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Abstract

We deal with the inverse obstacle problem for general second order scalar operators with
analytic coefficients near the obstacle. We assume that the boundary of the obstacle is a
non-analytic hypersurface. We show that, when we impose Dirichlet boundary condition, one
measurement is enough to reconstruct the obstacle while in the Neumann case, we need (n−1)
measurements associated to (n − 1) linearly independent inputs. Here n is the dimension of
the space containing the obstacle. This is justified by investigating the analyticity properties
of the zero set of real analytic functions for the Dirichlet case and the zero set of their normal
derivatives for the Neumann case. In addition, we give a reconstruction proceedure to recover
the shapes. We state the results for the scattering problem. However similar results are true
for the associated boundary value problems.

1 The forward and inverse scattering problem

We suppose that D is a Lipschitz domain in Rn, n ≥ 2, such that Rn \D is connected. We assume
that we know a smooth domain Ω containing D. Let A := (ai.j)i,j=1,...,n be a symmetric positive
defined matrix values function with real valued C1 regular entries in Ω and V be a a real valued
bounded potential in Ω such that A = I and V (x) = 0 in Rn \ Ω.

We define the expression P := ∇ ·A∇+ V .
We are interested in the propagation of time-harmonic fields in the heterogeneous medium given

by (A, V ) with an obstacle D. This is governed by the equation

(1) Pu+ κ2u = 0, in Rn \D,

coupled with the Dirichlet boundary condition

(2) u = 0, on ∂D,

for modelling a sound soft obstacle or with the Neumann boundary condition

(3)
∂u

∂ν
= 0, on ∂D,

for modelling a sound hard obstacle. The vector ν is the exterior unit normal to D and κ is the real
positive wave number. In the electromagnetism scattering by orthotropic medium ( where V = 0
), A models the ( non conductive, since ImA=0) electrical permittivity while V is the magnetic
permeability, see [4, 7].
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The associated scattering problem is to look for solutions of the form u := ui + us, where ui is
an incident wave, solution of the free equation (P + κ2)u = 0 in Rn, and the scattered field us is
assumed to satisfy the Sommerfeld radiation condition

(4) lim
r→∞

r
n−1

2 (
∂us

∂r
− iκus) = 0,

where r = |x| and the limit is uniform with respect to all the directions x̂ := x
|x| . It is known, see

[4, 7, 22], that a solution to this problem exists and it is unique. In addition, this scattered field
satisfies the following asymptotic property,

us(x) =
eiκr

r
n−1

2

u∞(x̂) +O(r−
n+1

2 ), r →∞,(5)

where the function u∞(·) defined on the (n − 1)−unit sphere Sn is called the far-field associated
to the incident field ui.

Let us specify the kind of incident waves we will use. We set ui(x, d, P ) := vP (x, d) + eiκd·x,
d ∈ Sn, where vP (·, d) satisfies the Sommerfeld radiation conditions. Hence vP is the scattered
wave by the known medium (A, V ) of the plane wave eiκd·x. In section 2.4, we give a way how to
compute it knowing A and V . Remark that in the case where A = I and V = 0, we end up with
the plane waves ui(x, d) = eiκd·x.

Taking these particular incident fields given by the waves, ui(x, d), d ∈ Sn, we define the far-field
pattern u∞(x̂, d) for (x̂, d) ∈ Sn × Sn.

The problem we are concerned with is the following:

The Problem 1. Suppose we know the background medium (A, V ). Given u∞(·, d) on Sn for one
incident wave or a few incident waves for the scattering problem (1) - (4) reconstruct the obstacle
D.

The results 1. We need some additional conditions on the regularity of A and V . Precisely, we
assume that entries of A and V are real analytic functions in an open set containing ∂D.

With these regularity conditions, we obtain the following results:
A. The Dirichlet problem:
If ∂D is a Lipschitz and non-analytic hypersurface then one single incident wave is enough to

reconstruct its shape.
B. The Neumann problem:
If ∂D is a C1 and non-analytic hypersurface then (n− 1) incident waves with linearly indepen-

dent directions of incidence are enough to reconstruct its shape.

A definition of the real analytic hypersurface will be given in section 2.1.

Remark 1.1. We can consider the more general second order operator given by the Hamiltonian
with electromagnetic fields:

n∑
j,k=1

1
√
g
(−i ∂

∂xj
+Bj(x))

√
ggjk(−i ∂

∂xj
+Bk(x)) + V,

where gjk is a metric, g its determinant and Bj defines electromagnetic potentials.
However, since we need the coefficients of the operator to be real analytic, see sections 2.2 and

2.3, as it is requiered in the previous section, we need to take ReBj = 0, j = 1, 2, ..., n. In the case
where ImBj 6= 0, j = 1, 2, ..., n, we know that the well-posedness of the forward scattering problem
is guaranteed if the wave number κ is away from a dicrete set in R, see for example [22]. To avoid
these complications, we assumed Bj = 0, j = 1, 2, ..., n. Hence this case reduces to an anisotropic
acoustic operator.
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This problem has a long history, see [7], [11] and [28]. The known results are related to the case
A = I and V = 0. The first uniqueness result is due to Colton and Sleemann [6] who considered
the Dirichlet problem. They gave an estimate of the number of the incident plane waves that are
needed to uniquely determine the obstacle. In particular, they show that if the size of the obstacle
is small enough then one incident wave is enough. For the same Dirichlet problem, Stefanov and
Uhlmann [30] show that one incident wave is enough to distinguish between two obstacles under
the condition that they are sufficiently close. These two types of results have been generalized
by Gintides [10] by weakning the smalleness and the closeness conditions. Some stability results
related to these uniqueness results are given by Isakov in [12] and [13] for small obstacles and
Sincich and Sini in [29] for small or close obstacles.

For other boundary conditions such as Neumann or Robin, related local results are not known
so far.

If in addition we assume that the obstacles are polygonal or polyhedral then, in recent years,
several results have been given by Cheng and Yamamoto [5], Elschner and Yamamoto [8], Alessan-
drini and Rondi [2], Rondi [28] and Liu and Zou [16] and [17].

In this paper, we assume that obstacles are Lipschitz or C1−smooth but not analytic. Details
will be given in the next section regarding the defintion of non-analytic hypersurfaces. For such
regular obstacles, we prove global uniqueness results for both the Dirichlet and the Neumann
cases. We note that we do not need any smalleness or closeness conditions. In this sense our
results complete the ones mentioned above. We also mention a related result by Ramm [27]
who considered non-analytic obstacles and proved similar uniqueness results by assuming that the
obstacles are strictly convex and the operator P is taken to be the Laplace operator ∆. With the
results proven in this paper, we remove, in particular, the convexity condition.

With these results at hand the open issue is to study this inverse obstacle scattering problem
in case of obstacles with piecewise analytic boundaries.

To answer to our problem, we start by investigating the analyticity of a topological manifold
contained in some real analytic set and that of a differentiable manifold tangent to analytic sections.
Correspondingly, for the Dirichlet case, we show that the set of irregular points of real analytic
functions are nowhere dense in their zero sets and their complementary in these zero sets are still
real analytic subsets, see Theorem 2.2 and Corollary 2.3. For the Neumann case we show that if S
is a non analytic hypersurface of Rn, then we cannot find n− 1 linearly independent real analytic
functions with gradients tangent to S, see Theorem 2.6. Then we apply these arguments to prove
that the total fields cannot be analyitically extendable across non-analytic obstacles with Dirichlet
or Neumann boundary conditions respectively. This is due to the contrast between the real analytic
regularity of the coefficients A and V which insures that total fields are analytic, in the domain
where they are defined, and the non-analyticity of ∂D. This non-analytic extension reflects a
high scattering effect which we can interprete mathematically by the unboundedness of the Taylor
series for points near the hypersurface ∂D. This information is used to build up a reconstruction
proceedure to detect the shape of the obstacle. Precisely, we compute reconstructively the Taylor
coefficients of the scattered fields directly from the farfields. Similar ideas have been used by
Potthast in [25] and Honda et al. in [9]. The argument of this paper is to use the blowup of the
Taylor coefficients directly to reconstruct the obstacle. As a by product of this proceedure, we
obtain the uniqueness results we have stated above.

The rest of the paper, contained in the section 2, is organized as follows. In subsection 2.1, 2.2
and 2.3, we state and prove the non-analytic extension results. In sections 2.4 and 2.5, we apply
these results to the reconstruction of the obstacles.
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2 Solution of the inverse problem for non-analytic obstacles

2.1 The definition of “non-analytic” boundary

We assume that the boundary ∂D of D is a closed hypersurface in Ω, that is, ∂D is a closed
topological submanifold in Ω with its topological dimension being n − 1. We say that ∂D is
analytic at p ∈ ∂D if there exist an open neighborhood V of p and a real analytic function ϕ in V
such that ∂D ∩ V = {x ∈ V ; ϕ(x) = 0}.

Definition 2.1. ∂D is non-analytic at p ∈ ∂D if and only if ∂D is not analytic at p. It is said to
be non-analytic if it is non-analytic at every point in ∂D.

2.2 The sound soft obstacle case

Let P (x, ∂x) be an elliptic linear partial differential operator of the second order with real analytic
coefficients in Ω. Let u designate a solution in Ω of Qu = 0. Hereafter Z designates the zero set
of u.

For an analytic function f in Ω, the set of critical points of f (i.e. the set {x ∈ Ω; grad(f) = 0})
might contain the zero set of f completely. However a solution of an elliptic equation possesses
the following good property:

theorem 2.2. Let us define the analytic subset Zirr as

Zirr = {x ∈ Z; grad(u)(x) = 0}.

If u is not identically zero, then we have dimR Zirr ≤ n−2. Here dimR Zirr denotes the dimension
of Zirr as an analytic set (see the comment in the following proof).

Proof. It follows from Theorem 8.3.20, p.335 in the book [14] that there exists a stratification Wα

of the the analytic subset Zirr. Precisely, there exists a partition Zirr = t
α
Wα where the family of

the so-called strata Wα satisfies the following conditions 1., 2. and 3.:

1. Each Wα is connected, and Zirr is a disjoint union of the family (Wα)α. For every point
p ∈Wα, Wα is a closed real analytic submanifold in an open neighborhood of p.

2. The family (Wα)α is locally finite, that is, for any compact set K the number of Wα inter-
secting with K is finite.

3. For any pair (α, β) such that Wα ∩ W̄β is not empty, Wα is contained in W̄β where W̄β

denotes the closure of Wβ in Rn. In particular, Wα ∩ W̄β 6= φ implies dimR Wα < dimR Wβ .

Note that dimR Wα designates the dimension of Wα as a topological or a differentiable manifold
(both are the same). For the dimension of an analytic set, although there are several ways to define
it, it is known that

dimR Zirr = max
α

dimR Wα.

Suppose that a component Wα with dimR Wα = n− 1 exists. Since the operator P is elliptic,
Wα is always non-characteristic for P . Moreover we have

u = 0,
∂u

∂ν
= 0 on Wα
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where
∂u

∂ν
is the normal derivative of u along Wα. By Cauchy-Kowalevski theorem, the solution

u becomes identically zero, that contradicts the assumption. Hence we can conclude that the
dimension of Zirr is less than n− 1.

We have two corollaries.

Corollary 2.3. Let u be a non-zero solution of P (x, ∂x)u = 0 in Ω, and let ∂D be a closed
topological submanifold in Ω with dimR ∂D = n−1. If ∂D is contained in the zero set Z of u, then
we have

1. ∂D ∩ Zirr is nowhere dense in ∂D.

2. ∂D \ Zirr is real analytic smooth.

Here we set Zirr = {x ∈ Z; gradu(x) = 0}.

Proof. Let Zirr = t
α
Wα denote the partition that appeared in the proof of Theorem 2.2. Set for

k ∈ Z
Λ(k) = {β; dimR Wβ ≤ k}, Zirr(k) = ∪

β∈Λ(k)
Wβ .

Then for any point p ∈ Wα with dimR Wα = k, we can find a open set p ∈ V in Ω such that
V ∩ Zirr(k) = V ∩Wα. In fact, if we could not find such a V , then there exist a component Wβ

with p ∈ W̄β (α 6= β ∈ Λ(k)). Since p ∈ W̄β ∩Wα is not empty, by the condition 3. of the partition
we have Zα ⊂ Z̄β . This implies dimR Zβ ≥ k + 1, and that is impossible.

Now we suppose that Zirr contains a not empty open set T of ∂D. Let k be a minimal
integer such that T ⊂ Zirr(k), and let Wα be a component satisfying conditions T ∩ Wα 6= φ
and dimR(Wα) = k. For a point p ∈ T ∩ Wα, we can take an open set p ∈ V in Ω so that
Zirr(k) ∩ V = Wα ∩ V . Then we have

p ∈ V ∩ T ⊂ V ∩ Zirr(k) = V ∩Wα.

ThereforeWα contains a subset which is homeomorphic to an open ball in Rn−1. Since dimR(Wα) <
n−1, this contradicts the fact that a topological manifold with the dimension less than n−1 never
contains a subset which is homeomorphic to an open ball in Rn−1 (see also the proof below). Hence
∂D ∩ Zirr is nowhere dense in ∂D.

For any point x0 ∈ ∂D \ Zirr, Z is real analytic smooth near x0, in particular, a topological
submanifold near x0 with dimR Z = n− 1. Therefore we can find an open neighborhood U (resp.
V ) of x0 in ∂D (resp. Z) and a homeomorphic map φ∂D : U → B (resp. φZ : V → B) for some
open ball B ⊂ Rn−1 respectively.

Now let us recall the famous Brouwer’s invariance theorem of domain, that is, for any two
homeomorphic subset W1 and W2 in a topological manifold M , W1 is an open subset in M if and
only if W2 is open. Then since U and V are homeomorphic by the map φ−1

Z ◦ φ∂D and V is an
open subset in Z, it follows from the Brouwer’s theorem that U is also open in Z. Hence ∂D and
Z coincide near x0, and ∂D is real analytic smooth near x0.

Note that one could not expect that ∂D is analytic everywhere even if ∂D is smooth everywhere.

Let u be the solution in Ω\D̄ of the equation Qu = 0 that satisfies Dirichlet boundary condition
u|∂D = 0.

Corollary 2.4. If ∂D is non-analytic, then the solution v defined in Ω \ D̄ is never extended to
D analytically across the boundary ∂D.
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2.3 The sound hard case

Let U be a connected open set in Rn and f1, f2, . . . , fn−1 be n − 1 real analytic functions in U .
We give a weaker version of Corollary 2.3.

Lemma 2.5. Let S be a C1 smooth hypersurface in U . If S is contained in an real analytic set Z
in U , then points where S is real analytic smooth is dense in S.

Proof. We consider a partition Z = t
α
Zα satisfying the condition 1., 2. and 3. in the proof of

Theorem 2.2, and we define the subset Ẑ of Z as

Ẑ = ∪dim Zα≤n−2Zα.

Note that S \ Ẑ is a dense subset in S because of dimR Ẑ < n− 1.
Let p be a point in S \ Ẑ. Then we can find a component Zα with p ∈ Zα and dimZα = n− 1.

By the same reasoning as in the proof of Corollary 2.3, there exists a neighborhood V of p satisfying
Z ∩ V = Zα ∩ V , and we have

S ∩ V ⊂ Z ∩ V = Zα ∩ V.

Since the topological dimensions of both sets S ∩ V and Zα ∩ V are the same, we conclude that
S ∩ V = Zα ∩ V , and S is analytic smooth near p.

Let S be a C1 smooth hypersurface in U , and f1, f2, . . . and fn−1 real analytic functions in U .

theorem 2.6. Suppose that there exists a point x∗ ∈ U such that the n− 1 vectors

grad f1(x∗), grad f2(x∗), . . . , grad fn(x∗)

are linearly independent. If the relations

∂f1
∂ν

= 0,
∂f2
∂ν

= 0, . . . ,
∂fn−1

∂ν
= 0 on S

hold, then S is real analytic smooth at a dense subset of S.

Proof. First define (n− 1)× n matrix

A :=


∇f1
∇f2
. . .

∇fn−1


and set

Ji := |detBi|2

where Bi is the (n − 1) × (n − 1) matrix defined from A by deleting the ith row. Then we define
an analytic function φ as

φ =
n−1∑
i=1

Ji.

Remark that by the assumptions on f1, f2, . . . , and fn−1, the analytic functions φ is not identically
zero.

We set
S{φ=0} = {x ∈ S;φ = 0},
S{φ6=0} = {x ∈ S;φ 6= 0}.
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We denote by IntS(S{φ=0}) ⊂ S the set of interior points of S{φ=0} in S. Then since we have

S \
(
IntS(S{φ=0}) ∪ S{φ6=0}

)
= S{φ=0} \ IntS(S{φ=0}),

and clearly S{φ=0} \ IntS(S{φ=0}) contains no interior point in S, IntS(S{φ=0})∪S{φ6=0} is an open
dense subset in S. Taking the previous lemma into account, S is real analytic smooth at a dense
point of IntS(S{φ=0}). Hence it is enough to show the theorem in S{φ6=0}. Since the problem is
local, we assume φ 6= 0 on S in what follows.

Then n− 1 vectors
grad(f1), grad(f2), . . . , grad(fn−1),

are linearly independent over R at every point near S. Let us denote by B the real analytic vector
bundle near S which is generated by the above n− 1 vectors. The conditions

∂f1
∂ν

= 0,
∂f2
∂ν

= 0, . . . ,
∂fn−1

∂ν
= 0 on S

imply that S is tangent to the vector bundle B, that is, S is an integral manifold of B. Let x0 ∈ S
and

X1(x), X2(x), . . . , Xn−1(x)

be real analytic sections of the vector bundle B near x0 which are linearly independent. Now for
sufficiently small ε > 0 we consider a solution

γ1(t1) : I = (−ε, ε) → Rn

of the differential equation
d

dt1
γ1 = X1(γ1(t1)),

γ1(0) = x0.

Then the solution γ1(t1) is a real analytic function of the variable t1, and γ1(I) ⊂ S holds because
S is tangent to B. In the similar way, we will construct functions

γk(t1, . . . , tk) : Ik → Rn, k = 1, 2, . . . , n− 1

by solving the differential equation

d

dtk
γk = Xk(γk(t1, t2, . . . , tk)),

γk(t1, . . . , tk−1, 0) = γk−1(t1, . . . , tk−1)

successively. Then γk(t1, . . . , tk) is real analytic functions of the variables t1, . . . , tk and γk(Ik) ⊂ S
is satisfied. It is easy to see

det
(
∂γn−1

∂t1
,
∂γn−1

∂t2
, . . .

∂γn−1

∂tn−1

)
(0) = det (X1(x0), . . . , Xn−1(x0)) 6= 0.

Therefore γn−1(t1, . . . , tn−1) : In−1 → S becomes a real analytic coordinates function of S near
x0, and S is a real analytic manifold near x0.

Let S be a C1 smooth hypersurface in U , and let us assume that U \S consists of two connected
component U+ and U−. Let v1, v2, . . . and vn−1 be solutions in U+ of the equation Qv = 0 that
satisfy the sound hard conditions

∂v1
∂ν

= 0,
∂v2
∂ν

= 0, . . . ,
∂vn−1

∂ν
= 0 on S.

7



Corollary 2.7. Assume S is non-analytic at any point in S, and v1, v2, . . . and vn−1 satisfy the
first assumption of Theorem 2.6 at some point x0 ∈ U . Then for any point p in S at least one of
the solutions v1, v2 . . . or vn−1 can not be analytically continued across the boundary S near p.

2.4 Computation of the Green’s function for the unperturbed medium
(A, V ) in Rn

The existence and uniqueness of the Green’s function for our problem is well known, see for example
[22] where this is shown for more general second order elliptic operators.

As we will see in the next section, we need to know the far field pattern of the Green’s function
of operator P + κ2 on Rn. In this section, we show how to compute it.

Let Φ(x, z) be the fundamental solution of the Helmholtz equation ∆ + κ2.
I. The acoustic case: A = I, via the Lippman-Schwinger equation.
In this case the Green’s function G(x, z) of ∆ + V + κ2 satisfies:

(∆ + V + κ2)G(x, z) = −δ(x− z) in R3, r
n−1

2 (
∂

∂r
G− iκG)(x, z) = o(1), (|x| → ∞).

This Green’s function G exists and it is the unique solution of the Lippmann-Schwinger equation:

(6) −
∫

Ω

Φ(x, y)V G(y, z)dy +G(x, z) = Φ(x, z), x, z ∈ Rn.

We set G∞(x̂, z), x̂ ∈ Sn to be the far field of G(x, z). Hence

(7) G∞(x̂, z) = Cne
−iκx̂·z + Cn

∫
Ω

e−iκx̂·yV G(y, z)dy

where Cne
−iκx̂·z = Φ∞(x̂, z), i.e the farfield of the fundamental solution Φ(·, z) and Cn is a constant

depending on the dimension n.
We can compute G(x, z), x, z ∈ Ω by solving the integral equation (6). Hence combining (6)

and (7) we can compute G∞(x̂, z), x̂ ∈ Sn and z ∈ Ω.

II. The general case via the mixed reciprocity relations

Another way of computing the farfield pattern of G(x, z), i.e. G∞(x̂, z), x̂ ∈ Sn and z ∈ Ω, is
to use the following mixed reciprocity relations:

(8) G∞(x̂, z) = Cne
−iκz·x̂ + Cnv(z,−x̂),

where v(·, x̂) is the scattered wave associated to the pane wave eiκz·x̂ with direction x̂.
Let us give a justification to (8). Let z ∈ Ω and d ∈ Sn, then we have

(9)
∫

∂Ω

G(y, z)
∂us

∂ν
(y, d)− ∂G

∂ν
(y, z)us(y, d)ds(y) = 0.

Also replacing us(y, d) by Φ(x, y), we obtain

(10)
∫

∂Ω

G(y, z)
∂Φ
∂ν

(x, y)− ∂G

∂ν
(y, z)Φ(x, y)ds(y) = G(x, z), for ∀z ∈ Ω and x ∈ Rn \ Ω.

Hence taking the asymptotic, as |x| → ∞, we obtain

(11) G∞(x̂, z) = Cn

∫
∂Ω

G(y, z)
∂e−iκx̂·y

∂ν
− ∂G

∂ν
(y, z)e−iκx̂·yds(y), for ∀z ∈ Ω and x̂ ∈ Sn.
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Multiplying (9) by Cn, replacing d by −x̂ and adding the resulting equation to (11), we get

(12) G∞(x̂, z) = Cn

∫
∂Ω

G(y, z)
∂u

∂ν
(y,−x̂)− ∂G

∂ν
(y, z)u(y,−x̂)ds(y),∀z ∈ Ω and x̂ ∈ Sn

which we can write as

(13) G∞(x̂, z) = Cn

∫
∂Ω

G(y, z)
∂u

∂νA
(y,−x̂)− ∂G

∂νA
(y, z)u(y,−x̂)ds(y),∀z ∈ Ω and x̂ ∈ Sn

where we used the notation ∂us(y,d)
∂νA

:= A∇us(y, d) · ν and ν is the outer unit normal of ∂D,
But using the Green’s theorem the integral of (13) is no thing but u(z,−x̂). This means that

G∞(x̂, z) = Cnu(z,−x̂), ∀z ∈ Ω and x̂ ∈ Sn.

Hence to compute G∞(x̂, z), it is enough to solve the forward scattering problem and compute
the values of v(z,−x̂), z ∈ Ω := BR(0).

For the practical case where n = 2 and n = 3, it is well known that the scattering problem is
equivalent to the boundary value problem

(14)

 (P + κ2)v = 0, in Ω,
v|∂Ω = M(vs) on ∂Ω,
v := eiκz·x̂ + vs(z, x̂),

where M is the following explicit operator:

(15) M(u)(·) :=
∞∑

m=K(n)

L(n)∑
j=−L(n)

β|m|(κ,R)ψmj(·)
∫

ΓR

ψ∗mj(x0)u(x0)ds(x0)

where the asterix denotes the complex conjugate and

(16) K(n) =
{
−∞, if n = 2,
0 if n = 3,

(17) L(n) =
{

0, if n = 2,
m if n = 3,

and

(18) ψmj(x) =


√

1
2πRe

imθ, if n = 2√
(2m+1)(n−|j|)
4πR2(n+|j|) P

|j|
n (cos(θ))eijφ if n = 3,

where P |j|n is the associated Legendre function of degree n and order |j|. The coefficient β|m|(κ,R)
is given by:

(19) β|m|(κ,R)


κ(H

(1)
|m|)

′(κR)

H
(1)
|m|(κR)

, if n = 2,

κ(h
(1)
|m|)

′(κR)

h
(1)
|m|(κR)

if n = 3,
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where H(1)
|m| is the Hankel function of the first kind of order |m| and h1

|m| is the spherical Hankel
function of the first kind of order |m|, see [15].

Another useful representation of G∞(x̂, z), x̂ ∈ Sn and z ∈ Rn is as follows: knowing G(x, z),
x ∈ Ω, z ∈ Rn, we state the exterior problem in Rn \ Ω:

(20)


(∆ + κ2)G = 0, in Rn \ Ω

∂
∂ν(·)G(·, z) := k(·, z), known on ∂Ω
G(·, z) satisfies the Sommerfield radiation conditions

Then using an integral representation by single layer potential, we have

(21) G(x, z) =
∫

∂Ω

Φ(x, y)f(y, z)ds(y)

where f(·, z) is the unique solution of the integral equation of the second kind

(22) f(·, z)− 2
∫

∂Ω

∂Φ
∂ν(·)

(·, y)f(y, z)ds(y) = −2k(·, z), on ∂Ω.

From (21), we have

(23) G∞(x̂, z) = Cn

∫
∂Ω

e−iκx̂·yf(y, z)ds(y).

We can replace the Neumann boundary condition in (20) by the Dirichlet one and use the double
layer potential to represent G.

The identity (23) will be of help when we consider the Herglotz wave operator in the next
section.

2.5 Reconstructing the shape of the obstacle.

2.5.1 Computation of the Taylor coefficients of the scattered fields

The following identity

(24) u∞(x̂, d) =
∫

∂D

{
∂us(y, d)
∂νA

G∞(x̂, y)− ∂G∞(x̂, y)
∂νA

us(y, d)
}
ds(y)

follows from the Green’s formula in Rn \D for us(·, d, p) and G(·, y) and their asymptotic behavior
at infinity, see [7] where G is taken to be Φ, however similar arguments can be applied for G since
on Rn \ D both of G and us satisfy the same equation. Note also that since P is self-adjoint,
because AT = A, then G is symmetric, i.e. G(x, z) = G(z, x), x, z ∈ Rn.

Let g ∈ L2(Sn), then

(25)
∫

Sn

u∞(−θ, d)g(θ)ds(θ) =
∫

∂D

{
∂us(y, d)
∂νA

vg(y, d)−
∂vg(y, d)
∂νA

us(y, d)
}
ds(y)

where

(26) vg(y) :=
∫

S2
G∞(x̂, y)g(x̂)ds(x̂).

A bounded set B, B ⊂ Rn, is said to be a non-vibrating domain for the differential operator P +κ2

if B is of class C2 and the operator given by −P on B with Dirichlet boundary conditions does
not have κ2 as an eigenvalue.

We need the following known property.
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Lemma 2.8. Let B be a non-vibrating domain. Then the operator H : L2(Sn) → L2(∂B) defined
by

H(g) := vg :=
∫

S2
G∞(x̂, ·)g(x̂)ds(x̂)

is compact, injective and has a dense range.

Proof of Lemma 2.8. The proof of these properties is similar to the one given in [7], except
that we need to replace Φ by G and to use the representation (23).

Using (23), we write, ∀y ∈ ∂B,∫
S2
G∞(x̂, y)g(x̂)ds(x̂) = Cn

∫
S2

∫
∂Ω

e−iκx̂·zf(z, y)ds(z)g(x̂)ds(x̂)

= Cn

∫
∂Ω

∫
S2
e−iκx̂·zg(x̂)ds(x̂)f(z, y)ds(z)

Hence ∫
Sn

G∞(x̂, y)g(x̂)ds(x̂) = Cn

∫
∂Ω

hg(−z)f(z, y)ds(z)

i.e
H(g) = (Mf ◦ h)g

where Mf : L2(∂Ω) → L2(∂B),

φ ∈ L2(∂Ω) →Mfφ := Cn

∫
∂Ω

φ(−z)f(z, y)ds(z)

and h : L2(Sn) → L2(∂Ω), g ∈ L2(Sn) → hg(y) :=
∫

Sn e
iκx̂·zg(x̂)ds(x̂) is the usual Herglotz

operator.
Since h is a compact operator and Mf is bounded then H is also compact.
Let us consider the denseness of the range of H. We have H∗f = Cn

∫
∂B

G∞(x̂, y)f(y)ds(y).
Let f ∈ L2(∂B) such that H∗f = 0. Then

(27)
∫

∂B

G∞(x̂, y)f(y)ds(y) = 0.

The function vf (x) :=
∫

∂B
G(x, y)f(y)ds(y), x ∈ Rn\B is well defined and satisfies (P+κ2)vf =

0 in Rn \ B and also the radiation conditions since G does. Its far field pattern is given by (27).
From the Rellich Lemma, (27) implies that vf = 0 in Rn \B. Since B is non-vibrating, then vf = 0
in B. Using the jump relation of the normal derivative of the single layer potential ( which can be
justified see [19] and [21], Appendix), we deduce that f = 0. Hence the kernel of H∗ is trivial, i.e.
N(H∗) = {0}. This means that the range of H is dense.

Similarly, we can prove that H is injective. �
Let z be a point in Rn \D and set

(28) ψ(x, z, ρ, α) :=
ρ|α|

α!
∂α

∂zα
G(x, z), for x, z ∈ Rn

where α = (α1, ...αn) ∈ Zn
+ is a multi index, ∂α

∂xα := ∂α1

∂xα
1
· · · ∂αn

∂xα
n
, α! := α1! · · · αn! and |α| :=

α1 + α2 + ...+ αn.
We take B such that D ⊂ B, z /∈ B and B is a non vibrating domain. For every ρ > 0 and

α ∈ Nn, we take gz,ρ,α
m ∈ L2(Sn) such that vgz,ρ,α

m
tends to ψ(·, z, ρ, α) in C1(B). This property

is due to Lemma 2.8. Indeed, we approximate ψ(·, z, α, ρ) on ∂B by vgz,ρ,α
m

. Since both of ψ and
vgz,ρ,α

m
satisfy the same problem in B then the well-posedness of the Dirichlet problem in B, via

interior estimates, gives the desired property.
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theorem 2.9. Let z ∈ Rn \ D, ρ > 0 and α ∈ Zn
+ be fixed. We can construct a sequence

(gz,ρ,α
m )m ⊂ L2(Sn) such that

(29) lim
m→∞

∫
Sn

u∞(−θ, d)gz,ρ,α
m (θ)ds(θ) = −ρ

|α|

α!
∂α

∂zα
us(z, d).

Proof of Theorem 2.9.
From (25), we get:

lim
m→∞

∫
Sn

u∞(−θ, d)gz,ρ,α
m (θ)ds(θ) =

∫
∂D

{
∂us(y, d)
∂νA

ψ(y, z, ρ, α)− ∂ψ(y, z, ρ, α)
∂νA

us(y, d)
}
ds(y)

Using the Green’s formula and due to the form of ψ, we have:

lim
m→∞

∫
Sn

u∞(−θ, d)gz,ρ,α
m (θ)ds(θ) = −ρ

|α|

α!
∂α

∂zα
us(z, d)+

∫
∂BR′

{
d

dr
us(y, d)ψ(y, z, ρ, α)− d

dr
ψ(y, z, ρ, α)us(y, d)

}
ds(y)

where BR′ is a ball of radius R′ large enough to contain D.
We want to show that the integral over BR′ tends to zero as R′ tends to infinity. Indeed , we

write this integral as∫
∂BR′

{
(
d

dr
us(y, d)− iκus(y, d))ψ(y, z, ρ, α)− (

d

dr
ψ(y, z, ρ, α)− iκψ(y, z, ρ, α))us(y, d)

}
ds(y)

We know that

d

dr
us(y, d)− iκus(y, d) = o(

1

|y|n−1
2

) and us(y, d) = O(
1

|y|n−1
2

), (|y| → ∞).

It is then enough to show that

d

dr
ψ(y, z, ρ, α)− iκψ(y, z, ρ, α) = o(

1

|y|n−1
2

) and ψ(y, zq) = O(
1

|y|n−1
2

), (|y| → ∞)

It is clear that G(x, z) ∈ C∞(∂Ω̃ × B) where B ⊂⊂ Ω ⊂⊂ Ω̃. Hence from the integral equation
of the second kind (22), we deduce that f(y, z) ∈ C∞(B,L2

y(∂Ω̃)), i.e. for z ∈ B fixed f(·, z) is in
L2(∂Ω̃)) and |f(·, z)|L2(∂Ω̃)) is C∞ with respect to z in B. Now, from (21), we have:

(30) ψ(x, z, ρ, α) =
ρ|α|

α!
∂α

∂zα
G(x, z) =

ρ|α|

α!

∫
∂Ω̃

Φ(x, y)
∂α

∂zα
f(y, zq)ds(y)

(
d

dr
− iκ)ψ(x, zq) =

ρ|α|

α!

∫
∂Ω

(
d

dr
− iκ)Φ(x, y)

∂α

∂zα
f(y, z)ds(y).

However, we know that

Φ(x, y) = O(
1

|x|n−1
2

), (|x| → ∞, y ∈ ∂Ω̃)

and
(
d

dr
− iκ)Φ(x, y)) = o(

1

|x|n−1
2

), (|x| → ∞, y ∈ ∂Ω̃)
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then for z, ρ and α fixed, we have

(31) |ψ(x, z, ρ, α)| = O(
1

|x|n−1
2

), (|x| → ∞, z ∈ B)

and

(32) (
d

dr
− iκ)ψ(x, z, ρ, α)) = o(

1

|x|n−1
2

), (|x| → ∞, z ∈ B)

Hence taking the limit with respect to R we deduce that

(33) lim
m→∞

∫
Sn

u∞(−θ, d)gz,ρ,α
m (θ)ds(θ) = −ρ

|α|

α!
∂α

z u
s(z, d).

2.5.2 The sound soft case

The following lemma gives a quantitative version of the non-analytic extension of us(z, d) near ∂D.

Lemma 2.10. If for some positive real number ρ, the set

(34) {ρ|α|
| ∂α

∂zαu
s(z, d)|
α!

, α ∈ Zn
+}

is uniformly bounded, then us(z, d) is analytically extendable into B(z, ρ√
n
).

Proof of Lemma 2.10. From the boundedness of (34), say by M , we derive that the series

(35)
∑

α∈Zn
+

1
α!

(x− z)α ∂α

∂zα
us(z, d)

has a majorant
∑

α∈Zn
+
M |(x−z0)

α|
ρ|α| . In addition, by setting (x − z) := ((x − z)1, ..., (x − z)n), we

have ∑
α∈Zn

+

|(x− z)α|
ρ|α|

=
∞∑

m=0

∑
|α|=m

Πn
k=1|(x− z)k|αρ−|α|

We use the inquality 1 ≤ |α|!
α! to get:∑

α∈Zn
+

|(x− z)α|
ρ|α|

≤
∞∑

m=0

∑
|α|=m

m!
α!

Πn
k=1|(x− z0)k|αρ−m ≤

∞∑
m=0

(
n∑

k=1

|(x− z)k|)mρ−m.

Using the inequality
∑n

k=1 |(x− z0)k| ≤
√
n|x− z|, we deduce that

|
∑

α∈Zn
+

1
α!

(x− z)α ∂α

∂zα
us(z, d)| ≤M

∞∑
m=0

(
√
n|x− z|
ρ

)m.

This series is absolutely convergent for x ∈ B(z0, ρ√
n
). Hence the Taylor series of us(z, d) is abso-

lutely convergent in B(z, ρ√
n
) which means that us(z, d) is analytically extendable into B(z, ρ√

n
).
�

We set

(36) I(z, ρ, α) := lim
m→∞

∫
Sn

u∞(−θ, d)gz,ρ,α
m (θ)ds(θ).

The following theorem gives a reconstructive characterization of the shape of the obstacle, ∂D.
It is proof is a direct application of Lemma 2.10.
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theorem 2.11. We have the following two properties of I(z, ρ, α)
I. If

lim sup
ρ→0

lim
|α|→∞

I(z, ρ, α)

is finite, then
d(z, ∂D) > 0.

Precisely, if for some ρ > 0, I(z, ρ, α) is bounded with respect to ρ, then

d(z, ∂D) ≥ ρ√
n
.

II. If
lim sup

ρ→0
lim

|α|→∞
I(z, ρ, α) = ∞

then
d(z, ∂D) = 0.

2.5.3 The sound hard case

In this case, we assume that A is, in addition to be analytic in Ω, of class C1 across ∂Ω. Let
d1, ..., dn−1 be (n−1) directions of incidence which are linearly independent. Let uj := uj(z, dj) =
us(z, dj) + vP (z, dj) be the associated total fields, where us(z, dj) is the corresponding scattered
fields and vP (z, dj) is the incident field.

Lemma 2.12. Let z0 ∈ Ω \D and r0 > 0 such that B(z0, r0) ⊂ Ω \D. Suppose that

n−1∑
j=1

βj∇Reu(z, dj) = 0 in B(z0, r0)

then βj = 0, j = 1, ..., n− 1.

Proof of Lemma 2.12. Suppose that
∑n−1

j=1 βj∇Reu(z, dj) = 0, in B(z0, r0). Hence

n−1∑
j=1

βjReu(z, dj) = C in B(z0, r0),

where C is a constant. However
∑n−1

j=1 βjReu(·, dj) satisfies:

(P + κ2)(
n∑

j=1

βjReu(·, dj)) = 0 in Rn \D.

By the unique continuation property (which is justified since A is of class C1 in Rn \D), we deduce
that

∑n
j=1 βjReu(·, dj) is constant in Rn \D.

From the radiation conditions, we deduce that ∂
∂ru

s(z, dj) → 0, r → ∞, r := |x|. Since∑n
j=1 βjReu(·, dj) is constant in Rn \D, then Im

∑n−1
k=1 βk(dk · x̂)eiκx·dk → 0 when r → 0, x̂ := x

|x| .
Recall that the used incident wave are given by vP (x, d)+ eiκx·d where vP is actually propagating,
due to the Sommerfeld radiation conditions. Hence we have also ∂

∂rvP (z, dj) → 0, r →∞.
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Let e1,e2,. . . ,en denote orthogonal unit vertors in Rn. We can find an invertible matrix H
satisfying Hdk = ek (k = 1, 2, . . . , n− 1). Then we have

n−1∑
k=0

βk(x̂ · dk)eiκ(x·dk) =
n−1∑
k=0

βk(t̂Hy ·H−1ek)eiκ(y·ek)

where we set y := tH−1x. Note that |x| → ∞ if and only if |y| → ∞.

Now we will show that βl = 0, (l = 1, ..., n− 1). By setting ym =
(2m+ 1

2 )π
κ

el, (m = 1, 2, . . . ),
we have when m→∞

Im

(
n−1∑
k=0

βk(t̂Hym ·H−1ek)eiκ(ym·ek)

)
=

n−1∑
k=0

βk(el · ek) = βl.

This implies βl = 0.
�

From Lemma 2.12 and Corollary 2.7, we deduce that for every point z ∈ ∂D at least one of the
solutions us(z, dj) is not analytically extendable near z. As we did for the Dirichlet case, for each
solution us(z, dj), we associate the functional:

Ij(z, ρ, α) := lim
m→∞

∫
Sn

u∞(−θ, dj)gz,ρ,α
m (θ)ds(θ)

and we define the following functional for this Neumann problem:

(37) J(z, ρ, α) :=
n−1∑
i=1

|Ij(z, ρ, α)|.

Similar to Theorem 2.11, we have the following theorem which enables us to reconstruct non-
analytic obstacles for the Neuman case by using (n−1) linearly independent directions of incidence.

theorem 2.13. We have the following two properties of J(z, ρ, α):
I. If

lim sup
ρ→0

lim
|α|→∞

J(z, ρ, α)

is finite, then
d(z, ∂D) > 0.

Precisely, if for some ρ > 0, J(z, ρ, α) is bounded with respect to ρ, then

d(z, ∂D) ≥ ρ√
n
.

II. If
lim sup

ρ→0
lim

|α|→∞
J(z, ρ, α) = ∞

then
d(z, ∂D) = 0.

Remark 2.14. Combining Theorem 2.11 and Theorem 2.13, we can reconstruct the shape of a
non-analytic obstacle by using (n−1) linearly independent directions of incidence without knowing
a-priori if on the boundary of the obstacle we have a Dircichlet or a Neumann condition.
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