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In the terrestrial magnetosphere, the inhomogeneous magnetic field and plasma den- 
sity give rise to a continuous spectrum of field line resonant frequencies. Compressional 
disturbances with characteristic frequencies lying within the range of the spectrum may 
couple to transverse oscillations of resonant field lines. The coupling is of particular in- 
terest for global compressional modes trapped in the magnetic cavity. These modes decay 
in time through the coupling, even in the absence of dissipation. The importance of the 
process is that, through the damping of the global modes, large-scale motion can drive 
localized field line resonances. In this study, we investigate the mode coupling and exam- 
inc the parameter dependence of the damping rate of the global mode. The problem is 
discussed as an initial value problem in the box model which retains most of the significant 
physics yet remains mathematically tractable. To treat the coupling, we use the analogy 
of Landau damping in a homogeneous plasma. From the Laplace transform approach, we 
obtain the complex frequencies of the compressional wave by finding the singularities of 
the associated Green's function. Once the complex frequency has been found numerically, 
we obtain the corresponding waveforms in the box. Many observed wave properties can 
then be obtained. The calculations agree well with other simulation work and correspond 
to results obtained for the reflection of radio waves from the ionosphere and for plasma 
heating by absorption of radiation. 

INTRODUCTION 

Ultralow frequency (ULF) waves are magnetohydro- 
dynamic waves present in the terrestrial magnetosphere 
[Cummings et al., 1969; Samson, 1972]. Extensive theo- 
retical and observational efforts have been made during 
the past decades in order to understand the phenomenon 
(see the review paper by Southwood and Hughes, [1983] 
and the references therein). Observed ULF perturba- 
tions have been classified into two types' continuous pul- 
sations (Pc) and irregular pulsations (Pi). Both types 
have been further subdivided by their periods. For the 
continuous pulsations, the Pc 3, Pc 4 and Pc 5 pe- 
riod bands are 10-45 s, 45-150 s and 150-600 s, re- 
spectively [Jacobs et at., 1964]. For Pc 3-5 pulsations, 
the wavelength is of the order of a few Re where Re is 
the Earth's radius [Southwood and Hughes, 1983]. Thus 
these types of pulsations arise from large-scMe perturba- 
tions of the magnetospheric system. They are predom- 
inantly dayside phenomena that fall into two classes. 

In one class, the pulsations are harmonically structured 
and azimuthally polarized. The fundamental pulsation 
frequency varies with local time and radial distance, and 
the spectrum is dominated by resonances of local mag- 
netic field lines [Takahashi and McPherron, 1982; Enge- 
bretson et al., 1986]. In the other class, the perturbation 
has a substantial compressional component and a large 
part of the magnetosphere oscillates at a single pertur- 
bation frequency [Kivelson et al., 1984; Greensladt et 
al., 1986]. As will be seen, both of these features are 
contained in the theory. 

For theoretical modeling of the Pc 3-5 waves, the in- 
homogeneity of the system on a characteristic scale of 
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a few Re cannot be neglected. Inhomogeneity leads to 
a continuous spectrum of field line resonant frequencies, 
i.e., the resonant frequency changes continuously with 
radial distance. Consequently, a perturbation whose 
characteristic frequency lies within the range of the con- 
tinuous spectrum may couple to a transverse oscillation 
of an appropriate field line (resonant field line). The 
mathematical complexity arising from the wave mode 
coupling prevents one from obtaining an analytic solu- 
tion of the problem even in a dipole geometry [Dunge•t, 
1967; Cummings et al., 1969]. Nonetheless, early the- 
oretics] work on Pc 3-5 waves successfully described 
the ULF wave response to sources at the boundary of 
the magnetosphere [Southwood, 1974, 1975; Chen and 
Hasegawa, 1974a, b]. The sources are generally assumed 
to be the Kelvin-Helmholtz instabilities excited by the 
solar wind interaction with the magnetosphere. The 
theory of field line resonance explains how the pertur- 
bation energy of a monochromatic compressional wave 
couples to and excites the standing shear Alfv•n mode 
on the resonant field line. The nature of the Kelvin- 

Helmholtz source requires large azimuthal wave num- 
bers of the perturbation [Chen and Hasegawa, 1974a]. 
With this requirement, the ULF wave varies rapidly in 
phase across the field line in the azimuthal direction and 

has almost no phase variation in the radial direction, 

taken as the direction of plasma and field inhomogene- 
ity. The field line resonance theory explains successfully 
the typical features of those ULF waves that are har- 

monically structured and azimuthally polarized and is, 
therefore, widely accepted. 

Following the proposals of Kivelson and Southwood 
[1985], recent theoretical studies of ULF waves have con- 
sidered the possibility of impulsive excitation of ULF 
waves in the magnetosphere [Kivelson and Southwood, 
1985, 1986; Allan et al., 1985, 1986a, b; Inhester, 1987]. 
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This theory (which will be referred to as the global mode 
theory) considers perturbations excited in the magneto- 
sphere by an impulsive perturbation of the boundary as 
the system relaxes from its initial state. As its name 

suggests, the global mode theory identifies damped col- 
lective modes of the system that represent the response 
to an impulse. The physics of the modes is closely asso- 
ciated with that of the surface mode found by Chen and 
Hasegawa [1974b]. Chen and Hasegawa assumed a large 
azimuthal wave number, but in the global mode theory 
a comparatively smaller azimuthal wave number is as- 

sumed to account for certain features of the large-scale 
compression of the magnetosphere. Numerical simula- 
tions have confirmed the existence of the wave modes 

[Allan et al., 1985, 1986a, b). Because previous work on 
the damped collective modes is basically either qualita- 
tive [Ki•elson and Southwood, 1985, 1986] or lacks sub- 
stantial analytical discussion [Allan et al., 1985, 1986 
a,b], the primary interest in the present work is to for- 
mulate more quantitative results and to unify the theory 
of field line resonance and the global mode theory. The 
problem is discussed in the box model which was first 

suggested by Radoski [1971]. We are aware that the sim- 
plified model differs in many respects from the real ter- 
restrial magnetosphere; consequently it cannot explain 
all observational features, such as the absence of wave 

perturbations on the nightside of the magnetosphere. 
The analytical and numerical results can, however, pro- 
vide insight into the wave coupling problem and can 
provide a step toward fully understanding ULF waves 
in a realistic model. 

Mathematically, wave mode coupling in an inhomo- 
geneous system is often represented by singular integral 
or differential equations. A well-known example of the 
singular integral equation arises for the electrostatic os- 
cillation in a hot plasma. A singular integration appears 
in the dispersion relation of the perturbation. Landau 

recognized that the singularity arises from the interac- 
tion between the wave field and the so-called resonant 

particles whose velocities approximately match the wave 
phase velocity. Furthermore, Landau was able to show 
that the interaction could cause damping of the electro- 
static wave perturbation with wave energy going into 
acceleration of the resonant particles for appropriate 
particle distributions. We will find that his approach 
is relevant to the problem we are going to solve. 

In our problem, the inhomogeneity is in coordinate 
space and we start from a singular differential equation. 
The singularity occurs at the position of the resonant 
field line. Similar types of singular differential equa- 
tions are encountered in other scientific disciplines. In 
hydrodynamics, the so-called critical layer problem has 

long been of interest. In stratified shear flow, the critical 
layer corresponds to the level where the mean flow veloc- 
ity matches the perturbation wave velocity [Lin, 1955]. 
In ionospheric physics, attention has been directed to 
the reflection of radio waves from a stratified ionosphere; 

the signal is absorbed at a critical height where the ra- 
dio wave frequency matches the local plasma frequency 
provided the wave electric field is polarized in the plane 
of incidence [Budden, 1961]. In fusion machines, electro- 
magnetic waves are often used to heat plasma. The fun- 
damental physics is almost identical to Budden's prob- 

lem lAppert et al., 1984]. Analytic and numerical cal- 
culations demonstrate that there exists an optimal inci- 
dent angle for absorption of the incident radio waves 
by the plasma [Piliya, 1966; White and Chen, 1974; 
Forslund et al., 1975; Appert et al., 1984]. Because the 
physics is similar in these seemingly different subjects, 
the analysis and the numerical method discussed in this 
work should apply to related problems. 

THE INHOMOGENEOUS Box MODEL 

To obtain quantitative results, a simplified model of 
the terrestrial magnetosphere is called for and we adopt 
Radoski's [1971] box model for our analysis. The model 
retains the essential coupling features of the magneto- 
sphere but remains mathematically tractable. The cold 
plasma in this model is contained in a rectangular box 
embedded in a uniform magnetic field, B. The plasma is 
inhomogeneous in only one direction which defines the ß 
axis. The magnetic field lines, perpendicular to the di- 
rection of the inhomogeneity, are along the z direction. 
The y axis completes the triad. 

The boundary conditions of the problem must be con- 
sidered. In the z direction, ionospheres anchor the field 
lines so that two boundaries can be placed at z=+/. 
The ionosphere is considered as a perfect reflector which 
leads to quantization of the wave number along the z 
direction. The variation in the azimuthal coordinate of 

an azimuthally symmetric magnetosphere can be rep- 
resented by requiring all variables in the y direction 
to be periodic. The boundaries at large and small x 
correspond to the magnetopause and the plasmapause 
or equatorial ionosphere, respectively. At the magne- 
topause, the sudden jump of the plasma density and 
magnetic field produces a jump of the AlfvSn veloc- 
ity; conservation of Poynting flux implies that electric 
field signals, E, must decrease when the Alfv•n velocity 
decreases as is the case outside of the magnetopause. 
Approximating the small electric field of the magne- 
tosheath as a zero field and recognizing that the tan- 
gential electric field is continuous across the magne- 
topause, one can take a fixed boundary condition for 
the plasma displacement normal to the magnetopause. 
For the boundary condition in the inner magnetosphere, 
one may note that the lower boundary is located to the 
left of the turning point of the differential equation (see, 
e.g., (4) below) for representative magnetospheric pa- 
rameters. Any solution to the left of the turning point 
either grows or decays exponentially. For a wave mode 
that has a reasonable wave amplitude in the whole spa- 
tim region, one has to take the decaying solution and 
the inner boundary condition can be taken again as a 
fixed boundary condition. 

The differential equations for the MHD perturbations 
of a cold plasma are 

OB Ou 
J = VxB/tto 

In the box model the above equations can be lineari•ed 
and written as: 



8604 ZHU AND KIVELSON: COUPLED ULF WAVES-- ANALYSIS AND SOLUTIONS 

(3) 

t=0 

(c9• c9f• ) Here the Fourier transforms of y and z are equivalent to bz - -B k c9• + '•y assuming that all variables have the same dependence 
on y and z' ei(l•+kz). The variables • and • can be 

and • are plasma displacements in the x and y di- eliminated in terms of bz and its derivatives so that 
feetions and bz is the z component of the magnetic per- 
turbation. B is the magnitude of the ambient magnetic 
field, B, and the AlfvSn velocity, A, is a function of • 
only. 

There are two standard approaches to identifying the 
normal modes of a system. In one approach, the time 
variable is Fourier transformed and the properties of the 

normal modes are obtained as the eigenfunctions and 
eigenvMues of a differential equation. In the other ap- 
proach, an initial value is assumed, the time variable is 
Laplace transformed, and the initial value enters into the 

d'• • _ k 2 da• + • _ k 2 bz - bo(a•, 

where 
(4) 

differential equation and makes it inhomogeneous. The A 2 • _ k 2 
normM modes can be inferred from the singularities of A--$ 
the associated Green's function. If the differential equa- denotes the initial perturbation. The boundary condi- 
tion is not singular in the spatial range of interest, the tions for bz are that at ß - a and ß -b 
two approaches give the same results. Since the first ap- 
proach has the virtue of simplicity, it is frequently used 
to determine the normal modes of a system. 

When the differential equation is singular, slowly de- 
caying quasi-eigenmodes may be found in addition to 
the purely oscillatory normal modes. The solutions are 
usually not only singular but also multivalued. The mul- 
tivaluedness can be removed by an appeal to causality. 
However, it is difficult to incorporate this requirement 
into the first approach. Since the second approach uses 
an initial value, causality is naturally built in. This ap- 
proach provides a way of finding the quasi-eigenmodes 
more transparently, despite being mathematically more 
complicated. 

Since the differential equation in this problem is sin- 
gular, the Laplace transform technique is used to solve 
the problem. The homogeneity in y and z allows one to 
take their Fourier transforms. Without causing ambi- 
guity, we use the same variables to denote the Fourier- 
Laplace transformed quantities. 

The Laplace transform is calculated by multiplying 
the equations by exp(iwt) and integrating t from 0 to o•. 
For the convergence of the transform, or equivalently for 
the requirement of causality, it is required that w have 
positive imaginary part. We therefore, specify that 
the imaginary part of w, must satisfy •i > 7 > 0. The 
coupled equations now read 

w2 

w2 

k2 • = B d• - A 2 

iAbz •(0)- iw•u(O) k2 • -- 'B' - A 2 

-0 d• x= -0 Lda•J =b 
Since (4) is not homogeneous, formally one can solve 

the above equation by first constructing the Green's 
function of the operator on the left-hand side of (4): 

• •2 - da• + 
• k • w2 _ k2 

(6) 

where •(;e) is the Dirac delta function, and then using 
Green's formula to express bz in an integral form: 

(7) 

The inverse Laplace transform gives the time evolution 
of the perturbation: 

As noted above the requirement of causality imposes 
limitations on the integration path F. We choose it to 
run parallel to the real w axis along wi > 7. 

The integration path F can be deformed to smaller wi 
as long as G(a•,a•t,•v) remains analytic. The procedure 
for deformation is that adopted in the Landau damp- 

ing problem and also used by bit Sedl&•ek [1971]. The 
path is continuously deformed by decreasing wi until it 
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Branch Cut 

(b) 

Fig. 1. (a) The complex •o plane with branch cut and sin- 
gularities. The integration path F is defined to run above 
all of them at a sufficiently large value of 7 to assure proper 
convergence. (b} The complex •o plane with a deformed in- 

tegration path F/. Asymptotically, the integration along the 
branch cut and around the singularities will contribute the 
temporal variation. 

meets the singularities or the branch cuts of the Green's 
function. Figure 1 shows schematically how the singu- 
larities and the branch cuts &fleet the deformation of 

the path. In this figure, it is assumed that the inte- 
grand has two isolated singularities and a continuum of 
singularities along the real •v axis and that the multi- 
valuedness of the integrand has been removed by the 
branch cut extending from •va to •vb. As the origin&l in- 
tegration path F is deformed to smaller •vi, the branch 
cut line and singularities prevent the contour from "slid- 
ing by" and the contour is deformed as shown in Figure 
lb. Because the contribution of the integration along 
other parts of F/, the deformed F contour, is exponen- 
tially small, the temporal variation of the perturbation 

!956]. Suppose bl and b2 are two linearly independent 
solutions of the homogeneous differential equation that 
satisfy the lower and upper boundary conditions, respec- 
tively' 

• A•-k 2 dx 

•2 _ k2 A2 
- 

b2 - 0 
•2 _ k2 

•'•'•J==a - 0 
(9) 

• .,2- dx + :• b2 -- 0 

- o 

The Green's function for the differential equation can 
be expressed in terms of b! and b2 as G(a•,a•,w) - 

b•(•)b2(•')H(•'- •) + bi(z')b2(z)H(•- •t) 

where H(•) is the He&viside function: 

= > 0 

0 ß < 0 

and 

(10) 

d• b 
J(•v) -- -•bl - • 2 (11) 

•2 _ k2 

is called the conjunct (which is closely related to the 
Wronskian) of b! and b2. 

From the expression for G in (10), it is seen that J = 0 
corresponds to the singular points of G. From the dis- 
cussion at the end of the last section and by making use 

for large t can be obtained by asymptotic estimation of of the theorem that Y is not a function of a• [Friedman, 
the integral around the singularities or branch cuts of 
the integrand. As we will see later, the contributions 
near the isolated singularities correspond to the collec- 
tive oscillations while the contribution of the integration 
along the branch cut corresponds to the continuous spec- 
trum [Sedlddek, 1971]. Our interest is in the collective 
oscillations, so the isolated singularities of the integrand 
are of primary interest in this work. 

THE GREEN'S FUNCTION OF THE 

DIFFERENTIAL EQUATION 

Although we will not use the Green's function for- 
malism (for example, (8)) to obtain the perturbation 
fields, we will find it a powerful tool for understand- 
ing the properties of the solution and for identifying the 
frequency of the damped collective oscillations in a nu- 
merical solution. Thus, in this section we discuss the 
properties of the Green's function. 

There exists a well-known theorem for constructing a 
Green's function from the solution of the homogeneous 
differential equation with the same operator [Friedman, 

1956], it is easy to see that the collective modes of the 
system correspond to the •v for which J -0. 

For illustrative purposes, let us select a simple case 
by assuming that the Alfv6n velocity varies as 

A2 • 1 --. 

Because the multiplicative factor in A can always be ab- 
sorbed into the definition of •v 2, the coefficient of the 
AlfvSn velocity can be taken as unity. Equivalently, 
by assuming the coefficient to be unity, we have intro- 
duced a scaling factor to normahze the Alfv•n velocity, 
or equivalently, the frequency. 

With the Alfv•n velocity specified, the Frobenius 
method can be used to obtain the series solution of bz 

near the singularity of the differential equation. The 
singularity is located at 

(12) 
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I xI ••qb• it) I >0 

•qb it) I < 0 

a b XR 

Fig. 2. The branch cut in the complex z plane for the case 
t0r > O. In the upper panel, w i _• 7 > O. In the lower 
panel, 7 _• o•i < O. With this branch cut, the change of the 
argument of z- z• when z varies from leR of the branch cut 
to the right will be approximately •r. 

If a < xr < b, bz has one solution that is regular at the 
singularity and one that is not: 

•2(X -- X•o) 4 
- - + '8 +"' 

- + _ +... S(x) - 2 3 
(13) 

Any solution of b• can be constructed from a linear com- 

bination of the two solutions R(•) and S(•). FormMir, 
one can use combinations of R(•) and S(•) to construct 
b• and b2 that satisfy the lower and upper boundary 

conditions respectively; J can be related to R(•) and 

c (14) 

where C is a constant and 

Rt(a•)- dR(a•) St(x ) _ dS(x) 
da: da• 

Now, R and S are implicit functions of o•, and the •o 
that makes J zero must be that for which 

s'(.) s'(.) 
= (15) 

Because the function S(x) has a logarithmic term, it is a 
multivalued function. To make it single-valued, a branch 
cut must be made in the complex x plane (the branch 
cut here should not be confused with the branch cut 

in the frequency domain). The direction of the branch 
cut that extends from the singularity x•o must be deter- 
mined by the analytic properties of the Green's function. 
As we have already seen, the Green's function is analytic 
for any complex frequency with o•i _• 7 > 0. Because of 
(12), if k is real then 

2O•rWik 2 

Clearly the singularities fall below xi=0 if Wr > 0 and 
above xi-0 when o•r < 0 (O•r is the real part of 
because of the requirement that o•i _• 7 ) 0. 

Let us for the moment consider the wr ) 0 case. The 

singularity is located in the lower half x plane as illus- 
trated in the upper panel of Figure 2. When x varies 
along the real axis from x = a to x = b, the change 
of argument of x- x•, 5•b, is about -•r. This prop- 
erty must be maintained as the contour of integration 
for w is deformed to negative o•i corresponding to the 
lower panel of Figure 2. Note that the singularity now 
appears at xi ) 0. By selecting a branch line that radi- 
ates parallel to the imaginary axis from the singularity 
x = x• to -ioo, we guarantee that •b •_ -•r remains 
valid. The branch cut for the o•r < 0 case can be worked 

out by the same principle. The purpose of the branch 
cut is to enforce the change of the argument of x- 
in a specific way so that the o•i < 0 case is the analytic 
continuation of the o•i ) 0 case. 

It is worthwhile to point out the differences between 
the analytic continuation done in Sedl•ek's work and 

in this work. After assuming a special density varia- 
tion, Sedl•ek was able to solve the differential equa- 
tion completely in an analytic form. He then did his 

analytic continuation in the frequency (o•) plane. The 
analytic continuation we have done is in the coordinate 

plane. The advantage of doing it in this way is that one 
no longer needs to solve the differential equation ana- 
lytically for the whole spatial region before doing the 
analytic continuation. In most cases, it is impossible 
to obtain an analytic solution of a singular differential 
equation other than as an infinite series. In such cir- 
cumstances, the method we outline here is useful since 

it requires an analytic expression only in the vicinity of 
the singularity of a differential equation. 

As there are an infinite number of Riemann sheets 

for the logarithmic function in the solution S(x), it may 
seem necessary to select a particular Riemann sheet for 
the analysis; fortunately, the results are unaffected by 
the choice of the Riemann sheet. From (13), it is seen 
that the singular solution, S(x), on the nth Riemann 
sheet differs from the one in the principal Riemann sheet 
by i)•2a'nR(x). This term can be absorbed into the term 
in R(x) in the expressions for b• and b2 and cancels out 
in (15). The net effect is only to change the arbitrary 
constants of b• and b2. This proves the uniqueness. 

The temporal asymptotes of the perturbation can be 
obtained from the asymptotic estimation of the integrals 
along the branch cuts and around the singularity of the 
integrand in the •o integration. From (10) and (13), it 
follows that the Green's function G(x, xt,•o) has eight 
logarithmic branch points on the real •v aads at 

If the w plane is cut as in Figure 3, the integrand be- 
comes single valued in w. Since the branch cut singu- 
lar points are all located on the real •o axis, the inte- 
grations along the branch cut and around the branch 
cut singularities contribute time variations decaying as 
a negative power of time. The integration around the 
isolated singularity, located off the real o• taxis •nd not 
illustrated, contributes an exponential decay in time. 
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l a• I -•(x')-•(•) •(•) •(x') 

-•(x) •(x) -kA(b) kA(b) 

Fig. 3. The branch cuts that can make the integrand of (7) 
single valued. These branch cuts are very similar to those 
described by Sedld•ek [1971]. The isolated singularities of 
the Green's function are located somewhere in the lower half 

of the w plane and are not shown in the plot. 

These features of the solution have been qualitatively 
discussed by Kivelson and Southwood [1986J. Detailed 
mathematical discussions can also be found in the book 

by Lighthill [1958]. Sedlgdek [1971J solved a similar type 
of differential equation; the complex singularities dis- 
cussed by Sedl&iek are of the same form as the singu- 
larities corresponding to the discrete solutions to our 
problem. Sedl&iek's analysis and discussion have great 
relevance to this work and the interested reader is re- 

ferred to his work. 

THE NUMERICAL M•.TItOD 

Although the basic physical features of the problem 
have been described in the previous sections, the singu- 
lar nature of the differential equation poses difficulties 
in obtaining further analytical results since the solution 
cannot be expressed by standard functions. The func- 

tions R(•) and $(•) contain the unknown parameter w 
and can only be used iteratively to determine the w that 
makes 2 zero. Thus one turns to a numerical approach. 

The numerical scheme adopted in this work can be 
outlined as follows. First a test frequency w is selected; 
then the location of the singularity of the differential 
equation is determined for the test frequency w. From 
the series solution (13), one can estimate the functions 
R(•) and S(•) and their derivatives near the singularity 
x• by using the leading terms in their Taylor expansion' 

- 
1 

- + - 

(16) 

If these expressions are used to represent the solution 
near x - xw, the differential equation (9) is integrated 
numerically from the regions near xw to the lower and 
upper boundaries. Two pieces of solutions are obtained. 
One starts from the lower boundary to x•0. The other 
starts from •+0 to the upper boundary. To connect 
these two pieces of solutions properly, one has to invoke 
the results we obtained from previous discussion on the 
analytictry of the Green's function which tells us how 

to select the right contour to round the logrithmic sin- 
gularity of S(•). Once this is done, boundary values 
Rt(a),Rt(b),St(a),St(b) can be obtained. Using these 
values, the function J can be estimated from (14). By 
calculating J for several different values of w, one can 
rapidly determine wn (n=1,2,3, .... , the harmonic num- 
ber), the root of J, with very good accuracy. Finally, 
the numerical integration of the differential equation is 
carried out for •=•n to obtain the wave phase and am- 
plitude variation over x. The numerical method we used 

to integrate the differential equation was first suggested 
by Budden [1961]. Numerically, it is more appropri- 
ate to discuss the coupled differential equations in di- 
mensionless form. Lengths can be normalized by l/k, 
and the magnetic perturbation can be normalized by 
the ambient magnetic field, B, corresponding to the re- 
placements: 

kA -• A 

b•/B --• bz 

To solve the homogeneous equation (9), it is useful to 
rewrite it in the form 

dx (,u 2 
bz 

(17) 

here •e corresponds to the first term in brackets in (9) 
and bz represents bl (b2) which satisfies the lower (up- 
per) boundary condition. If one starts the calculation 
sufficiently close to x•, one can use the first terms in 

(16) as the approximate initial value for bz, and fe there 
can be inferred from (17). Using the finite difference 
method, one can integrate the differential equations to 
the lower and upper boundaries. 

A few free parameters are needed for the calculation. 
Throughout this work, we selected a - 0.1 and b - 10; :• 
was varied to determine the dependence of the damping 
of the collective mode on this parameter. It has been 
shown analytically that the collective mode is undamped 

if I is zero or very large [Dungey, 1967]. Thus there must 
be at least one I that causes the collective mode to be 

most heavily damped. 

NUMERICAL RESULTS AND DISCUSSION 

It is found from our numerical calculation that for 

any fixed A, there are a few global collective modes with 
different complex frequencies. If the Green's functions 
for these modes are plotted with respect to •, it is ob- 
served that the larger the real part of the frequency, the 
greater the number of spatial nodes along the ß axis. In 
Figure 4, we plot the amplitudes (the solid line) and rel- 
ative phases (the dotted line) versus • for the magnetic 
field be, by and bz perturbations for the first four modes 
with 1=0.5. The phase of each component is shown 
relative to fixed reference values at the lower bound- 
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Fig. 4a The amplitudes (the solid lines) and the phases 
(the dotted lines) of the magnetic field perturbation in the 
z direction for )•-0.5. The corresponding harmonic number, 

real frequency and normalized damping rate (the ratio of the 
imaginary to the real part of the frequencies) are, from the 
top panel to the bottom panel: the first harmonic (r•--1), 
wr = 0.42, 7 = -0.012; the second harmonic (n=2), wr = 
0.54, 7 = -0.011; the third harmonic (n=3), wr - 0.65, 
7 = -0.010; and the fourth harmonic (n=4), wr -- 0.77, 7 -' 
-0.009. Properties of the same four harmonics are shown in 
Figures 7 and 8 where the mode frequencies and damping 
rates are shown directly on the plots for the different panels. 
Note that • is the normalized "azimuthal" wave number, 

i.e., the wave number in the • (azimuthal) direction divided 
by the wave number in the z (field-aligned) direction. In 
the amplitude plot, each harmonic has been normalized by 
taking the largest amplitude of either b•, b• or bz to be unity. 
In the phase plot, the phase of each component relative to 
fixed reference values at the lower boundary of the box is 
plotted. 

ary of the box. From this figure one can see that al- 
though bz varies smoothly throughout the box region, b• 
changes abruptly and b• becomes very large at the singu- 
lar point. The behavior at the singularity varies among 
the harmonics. It should be emphasized that the plot 
shows the wave structure along the ß axis at an inter- 
mediate time scale, i.e., at a time long enough to neglect 
the transient effects of the initial perturbation but short 
enough to be able to observe the exponentially damped 
modes. It is seen from Figure 4 that the fundamental 
mode has one node in the box for bz and the higher 
harmonics have accordingly more nodes. One may note 
that the node of each component is not strictly zero, 
especially for the node close to the resonant field line. 
The appearance of such behavior is closely related to the 
finite damping of the mode. As the mode frequency be- 
comes a complex value, the quasi-eigenfunction is also 
a complex function. The real part and the imaginary 
part of the function do not necessarily go to zero at the 
same position. In fact the zeros for the real part and 
the imaginary part of the function are offset by a small 
value. This small value should be proportional to 7, the 

ratio of the imaginary part of the mode frequency to 
the real part of it. This nonzero node behavior is very 
important for the mode to transport wave energy from 
the global mode to the resonant field line. If the wave 
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Fig. 4b As in Figure 4a for the magnetic field perturbation 
in the • direction. 

amplitude turns out to be exactly zero, the Poynting 
vector, which is plotted in Figure 8, will vanish at those 
nodes and cannot transport the wave energy all the way 
to the resonant field line. 

The numerical results obtained here can be compared 

with the results of Allan et al. [1986a]. Despite the dif- 
ferent geometries used, similar global mode structures 
have been obtained (compare with Figure 6 of their pa- 
per). This similarity indicates that the appearances of 
the global modes are intrinsic properties of ULF waves 
in the inhomogeneous system and are not significantly 
modified by the curved field geometry they used. The 
details of the inhomogeneity, for example, whether it 
is caused by the nonuniformity of the magnetic field or 
plasma density or both of them, are expected to modify 
the solution in minor ways. 

In their work, Allan et al. noticed that different har- 

monics have different damping rates. Since they as- 
sumed finite absorption by the ionosphere, the damping 
rates they calculated came from both wave mode cou- 
pling and ionospheric absorption and it is difficult to 
separate these two effects in their calculation. On the 
other hand, in our study, no ionospheric damping is in- 

0.45 

0.50 

0.15 

0.45 

0.50 

0.15 

0.45 

0.50 

0.15 

0.45 

0.50 

0.15 

0 

6O 

-60a• 

0 • 

-1204 

-240• 

0 

-560• 

0 

-240 

-480• 

Fig. 4c As in Figure 4a for the magnetic field perturbation 
in the z direction. 
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TABLE !. Numerical Results for the First Three 
Global Mode Harmonics 

o.,r ø"i o.,i/o., r •2/,.,4/a 

0.06 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

! .00 

First Harmonic 

4.15x10 -1 2.57x10 -4 6.19x10 -4 1.16x10 -2 
4.16x10 -1 7.09x10 -4 1.71x10 -3 3.22x10 -2 
4.17x10 -1 2.70x10 -3 6.47x10 -3 1.29x10 -1 
4.17)<10 -1 5.21x10 -3 1.25x10 -2 2.84x10 -1 
4.19x10 -1 6.30x10 -3 1.51x10 -2 5.11x10 -1 
4.23x10 -1 4.95x10 -3 1.17)<10 -2 7.88x10 -1 
4.31x10 -1 2.91x10 -3 6.75x10 -3 1.11 
4.44x10 -1 1.43x10 -3 3.21x10 -3 1.45 
4.60x10 -1 6.09x10 -4 1.33x10 -3 1,80 
4.78x10 -1 2.33x10 -4 4.87)<10 -4 2.17 
4.99x10 -1 8.10x10 -5 1.62x10 -4 2.53 

0.06 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

Second Harmonic 

5.21)<!0 -1 1.97x10 -4 3.78x10 -4 8.58x10 -3 
5.22x10 -1 5.44x10 -4 1.04x10 -3 2.38x10 -2 
5.24x10 -1 2.08x10 -3 3.97x10 -3 9.48x10 -2 
5.27x10 -1 4.20x10 -3 7.97x10 -3 2.13x10 -1 
5.30x10 -1 5.86x10 -3 1.10x10 -2 3.73x10 -1 
5.36x10 -1 5.84x10 -3 1.09x10 -2 5.74x10 -1 
5.45x10 -1 4.41x10 -3 8.09x10 -3 8.09x10 -1 
5.58x10 -1 2.77x10 -3 4.97x10 -3 1.07 
5.74x10 -1 1.54x10 -3 2.69x10 -3 1.34 
5.93x10 -1 7.89x10 -4 1.33x10 -4 1.63 
6.14x10 -1 3.73x10 -4 6.07x10 -4 1.92 

0.06 

0.10 

0.20 

0.30 

0.40 

0.50 

0.60 

0.70 

0.80 

0.90 

1.00 

Third Harmonic 

6.33x10 -1 1.72x10 -4 2.71x10 -4 6.62x10 -3 
6.33x10 -1 4.74x10 -4 7.48x10 -4 1.84x10 -2 
6.36x10 -1 1.83x10 -3 2.88x10 -3 7.32x10 -2 
6.39)<10 -1 3.80x10 -3 5.95x10 -3 1.63x10 -1 
6.44x10 -1 5.74x10 -3 8.91x10 -2 2.88x10 -1 
6.50x10 -1 6.61x10 -3 1.02x10 -2 4.44x10 -1 
6.58x10 -1 5.95)<10 -3 9.05x10 -3 6.29x10 -1 
6.70x10 -1 4.43x10 -3 6.62x10 -3 8.37x10 -1 
6.85x10 -1 2.91)<10 -3 4.26x10 -3 1.06 
7.02x10 -1 1.76x10 -3 2.50x10 -3 1.30 
7.23x10 -1 9.89)<10 -4 1.37x10 -3 1.54 

for the first harmonic, the imaginary part changes by al- 
most one order of magnitude between A=0.1 and A=0.4, 
while the change of the real part is less than 2%. This in- 
dicates that the compressional and shear Alfv•n modes 
couple very strongly at certain azimuthal wave numbers 
A. 

In discussing how damping rate changes with A, the 
work of Forslund et al. [1975] is pertinent. In an investi- 
gation of radio wave absorption by a plasma, Forslund et 
al. obtained numerical solutions of an equation (their 
equation (2)) that has a form similar to our equation 
(4) (note the finite temperature correction in their cal- 
culation has only minor effects). They discovered that 
the rate of absorption was largest for a specific angle 
of incidence of the radio wave. The absorption rate was 
found to be a function of the dimensionless quantity a = 

(koL)2/asin20o; (ko is the wave number, L is characteris- 
tic scale of the inhomogeneity, and 00 is the incident an- 
gle of the radio wave). Figure 5 reproduces their results. 
By comparing the quantities in the two equations, we 
find that a, the dimensionless quantity plotted in Figure 

5, is equivalent to (A2/w4/a)[A(•o•)]2/[A'(xo•)] 2Is. For 
the Alfv•n wave velocity used in this problem [A(x•)]2/ 
[At(•)] 2/a -- 22/a, and this constant is unimportant 
for the analysis. In the right-hand column of Table 1, 

the ratio A2/w 4/a is tabulated. This ratio is also referred 
as the coupling parameter by Kivelson and Southwood 
[1986]. Note that because Forslund et al. assumed a 
continuous source, they were interested in calculating 
the rate of absorption. In our work, there is no contin- 
uous source, so we calculate the temporal damping rate 
of the mode which corresponds to the rate of absorption 
of wave energy by excitations of the system. Indeed, the 
relative damping rate we calculate is of the same order 
of magnitude as the absorption rate found by Forslund 
et al. 

Figure 6 shows the relative damping rates of the first 
three harmonics as functions of the coupling parame- 
ter. It is seen that the shape of the curves is similar 
to the Forslund et al. curve of Figure 5. One can also 
note that the maximum damping rates for the different 
harmonics occur for slightly different coupling parame- 
ters. Table I reveals that the maximum damping rate 
depends weakly on A. Allan et al., whose parameter m 

cluded. Because the damping rate obtained here comes corresponds to 10A because of a different normalization, 
purely from the contribution of the mode coupling, one 
can study the parameter dependence of the damping 
rate on A and other parameters. 

Numerical results for the first three global mode har- 
monics corresponding to different assumed values of A 
are summarized in Table 1. The first column from the 

left is A, and the second and the third columns are the 
real and imaginary parts of the mode frequencies. The 
fourth column is the relative damping rate, i.e., the ratio 
of the imaginary part to the real part of the frequencies. 
The right-hand column lists a calculated parameter de- 
fined as •2/w4/3 whose physical significance is discussed 
below. 

From Table 1, one sees that for the same harmonic, 

0.5 

o 1 .o 2.0 

(KoL) 2/3 sin2 ½0 

both the real and the imaginary parts of the frequencies Fig. 5. The absorption rate of the plasma as a function of 
change with A. However the imaginary part is much the coupling parameter indicated on the figure. The figure 
more sensitive to A than is the real part; for example, is reproduced from Kivelson and Southwood [1986]. 
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It is seen that the Poynting vector reverses sign only 
across the resonant field line, indicating that the energy 
flows to the resonant field line from both left and right 
sides. Since the field perturbation amplitude is evanes- 
cent on the left side of the resonant field line, it is easy 
to understand that the amplitude of the Poynting vec- 
tor is smaller on the left than on the right side. The 
increase in magnitude of the Poynting vector near the 
resonant field line indicates that the energy of the global 
mode perturbation is extracted to excite the continuous 
spectrum of shear Alfv•.n oscillations most strongly near 
resonant field lines. 

OBSERVATION EVIDENCE FOR 

GLOBAL MODES 

Fig. 6. 
the global mode as a function of the coupling parameter. 
Note the similar functional behavior of the functions plotted 
in Figure 5 and Figure 6. 

•2/•ø4/3 The global mode model was proposed as an explana- 
The relative damping for first three harmonics of tion of certain firmly established qualitative features of 

also noticed that for different harmonics the maximum 

coupling occurred at different m values. For the funda- 
mental mode (their (1,1) resonance), Allan et al. found 
that the strongest coupling occurs at m--3, or equiva- 
lently A--0.3. This is very close to our result as we find 

strongest coupling at A-0.5. The small discrepancy may 
arise from the different geometry used in the two studies. 
For higher harmonics, Allan et al. found the strongest 
coupling shifted to larger m. Owing to the limitations 
of their numerical method, they found that it was very 
difficult to separate the different harmonics so that in- 
dividual harmonics could be studied in detail. Parts of 

their conclusions concerning the higher harmonics may 
be spurious because of what they describe as contami- 
nation of data. 

Additional properties of these global modes can be 
described by using our numerical results. For example, 
wave polarization as a function of position can be de- 
termined. In Figure 7, we have plotted the phase angle 
by which the by perturbation leads the b= perturbation. 
When this phase angle is either positive or less than 
-180 ø , the wave is left hand polarized and when it is 
greater than -180 ø but less than 0 ø, the wave is right 
hand polarized. It is seen from this figure that the po- 
larization reverses at •w, the resonant field line position. 
However, reversals also occur when m • m,•. The num- 
ber of polarization reversals along the • axis increases 
with the harmonic order. Thus the polarization rever- 
sal alone should not be used to locate the resonant field 

line position in interpreting observed Pc 3-5 pulsation 
events as is frequently done. 

There is another parameter that characterizes the res- 
onant field line position very distinctly. This parameter 
is the Poynting vector which has been used to study 

Pc 3-5 waves in the terrestrial magnetosphere. Exam- 
ples include the occasional excitation of nearly mono- 

chromatic signals independent of latitude (or L shell) 
and reported observations of very small azimuthal wave 
number events (see Kivelson and Southwood, [1986] for 
a discussion). Quantitative tests are only now being 
initiated. 

One suggestive study is that of Crowley et al. [1987]. 
Using the European incoherent scatter radar (ElSCAT) 
and ground-based magnetometer measurements, Crow- 
ley et al. studied two large-amplitude Pc 5 pulsations 
excited by a sudden impulse. The ionospheric electron 
density, inferred for the northern hemisphere from ElS- 
CAT measurements and modeled for the southern hemi- 

sphere ionosphere, predicted a higher damping rate of 
the pulsation than was observed. The authors suggested 
that the ionospheric damping might have been compet- 
ing with wave growth controlled by the global mode of 
the magnetosphere. Once the global mode is excited, it 
continuously feeds energy at a known rate into the field 
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energy flows of ULF waves in the terrestrial magneto- 
sphere [Junginger, 1985; Junginger et al., 1985]. Figure Fig. 7. The phase by which the magnetic perturbation 

by leads bx for each harmonic plotted in Figure 4. When 
8 plots the • (radial) component of the Poynting vector. the phase crosses zero and -180 ø, the polarization reverses. 
Since the wave mode has finite damping, the Poynting Plotted at the side of each panel are the corresponding global 
vector is defined as mode frequency, relative damping rate, A and harmonic num- 

f•2• bet n. Note A is the normalized "azimuthal" wave number, o•r (Re(E) x Re(b)) dt i.e., the wave number in the y (azimuthal) direction divided S(z) - • ,to by the wave number in the z (field-aligned)dlrec•ion. 
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Fig. 8. The z component of the Poynting vector for each 
harmonic plotted in Figure 4. The only change of sign of 
the Poynting vector occurs at the resonant field line location 
and the increase of magnitude toward the resonant field line 
indicates that global mode energy flows toward the resonant 
field line from both directions. 

line through the Poynting vector we discussed above. 
CrowIcy et al. found that the rate required in their case 
was of the order predicted from the global mode calcu- 
lations. 

Other aspects of the global mode predictions remain 
to be tested. For example, the predicted amplitude and 
phase structure described in this work should be rele- 
vant to compressional perturbations observed on radial 
passes through the dayside magnetosphere. However, 
the unique features of the spatial structure will be clear 
only if the smMl-amplitude perturbations far from the 
resonant field line can be identified. 

SUMMARY AND CONCLUSION 

In an inhomogeneous magnetized plasma, the com- 
pressional Alfv•n wave mode is coupled to the shear 
Alfv•n wave mode. Because of this wave mode coupling, 
MHD waves in an inhomogeneous magnetized plasma 
differ substantially from waves present in the homoge- 
neous case. For homogeneous magnetized plasmas, the 
compressional Alfv•n wave and the shear Alfv•n wave 

can exist independently so that any perturbation can 
be decomposed into these two wave modes. The in- 
homogeneity of either magnetic field or plasma density 
distribution, which may be characterized by the varia- 
tion of the Alfv•n velocity through space, couples these 
two wave modes. Perturbations in the inhomogeneous 
magnetized plasma can no longer be separated into the 
compressional Alfv•n mode and the shear Alfv•n mode. 
Rather the perturbation has characteristics of both wave 

modes. One interesting feature which emerges in the 
inhomogeneous case is that the perturbation may be- 
have quite differently on different time scales. Immedi- 
ately following the disappearance of the transients, the 
perturbation is characterized by components of collec- 
tive oscillations, i.e., oscillations with same frequency 
over the whole spatial region. The collective oscillation 
damps exponentially, and at long times the perturbation 
is characterized by the oscillations of all field lines with 

their own resonant frequencies in both radial and azimu- 

thai directions. The component in the radial direction 
damps as a negative power of time. In a nondissipa- 
five system for the long time limit, perturbations are 
characterized by each field line oscillating with its own 
resonant frequency purely in the azimuthal direction. 

The major features of the above points have been dis- 
cussed qualitatively by Kivelson and Southwood [1985, 
1986]. In this work we have confirmed them quanti- 
tatively. In addition, through the Laplace transform 
approach and the Green's function formalism, we have 
presented a way to formulate the coupled ULF wave 
problem for further analytical discussions. The numeri- 
cal results reveal the spatial profiles of the wave modes 
and other associated wave properties. 

Concerning the possible application of our results to 
data analysis, we emphasize that two distinct observa- 

tional features, namely perturbations in which all field 
lines resonate at their natural frequencies and pertur- 

bation dominated by a single (global mode) frequency 
over a large part of the magnetosphere, may be present 
at times following an initial perturbation. The discrete 
frequency response should be observed only at times 
short enough so that the exponentially damped mode is 
still dominant. The former, namely the perturbations of 
field lines resonating at their natural frequencies, should 
be observed at times long enough to neglect the expo- 
nentially damped modes; and the commonly observed 
azimuthal polarization is consistent with the theoretical 

prediction that such polarization remains at very long 
times. 

Properties of observed magnetospheric ULF pulsa- 
tions that result from warm plasma effects, finite Larrnor 
radius effects, or aspects of a realistic magnetic geom- 
etry such as particle trapping are beyond the scope of 
this work. Nonetheless, we believe that many magneto- 
spheric observations can be interpreted on the basis of 
the model we have investigated. 
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