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1 Introduction

Scattering amplitudes in QCD provide the basic building blocks for hadron collider phe-

nomenology. Integrated over phase space, they yield theoretical predictions that can be

compared to experimental measurements like those performed at the CERN Large Hadron

Collider (LHC). These theoretical predictions can be systematically improved through in-

clusion of higher-order QCD corrections, which require higher-loop scattering amplitudes.

The analytic computation of these multi-loop amplitudes is a non-trivial task.

Experience at one loop has shown that the direct numerical computation of scattering

amplitudes can avoid difficulties encountered in analytic approaches. However, while nu-

merical evaluation is sufficient for phenomenological applications, compact analytic results

are still very useful. Indeed, the numerical evaluation of analytic expressions is generally
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straightforward to set up and oftentimes more stable and efficient than the purely numer-

ical approach. Furthermore, explicit formulae allow for a detailed analysis of the analytic

properties of amplitudes in order to learn about higher-order perturbation theory.

In this article we present the analytic expressions of the two-loop five-parton QCD am-

plitudes in the leading-color approximation. Recently, significant progress has been made

regarding the computation of two-loop multi-particle amplitudes. In the case of five-point

QCD amplitudes, the first one to be studied was the leading-color five-gluon amplitude with

all helicities positive, initially evaluated numerically [1] and afterwards presented analyti-

cally [2, 3]. Building on this result, the all-plus two-loop six- and seven-gluon amplitudes

were obtained [4, 5]. By now all leading-color two-loop five-parton amplitudes (i.e., with

external gluons and/or massless quarks) have been computed numerically [6–9]. Very re-

cently, numerical algorithms were combined with functional reconstruction techniques [10]

resulting in analytic expressions for the planar two-loop five-gluon single-minus helicity

amplitude [11] and for all two-loop five-gluon helicity amplitudes [12]. These calculations

rely on the availability of the planar two-loop five-point master integrals, which have been

given in refs. [13, 14]. Progress with full-color five-gluon amplitudes [15] is gaining momen-

tum with recent results towards the computation of non-planar master integrals [16, 17]. In

more conventional approaches, integration-by-parts relations were obtained [18, 19] which

can be used to compute the same type of two-loop five-point amplitudes.

Here we apply a numerical variant [20–23] of the unitarity method [24–27] which has

recently been extended to two loops [28–30]. Furthermore, we take advantage of computa-

tions with exact kinematics through the usage of finite-field arithmetic [10, 31] in order to

functionally reconstruct [10] the multivariate rational coefficients of a basis of special func-

tions [14]. We have already shown that this strategy can be employed to compute ampli-

tudes of relevance to LHC phenomenology, by providing the analytic expressions of all pla-

nar two-loop five-gluon amplitudes [12]. In this article we further improve on the latter work

by producing compact analytic results for all leading-color two-loop five-parton amplitudes

in QCD. This includes the five-parton processes with five gluons, two quarks and three

gluons, and four quarks and one gluon, with zero, one and two light-quark loops. These are

all the two-loop amplitudes required for the computation of the leading-color next-to-next-

to-leading order (NNLO) QCD corrections to three-jet production at hadron colliders.

A number of new developments allows to obtain these results. First, we set up an effi-

cient method to determine the dependence on the dimension Ds associated to the particle

states circulating in the loop. We extend the approach of [32] and remove a bottleneck of

dimensional reconstruction [22, 33, 34] in fermion amplitudes [9] by analytically precom-

puting part of the dependence on the dimensional regulator.

Second, we modify the multivariate reconstruction algorithm that we employed in

ref. [12] in order to use an ansatz in terms of Mandelstam variables instead of twistor

variables [35]. This is achieved by exploiting the analytic structure of amplitudes with five

external massless partons in order to obtain target functions which are rational functions

of Mandelstam variables. This has a dramatic impact in reducing the degree of the multi-

variate polynomials that we reconstruct, allowing us to obtain all analytic expressions with

a modest computational effort.
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Finally, in order to employ a single finite field for rational reconstruction, we perform

a systematic analysis of the analytic structure of the reconstructed functions which takes

advantage of two major simplification procedures. As a by-product, the procedure results in

rather compact expressions for all helicity amplitudes, which we provide as supplementary

data. We first analyze the dimension of the function space spanned by all the pentagon-

function coefficients on each amplitude. It turns out that this dimension is an order of

magnitude smaller (on average) than the number of pentagon functions. Then we simplify

each member of the basis of this space with a multivariate partial-fraction decomposition.

All taken into account, the final expressions we present are reduced in byte size by up to

two orders of magnitude, with final results that can easily be handled for future analytic

and numerical evaluations.

This article is organized as follows. Section 2 is devoted to the description of the

numerical calculation of the multi-parton amplitudes. There we precisely define the objects

we compute, including the two-loop helicity amplitudes and the finite remainder functions

in dimensional regularization. In section 3 our method of handling the Ds dependence

is presented, and section 4 describes the analytic reconstruction and the simplification of

the results by means of multivariate partial fractioning. We discuss the analytic results

in section 5 before concluding in section 6. Additional information related to the infrared

structure of the amplitudes, Feynman rules and a rationalization of the momentum-space

variables is presented in three appendices.

2 Calculation of multi-parton planar amplitudes

2.1 Multi-parton helicity amplitudes

In this work we compute the five-parton two-loop QCD helicity amplitudes in the leading-

color approximation. More precisely, we keep the leading terms in the formal limit of a

large number of colors Nc, and scale the number of light flavors Nf while keeping the ratio

Nf/Nc fixed.

We evaluate amplitudes in dimensional regularization. Care must be taken when ap-

plying dimensional regularization in a numerical approach with external fermions [9]. In

such an approach amplitudes are computed with integer dimensional particle representa-

tions, while dimensionally-regulated amplitudes are analytically continued to non-integer

dimensions D = 4 − 2ǫ. We will follow the same procedure described in detail in ref. [9],

which is related to the idea of using suitable projection operators [36] allowing one to work

with Lorentz-invariant objects in the main computational steps. A scattering amplitude

M can thus be written as

M =
∑

n

vnMn , (2.1)

where the Mn are Lorentz scalars and the vn provide a basis for the (Ds − 4)-dimensional

spinor structures. The basis {vn} is process dependent, and the loop order at which a

given spinor structure begins to contribute depends on the regularization scheme. For

concreteness, we work in the ’t Hooft-Veltman (HV) scheme and use the bases of {vn} con-

sidered in ref. [9]. For NNLO phenomenology, in cases where two-loop virtual corrections
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λ κ λ1 κ1

κ2 λ2

Figure 1. Contraction of the open (Ds−4)-dimensional spinor indices for amplitudes with external

quarks: each quark line closes upon itself. Indices connected by red dashed lines are traced over.

λ1 κ1

κ2 λ2

Figure 2. Alternative contraction of (Ds − 4)-dimensional spinor indices leading to a single trace.

Indices connected by green dashed lines are traced over.

are interfered with a tree amplitude, it is sufficient to compute M0 through

A(q, q̄, g, . . . , g) ≡ δκλ (M(q, q̄, g, . . . , g))λκ , (2.2a)

A(q, q̄, Q, Q̄, g, . . . , g) ≡ δκ1
λ1
δκ2
λ2

(

M(q, q̄, Q, Q̄, g, . . . , g)
)λ1λ2

κ1κ2
, (2.2b)

where on the right-hand-side of the equations we compute the traces to project onto the

structures v0 in eq. (2.1). This means that the relevant contributions are those in which the

open (Ds − 4)-dimensional spinor indices are traced over on each quark line, see figure 1.

While the amplitudes in eq. (2.2) are easily defined and evaluated analytically, it is

important to find an efficient way to compute them in a numerical setup. We discuss

our approach in section 3 where we give details of our implementation for the numerical

evaluation of amplitudes with fermions. This definition of helicity amplitudes with quarks

is consistent with that of ref. [36] and the prescription given in ref. [32].

When considering amplitudes with two identical quark lines, contributions where index

contractions lead to a single trace as in figure 2 should also be considered. Nevertheless,

at the level of the finite remainder, amplitudes with identical quarks can be obtained

by antisymmetrizing distinct-flavor expressions [9, 37] obtained from eq. (2.2b). Thus,

our results are sufficient for NNLO QCD phenomenological studies of processes involving

identical quarks.

The gluon and fermion amplitudes (2.2) can be decomposed in terms of color structures.

We denote the fundamental generators of the SU(Nc)-group by (T a) ̄
i , where the adjoint

index a runs over Nc
2 − 1 values and the (anti-) fundamental indices i (̄) run over Nc

values. The fundamental generators are normalized as Tr(T aT b) = δab. One can then
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consider the color decomposition of each process as

A(1g, 2g, 3g, 4g, 5g)
∣

∣

leading color
=

∑

σ∈S5/Z5

Tr (T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5))

×A(σ(1)g, σ(2)g, σ(3)g, σ(4)g, σ(5)g) ,

(2.3)

A(1q, 2q̄, 3g, 4g, 5g)
∣

∣

leading color
=
∑

σ∈S3

(T aσ(3)T aσ(4)T aσ(5)) ı̄2
i1

×A(1q, 2q̄, σ(3)g, σ(4)g, σ(5)g) ,

(2.4)

A(1q, 2q̄, 3Q, 4Q̄, 5g)
∣

∣

leading color
= (T a5) ı̄2

i3
δ ı̄4
i1

A(1q, 2q̄, 5g, 3Q, 4Q̄)

+ (T a5) ı̄4
i1
δ ı̄2
i3

A(1q, 2q̄, 3Q, 4Q̄, 5g) ,
(2.5)

where Sn denotes all permutations of n indices and Sn/Zn all non-cyclic permutations of n

indices. We write the particle type explicitly as a subscript, and all remaining properties

of each particle (momentum, helicity, etc.) are implicit.

The A in eqs. (2.3) to (2.5) are called partial amplitudes. For each of the amplitudes

considered, all partial amplitudes can be related to the others by exchanging external

legs, so only one partial amplitude is independent. These are expanded in a perturbative

expansion,

A = g30

(

A(0) +
α0

4π
NcA

(1) +
(α0

4π

)2
Nc

2A(2) +O(α3
0)

)

, (2.6)

where α0 = g20/(4π) is the bare QCD coupling and A(k) denotes a k-loop partial amplitude.

Each A(k) can be further expanded as a series in powers of Nf/Nc,

A(1) = A(1)[N0
f
] +

Nf

Nc
A(1)[N1

f
] ,

A(2) = A(2)[N0
f
] +

Nf

Nc
A(2)[N1

f
] +

(

Nf

Nc

)2

A(2)[N2
f
] .

(2.7)

We compute the coefficients A(k)[N l
f
], with 0 ≤ l ≤ k ≤ 2, where only planar diagrams

contribute as we work in the leading-color approximation. In figures 3, 4 and 5 we give

representative diagrams for each of these contributions.

2.2 Finite remainder

The bare scattering amplitudes defined in eq. (2.7) have divergences of ultraviolet and

infrared origin. Both can be predicted from lower-loop amplitudes. It is convenient to

remove this redundant information and define a finite remainder that contains the genuine

two-loop information. There is no unique way to define the remainder, so we now discuss

our conventions, with more details given in appendix A.

The renormalized amplitudes can be obtained from their bare counterparts by replacing

in eq. (2.6) the bare QCD coupling α0 by the renormalized coupling αs in D = 4 − 2ǫ

dimensions. The two couplings are related by

α0µ
2ǫ
0 Sǫ = αsµ

2ǫ

(

1−
β0
ǫ

αs

4π
+

(

β2
0

ǫ2
−

β1
ǫ

)

(αs

4π

)2
+O

(

α3
s

)

)

, (2.8)
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Figure 3. Representative Feynman diagrams for leading-color A(2)(g, g, g, g, g) amplitudes, con-

tributing at order N0
f , N

1
f and N2

f .

Figure 4. Representative Feynman diagrams for leading-color A(2)(q, q̄, g, g, g) amplitudes, con-

tributing at order N0
f , N

1
f and N2

f .

Figure 5. Representative Feynman diagrams for leading-color A(2)(q, q̄, Q, Q̄, g) amplitudes, con-

tributing at order N0
f , N

1
f and N2

f .

which we can use to define the perturbative expansion of the renormalized amplitude,

AR = S
− 3

2
ǫ g3s

(

A
(0)
R +

αs

4π
NcA

(1)
R +

(αs

4π

)2
Nc

2A
(2)
R +O(α3

s)

)

, (2.9)

where Sǫ = (4π)ǫe−ǫγE and αs = g2s/(4π). The βi are the coefficients in the perturbative

expansion of the QCD β-function, which we give explicitly in appendix A. Here, µ2
0 is the

scale introduced in dimensional regularization to keep the coupling dimensionless in the

QCD Lagrangian, and µ2 is the renormalization scale. In the following, we set µ2 = µ2
0 = 1

(with arbitrary dimensions).

The renormalized amplitudes A
(k)
R have only infrared divergences, which can be deter-

mined from lower-loop functions and well known universal factors [38–41]. More precisely,

we have

A
(1)
R = I

(1)
[n] (ǫ)A

(0)
R +O(ǫ0) ,

A
(2)
R = I

(2)
[n] (ǫ)A

(0)
R + I

(1)
[n] (ǫ)A

(1)
R +O(ǫ0) .

(2.10)
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The I
(k)
[n] are operators in color space that become diagonal in the leading-color approxima-

tion. They contain some process-specific components, and explicit expressions are given in

appendix A.

Using eqs. (2.8) to (2.10), we can predict the poles of the two-loop amplitudes we wish

to compute. Alternatively, we can use them to define a finite remainder R(2), according to

R(2) = A
(2)
R − I

(1)
[n]A

(1)
R − I

(2)
[n]A

(0)
R +O(ǫ) . (2.11)

In this expression, we extend the expansion of I
(1)
[n]A

(1)
R and I

(2)
[n]A

(0)
R to also include terms

of order ǫ0. This subtracts non-trivial contributions from the finite term of A
(2)
R that

are related to the lower-loop amplitudes. In this paper, we directly compute analytic

expressions for the remainders R(2), from which one can then recover the full two-loop

bare amplitude A(2), see eq. (A.10) for the explicit relation.

2.3 Numerical unitarity

The first step in the analytic reconstruction of the remainders defined in eq. (2.11) is to

evaluate the bare amplitudes numerically. To this end, we employ numerical unitarity [28–

30] in order to evaluate the coefficients of a decomposition of the amplitude into a linear

combination of master integrals. First, we consider a decomposition of the integrand of the

amplitude A(2)(ℓl) in terms of master integrands and surface terms (we use ℓl to denote

the loop momenta). The former correspond to master integrals and the latter integrate to

zero. Specifically, we have

A(2)(ℓl) =
∑

Γ∈∆

∑

i∈MΓ∪SΓ

cΓ,i
mΓ,i(ℓl)
∏

j∈PΓ
ρj

, (2.12)

where ∆ is the set of all propagator structures Γ, PΓ the set of all inverse propagators ρj
in Γ, and MΓ and SΓ denote the corresponding sets of master integrands and surface terms.

To compute the decomposition of the amplitude in terms of master integrals we must

evaluate the coefficients cΓ,i, with i ∈ MΓ. These are rational functions of spinor compo-

nents of the external momenta and the dimensional regulator ǫ. We determine them using

the standard approach in numerical unitarity. We first build a system of linear equations

through sampling of on-shell values of the loop momenta, i.e., where ℓl → ℓΓl with ℓΓl such

that ρj(ℓ
Γ
l ) = 0 for j ∈ PΓ. The leading contribution to eq. (2.12) in this limit factorizes

into products of tree amplitudes

∑

states

∏

i∈TΓ

A
(0)
i (ℓΓl ) =

∑

Γ′≥Γ ,
i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(ℓ
Γ
l )

∏

j∈(PΓ′\PΓ)
ρj(ℓΓl )

, (2.13)

where we label the set of tree amplitudes associated with the vertices in the diagram

corresponding to Γ by TΓ, and the sum on the right-hand side runs over the propagator

structures Γ′ such that PΓ ⊆ PΓ′ . The sum on the left-hand side runs over the (scheme

dependent) physical states of each internal line of Γ. At two loops there are also subleading

– 7 –
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contributions in the limit ℓl → ℓΓl which can easily be dealt with even though no factoriza-

tion theorem is known [29] (for a recent related study on these contributions see [42]). The

coefficients cΓ,i can then be obtained at a given phase-space point by solving the linear

system in eq. (2.13) numerically. The numerical evaluations are performed using finite-

field arithmetic, allowing to efficiently obtain exact results for rational phase-space points,

circumventing problems of numerical instabilities. This is key for the task of functional

reconstruction.

2.4 Pentagon-function decomposition

Once the coefficients cΓ,i in eq. (2.12) are computed, we obtain a decomposition of the

amplitude into master integrals,

A(2) =
∑

Γ∈∆

∑

i∈MΓ

cΓ,i IΓ,i , (2.14)

where the IΓ,i are the master integrals,

IΓ,i =

∫

dDℓl
mΓ,i(ℓl)
∏

j∈PΓ
ρj

. (2.15)

For planar five-parton amplitudes, a basis of master integrals has been computed [13, 14].

The master integrals evaluate to linear combinations of so-called multiple polylogarithms

(MPLs), which can be numerically evaluated using available programs (e.g. [43]). Once nu-

merical values for the coefficients cΓ,i have been computed (using for example the approach

described in the previous subsection) one can obtain numerical values for the amplitudes.

The MPLs are a class of special functions with only logarithmic singularities that

can be equipped with algebraic structures that allow one to algorithmically find relations

between them [44–46]. One can then construct a basis for the space of MPLs relevant

for five-parton scattering amplitudes, and this was achieved in [14] where the so-called

pentagon functions were introduced. Further, MPLs are equipped with a notion of weight,

which can be used to organize the pentagon functions. Indeed, there are no relations

between pentagon functions of different weight so we can separate the space of pentagon

functions into subspaces of different weights. For two-loop amplitudes, we need functions

of at most weight 4. In the following, we denote the pentagon functions by {hi}i∈B and

the associated set of labels B.

After expansion in epsilon, the amplitude can thus be expressed in terms of pentagon

functions

A(2) =
∑

i∈B

0
∑

k=−4

ǫkdk,ihi , (2.16)

where we use the fact that the poles in ǫ of two-loop amplitudes are at most O(ǫ−4) and the

dk,i are rational functions of the external data. The motivation for this decomposition is

that order by order in epsilon the master integrals satisfy more relations than integration-

by-parts relations and these are manifested by the pentagon function decomposition. The

– 8 –
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same basis B can be used to express the terms I
(1)
[n]A

(1)
R and I

(2)
[n]A

(0)
R in eq. (2.11), and we

can thus decompose the remainder in terms of pentagon functions:

R(2) =
∑

i∈B

rihi . (2.17)

Again, we suppress the dependence of the algebraic coefficient functions ri and the pen-

tagon functions hi on the external data. The remainders, and consequently the coefficient

functions ri, depend on particle types and helicities as well as the number of flavors Nf .

For convenience we use the convention that the set of pentagon functions {hi}i∈B
not only includes genuine functions, such as log(−s12), but also constants with weight,

such as π2, that correspond to the pentagon functions evaluated at specific points. These

are boundary conditions that are specific to the kinematic region where the amplitude is

evaluated. In this paper we specialize our discussion to the Euclidean region. In ref. [14],

the pentagon functions have been continued to all relevant physical regions, and it is thus

rather straightforward to extend our results to any physical region.

2.5 Analytic properties of coefficient functions

The coefficient functions {ri}i∈B introduced in eq. (2.17) have a universal pole structure [12]

which we find to be expressible in terms of the so-called planar alphabet A of the pentagon

functions [14]. The planar alphabet A is given in terms of 26 letters {Wi}i∈A which in turn

are rational functions of the independent Mandelstam variables sij = (pi + pj)
2,

~s = {s12, s23, s34, s45, s51} , (2.18)

and the parity-odd contraction of four momenta

tr5 = 4iεµνρσp1µp2νp3ρp4σ , (2.19)

with the Levi-Civita symbol εµνρσ and the convention ε0123 = 1. The square of tr5 gives

the five-point Gram determinant ∆5 = tr25. The letters can be further grouped into parity

even and odd letters, A+ and A− respectively, with A = A+ ∪ A−. (Parity here refers to

the transformation properties of the letters under a parity transformation in momentum

space.) While tr5 is parity odd, all Mandelstam variables ~s are parity even. The functions

ri are rational functions in the variables ~s and tr5, whose denominators are monomials in

the letters,

ri =
ni

W ~qi
. (2.20)

The vector of exponents ~qi = {qi,1, . . . qi,26} differs between the coefficient functions, and

for a given coefficient function ri not all letters contribute. The pattern of contributing

letters is linked to the pentagon functions and is helicity dependent [12]. We will often

refer to the set of independent factors in a monomial such as W ~α as Aα,

Aα = {i | i ∈ A with αi 6= 0} . (2.21)

Finally, we will have to specify the notion of a monomial ordering on the exponent

vectors,

W ~α < W
~β ↔ ~α < ~β . (2.22)

– 9 –
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We will often use the lexicographic monomial ordering, which amounts to comparing the

size of the leading entries in the vectors and, if they are equal, comparing the following

entries etc. We refer to text books such as ref. [47] for further information concerning the

concepts of monomial ordering in the context of polynomial-division algorithms.

2.6 Amplitude evaluation

First we summarize the tools employed to obtain the results we present. The propagator

structures ∆ in eq. (2.12) are obtained by generating colored cut diagrams with QGRAF [48]

followed by color decomposition performed in Mathematica according to [49, 50]. We

carry out the decomposition into master and surface integrands as described in refs. [7, 9,

12, 30], where we used SINGULAR [51] to obtain the unitarity-compatible surface terms.

The master integral coefficients in eq. (2.12) are evaluated over finite fields,1 employing

our C++ framework for multi-loop numerical unitarity. We use Givaro [52] for basic finite-

fields arithmetic, and improve the multiplication speed with a custom implementation of a

Barrett reduction [53, 54]. The Ds-dimensional tree-level amplitude products appearing on

the left-hand-side of eq. (2.13) are evaluated through off-shell recursion [55], and the corre-

sponding linear system of equations are solved by PLU factorization and back substitution.

Furthermore, we document some technical aspects of the computations. The trans-

formation from master integral coefficients in eq. (2.14) into the coefficients of pentagon

functions in eq. (2.17) is accomplished with our C++ representation of the master integrals

in terms of pentagon functions [14]. We refine the treatment of square roots appearing from

solving the quadratic on-shell conditions on the loop momenta compared to the previous

implementation described in ref. [9]. As before, we rotate the D-dimensional components

of the loop momenta into a six-dimensional subspace,

ℓ1 = (ℓ1[4], ~µ1) , ℓ2 = (ℓ2[4], ~µ2) . (2.23)

We first use the algorithm of [7] to solve the on-shell conditions such that the µij are rational

in the input parameters. In order to represent these momenta in a 6-dimensional embed-

ding we proceed as follows. Without loss of generality, we choose to use an alternating

metric signature (+,−,+,−, . . .), and parametrize the two-dimensional loop-momentum

components ~µ1 and ~µ2 as follows:

~µ1(t) =
1

2





t+
µ11

t
t−

µ11

t



 , ~µ2(t) =
µ12

µ11
~µ1(t)−

r

µ11

1

2





t−
µ11

t
t+

µ11

t



 , (2.24)

where t is a free dimensionful parameter that leaves the scalar products r =
√

µ2
12 − µ11µ22

and µij = µ1
iµ

1
j − µ2

iµ
2
j invariant. We perform numerical computations with the external

kinematic data {pi}i=1,5 taking values in a finite field. While we do not require loop mo-

menta to take values in the same number field, eq. (2.24) guarantees that their components

take values in an algebra generated by the basis {1, r} over the same number field. The

above parametrization is an improvement compared to the basis of four elements employed

in ref. [9].

1With cardinalities of order O(231).
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3 Ds dependence from dimensional reduction

The amplitudes A defined in eq. (2.2) are polynomials in Ds,

A(Ds) =

N
∑

i=0

Ki D
i
s , (3.1)

where N , the maximal power of Ds, varies depending on the process, the loop order, and

the choice of tensor structure in eq. (2.1). For the amplitudes considered in this paper

N ≤ 2. In this section we will suppress all arguments of A and only keep track of the

dependence on Ds. In a numerical framework, A(Ds) can only be evaluated for integer Ds

values for which the particle states are well defined. To be able to set Ds = 4 − 2ǫ in the

HV scheme, the knowledge of the coefficients Ki is required. One way to obtain them is

to reconstruct the polynomial (3.1) from a sample of (N + 1) integer values of Ds. This

procedure is known as dimensional reconstruction [22] and has previously been applied

in [7, 30, 33, 34].

While being generic and straightforward to implement, this approach has drawbacks

which become particularly evident in amplitudes with fermions. The dimension of the

spinor representation scales exponentially (as 2Ds/2) with Ds, as opposed to the linear

scaling of the vector representation. Furthermore, the external spinor states with definite

helicity can be embedded consistently only for even values of Ds, which pushes the sample

values higher compared to the case of vector particles in the loops. Beyond the obvious

detrimental effect on the numerical complexity, the dimensionality of the spinor represen-

tation determines the number of terms entering the evaluation of the traces to obtain the

helicity amplitudes through eq. (2.2). For the case of amplitudes with multiple external

quark pairs this makes the computation of traces unnecessarily time consuming.

These considerations motivate the search for more efficient alternatives to dimensional

reconstruction. Here we employ one such alternative, based on the idea of dimensional

reduction, which has recently been presented in ref. [32] and already applied to the com-

putation of one-loop amplitudes in ref. [56]. In the remainder of this section we give a brief

overview of this method and refer the reader to ref. [32] for more technical details.

We start by rearranging eq. (3.1) in the following way:

A(Ds) =
N
∑

i=0

K̃i (Ds −D0)
i, (3.2)

where D0 is some base dimension, and the coefficients K̃i can be obtained by a linear

transformation of the coefficients Ki in eq. (3.1). It turns out that, given a suitable choice

of D0, the dependence of A(Ds) on degrees of freedom higher than D0 can be captured

in a kinematic-independent way. This observation allows one to analytically separate this

dependence, and thus evaluate each coefficient K̃i directly. Furthermore, these evalua-

tions are then performed in the base dimension D0, resulting in spinor representations of

much lower dimensionality compared to those encountered in the framework of dimensional

reconstruction.
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For reasons that will become clear shortly, one chooses the base dimension D0 to

be the minimal dimension which allows to embed all loop-momentum components without

introducing new relations. For two-loop amplitudes we have D0 = 6, and we shall specialize

to this case henceforth. We write the metric tensor as a direct sum,

gµν[Ds]
= gµν[Ds−6] + gµν[6] , gµν[Ds−6]gµν [6] = 0 , (3.3)

and the gamma matrices as a direct product (see e.g. [57, 58]),

(γµ[Ds]
) bλaκ =















(

γµ[6]

) b

a
δλκ , 0 ≤ µ ≤ 5 ,

(

γ⋆[6]

) b

a

(

γ
(µ−6)
[Ds−6]

) λ

κ
, µ ≥ 6 ,

(3.4)

where γ⋆[6] is a six-dimensional analogue of γ5 in four dimensions, i.e. {γ⋆[6], γ
µ
[6]} = 0 for all

µ ∈ {0, 5}, and (γ⋆[6])
2 = 1. The product representation allows us to factorize any chain of

gamma matrices into a product of 6- and Ds−6-dimensional gamma-matrix chains. Then,

using the fact that the trace of a direct product of two matrices is the product of their

traces, we can split the traces required to obtain the coefficients of tensor structures in

eq. (2.1) as follows:

Tr





∏

µi∈G

γµi

[Ds]



 = Tr





∏

µi∈G̃

γµi

[Ds−6]



 · Tr





∏

µi∈G

γ
I(µi)
[6]



 , (3.5)

where the product on the left-hand side is over a sequence G of Ds-dimensional Lorentz

indices, G̃ = {µi ∈ G | µi ≥ 6}, and the map I is defined as

I : µ →

{

µ, 0 ≤ µ ≤ 5 ,

⋆, µ ≥ 6 .
(3.6)

The traces of
∏

µi∈G̃
γµi

[Ds−6] can be evaluated analytically using well-known Clifford algebra

identities, which produce sums of products of g
µiµj

[Ds−6]. The crucial observation is that the

only object to be contracted with the indices beyond (Ds − 6) is gµν[Ds−6]. This is ensured

by our choice of the base dimension. These indices then always contribute terms of the

form gµ[Ds−6]µ = (Ds − 6), generating contributions to the coefficients K̃i with i > 0 in

eq. (3.2). At this point, all degrees of freedom beyond (Ds − 6) are traded for polyno-

mials in (Ds − 6) with integer factors, and the coefficients K̃i are expressed in terms of

six-dimensional objects only.

From a Feynman diagrammatic perspective, the contributions to the coefficients of the

polynomial in (Ds − 6) can be represented by introducing a scalar particle. The Feynman

rules associated to this particle can be readily derived from dimensional reduction of the

original Feynman rules of the theory [1, 22, 32, 59] by applying the relations (3.3) and (3.4).

We list them in the appendix B for convenience. To illustrate this procedure we now give an

example. Consider a decomposition of a Feynman diagram with Ds-dimensional particles

on the left-hand side of figure 6. The four non-vanishing contributions after evaluating

partial traces and contracting all (Ds−6)-dimensional indices are shown on the right-hand

side, where the scalars are introduced to represent what remains of these contractions.
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= +















+















· (Ds − 6) +

· (Ds − 6)2,

Figure 6. Example of diagrams with scalar particles, representing the contributions to the coef-

ficients of K̃i in eq. (3.2). The thick lines in the diagram on the left-hand side represent particles

in arbitrary Ds dimensions. The (red) dashed lines connecting external-quark lines represent the

traces required to obtain the coefficient of the tensor structure of eq. (2.2b). All particles on the

right-hand side are in six dimensions.

We would like to conclude this section with some remarks. First, the remaining non-

trivial traces of eq. (3.5), i.e. those of
∏

k γ
µk

[6] , cannot be simplified generically as the

indices appear contracted with the loop momenta at the integrand level. We evaluate

them by the direct summation over a specially constructed set of external states (in an

analogous way to the sums performed in [9] for dimensional reconstruction). Secondly,

in the absence of fermions in the loops, this method coincides with the so called six-

dimensional formalism employed in refs. [1, 6], and can thus be viewed as an extension

thereof to amplitudes with fermions. Finally, we note that the method presented in this

section can be straightforwardly generalized to higher number of loops by adjusting the

base dimension D0, as well as to the extraction of coefficients of different tensor structures

in eq. (2.1).

4 The analytic structure of five-parton amplitudes

We apply three methods to reduce the complexity of the remainder functions and facilitate

their reconstruction from numerical samples. First, we introduce a particular ansatz for

the coefficients ri of eq. (2.17) which simplifies the reconstruction procedure by decreasing

the required number of sample points. Next, we comment on how to remove redundancies

in the large number of rational functions in a scattering amplitude. Finally, we reduce the
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difficulty of rationally reconstructing the finite-field result by introducing an algorithm to

uniquely obtain a multivariate partial-fraction decomposition of the analytic expressions.

4.1 Analytic reconstruction

In order to perform the reconstruction of the five-parton amplitudes from samples over finite

fields, we employ a modification of the algorithm of [10]. Our aim is to reconstruct the

functions ri in terms of {~s, tr5}, with ~s the five independent Mandelstam invariants defined

in (2.18) and the tr5 defined in (2.19), while using a suitable rational parametrization of

the phase space of five massless particles.

Let us start by introducing such a parametrization of the external kinematics. We keep

four of the Mandelstam invariants {s12, s23, s45, s51} and introduce an auxiliary variable x.

More explicitly, we consider the Mandelstam invariants as functions of this new set of

variables,

~s ≡ ~s (s12, s23, s45, s51, x) , (4.1)

and, rescaling the momenta such that s12 = 1, s34 is defined in terms of x as

s34 ≡ s34(s23, s45, s51, x) =
(s45 − 1)s51x− s23(s23 − s45 − s51 − x)

(s45 − s23 + x)x
. (4.2)

This parametrization follows from the twistor matrix given in appendix C and so naturally

rationalizes tr5. For any (generic) fixed value of the invariants ~s there are two corresponding

values of {x, x̄}, corresponding to the two solutions to the quadratic equation in (4.2). This

manifests the known fact that it is not possible to rationally parametrize the phase space

in terms of Mandelstam variables. These two different points in phase space are in fact

parity conjugates, and correspond to opposite signs of tr5 (which is the square root of the

discriminant of the quadratic equation in (4.2)). Under this transformation,

tr5 → −tr5 , x → x̄ =
s23(s23 − s45 − s51)

s34(s12, s23, s45, s51, x)x
. (4.3)

Having established the set of variables that rationalize the phase space of five mass-

less particles, we next discuss our ansatz for the rational coefficients ri and the sampling

procedure to fix the parameters in the ansatz. We decompose each function ri into parity

odd and even parts,

ri(~s, tr5) = r+i (~s ) + tr5 r
−
i (~s ) . (4.4)

As tr5
2 is manifestly polynomial in the invariants, it is clear that no higher powers in tr5 are

required. The motivation for choosing such a representation is two-fold. First, a generic

expression of this form has a higher polynomial degree when expressed in terms of the

twistor variables, as the relation is non-linear. Consequently, as we shall observe, expressing

the finite remainders in this form allows for a more efficient analytic reconstruction. Second,

the Mandelstam variables make manifest the dependence on the external momenta, and

therefore also any possible symmetries related to exchanges of external legs.

While the functions r±i are rational in the Mandelstam invariants ~s, their definition

through eq. (4.4) only allows them to be evaluated via the functions ri which, due to the
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presence of tr5, are not rational in the invariants themselves. For this reason, we first isolate

the even and odd parts r±i and reconstruct them in terms of the Mandelstam variables ~s.

As the parity conjugate points {s23, s45, s51, x} and {s23, s45, s51, x̄} correspond to the same

value of the invariants ~s, we can use this pair of points to evaluate the r±i on a single point ~s,

r+i (~s ) =
1

2

[

ri(~s, x) + ri(~s, x̄)
]

, (4.5)

r−i (~s ) =
1

2 tr5

[

ri(~s, x)− ri(~s, x̄)
]

. (4.6)

A further simplification to the reconstruction procedure is achieved by conjecturing

that the ansatz for the denominators given in eq. (2.20) extends to the r±i , with the extra

requirement that no odd letters appear in the denominator. That is, we conjecture that

r±i (~s ) =
n±
i (~s )

W ~qi(~s )
, (4.7)

where the n±
i (~s ) are polynomials in the invariants and the contributing Wj(~s ) are polyno-

mials in the ~s only (and not tr5). To test this ansatz and determine the exponent vector

~qi, we consider the functions r
±
i on a ‘univariate slice’ where the variables depend on a sin-

gle parameter t, {s23(t), s45(t), s51(t), x(t)}. We then reconstruct the univariate functions

r±i (t) using Thiele’s method and match the denominators with a monomial in the letters

Wi(~s [t]) in order to obtain the exponent vector ~qi. In order to recover this information

from the univariate slice, we must choose a curve on which all letters Wi(~s [t]) are distinct

functions of t. Furthermore, if we require that all invariants are linear in t, this procedure

will also tell us the total degree of the numerator polynomials n±
i (~s ) in the Mandelstam

variables. Such a curve is given by, e.g.,

x(t)= c0, s23(t)= c1+d1t, s45(t)= c2+d2t, s51(t)= c3
(

x(t)−s23(t)+s45(t)
)

, (4.8)

where the variables ci and di take fixed, arbitrary values.2 With this procedure, we con-

firmed the ansatz of eq. (4.7) and thus determined all the denominators of the rational

functions r±i .

The problem of reconstructing the r±i is now reduced to the reconstruction of the

polynomials n±
i . We perform the analytic reconstruction of n±

i (~s) directly in terms of the

Mandelstam variables. This is achieved with a modified form of the recursive Newton

method [10]. If we consider a univariate polynomial in the variable z, the method makes

an ansatz which is adapted to the choice of sample points {z1, . . . , zn}. Specifically, the

polynomial is written as a linear combination of the basis polynomials

pj(z) =

j−1
∏

i=0

(z − zi).

As the pj(zk) vanish for k < j, when solving for the coefficients of this basis the linear

system is triangular by construction. Once one establishes the coefficients of these basis

2It is much more transparent in the parametrization of [12] as to why s34(t) is then linear in t.
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elements, it is trivial to rewrite the polynomial in terms of monomials in z. In the multi-

variate case, one can apply this strategy recursively by singling out one variable and letting

the coefficients be polynomials in the remaining variables [10].

In our approach we also use the observation that it is not strictly required that the

arguments of the pj be the input parameters. In fact, we can choose them to be a function,

in our case s34 = s34(s23, s45, s51, x). Specifically, in the first step of the recursion, we write

our numerator polynomial as

n±
i (s23, s45, s51, s34(s23, s45, s51, x)) =

R
∑

j=0

n±
i,j(s23, s45, s51)pj(s34(s23, s45, s51, x)), (4.9)

where

pj(s34(s23, s45, s51, x)) =

j−1
∏

i=0

(s34(s23, s45, s51, x)− s34(s23, s45, s51, xi)) , (4.10)

the value R is obtained from the highest degree term ∼ tR found in the univariate slice,

and the n±
i,j are polynomials. To be able to evaluate the n±

i,j at a point in the recursive

approach, we evaluate the function n±
i at R + 1 values of x, and solve the associated

triangular linear system.

To illustrate the advantage of the approach outlined above compared with the strategy

used in [12], we show in figure 7 the polynomial-degree drop for the two most complex

remainders, separating the different Nf contributions. This observation is common to all

five-parton remainders at N0
f and N1

f : we observe a drop of the polynomial degree in the

numerators n±
i (~s) by 40%–50% when written in terms of Mandelstam variables as compared

to the twistor variables. The efficiency of the analytic reconstruction algorithm scales as a

binomial
(

n+R
n

)

in the number of variables n and the polynomial degree R. Such a drop

in the polynomial degree thus implies an important improvement in efficiency. The N2
f

remainders are trivial to reconstruct in both approaches.

Finally, as an indication for the complexity of the analytic reconstruction we show

the numerator degrees for the N0
f contribution of all the planar five-parton remainders in

figure 8. The figure displays the expected reduction in complexity of the remainders for

external fermions compared to gluons.

4.2 Basis of rational coefficients

It was noted in [16, 60–62] that the space of independent rational functions appearing in the

N = 4 super Yang-Mills (SYM) and N = 8 super gravity two-loop five-point amplitudes is

much smaller than the space of possible independent pentagon functions. This motivates us

to apply the same analysis here, both in order to allow performing minimal reconstruction

work and as a way to obtain simpler analytic expressions. These linear dependencies

between the rational functions allow us to express the remainder of each amplitude as

R(2) =
∑

i∈K, j∈B̂

riMijhj , (4.11)
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Figure 7. Maximal degrees of numerators of the two most complicated amplitudes in twistor and

sij variables.
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Figure 8. Maximal degrees of numerators of N0
f components of the amplitudes in sij variables.

where ri is a vector of rational coefficients and K denotes the dimension of the space

they span. The index j runs over a subspace B̂ of the space B of all pentagon functions

introduced in eq. (2.17), i.e., B̂ ⊆ B. The constant matrix M , the rational functions ri
and the index sets K and B̂ are helicity-amplitude dependent.

The basis of rational functions ri is not unique and we choose it by taking the linearly

independent subset with the lowest total polynomial degree. The associated matrix M can

be computed numerically in the finite field used for the analytic reconstruction, using as

many evaluations as its rank. In order to rationally reconstruct M we only require one

finite field of cardinality O(231), apart from two cases where we combine information from

two finite fields (see more details in section 5).
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4.3 Partial fractions

Having chosen a basis of rational coefficients, we study the {r±i }i∈K in a finite field, obtained

with the strategy described in section 4.1. The next step is to lift the finite-field result to the

rational numbers, i.e., to rationally reconstruct the result. The correctness of the rational

reconstruction can be verified by comparison against a single evaluation on a different finite

field. In general, the success of the rational reconstruction is guaranteed if the numerator

and denominator of the original rational number satisfy a bound dependent on the finite-

field cardinality [10, 31, 63], i.e., rational numbers with numerators and denominators with

smaller absolute values are more easily reconstructed from their finite-field images. As

such, it is beneficial if we can find a form of the r±i where the rational numbers involved

have ‘simple’ numerators and denominators. To this end, we will employ a multivariate

partial-fraction decomposition of the r±i , which will also have the side effect of simplifying

their analytic form as a whole. Indeed, the partial-fraction decomposition manifests the

singularities of the coefficients, which are controlled by physical properties such as the

factorization of the amplitude in specific limits.

We will employ the partial-fraction decomposition introduced by Lĕınartas [64, 65].

This decomposition has recently been used for bringing differential equations into canonical

form [66], as well as for the analytic reduction of loop integrands [67, 68]. A Lĕınartas

decomposition of our basis functions is given by

r±i =
∑

~α∈Di

n±
i,~α

W ~α
. (4.12)

That is, the r±i are written as a linear combination of rational functions which we label

by the exponents α of the denominators. The set of all ~α for a given r±i is denoted by

Di (we combine the exponents for the even and odd coefficients). The {n±
i,~α}~α∈Di

are the

numerators associated with the rational function labelled by ~α, which are polynomials in the

{~s} variables. We construct the Lĕınartas decomposition (4.12) coefficient-by-coefficient,

such that the exponents in ~α ∈ Di are non-vanishing only for the letters appearing in the

starting denominator W ~qi , see eq. (4.7), which we recall are polynomials in the ~s. The

particular algorithm which we employ to uniquely specify the Lĕınartas decomposition is

related to the techniques of [69].

A Lĕınartas decomposition (4.12) is characterized by exponents of the denominator

factors. All denominators W ~α in a Lĕınartas decomposition are ‘algebraically independent’,

in that there exists no non-zero polynomial P (w), such that it vanishes upon inserting the

denominator factors,

P
(

{Wi}i∈Aα

)

= 0 , (4.13)

where Aα denotes the set of letters inW ~α, see eq. (2.21). Let us make a few comments about

such a decomposition. First, individual terms in eq. (4.12) may have factors raised to higher

degree than when expressed over a common denominator as in eq. (4.7). Second, no term

can have more denominator factors than the number of variables ~s as these factors would

necessarily be algebraically dependent. Also, we note that the Lĕınartas decomposition
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is different to an iterated univariate partial-fraction decomposition in that it maintains

the original denominator structures of the input function, i.e., in our case, of eq. (4.7).

Finally, in ref. [65] it is noted that such a decomposition is in general not unique, due to

how the algebraic dependence relations (4.13) are resolved. Let us illustrate this point by

considering

P (w3, w4, w6) = w3 + w4 − w6 , (4.14)

which clearly vanishes upon using the definitions of the letters, W3 = s34,W4 = s45 and

W6 = s34 + s45. The dependence relation implies a relation between multiple terms with

different denominator factors,

0 =
P (W3,W4,W6)

W3W4W6
=

1

W4W6
+

1

W3W6
−

1

W3W4
, (4.15)

which can be used to remove either of the three denominator factors on the right-hand side.

This arbitrariness in the implementation of the Lĕınartas decomposition will in general lead

to expressions that are not as compact as possible if inconsistent choices are made across

different terms being decomposed. In the following we describe an approach that produces

a unique Lĕınartas decomposition by providing a global prescription to expand algebraic

dependencies of the denominators of a given coefficient r±i .

Our approach makes use of multivariate polynomial division and Gröbner basis tech-

niques. In summary, we reinterpret a rational function in a polynomial way in order to

employ division by a Gröbner basis to find a canonical form of a polynomial which is sub-

ject to a series of constraints. The set of constraints among the variables form a generating

set of an ideal and if one divides a polynomial in these variables by a Gröbner basis of the

ideal, the remainder is unique and ‘minimal’ with respect to the relations. In the rest of

this section we describe these steps in more detail. We refer the reader to ref. [47] for a

pedagogical discussion of all the required concepts in polynomial-division algorithms.

Our starting point is a rational function r±i of the form (4.7), and we introduce an

auxiliary variable for each denominator factor Wj for j ∈ Aqi , where we recall Aqi denotes

the set of labels of letters appearing in the denominator of r±i . More precisely we introduce

variables Qj to which we associate the constraint polynomial Cj(Qj , ~s ),

Cj = Wj(~s)Qj − 1 , for all j ∈ Aqi . (4.16)

Setting all Cj = 0 (i.e., working in the equivalence class of the ideal generated by {Cj}j∈Aqi
)

imposes the constraint that multiplication by Qj is equivalent to division by Wj . As such,

subject to this constraint we can express eq. (4.7) in a polynomial fashion as

r±i (~s ) ∼ n±
i (~s)Q

~qi , (4.17)

where the notation ‘∼’ emphasises that the relation holds modulo the ideal {Cj}j∈Aqi
.

In order to uniquely implement the constraints Cj = 0, we first divide the right-hand

side of eq. (4.17) by a Gröbner basis of the constraint polynomials {Cj}j∈Aqi
.3 After the

3It is important to note that Gröbner basis division works over any field. Hence, the algorithm can be

applied before or after rational reconstruction.
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division, the original polynomial is rewritten as a linear combination of the Cj and a unique

remainder, which is a polynomial in the Qj and the ~s. We then impose Cj = 0, leaving this

remainder as the result of the partial-fraction decomposition. Finally, we replace the Qj by

1/Wj and recover an expression of the form of eq. (4.12). We note that the Gröbner basis

of the ideal {Cj}j∈Aqi
depends on a monomial ordering of the variables {Qj}j∈Aqi

and {~s},

which in turn affects the final expression. Effectively, by choosing different orderings one

can specify which of the denominator factors {Wj}j∈Aqi
one prefers in the final expression.

Once this choice has been made, the result of the procedure is unique.

Let us now comment on why this simple polynomial division technique achieves a

minimal Lĕınartas decomposition. First, it is important to recall that the remainder of

the division by a Gröbner basis is minimal in the sense that it cannot be written in terms

of a member of the ideal and a new remainder without that remainder having higher

polynomial degree. That is, subject to the choice of monomial ordering, the remainder

has the lowest possible polynomial degree. With this in mind, it is clear why the division

by the constraint polynomials (4.16) will maximally cancel numerator and denominator:

since the second term of the constraint polynomial is 1, which is the term with the lowest

possible degree (in any monomial orderings), all possible cancellations between numerator

and denominator will occur, as that ensures they will result in the lowest polynomial degree

for the remainder.

Another important question is how this division results in a set of denominator struc-

tures with no algebraic dependencies, see eq. (4.13), and how the relations are guaranteed

to be resolved in a consistent way, see the discussion around eq. (4.15). The fact that alge-

braic dependencies are implemented follows from a key property of division by a Gröbner

basis, which is that it will also apply non-trivial relations implied by the original set of re-

lations. As already argued in [65], algebraic dependencies induce such non-trivial relations.

Indeed, if the set of denominator factors of a given term

1

W ~α
∼ Q~α (4.18)

are algebraically dependent, then by definition there exists a non-zero polynomial P (w)

such that P
(

{Wi}i∈Aα(~s)
)

= 0, which is trivially a member of the ideal of constraints. We

associate the same monomial ordering to the w variables as we do to the Qj and write the

polynomial P (w) in the form

P (w) = c~β w
~β +

∑

~γ>~β

c~γ w
~γ . (4.19)

That is, we distinguish the term of lowest monomial degree ~β (we refer to the notation

introduced in eq. (2.22)). Let us now multiply the Q~α in eq. (4.18) by this polynomial and

Q
~β . We get

0 = P
(

{Wi(~s )}i∈Aα

)

Q~αQ
~β = c~β Q

~αQ
~β W

~β +
∑

~γ>~β

c~γ Q
~αQ

~βW~γ(~s)

∼ c~β Q
~α +

∑

~γ>~β

c~γ Q
θ(~α+~β−~γ)W θ(~γ−~α−~β)(~s) ,

(4.20)
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where we introduced the function θ(~α) which yields a vector with the negative entries

removed. This shows that relations such as that of eq. (4.15) are now also in the ideal,

and we do not have to construct them explicitly. Furthermore, given that by construction

~γ > ~β, we have

θ(~α+ ~β − ~γ) < ~α . (4.21)

That is, for each term in the sum over γ, the Q-dependent part of the monomial is always

of lower degree than the original denominator structure Q~α. For any monomial ordering

where the Qj are sorted before the ~s, the term c~β Q
~α is thus leading and will therefore be

reduced by the polynomial division algorithm, which produces remainders of lower degree.

In summary, the algebraic dependence relations are accounted for in the constraint ideal,

and will be removed by Gröbner basis division. If, for instance, one chooses a lexicographic

order (with the Qj ’s sorted before the ~s variables), this will decrease the power of the

Qj for the lowest j, at the price of potentially increasing the power of Qj for higher

j. This argument can be applied recursively until all algebraic dependencies have been

resolved. Because the resolution of the dependencies is based on the polynomial ordering

and implemented by the Gröbner basis division, it will be consistently implemented across

all denominator factors of a given r±i and give a unique Lĕınartas decomposition.

We close by noting that this procedure is both simple to implement as well as very

efficient, easily handling the complex rational functions present in the problem. Further-

more, an important consequence of this decomposition is that the rational numbers in the

expression are more likely to be small. As discussed at the beginning of this section, this

makes the result in a single finite field of cardinality O(231) sufficient to determine them.

5 Results

In this section we take a closer look at the analytic results we derived for a basis set of two-

loop five-parton amplitudes. We list the checks we have performed and describe the format

of the supplementary data which are used to distribute the results. We also comment on

the structure of the remainders.

For each five-parton process we choose a basis set of helicity amplitudes, such that all

other choices of helicities and color structures from eqs. (2.3) to (2.5) can be obtained by

a combination of parity transformation, charge conjugation, and permutations of external

momenta. Since we reconstruct two-loop remainders, in order to assemble two-loop ampli-

tudes we also need expressions for the one-loop amplitudes through order ǫ2, see eq. (2.10).

Hence, we have computed analytic expressions for all the corresponding leading-color one-

loop amplitudes to all orders in ǫ in the HV scheme (extending corresponding results

of [70–72]) and checked that they reproduce the numerical one-loop results presented in [9]

up to O(ǫ2). The calculation of these amplitudes was also performed by analytically re-

constructing the expressions from numerical data.

In order to validate the expressions of the finite two-loop remainders, we have per-

formed a number of checks. First, to check the correctness of the reconstruction procedure,

we have compared our analytic results to an independent numerical evaluation of the am-

plitude on rational phase-space points and found agreement. Second, we have used the
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analytic results for one-loop amplitudes and two-loop remainders to reproduce all avail-

able numerical targets [1–3, 6–9]. Finally, the analytic results presented here for five-gluon

amplitudes at N0
f agree with the previously computed expressions [2, 3, 11, 12].

We present our results in the form of supplementary data attached to this paper. We

include the following files, in Mathematica-readable format:

• Analytic expressions for the basis set of one-loop five-parton amplitudes expressed in

terms of one-loop master integrals, valid to all orders in ǫ;

• Expressions for all one-loop master integrals written in terms of pentagon functions

through order ǫ2;

• The basis set of two-loop five-parton finite remainders, which are the main result of

this work. For each remainder and at each power of Nf , we give a list of independent

coefficient functions ri, a matrix Mij and a list of pentagon functions hj , consistent

with the decomposition of eq. (4.11);

• Scripts that assemble two-loop amplitudes from the remainders. In particular, the

Mathematica script TwoLoopAmplitudesNumerical.m uses the analytic expres-

sions to reproduce the numeric values of refs. [8, 9], as detailed in the included

README.md file.

Our expressions can be easily adapted to perform numerical integration over phase

space. Indeed, they are very compact (with a compressed size of 1.6 Mb), and ready for

automated algorithms for optimized evaluation like those included in FORM [73, 74]. It

is interesting to note that whilst there are around 400 independent pentagon functions,

for all amplitudes the number of independent rational structures is much lower. A further

simplification of the coefficients can be obtained by combining different powers of Nf in a

decomposition similar to that of eq. (4.11). Indeed, in figure 9 we observe an overlap of the

spaces of independent coefficients functions between distinct Nf contributions for a given

helicity assignment (these are expected from the cancellations present in supersymmetric

amplitudes). For the most complicated amplitude, (g−, g+, g−, g+, g+), the dimension of

the combined set of coefficient functions is only 95. We have not presented the amplitudes

in this way in the expressions we provide in order to give easier access to the different

powers of Nf . While our expressions are specialized to the Euclidean phase-space region,

our coefficients can be used to extract the required information to cover all regions of phase

space with minimal work. We leave this to a future publication, where we will explore the

numerical evaluation of the amplitudes in more detail.

We end this section by summarizing the computational resources used to obtain our re-

sults. The evaluation of the multivariate polynomials n±
i (~s) in eq. (4.7), which is performed

in a single finite field for all processes, is the most computationally intense. Every other

step of the computation, including the extraction of denominator factors, the construction

of the matrix Mij ,
4 performing the partial fractioning of the expressions and rationally

4We note that, for all processes considered, the matrix Mij was computed with only the informa-

tion contained in the n±

i (~s), except for the N0
f remainder of the processes (q+, q̄−, Q−, Q̄+, g+) and

(q+, q̄−, g+, g−, g+) where, in order to rationally reconstruct its entries, the numerical computation of the

remainder over 100 extra phase-space points in a second finite field was required.
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Figure 9. The number of linearly-independent coefficient functions r±i for the five-parton am-

plitudes. The three stacked bars display the case when the three different Nf contributions are

considered separately, while the bar labeled N0
f ∪ N1

f ∪ N2
f displays the number of independent

functions when all Nf contributions are combined.

reconstructing the numerical coefficients obtained in the previous step, can be performed

quickly on a modern laptop computer. The most demanding remainder reconstruction was

that of the N1
f contribution to the (g−, g+, g−, g+, g+) process. In total, 94,696 phase-space

points (coming in parity conjugate pairs, as discussed in section 4.1) were necessary for its

reconstruction. On average (considering all contributions to the reconstruction procedure)

the evaluation time per phase-space point amounts to 4.5 minutes.5 The total computa-

tional resources required to evaluate all our results are relatively modest, and can easily

be obtained on a midsize computer cluster.

6 Conclusion

We have presented the leading-color five-parton two-loop scattering amplitudes in analytic

form for the first time. These are provided in a set of supplementary data, where we give

compact analytic expressions for five-gluon amplitudes as well as amplitudes with two and

four external quarks, including in all cases the contributions of closed light-quark loops.

These results have been obtained employing a functional-reconstruction approach [10] to

promote numerical unitarity [28–30] finite-field evaluations of the amplitude to analytical

expressions.

5This timing information is measured on an Intel Xeon E5-2670v3 CPU while running the maximum

amount of threads it allows.
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This approach has recently been applied for the planar five-gluon two-loop amplitudes

in ref. [12] and here we develop it further in two main directions. First, we have improved

the handling of fermions in the numerical approach. We use dimensional reduction to

analytically obtain part of the dependence on the dimensional-regularization parameter

by introducing scalar particles. This leads to significant efficiency improvements as com-

pared to a numerical dimensional-reconstruction approach [22, 33, 34] as applied earlier

in refs. [7, 9, 30]. Enhancing the dimensional reconstruction by dimensional reduction is

not a new idea and has been applied to gluon amplitudes in the original work [22]. Here

we apply this improvement [32] starting from the five-point amplitudes including external

fermions [9]. Second, we have improved the analytic-reconstruction algorithm from nu-

merical samples. We reconstruct directly in terms of Mandelstam variables as opposed to

momentum-twistor variables, which requires considerably fewer evaluations. Furthermore,

we simplify the reconstruction procedure by focusing on a linearly independent set of ra-

tional functions. Moreover, we have developed a multivariate partial-fraction algorithm in

order to perform rational reconstruction with input from only a single finite field of cardi-

nality O(231). As a by-product of these techniques, we find compact analytic forms and

an interestingly small set of independent functions. With these methods, a sample with

a size comparable to that required for numerical Monte-Carlo integration can be used to

produce analytic expressions.

The computational method we present is robust and efficient. Here, we computed com-

pact analytic expressions for QCD amplitudes depending on five kinematic scales, which

had long been a bottleneck. We expect that important scattering amplitudes in the Stan-

dard Model depending on a higher number of scales are within the reach of our approach.

With the recent progress in non-planar master integral computations [16, 17], it would also

be interesting to explore the amplitudes beyond the leading-color approximation.

The five-parton amplitudes are an important ingredient for obtaining precision phe-

nomenology for the three-jet production process at next-to-next-to-leading order QCD at

the LHC in the coming years. In particular, a complete set of compact analytic expressions,

such as the ones presented here, will be important for an efficient and numerically stable

evaluation of the amplitudes. On a shorter time scale, we believe that our results will be

valuable for exploring the analytic properties of scattering amplitudes in QCD.
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A Infrared structure of two-loop five-parton amplitudes

In this appendix we give more details on our definition of the remainders we compute in

this paper. In section 2.2 we stated that divergences of renormalized two-loop amplitudes

obey a universal structure,

A
(1)
R = I

(1)
[n] (ǫ)A

(0)
R +O(ǫ0) ,

A
(2)
R = I

(2)
[n] (ǫ)A

(0)
R + I

(1)
[n] (ǫ)A

(1)
R +O(ǫ0) .

(A.1)

The renormalized amplitudes can be written in terms of the bare amplitudes as

A
(0)
R = A(0),

A
(1)
R = S−1

ǫ A(1) −
3

2ǫ

β0
Nc

A(0) ,

A
(2)
R = S−2

ǫ A(2) −
5

2ǫ

β0
Nc

S−1
ǫ A(1) +

(

15

8ǫ2

(

β0
Nc

)2

−
3

2ǫ

β1

Nc
2

)

A(0) ,

(A.2)

with

β0 =
Nc

3

(

11− 2
Nf

Nc

)

, β1 =
Nc

2

3

(

17−
13

2

Nf

Nc

)

. (A.3)

For amplitudes in the leading-color approximation the operators I
(1)
[n] and I

(2)
[n] are diagonal

in color space. The operator I
(1)
[n] is given by

I
(1)
[n] (ǫ) = −

eγEǫ

Γ(1− ǫ)

n
∑

i=1

γai,ai+1 (−si,i+1)
−ǫ , (A.4)

with si,j = (pi + pj)
2 and the indices defined cyclically. The index ai denotes a type of

particle with momentum pi, i.e., ai ∈ {g, q, q̄, Q, Q̄}. The symbols γa,b are symmetric under

the exchange of indices, γa,b = γb,a, and given by:

γg,g =
1

ǫ2
+

1

2ǫ

β0
Nc

, γq,Q = γq,Q̄ = γq̄,Q = γq̄,Q̄ =
1

ǫ2
+

3

2ǫ
,

γg,q = γg,q̄ = γg,Q = γg,Q̄ =
γg,g + γq,Q

2
, γq,q̄ = γQ,Q̄ = 0 .

(A.5)

The operator I
(2)
[n] is

I
(2)
[n] (ǫ) = −

1

2
I
(1)
[n] (ǫ)I

(1)
[n] (ǫ)−

β0
Ncǫ

I
(1)
[n] (ǫ) +

e−γEǫΓ(1− 2ǫ)

Γ(1− ǫ)

(

β0
Ncǫ

+K

)

I
(1)
[n] (2ǫ) +H[n](ǫ) ,

(A.6)

where

K =
67

9
−

π2

3
−

10

9

Nf

Nc
, (A.7)

and H[n](ǫ) is a diagonal operator at leading color that depends on the number of external

quarks and gluons in the process,

H[n](ǫ) =
eγEǫ

ǫΓ(1− ǫ)

n
∑

i=1

(

δai,gHg + (δai,q + δai,q̄ + δai,Q + δai,Q̄)Hq

)

, (A.8)
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α

β

µ
i√
2
(p2−p1)

µ gαβ[Ds−6]

α

β

δ

γ

i gαγ[Ds−6]g
βδ

[Ds−6]−

i

2
(gαβ[Ds−6]g

γδ

[Ds−6]+gαδ[Ds−6]g
βγ

[Ds−6])

µ

ν

α

β

− i
2 gµν[6] gαβ[Ds−6]

α

− i√
2
γ⋆
[6]γ

α
[Ds−6]

µ

ν

α

β

i gµν[6] gαβ[Ds−6]

α
i√
2
γ⋆
[6]γ

α
[Ds−6]

Table 1. Color-ordered Feynman rules for vertices with scalar particles explicitly introduced by

dimensional reduction of gluons.

with

Hg =

(

ζ3
2

+
5

12
+

11π2

144

)

−

(

π2

72
+

89

108

)

Nf

Nc
+

5

27

(

Nf

Nc

)2

,

Hq =

(

7ζ3
4

+
409

864
−

11π2

96

)

+

(

π2

48
−

25

216

)

Nf

Nc
.

(A.9)

The two-loop bare amplitude A(2) can be obtained from the remainder defined in

eq. (2.11) using

A(2) = R(2) + SǫA
(1)

(

I
(1)
[n] +

5

2ǫ

β0
Nc

)

− S2
ǫA

(0)

(

15

8ǫ2

(

β0
Nc

)2

+
3

2ǫ

(

β0
Nc

I
(1)
[n] −

β1
N2

c

)

− I
(2)
[n]

)

+O(ǫ) .

(A.10)

B Dimensionally reduced Feynman rules

In the table 1 we list the color-ordered Feynman rules for vertices involving the scalar

particles introduced in section 3. The (Ds− 6)-dimensional part of these rules can be fully

contracted in each Feynman diagram yielding kinematic-independent factors.

C Rational phase-space parametrization

We give a twistor parametrization [35] used to rationalize the external on-shell momenta

{pi}i=1,5 with p2i = 0. This parametrization yields a momentum point with the kinematic

invariants (s12, s23, s34, s45, s51) from the input variables {s23, s45, s51, x} and s12 = 1 as

given in the main text in eq. (4.2).

To each external momentum pi, we associate the spinors λi and λ̃i, from which we can

compute the associated momenta through

pµi =
1

2
λ̃T
i σ

µλi . (C.1)
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The spinors are then parametrized through the momentum-twistor matrix,

(

λ1 λ2 λ3 λ4 λ5

µ1 µ2 µ3 µ4 µ5

)

=











1 0 1 1+ 1
x 1+ 1

x+
x−s23+s45

xs51

0 1 1 1 1

0 0 0 s23
x 1

0 0 1 1 1− s45
s23











. (C.2)

Conjugate spinors λ̃i can then be obtained through

λ̃i =
〈i, i+ 1〉µi−1 + 〈i+ 1, i− 1〉µi + 〈i− 1, i〉µi+1

〈i, i+ 1〉〈i− 1, i〉
, (C.3)

where 〈i, j〉 = det({λi, λj}) is the usual spinor-bracket computed by taking the determinant

of the associated sub-matrix of (C.2). The Mandelstam invariants sij and tr5 required in

the main text are given in terms of spinors by,

sij = 〈i, j〉 [j, i] , tr5 = [1, 2]〈2, 3〉[3, 4]〈4, 1〉 − 〈1, 2〉[2, 3]〈3, 4〉[4, 1] , (C.4)

using [i, j] = det({λ̃j , λ̃i}). For further details, see e.g. section 2 of ref. [75].
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Badger, H. Frellesvig and Y. Zhang, A Two-Loop Five-Gluon Helicity Amplitude in QCD,

JHEP 12 (2013) 045 [arXiv:1310.1051] [INSPIRE].

[2] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Analytic form of the two-loop planar five-gluon

all-plus-helicity amplitude in QCD, Phys. Rev. Lett. 116 (2016) 062001 [Erratum ibid. 116

(2016) 189903] [arXiv:1511.05409] [INSPIRE].

[3] D.C. Dunbar and W.B. Perkins, Two-loop five-point all plus helicity Yang-Mills amplitude,

Phys. Rev. D 93 (2016) 085029 [arXiv:1603.07514] [INSPIRE].

[4] D.C. Dunbar, G.R. Jehu and W.B. Perkins, Two-loop six gluon all plus helicity amplitude,

Phys. Rev. Lett. 117 (2016) 061602 [arXiv:1605.06351] [INSPIRE].

[5] D.C. Dunbar, J.H. Godwin, G.R. Jehu and W.B. Perkins, Analytic all-plus-helicity gluon

amplitudes in QCD, Phys. Rev. D 96 (2017) 116013 [arXiv:1710.10071] [INSPIRE].

[6] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, First look at two-loop

five-gluon scattering in QCD, Phys. Rev. Lett. 120 (2018) 092001 [arXiv:1712.02229]

[INSPIRE].

[7] S. Abreu, F. Febres Cordero, H. Ita, B. Page and M. Zeng, Planar Two-Loop Five-Gluon

Amplitudes from Numerical Unitarity, Phys. Rev. D 97 (2018) 116014 [arXiv:1712.03946]

[INSPIRE].

[8] S. Badger et al., Applications of integrand reduction to two-loop five-point scattering

amplitudes in QCD, PoS(LL2018)006 (2018) [arXiv:1807.09709] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP12(2013)045
https://arxiv.org/abs/1310.1051
https://inspirehep.net/search?p=find+EPRINT+arXiv:1310.1051
https://doi.org/10.1103/PhysRevLett.116.189903
https://arxiv.org/abs/1511.05409
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05409
https://doi.org/10.1103/PhysRevD.93.085029
https://arxiv.org/abs/1603.07514
https://inspirehep.net/search?p=find+EPRINT+arXiv:1603.07514
https://doi.org/10.1103/PhysRevLett.117.061602
https://arxiv.org/abs/1605.06351
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06351
https://doi.org/10.1103/PhysRevD.96.116013
https://arxiv.org/abs/1710.10071
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.10071
https://doi.org/10.1103/PhysRevLett.120.092001
https://arxiv.org/abs/1712.02229
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02229
https://doi.org/10.1103/PhysRevD.97.116014
https://arxiv.org/abs/1712.03946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.03946
https://doi.org/10.22323/1.303.0006
https://arxiv.org/abs/1807.09709
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.09709


J
H
E
P
0
5
(
2
0
1
9
)
0
8
4

[9] S. Abreu, F. Febres Cordero, H. Ita, B. Page and V. Sotnikov, Planar Two-Loop Five-Parton

Amplitudes from Numerical Unitarity, JHEP 11 (2018) 116 [arXiv:1809.09067] [INSPIRE].

[10] T. Peraro, Scattering amplitudes over finite fields and multivariate functional reconstruction,

JHEP 12 (2016) 030 [arXiv:1608.01902] [INSPIRE].

[11] S. Badger, C. Brønnum-Hansen, H.B. Hartanto and T. Peraro, Analytic helicity amplitudes

for two-loop five-gluon scattering: the single-minus case, JHEP 01 (2019) 186

[arXiv:1811.11699] [INSPIRE].

[12] S. Abreu, J. Dormans, F. Febres Cordero, H. Ita and B. Page, Analytic Form of Planar

Two-Loop Five-Gluon Scattering Amplitudes in QCD, Phys. Rev. Lett. 122 (2019) 082002

[arXiv:1812.04586] [INSPIRE].

[13] C.G. Papadopoulos, D. Tommasini and C. Wever, The Pentabox Master Integrals with the

Simplified Differential Equations approach, JHEP 04 (2016) 078 [arXiv:1511.09404]

[INSPIRE].

[14] T. Gehrmann, J.M. Henn and N.A. Lo Presti, Pentagon functions for massless planar

scattering amplitudes, JHEP 10 (2018) 103 [arXiv:1807.09812] [INSPIRE].

[15] S. Badger, G. Mogull, A. Ochirov and D. O’Connell, A Complete Two-Loop, Five-Gluon

Helicity Amplitude in Yang-Mills Theory, JHEP 10 (2015) 064 [arXiv:1507.08797]

[INSPIRE].

[16] S. Abreu, L.J. Dixon, E. Herrmann, B. Page and M. Zeng, The two-loop five-point amplitude

in N = 4 super-Yang-Mills theory, Phys. Rev. Lett. 122 (2019) 121603 [arXiv:1812.08941]

[INSPIRE].

[17] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All master

integrals for three-jet production at NNLO, arXiv:1812.11160 [INSPIRE].
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