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)is paper addresses the vibration and sound radiation of a nonlinear duct. Many related works assume that the boundaries are
linearly vibrating (i.e., their vibration amplitudes are small), or that the duct panels are rigid, and their vibrations can thus be
neglected. A classic method combined with Vieta’s substitution technique is adopted to develop an analytic formula for
computing the nonlinear structural and acoustic responses. )e development of the analytic formula is based on the classical
nonlinear thin plate theory and the three-dimensional wave equation. )e main advantage of the analytic formula is that no
nonlinear equation solver is required during the solution procedure. )e results obtained from the proposed classic method show
reasonable agreement with those from the total harmonic balance method. )e effects of excitation magnitude, panel length,
damping, and number of flexible panels on the sound and vibration responses are investigated.

1. Introduction

Over the past decades, many studies have considered
structural-acoustic problems, plate vibration, and solution
methods for nonlinear governing equations (e.g., [1–12]).
Among various structural-acoustic problems, duct noise has
been a particular focus for many years. For example,
Venkatesham et al. [13] studied the breakout noise from a
rectangular duct with compliant walls; they found that the
low-frequency breakout noise was important and should not
be neglected, and the coupling between the acoustic waves
and the structural waves must be considered in the pre-
diction of the transverse transmission loss. Tang and Lin [14]
proposed the use of stiff light composite panels for duct
noise reduction. )eir selling point was that the actuation
strategy would enable the creation of composite panels for
duct noise control without the need for a traditional heavy
structural mass. According to their results, the mass-spring
resonance absorption in the case of a stiff thick panel with a
thin flexible plate would be more efficient. Tiseo and
Concilio [15] conducted a set of simulations for duct noise
control. )eir proposed feedback structural and acoustical
structural control strategies maximized the damping within
an acoustic duct and thus improved noise reduction. Jade

and Venkatesham [16] implemented intensity-based ex-
perimental techniques for measuring breakout noise and
validated “equivalent unfolded plate” analytical models.
)ey developed an experimental test setup to measure the
input and radiated sound power and vibration level and then
calculated the transverse transmission loss and radiation
efficiency. )ey adopted two measurement techniques: the
intensity probe method (P-P method) and the microflown
technique (P-U method). A numerical model was developed
to predict transverse transmission loss and radiation effi-
ciency, and the results were verified by the experimental
results. In the aforementioned research works, nonlinear
structural vibration, which should be considered for thin
panel structures, was not the focus.)e number of published
articles on nonlinear structural acoustics is quite limited
although a few are worth mentioning (e.g., [17–20]).

In contrast, there are numerous studies on solution
methods for nonlinear governing equations (e.g.,
[21–28]). For example, Jacques et al. [29] adopted the
harmonic balance and finite element methods for solving
the problem of the nonlinear vibration of a viscoelastic
sandwich beam. Chen et al. [30] analyzed the nonlinear
steady state vibrations of plane structures. Both the finite
element method and incremental harmonic balance
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method were used. )e nonlinear governing equations
were solved by the incremental harmonic balance method.
Lee et al. [31] adopted the homotopy perturbation method
to solve parabolic partial differential equations with
constant coefficients for the nonlinear plate problem. Gao
et al. [32] adopted the multiple scales method to analyze
the nonlinear primary resonance of functionally graded
porous cylindrical shells. Hao et al. [33] developed the
nonlinear governing equations of motion for the FGM
plates using Hamilton's principle and adopted the as-
ymptotic perturbation method to obtain four-di-
mensional nonlinear averaged equations. When the
aforementioned methods were applied to the nonlinear
governing equations, coupled nonlinear algebraic equa-
tions were generated that needed to be solved by a
nonlinear equation solver. )is motivated the current
study to adopt the classical method and Vieta’s sub-
stitution technique [34] and to develop analytic formu-
lations that would not require an equation solver to
compute the nonlinear sound and vibration responses of a
rectangular duct. Note that, normally a nonlinear problem
would generate a set of nonlinear equations. A nonlinear
equation solver is needed to solve them to obtain the
nonlinear solutions (e.g. [35]). )e effects of excitation
magnitude, panel length, damping, and number of flexible
panels on sound and vibration responses were also in-
vestigated for various panel cases.

Few studies have examined nonlinear structural acoustics,
and studies of nonlinear duct sound and vibration are very
limited.)emodelling technique presented here is suitable for
handling more than one flexible panel. Other works (e.g., [36,
37]) only considered one flexible panel.)emain advantage of
the solution method is that the procedure does not require a
nonlinear equation solver; rather, the final nonlinear solutions
can be expressed in terms of a set of symbolic parameters with
various physical meanings.)emethod is very suitable for fast
engineering calculation purposes. If a numerical method is
used, the final solutions are numerical and require more
computation time. )e limitation of this solution method is
that it can only be used for a simply supported plate. For other
boundary conditions, the nonlinear modal differential equa-
tions are more complicated. )us, no analytical solutions can
be obtained from the proposed method.

2. Theory and Formulation

Figure 1 shows an open-end duct made of flexible panels. A
piston-like excitation is generated at the other end. )e
acoustic pressure within the rectangular cavity can be ob-
tained from the well-known homogeneous wave equation
[2, 11, 37]:

∇2 + k2( )pQ(x, y, z) � 0, (1)

where pQ(x, y, z) is the acoustic pressure at the position of
(x, y, z) induced by the Qth panel mode and k is the wave
number.

)e solution form of the acoustic pressure and the
acoustic cavity mode can be expressed in the following form:

pQ(x, y, z) �∑J
J�1
PQJφJ(x, y, z), (2)

φJ(x, y, z) � sin
Uπx

2a
cos

Vπy

b
cos

Wπz

c
, (3)

where PQJ is the acoustic pressure amplitude of the Jth

acoustic mode; J is the general acoustic mode number; J is
the number of acoustic mode used; U, V, andW are the
acoustic mode numbers for the x, y, and z directions; and a,
b, and c are the dimensions of the cavity. Note that b and c
are much smaller than a. It is implied that the acoustic
resonant frequencies of nonzero V andW modes are much
higher than the first several acoustic resonant frequencies of
the duct cavity.

Putting equations (2) and (3) into (1) and using the
technique of integration by parts in [37] yield the following
equation:

k2 − k2J( )αJJPQJ � −∫
pan

zpQ
zn

φJdx dy, (4)

where kJ �
�����������������������
(U/2a)2 + (V/b)2 + (W/c)2

√
is the wave num-

ber of the Jth acoustic mode and αJJ � ∫volφJφJdxdy dy. )e
subscripts “vol” and “pan” represent the cavity volume and
panel surface, respectively. zpQ/zn is the pressure gradient
on the panel surface.

At the panel surface,

zpQ,h
zn

� ρaω
2AQϕQ(x, y), (5)

where ρa is the air density; ω is the excitation frequency; Ao
and AQ are the displacement amplitudes of the source and
panel, respectively; ϕQ(x, y) is the Qth panel mode shape,
which is a double sine function, sin((mπx)/a)sin((nπy)/b)
(the panel is simply supported with immovable edges, and
hence, the model shape can be written as a double sine
function); and m and n are the structural mode numbers.

Putting equation (5) into (4) yields the following
equation:

PQJ �
−ρaω2

k2 − k2J( )αJJ αQJAQ − αoJAo( ), (6)

where αQJ � ∫panϕQφJdxdy and αoJ � ∫souφJdxdy and the

subscript “sou” represents the vibration source.
In equation (6), the first term on the right side is the

modal acoustic stiffness term, i.e.,

modal acoustic stiffness term, Kaco,J �
ρaω

2αQJ

k2 − k2J( )αJJ. (7)

If there are 2 or more flexible panels considered, the
overall acoustic stiffness is given by

overall acoustic stiffness term,

Kaco � Nρaω
2∑J
J�1

αQJ

k2 − k2J( )αJJ
αQJ
αQQ

,
(8)
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where N is the number of panels and the subscript “aco”
means acoustics. It is noted that the term on the right side is
the acoustic stiffness force term. Note that in equation (8),
αQJ/αQQ is the modal contribution factor and αQQ �∫
pan

ϕQϕQdx dy.
According to [38, 39], the Airy stress function derivatives

can be expressed as follows:

z
2F

zξ2
� zv

zη
+ 1

2

zw

zη
( )2

+ ]

zu

zξ
+ 1

2

zw

zξ
( )2 , (9a)

z
2F

zη2
� zu

zξ
+ 1

2

zw

zξ
( )2

+ ]

zv

zη
+ 1

2

zw

zη
( )2 , (9b)

− z
2F

zξzη
� 1− v

2

zu

zη
+ zv

zξ
+ zw

zη

zw

zξ
[ ]. (9c)

�e solution forms of w, u, and v are given in [40]:

w � ΛQ sin(πζ)sin(πrη), (10a)

u �
ΛQ( )2π
16

cos(2πrη)− 1 + ]r2( )sin(2πζ), (10b)

v �
ΛQ( )2π
16

r cos(2πrζ)− r + ]

r
( )sin(2πrη). (10c)

Hence, the governing equation of Airy stress function is
given by

1

12

d2w

dτ2
+ ∇4w( ) � z

2F

zη2
z
2w

zξ2
+ z

2F

zξ2
z
2w

zη2
− 2 z

2F

zηzξ

z
2w

zηzξ
( ),

(11)
whereΛQ � (AQ/h)T(τ), T(τ) is a time function≤ 1; h is the
panel thickness; F is the Airy stress function; w, u, and v are
the dimensionless displacements along the z, x, and y di-
rections, respectively; v is Poisson’s ratio; ζ � mx/a and η �
ny/a are the dimensionless x and y coordinates; r� a/b is
the panel aspect ratio; τ � (Cpt)/(

��
12

√
a) is nondimensional

time; Cp �
������������
E/(ρp(1− ]2))
√

is the phase velocity of com-
pressional waves; E is Young’s modulus; ρp is the panel
density; and t is time.

Hence, the terms with F in equation (11) can be replaced
by equations (9a)–(9c). �en, according to [38], the higher
mode terms (i.e., sin(3πζ)sin(πrη), sin(πζ)sin(3πrη), . . .)
are neglected, and the nonlinear governing equation of free
plate vibration is expressed in the following form:

D1

d2ΛQ
dτ2

+D2ΛQ +D3Λ
3

Q � 0, (12a)

whereD1,D2, and D3 are the constants in terms of r, ], E, a,
b, . . . etc. �e variables in the nonlinear governing equation
(i.e., equations (12a)–(12c)) are dimensionless. Note that the
above equation is for free vibration only (i.e., no force term).
In this study, the governing equation of nonlinear forced
vibration is dimensional and shown as follows.

�e following dimensional variables are introduced:

ΛQ � hΛQ, (12b)

t �
��
12

√
a

Cp

τ. (12c)

�en, put equations (12b) and (12c) into (12a) to
eliminate the two nondimensional variables (i.e., ΛQ and τ).
Hence, the governing equation of nonlinear free vibration is
given by the following equation:

ρp
d2ΛQ
dt2

+ ρpω
2
QΛQ + βQΛ3Q � 0. (13a)

Consider the acoustic stiffness force term in equation (8)
and a force term which represents uniform harmonic ex-
citation. Equation (13a) can be rewritten as follows:

ρp
d2ΛQ
dt2

+ ρpω
2
Q +Nρaω

2∑J
J�1

αQJ

k2 − k2J( )αJJ
αQJ
αQQ

 ΛQ
+ βQΛ3Q + κρpg

αoJ
αQQ

sin(ωt) � 0,

(13b)
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Figure 1: A duct/tube formed by nonlinear flexible panels.
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where κ� dimensionless excitation parameter, g� 9.81m·s−2,
ΛQ � AQT(t), βQ � (Eh/4(1− v2))(mπ/b)4[(1 + ((n/m)r)4)
((3/4)− (v2/4)) + v((n/m)r)2], and note that again αQJ/αQQ is
the modal contribution factor, which is the same as the one in
equation (8).

In equation (13b), the nonlinearity of the structural-
acoustic system is represented by the term βQΛ3Q. Physi-
cally, the nonlinearity is caused by the large amplitude
vibration. In a typical linear vibration (or small vibration)
analysis, the axial and transverse vibrations of a panel are
independent, whereas they are coupled in a nonlinear vi-
bration analysis. )ey are coupled in the nonlinear analysis
because in small deflection cases, it is assumed that the
direction of the panel’s transverse vibration is still per-
pendicular to the surface; in large deflection cases, the
transverse vibration direction is no longer perpendicular to
the surface because the surface is subject to large de-
formation. Mathematically, the nonlinear term in equa-
tions (13a) and (13b) results in multiple solutions, whereas
there is only one solution in linear cases. In fact, equations
(13a) and (13b) are in the form of the well-known Duffing
equation.

Consider the approximation of T(t) ≈ sin(ωt), neglect
the higher harmonic terms, and then equation (13b) is re-
written in the following form:

3

4
βQA

3
Q + ΠQAQ + ΓQ � 0, (14)

where ΓQ � κρpg(αQJ/αQQ) and ΠQ � ρp(ω2
Q −ω2) +Nρaω

2∑JJ�1(αQJ/((k2 − k2J)αJJ))(αQJ/αQQ). ωQ is the resonant fre-
quency of the Qth panel mode.

Note that there is a limitation in the proposed solution
form. In highly nonlinear cases, superharmonic and sub-
harmonic responses occur. As the solution form does not
include the components of sin(3ωt) or sin(1/3ωt), the re-
sults cannot show these phenomena.

For damped vibration, AQ in equation (14) is rewritten
into the following complex form:

AQ
∣∣∣∣ ∣∣∣∣ � ΓQ

∣∣∣∣ ∣∣∣∣
ΠQ +(3/4)βQ AQ

∣∣∣∣ ∣∣∣∣2∣∣∣∣∣ ∣∣∣∣∣, (15)

⟹ AQ
∣∣∣∣ ∣∣∣∣2 � ΓQ

∣∣∣∣ ∣∣∣∣2
Re〈ΠQ〉 +(3/4)βQ AQ

∣∣∣∣ ∣∣∣∣2( )2 + Im〈ΠQ〉( )2.
(16)

)en, substituting equation (16) in (14), we get the
following equation:

G3c
3 + G2c

2 + G1c + G0 � 0, (17)

where c � |AQ|2; G3 � ((3/4)βQ)2; G2 � (3/2)βQRe〈ΠQ〉;
G1 � |ΠQ|2; G0 � |ΓQ|2; Re〈ΠQ〉 is the real part of ΠQ;
Im〈ΠQ〉 is the imaginary part of ΠQ; ΠQ � ρp(ω2

Q −ω2) +
i(2ζωωQ) +Nρaω

2∑JJ�1(αQJ/((k2 + i(2ζkkJ)− k2J)αJJ))(αQJ/
αQQ); i is equal to

���
−1

√
; and ζ is the damping ratio. Physically,

the damping force is assumed to be proportional to the
damping ratio× the velocity (i.e., dΛQ/dt). )e damping ratio

represents the level of damping relative to the critical damping
(i.e., ζ � 1).

According to Vieta’s substitution [34], equation (17) can
be simplified using the substitution of c � λ− (G2/3G3):

λ3 + ε1λ + ε0 � 0, (18)

where ε1 � (3G3G1 −G2
2)/3G2

3 and ε0 � (2G3
2 − 9G3G2G1 +

27G2
3G0)/27G3

3.
Equation (18) can be further simplified using the sub-

stitutions of λ � B− (ε1/3B) and χ � B3:

χ2 + ε0χ −
ε31
27
� 0. (19)

)e exact solutions of equation (19) are easily obtainable
without any nonlinear equation solver. Finally, the solutions
of λ are given below:

λ1 � −
1

3

���������
1

2
δ1 + δ2( )3

√
− 1
3

���������
1

2
δ1 − δ2( )3

√
, (20a)

λ2 �
1 + i

�
3

√

6

���������
1

2
δ1 + δ2( )3

√
+ 1− i

�
3

√

6

���������
1

2
δ1 − δ2( )3

√
, (20b)

λ3 �
1− i

�
3

√

6

���������
1

2
δ1 + δ2( )3

√
+ 1 + i

�
3

√

6

���������
1

2
δ1 − δ2( )3

√
, (20c)

where δ1 �
��������������
(27ε1)2 + 4(3ε0)3

√
and δ2 � 27ε1.

Hence, |AQ| can be found from c � λ− (G2/3G3) and
c � |AQ|2. )en, for the calculation of sound radiation, the
following equations can be used to find the radiation effi-
ciency [41]:

σQ �
32k2ab

m2n2π5

1− k
2ab

12
 1− 8

(mπ)2
( ) a

b

+ 1− 8

(nπ)2
( ) b

a
, for symmetricmodes,

(21a)

σQ �
8k4a3b

3m2n2π5

1− k
2ab

20
 1− 24

(mπ)2
( ) a

b

+ 1− 8

(nπ)2
( ) b

a
, for antisymmetricmodes,

(21b)
where symmetric modes are the modes ofm and n set to odd
numbers and antisymmetric modes are the modes ofm and/
or n set to even numbers.

3. Numerical Results and Discussion

)e material and physical properties adopted in the fol-
lowing numerical cases are as follows: Young’s modulus�
7.1× 1010N/m2; Poisson’s ratio� 0.3; panel thickness�
2mm; panel density� 2700 kg/m3; air density� 1.2 kg/m3;
sound speed� 340m/s; and cross-sectional dimensions of
the duct� 0.5m× 0.5m. Tables 1–3 show the acoustic mode
convergence studies for various excitation levels. )e
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damping ratio, ζ, is 0.02. )e seven mode solutions are
normalized as 100. In the (1,1) and (2,1) mode cases, the four
acoustic mode solutions achieve an error rate of less than 1%
for different excitation levels (κ� 0.05 to 0.5), while in the
(3,1) mode case, the six mode solutions achieve an error rate
of around 3.5%. Tables 4–6 show the structural mode
contributions for various excitation levels: the larger the
excitation level is, the higher the contributions of the two
higher modes are. In other words, when the excitation is
high, more modes are needed. )e comparisons between
Tables 4–6 show the modal contributions at the corre-
sponding peak frequencies. )e contributions of the dom-
inant modes at the corresponding peak frequencies are
always higher than 94%. )us, the use of two structural
modes is appropriate for obtaining solutions with good
accuracy. Figures 2(a) and 2(b) present the comparisons
between the first symmetric and first antisymmetric modal
amplitude solutions obtained from the proposed method
and the classical harmonic balance method (e.g., [20]). )e
nondimensional excitation parameter value, κ, is 0.5. )e
damping ratio, ζ, is 0.02. )e panel length a is 3m, and the
number of flexible panels is four. Two harmonic compo-
nents, sin(ωt) and sin(3ωt), are adopted in the classical
harmonic balance method. )e results obtained from the
two methods are generally in good agreement for the first
symmetric and first antisymmetric modal amplitude solu-
tions. )e only slight differences are found at the first
nonlinear peak values, around the frequencies ω/ω1� 0.9 in
Figure 2(a) and 1.15 in Figure 2(b). )e differences are
caused by the different definitions of the damping terms in
the two methods. )ere is a limitation in the proposed
solution form. In highly nonlinear cases, superharmonic and
subharmonic responses occur. As the solution form does not
include the sin(3ωt) or sin(1/3ωt) components, the results
cannot show these phenomena.

Figures 3(a)–3(d) show the symmetric and antisym-
metric vibration amplitudes and sound powers plotted
against the excitation frequency for various excitation
magnitudes. )e damping ratio ζ is 0.02; the first two
structural modes and seven acoustic modes are adopted; four
flexible panels are considered (N� 4); and the panel length
a� 3m. )e peak frequencies and peak values of the
structural resonances (i.e., the first two peaks in the figures)
increase with the excitation magnitude. )e peak values of
the other resonances (i.e., acoustic resonances) also increase
with the excitation magnitude. )e peak frequencies remain
almost unchanged, and the peaks are generally more linear,
except those under the high excitation level κ� 0.5, which
are more nonlinear, and their peak frequencies are around
ω/ω1� 2.3. )e comparisons between the vibration ampli-
tude and sound power curves show that the high frequency
acoustic peaks are more important in the sound power
figures while the low frequency structural peaks are more
important in the vibration amplitude figures because the
radiation efficiencies are monotonically increasing with the
excitation frequency (Figure 3(e)). )e higher the excitation
frequency, the higher the radiation efficiency. )e com-
parisons between the curves of symmetric and antisym-
metric cases show that the second or higher acoustic peaks

Table 1: (1,1) mode peak vibration amplitude convergence for
various excitation magnitudes (3 symmetric structural modes,
ζ � 0.02).

No. of acoustic modes κ� 0.05 0.2 0.5

1 78.7 82.4 84.7
4 99.9 99.9 99.7
6 100.0 100.0 100.0
7 100.0 100.0 100.0

Table 2: (2,1) mode peak vibration amplitude convergence for
various excitation magnitudes (3 antisymmetric structural modes,
ζ � 0.02).

No. of acoustic modes κ� 0.05 0.2 0.5

1 62.5 69.5 75.2
4 100.1 100.0 99.9
6 99.8 99.8 99.6
7 100.0 100.0 100.0

Table 3: (3,1) mode peak vibration amplitude convergence for
various excitation magnitudes (3 symmetric structural modes,
ζ � 0.02).

No. of acoustic modes κ� 0.05 0.2 0.5

1 66.4 70.3 76.2
4 67.5 75.2 80.2
6 101.2 96.2 96.9
7 100.0 100.0 100.0

Table 4: Mode contribution at the (1,1) mode peak frequency
(κ� 0.2, ζ � 0.02).

No. of acoustic modes (1,1) mode (3,1) mode (5,1) mode

1 95.6 3.1 1.2
4 96.2 2.7 1.1
6 95.8 3.1 1.1
7 95.8 3.1 1.1

Table 5: Mode contribution at the (2,1) mode peak frequency
(κ� 0.2, ζ � 0.02).

No. of acoustic modes (2,1) mode (4,1) mode (6,1) mode

1 93.6 5.1 1.3
4 94.9 4.0 1.0
6 95.0 4.0 1.0
7 94.7 4.2 1.0

Table 6: Mode contribution at the (3,1) mode peak frequency
(κ� 0.2, ζ � 0.02).

No. of acoustic modes (1,1) mode (3,1) mode (5,1) mode

1 0.3 95.6 4.1
4 0.2 95.8 4.0
6 0.2 96.3 3.5
7 0.2 96.4 3.4
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Figure 2: (a) Comparison of the symmetric and (b) antisymmetric vibration amplitude results from the proposed method and classical
harmonic balance method (κ� 0.5, a� 3m, b� c� 0.5m, ξ � 0.02, and N� 4).
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are much less significant in the antisymmetric case, while the
first acoustic peaks are important in both the symmetric and
antisymmetric cases.

Figures 4(a)–4(d) show the symmetric and antisym-
metric vibration amplitudes and sound powers plotted
against the excitation frequencies for various damping
ratios. �e excitation level κ� 0.2; the first two structural
modes and seven acoustic modes are adopted; four flexible
panels are considered (N � 4); and the panel length
a � 3m. Obviously, the damping only affects the peak and
trough values. In the off-resonance range, the damping
has no significant effect. If the damping ratio is small
(ζ � 0.005), the two structural peaks and first acoustic
peaks look more nonlinear, the peak values are the highest
among the three damping cases, and the trough values (or
antiresonant values) are the lowest. If the damping ratio is
high (ζ � 0.05), (1) the two structural peaks and first
acoustic peaks, which look more nonlinear in the case of
ζ � 0.005, become more linear; and (2) the peak values are
the lowest and the trough values the highest.
Figures 5(a)–5(d) show the symmetric and antisymmetric
vibration amplitudes and sound powers plotted against
the excitation frequencies for various panel lengths. �e
excitation level κ� 0.2; the damping ratio ζ � 0.02; the first
two structural modes and seven acoustic modes are
adopted; and four flexible panels are considered (N � 4).
Obviously, the panel length (or cavity length) affects the
structural and acoustic resonant frequencies in all vi-
bration amplitude and sound power figures. Generally, the
shorter the panel length is, the higher the resonant fre-
quencies and peak values are. Note that, in the case of
a � 2, some acoustic peaks are outside the frequency range.
In Figures 5(c) and 5(d), the resonant frequencies of the
acoustic peaks around ω/ω1 � 6.4 to 6.6 are not signifi-
cantly affected by the panel length.�e first antisymmetric
acoustic peaks are more nonlinear than the first sym-
metric acoustic peaks. �is phenomenon can also be
observed in Figures 6(c) and 6(d).

Figures 6(a)–6(d) show the symmetric and antisym-
metric vibration amplitudes and sound powers plotted
against the excitation frequencies for various numbers of
flexible panels. �e excitation level κ� 0.2; the damping
ratio ζ � 0.02; the first two structural modes and seven
acoustic modes are adopted; and the panel length a � 3m.
Figures 6(a) and 6(c) show that the number of panels affects
the peak values, peak frequencies, and off-resonance re-
sponses in all cases. If only one flexible panel is installed, (1)
the first and second symmetric and antisymmetric struc-
tural resonant frequencies among the three cases (i.e.,
N � 1, 2, 4) are highest in both the vibration amplitude and
the sound power figures; (2) the first symmetric and an-
tisymmetric structural resonant peak values in the sound
power figures are also the highest, while the first symmetric
and antisymmetric structural resonant peak values in the
vibration amplitude figures are nearly the same among the
three cases; (3) the second symmetric and antisymmetric
structural resonant peak values in the vibration amplitude
and sound power figures are the lowest among the three
cases; and (4) the first antisymmetric acoustic peaks are
more nonlinear (the jump phenomenon can be seen), while
the second antisymmetric structural peaks look more
linear.

Figures 7(a)–7(d) show the structural-acoustic peak
ratios plotted against the dimensionless excitation level for
various structural modes. �e damping ratio ζ � 0.02; the
first seven acoustic modes are adopted; four flexible panels
are considered (N� 4); and the panel length a� 2m. �e
structural-acoustic peak ratio is defined as the ratio of the
structural peak value to the highest acoustic peak value. In
Figure 7(a), the two structural-acoustic peak ratios are
monotonically decreasing with the increasing excitation
level. �is implies that the acoustic peak is more important
or significant when the excitation level is higher. In
Figures 7(b) and 7(c), the structural-acoustic peak ratios of
the vibration amplitude are almost constant when the ex-
citation level ranges from κ� 0.05 to 0.12. �ere is an abrupt
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Figure 3: (a) Symmetric and (c) antisymmetric vibration amplitude versus excitation frequency for various source excitation magnitudes
(a� 3m, b� c� 0.5m, ξ � 0.02, and N� 4); (b) symmetric and (d) antisymmetric sound radiation versus excitation frequency for various
source excitation magnitudes (a� 3m, b� c� 0.5m, ξ � 0.02, and N� 4); (e) radiation efficiency versus excitation frequency for various
structural modes.
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Figure 4: (a) Symmetric and (c) antisymmetric vibration amplitude versus excitation frequency for various damping ratios (κ� 0.2, a� 3m,
b� c� 0.5m, and N� 4); (b) symmetric and (d) antisymmetric sound radiation versus excitation frequency for various damping ratios
(κ� 0.2, a� 3m, b� c� 0.5m, and N� 4).
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Figure 5: Continued.
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jump in each curve at around κ� 0.12 to 0.15. �e abrupt
jumps are due to the jump-up phenomenon, which is well
known in forced nonlinear panel vibration [34]. �en, the

structural-acoustic peak ratios of vibration amplitude are
monotonically decreasing with the increasing excitation
level. �e structural-acoustic peak ratio of sound power is
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Figure 5: (a) Symmetric and (c) antisymmetric vibration amplitude versus excitation frequency for various panel lengths (κ� 0.2,
b� c� 0.5m, ξ � 0.02, andN� 4); (b) symmetric and (d) antisymmetric sound radiation versus excitation frequency for various panel lengths
(κ� 0.2, b� c� 0.5m, ξ � 0.02, and N� 4).
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Figure 6: (a) Symmetric and (c) antisymmetric vibration amplitude versus excitation frequency for various numbers of flexible panels
(κ� 0.2, a� 3m, b� c� 0.5m, and ξ � 0.02); (b) symmetric and (d) antisymmetric sound radiation versus excitation frequency for various
numbers of flexible panels (κ� 0.2, a� 3m, b� c� 0.5m, and ξ � 0.02).
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similar to the other ratios, except it is monotonically in-
creasing when the excitation level is from κ� 0.05 to 0.12. In
Figure 7(d), the two structural-acoustic peak ratios are
monotonically increasing for κ� 0.05 to 0.055. �ere is an
abrupt jump around κ� 0.06. �en, the two ratios are
monotonically decreasing until κ� 0.17, at which point
another abrupt jump can be seen. �e abrupt jumps are also
due to the jump-up phenomenon in the acoustic resonance.
For κ> 0.17, the structural-acoustic peak ratio of vibration
amplitude is almost constant, while the structural-acoustic
peak ratio of sound power is mildly decreasing.

4. Conclusions

�is study investigated the vibration and sound radiation of
nonlinear duct panels using the analytic formula based on
the classic method combined with Vieta’s substitution
technique. �e main advantage of the analytic formula is
that, during the solution procedure, no nonlinear equation
solver is required. In other words, the analytic formula is a
set of symbolic parameters with various physical meanings.
�e results obtained from the proposed classic method show
reasonable agreement with those from the total harmonic
balance method. �e main findings can be summarized as

follows: (1) the damping ratio and excitation level are the two
key factors to determine the nonlinearities of the resonant
peaks of nonlinear panels. (2)�e acoustic peak values in the
sound power figures are generally higher than those in the
vibration figures. �is implies that the high-frequency
components in the sound responses are more significant
than those in the vibration responses because the sound
radiation efficiency is higher when the response frequency is
higher. (3) �e antisymmetric modal responses, which have
been considered in only a few structural acoustic studies, are
found to be as important as (or as large as) the symmetric
modal responses. �e reason is that the first antisymmetric
structural mode is coupled with the first antisymmetric
acoustic mode, which is the most dominant acoustic mode
even though it is less important than the first symmetric
mode. (4) �e well-known jump phenomenon is found in
the peaks of the structural modes coupled with the acoustic
modes, whereas it has previously been found only in the
resonant peaks of nonlinear structural vibrations.

Data Availability

�e data used to support the findings of this study are in-
cluded within the article.
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Figure 7: (a) (1,1) mode, (b) (2,1) mode, (c) (3,1) mode, and (d) (4,1) mode structural-acoustic peak ratios versus excitation level (a� 2m,
b� c� 0.5m, ξ � 0.02, and N� 4).
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