractive
index” is somewhat misleading here, since the magnetoelec-
tric coupling produces a bianisotropic medium. Waves
propagating along the selected axis maintain their transverse
electric (TE) or transverse magnetic (TM) polarization state;
however, waves propagating along arbitrary directions will
generally exhibit polarization conversion. Though it is pos-
sible to obtain an analytical expression for the wave imped-
ance, as found above, the use of the wave impedance with
the effective index defined using Eq. (52) would not lead
directly to reasonable expressions for the Bloch constitutive
parameters. Thus, for this and the following section, we re-
strict our attention to the effects of magnetoelectric coupling
on the propagation coefficient, which we also define as the
effective index.

The phase advance per unit cell for a lattice formed from
magnetoelectric sheets is shown in Fig. 3. A magnetoelectric
slab was chosen with thickness /=0.01 cm, with both reso-
nant permittivity and permeability of the form f,.=f,,
=15 GHz, fy,=fom=10 GHz, and T',=1",,=0.02 GHz. The
periodicity of the slabs was d=0.1 cm. The phase advance
per unit cell, 6=ad, plotted in Fig. 3, exhibits considerably
different behavior than that corresponding to a medium with
either electric or magnetic slabs only. The parameters for
Fig. 3 were deliberately chosen such that Eq. (52) would
represent a reasonable approximation and that Eq. (52)
would show distinct behavior from that of Eq. (33), incor-
rectly derived excluding the magnetoelectric coupling. The
blue dashed line in the figure, corresponding to Eq. (52),
shows the tangent form and is in excellent agreement with
the exact dispersion relation. The incorrect expression [Eq.
(33)], plotted as the orange dashed line, exhibits a band-gap
behavior on either side of the resonance.

The typically used approach to retrieve the Bloch consti-
tutive parameters relies on computing the transmission and
reflection coefficients for a single unit cell. Thus, the consti-
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Eo

FIG. 4. Unit cell composed of interacting electric and magnetic
sheets. Magnetic currents in the magnetic layer produce an electric
field that drives currents in the electric layer, while electric currents
in the electric layer produce a magnetic field that drives currents in
the magnetic layer.

tutive parameters retrieved via this approach are unlikely to
agree with those for an actual structure with many unit cells
in the propagation direction, in which the cell-to-cell cou-
pling will begin to dominate. In order that the usual retrieval
approach be predictive for such structures, it is necessary that
the cell-to-cell coupling be weak enough to be neglected.
Since this cannot be known for certain in advance, it is likely
other numerical techniques will need to be applied during the
design phase to assess the degree of magnetoelectric cou-
pling.

If the symmetry of the unit cell is such that magnetoelec-
tric coupling occurs within the unit cell, then it is possible
this coupling will dominate and the cell-to-cell coupling may
be secondary or negligible in comparison. This circumstance
is considered in the next section, with numerical retrieval
results provided in Sec. IV.

V. STRONGLY MAGNETOELECTRIC UNIT CELLS

In the above analysis, we considered an infinite array of
magnetoelectric lattices in which the electric and magnetic
responses within the same unit cell are rigorously uncoupled.
That is, the electric polarizability of a given sheet is not
affected by the magnetic polarizability in the same sheet,
though it is affected by the sheets in the rest of the lattice.
However, in most unit cell designs, there typically exists an
explicit magnetoelectric interaction due to the inherent diffi-
culties associated with producing entirely decoupled resona-
tors. We now consider the impact of magnetoelectric cou-
pling within the unit cell (Fig. 4).

Consider a unit cell containing two polarizable sheets
placed next to each other: one electric and the other mag-
netic. The sheets are placed close enough together that
propagation delay between them can be neglected. The elec-
tric currents in the electrically polarizable sheet will be pro-
portional to the local electric field. Likewise, the magnetic
currents in the magnetically polarizable sheet will be propor-
tional to the local magnetic field or
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Ke = aeElow

Km = amHloc . (53)

Assuming the currents are excited by a plane wave with
fields E, and H,, we can write

-1
Eloc = EO + aeme’

Hy,.=Hy— a,'K,. (54)

Though we have omitted the indices, it is assumed that the
electric field lies along the x direction, while the magnetic
field lies along the y direction. Using Egs. (53) and (54), we
can write the following expression for the net response of the
system:

a.a,

a’e
(Ke ) 1 o <EO )
K, 1+ Q] Oy Oy a,a, H,
- Ay
ame
(55)
or
(Ke ) _ ( ae,eff aem,eff) (EO ) (56)
Km ame,eff am,eff H()
Using Egs. (36) and (43), we can rewrite Eq. (56) as
. W’d’ep
—iwde -
(Ke ) 1 Ao EO
Km - 2250 e H
l—w L +w L —iwdn 0
aemame ame
(57)
and define a set of effective constitutive parameters as
By
o iwdE
(seff fe.ff> _ 1 Yem
- 22— -
. ” wde € _
Soi Mg/ _ K\ _iwdt™ g
aemame ame
(58)

Because we consider one-dimensional wave propagation in
an anisotropic medium, we assume a wave propagating along
the z direction, with electric and magnetic fields polarized
along the x and y axes, respectively. The Maxwell curl equa-
tions can then be written as

JE, .
o i0(fepHy + LoprEy) s

oH
7ZX = lw(geffH) + seffEx)’ (59)

leading to the dispersion relation
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(lk - lwgeff)(lk - lwgeff) + a)zseff,u/eff= 0. (60)

Constraining the medium to be reciprocal and to satisfy time-
reversal symmetry leads to «,,,=«a,,,=2/ix. We have chosen
the specific form for the magnetoelectric coupling parameter,
recognizing that maximal coupling should occur at a mini-
mum value of a,,,=«,,,=2. Equation (58) can then be writ-
ten as

wdepk
s _
<8eff Sorr | _ 1 2
= 2
Copp Megr l+w2d2@<5> wde pk
2 2
(61)

The medium defined by Eq. (61) with « either real or imagi-
nary is bianisotropic and has electromagnetic properties con-
sistent with the symmetry of the unit cell [34,35]. Using Egs.
(59)-(61), we are able to write an effective refractive index
as

—
veu

"= kd\2
\/1@(3> <

Finally, motivated by Eq. (40), we write the following form
that includes the effects of the periodic structure:

Vo2
. (ad ) 2
sin| — | = .
2 \/ 1 _( kd>2 5
+eun 5 K

Equation (63) provides the approximate description of an
infinite medium consisting of unit cells with electric and
magnetic resonators that are coupled, but neglects the cell-
to-cell magnetoelectric coupling. If the internal coupling
dominates over the cell-to-cell magnetoelectric coupling,
then it might be expected that Eq. (63) should be approxi-
mately valid. At a minimum, Eq. (63) should be consistent
with numerical retrievals performed on a single magneto-
electric unit cell. Comparing Eq. (63) to the incorrect Eq.
(33), we see that the forms are similar if we imagine the
effective permittivity and permeability are renormalized by
the denominator in Eq. (63). In fact, a more detailed analysis
shows that the renormalized permittivity and permeability in
Eq. (63) are approximately Lorentzian-like, meaning that Eq.
(33) could still prove useful for curve fitting if the Lorentzian
parameters applied are not required to be consistent with any
physical model.

We have written the dispersion relation in a manner such
that when the magnetoelectric coupling parameter, x, ap-
proaches unity, we have

(62)

(63)

ad —kd
tan| — | = Veu—, 64
( 5 ) Veu (64)
which is reminiscent of Eq. (52). We illustrate the qualitative
effects of a constant coupling parameter on the refractive
index profile of a unit cell containing a magnetic and an
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FIG. 5. (Color online) Plots of the real (blue curves) and imagi-
nary (red curves) parts of the effective refractive index correspond-
ing to a unit cell with matched resonant permittivity and permeabil-
ity. Each plot corresponds to Eq. (63) with a different value of «
assumed. In all cases, « is real, having values 0.0, 0.1, 0.5, 0.8, 1.0,
and 1.4, from top to bottom.

electric resonator in Figs. 5 and 6. The resonator properties
have been chosen arbitrarily as fo,=fo,=11.1 GHz, f,,
=79 GHz, f,,=58 GHz, I',=0.01 GHz, I',=0.04 GHz,
g,=1.9, and w;,=1.0. Figure 5 assumes different values of a
real coupling parameter, while Fig. 6 assumes a purely
imaginary coupling parameter. It can be seen from the fig-
ures that a real coupling parameter tends to suppress the
imaginary component of the index, eventually eliminating
any apparent band-gap region near the resonance, while an
imaginary coupling constant produces what appear to be two
resonant regions separated by a section of band gap.

VI. COMPARISONS TO FULL-WAVE SIMULATIONS

To illustrate the above results, we now consider several
examples of metamaterial structures based on the combina-
tion of electric and magnetic resonators, comparing their re-
trieved effective index and Bloch parameters to those pre-
dicted analytically using the equations derived in the
preceding sections. The S-parameter retrieval method we
present here makes use of periodic boundary conditions on
the surfaces of a single unit cell along the propagation direc-
tion, such that a structure effectively infinite in the lateral
directions is simulated. The complete set of cell-to-cell inter-
actions is correctly accounted for in the lateral directions
(i.e., dipolar and all orders of multipoles). Along the propa-
gation direction, however, the retrieval algorithm used inher-

PHYSICAL REVIEW E 81, 036605 (2010)

F . k

10 K=0.01 //““
5t 7 \\\
0 U
Sle=01i

c

x

(]

T

£

v

2

—

9]

©

=

@

o

Frequency (GHz)

FIG. 6. (Color online) Plots of the real (blue curves) and imagi-
nary (red curves) parts of the refractive index corresponding to a
unit cell with matched resonant permittivity and permeability. Each
plot corresponds to Eq. (63) with a different value of « assumed. In
all cases, « is imaginary, having values 0, 0.14, 0.57, 0.8i, 1.0i, and
1.4i from top to bottom.

ently neglects all cell-to-cell interactions other than the
lowest-order Bloch wave, so that any magnetoelectric cou-
pling such as that predicted in Sec. IV cannot be evaluated
by this method. Our goals in this section, then, are to com-
pare the analytically predicted forms for the Bloch param-
eters for single cells to those directly computed from full-
wave simulations and to investigate the behavior of
inherently magnetoelectric unit cells. Because the matching
of magnetic and electric resonators is one approach to form-
ing a negative index medium, we have made an attempt in
these examples to match both the resonance frequencies as
well as the dispersions of both electric and magnetic resona-
tors to obtain large frequency bandwidths where both the
permittivity and the permeability are large in value and both
positive or negative.

To facilitate the comparisons, we make use of the stan-
dard electric and magnetic metamaterial elements: an electric
“LC” resonator (or ELC) [36] and a split-ring resonator
(ESRR) [13] for resonant electric and magnetic responses,
respectively. In addition, to facilitate a wider variety of cou-
pling conditions, we add to this set the dual structures of a
magnetic LC resonator (or MLC) and a magnetic split-ring
resonator (MSRR), which have the identical geometries as
their electric counterparts but are assumed to have a mag-
netic conductivity (in this case, a large imaginary permeabil-
ity value approximates the magnetic conductor). The MLC
and MSRR are purely simulation contrivances for illustrative
purposes and have no practical utility. All of the numerical
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FIG. 7. (Color online) (Left) ELC and MLC structures. The
wave is assumed to propagate between the two patterned surfaces,
polarized such that the electric field excites the ELC while the mag-
netic field excites the MLC. (Right) ELC consists of a conducting
ring, as shown, with dimensions d=3 mm, p=2.6 mm, [
=0.2 mm, »=0.25 mm, and g=0.02 mm. The conductor thickness
is assumed as 17 um. The MLC has precisely the same geometry,
but with a magnetic conductivity rather than an electrical conduc-
tivity. To lower the resonance frequency, a piece of either dielectric
or permeable material is placed within the gaps, with e=6 for the
ELC and u=6 for the MLC. Periodic boundary conditions are ap-
plied on the sides of the unit cell (perpendicular to the propagation
direction) to simulate a metamaterial array infinite in the lateral
dimensions.

simulations are performed using HFSS (Ansys), a commercial
electromagnetic mode solver that is based on the finite-
element method.

For all of the examples in this section, we follow the
procedure of computing the scattering (S) parameters for
each of the structures utilizing the driven solution in HFSS,
with input and output ports defined on two opposing faces of
the unit cell. A combination of periodic and electric-magnetic
boundary conditions is used both to define the polarization of
the wave and to simulate an infinite lattice perpendicular to
the direction of propagation [2,3]. From the computed S pa-
rameters, the Bloch constitutive parameters can be found by
applying a standard retrieval process [2].

The first structure we consider is that of an ELC and MLC
pair. The geometry of the resonators is shown in Fig. 7. The
elements have been designed such that the electric or mag-
netic resonances occur near 10 GHz, so that the unit cell
(d=3 mm) is nominally a factor of 10 smaller than the free-
space wavelength (3 cm). The ELC and MLC have a single,
interior, capacitive gap, which leads to a resonance with rela-
tively lower oscillator strength (i.e., the effective plasma fre-
quencies of these structures will tend to be lower).

The results of retrievals on the unit cell shown in Fig. 7
are shown in Fig. 8. The ELC and the MLC were simulated
independently and their Bloch constitutive parameters re-
trieved [Figs. 8(a)-8(d)]. The ELC alone produces a well-
defined electric resonance [Fig. 8(a)], with a corresponding
distorted Bloch permeability [Fig. 8(b)] that has become the
signature of metamaterial retrievals. The real and imaginary
parts of the retrieved Bloch constitutive parameters are
shown as the solid blue and red curves, respectively; this
labeling will remain consistent throughout all of the illustra-
tive plots. The dashed blue and red curves correspond to the
real and imaginary parts of the analytically computed Bloch
parameters, found using Egs. (24) and simple Lorentzians

PHYSICAL REVIEW E 81, 036605 (2010)

assumed for the oscillators [Eq. (19)] for Figs. 8(a) and 8(b).
The parameters used for the Lorentzian fits are summarized
in Table I. Note that there is some discrepancy between the
simulations and analytical formulas, especially toward higher
frequencies; this deviation results because higher-order reso-
nances are not being taken into account in the curve fitting.
The fitting performed was simply to obtain a reasonable fit to
the curves and was not exhaustive. No attempt was made to
include higher-order resonances in the analytical model,
which can play a role in determining the line shapes of the
Bloch constitutive parameters. A similar retrieval procedure
performed for the MLC comparing to Eq. (31) reveals the
complementary structure behaves like a magnetic resonator,
with properties identical to that of the ELC resonator [Figs.
8(c) and 8(d)].

When the two resonators are combined in the same unit
cell, as in Fig. 7, the resulting structure should exhibit a large
band of negative index behavior. Were the analytical formu-
las to describe the simulated structures accurate, we would
expect the Lorentzian parameters used to fit the ELC and
MLC structures independently would also be correct for the
coupled structures. We see from Table I, however, that some
adjustments of the oscillator parameters were necessary to
obtain the best fits, indicating either that the theory is incom-
plete or that the value of the coupling parameter « has not
been properly chosen. This result is not unexpected, how-
ever, since we have not attempted to fully derive the disper-
sive properties of the coupling parameter x, which may not
be a simple constant over all frequencies. Note that when the
resonators are somewhat detuned, a reasonable fit can be
accomplished assuming no coupling [Fig. 8(e)]. Since it is
unlikely the coupling parameter is truly zero, the presence of
any vestige of the parameter may be introduced in the “de-
tuned” Lorentzian parameter fits, which are found substan-
tially different from the individual ELC or MLC alone.

When the ELC and MLC resonators are combined and
tuned (by slightly changing the geometrical features on one
or both of the elements), the resulting retrieved refractive
index exhibits a substantial region over which the effective
refractive index is negative and the imaginary component
appears considerably suppressed [Fig. 8(f)]. Were there no
interaction between the ELC and the MLC, then a relatively
strong band-gap region would be expected, as illustrated by
the lighter dashed curves in the figure. However, because of
the strong coupling between the resonators, the band-gap re-
gion is virtually eliminated and the retrieved index curve can
be fit using Eq. (63) with a coupling parameter « near unity
(see Table I).

Although the single-gap ELC and MLC provide straight-
forward structures with which we can explore magnetoelec-
tric coupling, the oscillator strengths of these elements are
relatively small. When the effective plasma frequencies for
the two resonators are small, it is a difficult task to perfectly
match the dispersions to find the narrow region, for example,
where the index is negative. By contrast, the dual-gap ELC
and MLC elements have considerably stronger oscillator
strengths and are consequently much easier to match.

The geometries of the dual-gap ELC and MLC elements
are shown in Fig. 9. As for the single-gap resonators, to
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FIG. 8. (Color online) Retrieved Bloch (a)
permittivity and (b) permeability for the ELC
alone; retrieved Bloch (c) permittivity and (d)
permeability for the MLC alone; (e) retrieved in-
dex of refraction for the ELC and MLC together,
but with resonances slightly detuned; (f) retrieved
index of refraction for the ELC and MLC with
resonances matched. Solid blue and red lines cor-
respond to the real and imaginary parts of the
given parameter retrieved from full-wave simula-

tions, while blue and red dashed lines are fits to
c the real and imaginary parts of the same param-
é eter using Eq. (24) or (31). The real and imagi-
< nary parts of the index (solid blue and red lines)
."2’ are compared to Eq. (63) (dashed blue and red
‘g lines). In (g), the lighter blue and red dashed
< curves correspond to Eq. (63) plotted with «=0,
e illustrating the very different behavior expected
from coupled vs uncoupled oscillators.
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confirm the resonance properties of the individual elements, Eq. (24) or (31), which are expected to be valid for electric

the ELC and MLC are first simulated separately and their =~ only or magnetic only response. The Lorentzian parameters
effective constitutive parameters recovered. These results are are adjusted until the best match with the simulation data is
shown in Figs. 10(a)-10(d). The solid lines are the retrieval obtained. As before, the agreement is generally quite good,
results from full-wave simulations, while the dashed curves with the deviation toward higher frequencies most likely due
are the analytically computed Bloch parameters taken from  to higher-order resonances not being included in the fitting.
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TABLE 1. Parameters for the single-gap ELC-MLC lattice.

Parameter ELC MLC ELC-MLC detuned ELC-MLC tuned
fe0 (GHz) 12.0 12.4 12.03

fep (GHz) 3.5 2.0 2.3

fmo (GHz) 12 11.9 12.03

fmp (GHz) 35 1.7 2.3

I',, (GHz) 0.02 0.03 0.045

I', (GHz) 0.02 0.005 0.003

g 1.8 1 1.4 1.5

M 1 1.5 1.4 1.5

K 0 0 0.0 0.995

When the resonances are tuned to the same frequency—in
this case, by slightly extending the capacitive region on the
MLC to b=0.45—the dual gap ELC-MLC unit cell displays
the same qualitative coupling behavior as the single-gap
structure in Fig. 8(f). As shown in Fig. 10(e), the retrieved
index exhibits clear qualitative features suggestive that the
coupling between the ELC and MLC is strong. Setting the
coupling parameter to zero and utilizing the same Lorentzian
parameters in Eq. (63) leads to drastically different behavior,
as shown by the second set of dashed curves in Fig. 10(e). In
particular, ignoring the coupling leads to a very large elec-
tromagnetic band-gap region, characterized by the real part
of the refractive index being flattened and accompanied by a
large imaginary part. The parameters for the different struc-
tures are summarized in Table II.

An ESRR combined with an ELC can also produce a
matched magnetoelectric structure, though it is generally
more difficult to design the dispersion characteristics of the
two resonators to coincide in both magnitude and frequency
dependences. The dual-gap ELC, however, has a resonance
that is fairly close to that of a similarly sized SRR and the

T

FIG. 9. (Color online) (Left) Dual-gap ELC and MLC struc-
tures. The wave is assumed to propagate between the two patterned
surfaces, polarized such that the electric field excites the ELC while
the magnetic field excites the MLC. (Right) ELC consists of a con-
ducting ring, as shown, with dimensions d=3 mm, p=2.6 mm, /
=0.2 mm, »=0.4 mm, and g=0.03 mm. The conductor thickness
is assumed as 17 um. The MLC has precisely the same geometry,
but with a magnetic conductivity rather than an electrical conduc-
tivity. Also, b=0.45 for the MLC, in order to tune the resonances to
the same frequency. Periodic boundary conditions are applied on
the sides of the unit cell (perpendicular to the propagation direction)
to simulate a metamaterial array infinite in the lateral dimensions.
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combination has been used previously in the experimental
demonstration of a negative index metamaterial [37]. We
simulate the ELC-ESRR structure here using the geometry
shown in Fig. 11, varying the spacing between the ELC and
ESRR as an empirical means of adjusting the magnetoelec-
tric coupling. The retrieved Bloch permittivity and perme-
ability for the ELC alone are shown in Figs. 12(a) and 12(b),
while similar parameters are shown for the ESRR alone in
Figs. 12(c) and 12(d). The figures reveal that the resonances
are similar—though not exact—in magnitude and other dis-
persion characteristics.

When the ELC and ESRR are combined within the same
unit cell, similar to Fig. 11, the separation between the ELC
and the ESRR can be used to probe varying degrees of cou-
pling. Remarkably, it is possible with this structure to ex-
plore the entire range of coupling behavior indicated in Figs.
5 and 6. When the ELC and ESRR are close together—no
more than roughly 0.3 mm apart—the coupling coefficient
that matches the retrieved index is found to be purely imagi-
nary, with a magnitude that increases as the elements are
moved closer together.

Nearing a separation distance of roughly 0.33 mm, the
magnitude of the coupling coefficient appears to become
very low, as indicated in Fig. 12(e). The form of the curves
in Fig. 12(e) suggests that the magnetoelectric coupling is
nearly negligible for this configuration, as evidenced by the
apparent band-gap behavior around the resonant frequency
of 11 GHz. It should be kept in mind, however, that even
though there appears to be an absence of magnetoelectric
coupling within the unit cell, there will still likely be mag-
netoelectric coupling between unit cells that is not accounted
for in these retrievals. Thus, the retrieval shown in Fig. 12(e)
will be unreliable if applied to a sample with a multiple unit
cells along the propagation direction since it is Eq. (50) or
possibly Eq. (52) that should properly describe the behavior.

After a distance of 0.33 mm, the coupling coefficient be-
comes purely real and increases as the ELC and ESRR are
further separated. In Figs. 12(e) and 12(f), the dashed curves
are fit using Eq. (63) with the Lorentzian parameters indi-
cated in Table III. The coupling coefficient, x, was assumed
constant as a function of frequency.

VII. CONCLUSIONS

Utilizing a one-dimensional model of plane-wave propa-
gation through a lattice of magnetoelectric sheets, we have
investigated a number of issues associated with the develop-
ment of complex metamaterial structures, in particular those
that exhibit magnetoelectric response. In all cases, we have
derived approximate analytical expressions to achieve a sim-
pler understanding of the impact of spatial dispersion on the
effective constitutive parameters.

The technique of utilizing the simulated S parameters
from a single-unit cell for the retrieval of Bloch constitutive
parameters is predicated on the assumption that the inherent
properties of the unit cell do not change in the presence of
the other elements. As recently pointed out [28], this assump-
tion holds for unit cells that exhibit either predominantly
electric or predominantly magnetic response, but does not
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hold for unit cells that have simultaneously significant mag- ! 4 |
netic and electric responses. For such unit cells, a nonlocal T
interaction is present that results in a more complicated dis- Jb
persion relation. We have not attempted to verify this expres- ’

TABLE II. Parameters for the dual-gap ELC-MLC lattice.

Parameter ELC MLC ELC-MLC
f.0 (GHz) 11.8 10.65
Sep (GHz) 7.7 10.2
fmo (GHz) 11.85 10.6
Snp (GHz) 6.2 5.0

I',, (GHz) 0.005 0.005
I', (GHz) 0.04 0.005
g 1.5 1 1.7

My 1 1.5 1.7

K 0 0 0.95

/

FIG. 11. (Color online) (Left) ELC and ESRR unit cells.
(Right) Geometrical parameters for the ELC are identical to
those in Fig. 9, while the ESRR has the dimensions d=3 mm,
p=2.6 mm, [=0.2 mm, ¢=0.02 mm, and b»=0.65 mm. Both
the ELC and the ESRR are modeled as metals, with an electrical
conductivity corresponding to that of copper. The SRR and ELC
are placed symmetrically across the midplane of the cell, with a
variable distance between them in the direction perpendicular to
propagation.
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FIG. 12. (Color online) Retrieved Bloch (a)
permittivity and (b) permeability for the ELC
alone; retrieved Bloch (c) permittivity and (d)
permeability for the ESRR alone; (e) retrieved
index of refraction for the ELC and ESRR com-
bined, arranged as in Fig. 11, separated by 0.332
mm; (f) retrieved index of refraction for the ELC
and ESRR combined, separated by 1.2 mm; (g)
retrieved refractive index for the ELC and ESRR
combined, separated by 0.3 mm. Solid blue and
red lines correspond to the real and imaginary
parts of the given parameter retrieved from full-
wave simulations, while the blue and red dashed
lines are fits to the real and imaginary parts of the
same parameter using Eq. (24) or (31). The real
and imaginary parts of the index (solid blue and
red lines) are compared to Eq. (63) (dashed blue
and red lines). The curve fits make use of the
parameters shown in Table IIl. The qualitative
features observed in these plots can be compared
to those in Figs. 5 and 6.
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TABLE 1III. Parameters for the ELC-ESRR structure.

ELC-ESRR ELC-ESRR ELC-ESRR
Parameter ELC ESRR 0.332 mm apart 1.2 mm apart 0.3 mm apart
f.0 (GHz) 12.0 10.93 11.15 10.85
fep (GHz) 7.8 6.1 7.95 5.8
fmo (GHz) 11.9 10.93 11.15 10.85
fmp (GHz) 5.4 6.1 5.85 5.8
I',, (GHz) 0.04 0.04 0.04 0.04
I', (GHz) 0.04 0.04 0.04 0.04
€ 1.5 22 1.5 1.9 1.5
M 1 1 1 1 1
K 0 0 0.12 091 0.4i

sion numerically here, as doing so would require additional
computational methods or the simulation of multiple unit
cells, but conclude that retrievals performed on single-unit
cells are very likely to yield incorrect results, including for
those magnetoelectric cells presented in the previous section.

Empirically, it is found from numerical retrievals on unit
cells containing electric and magnetic resonators that the ob-
served refractive index can have very unusual dispersion, not
predictable based on a simple model of noninteracting reso-
nances. When we model the unit cell as being composed of
two separated sheets, one magnetic and one electric, we find
a coupling between them that leads to a description of the
unit cell as bianisotropic. Although the model is simple in
nature, we find very good agreement between the dispersive
forms of the Bloch constitutive parameters predicted by the
analytical expressions and those found from numerical re-
trievals based on full-wave simulations. Depending on the
configuration of the resonators, it is possible to find the entire
range of apparent coupling conditions predicted by the
simple analytical model.

One issue of concern is that the unit cells considered here,
being symmetric in the direction of propagation, should
strictly not display bianisotropic behavior. We have not at-
tempted to solve this paradox here, but note that the assump-
tion of a thin-sheet model in which the electric and magnetic
dipoles are confined to the same plane may not be valid. If
one assumes the dipolar response is spread across the unit
cell, then effects of spatial dispersion (and the finite wave
vector) may break the symmetry and lead to the magneto-
electric coupling that appears to describe the retrieved refrac-
tive index. A similar observation was made recently by Fietz
and Shvets, who developed a homogenization scheme based
on field averaging capable of determining all 36 of the con-
stitutive tensor elements [38].

The agreement between the analytical formulas and the
numerical retrievals is persuasive, but does not alone validate
the theory. Considerable freedom exists in the curve-fitting
process, given the number of parameters in the Lorentzians.
Additional fitting parameters can be introduced by consider-

ing higher-order resonances of the metamaterial elements.
Although the characteristic features of coupling appear to be
present in the retrieved index curves, a more direct method
of computing the coupling coefficient for a given configura-
tion would be useful.

It should be noted that the simplification in the formulas
developed here arises from the fact that the free-space region
within the unit cell is much smaller than the wavelength.
This regime allows the more involved equations to reduce to
remarkably simple expressions that capture most or all of the
phenomena associated with metamaterial-retrieved param-
eters. Although the optical phase advance is not necessarily
small across the unit cell in general, by confining the pre-
dominant phase advance to occur over a very thin layer—as
might be expected for a layer of dipoles—a relatively simple
statement of metamaterial response can be encapsulated in
formulas such as Egs. (24), (31), and (63). Though it is not
clear that an actual structure comprising elements such as
ELCs and ESRRs should adhere to such a simple model, the
observed agreement between full-wave simulations and the
analytical formulas implies this to be the case.

Our results show that the development of metamaterials
with entirely arbitrary response—that is, Bloch permittivity
and permeability tensors with arbitrary values for the diago-
nal elements—will be significantly complicated by unwanted
magnetoelectric coupling. Such coupling will need to be
mitigated not only in negative index materials, but especially
in transformation optical metamaterials [39,40], which are
inherently anisotropic and often require both significant elec-
tric and magnetic responses.
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