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Analytic Formulation for
Kinematics, Statics, and Shape
Restoration of Multibackbone
Continuum Robots Via Elliptic
Integrals
This paper presents a novel and unified analytic formulation for kinematics, statics, and
shape restoration of multiple-backbone continuum robots. These robots achieve actuation
redundancy by independently pulling and pushing three backbones to carry out a bending
motion of two-degrees-of-freedom (DoF). A solution framework based on constraints of
geometric compatibility and static equilibrium is derived using elliptic integrals. This
framework allows the investigation of the effects of different external loads and actuation
redundancy resolutions on the shape variations in these continuum robots. The simulation
and experimental validation results show that these continuum robots bend into an exact
circular shape for one particular actuation resolution. This provides a proof to the ubiq-
uitously accepted circular-shape assumption in deriving kinematics for continuum robots.
The shape variations due to various actuation redundancy resolutions are also investi-
gated. The simulation results show that these continuum robots have the ability to redis-
tribute loads among their backbones without introducing significant shape variations. A
strategy for partially restoring the shape of the externally loaded continuum robots is
proposed. The simulation results show that either the tip orientation or the tip position
can be successfully restored. �DOI: 10.1115/1.4000519�

1 Introduction

Continuum robots �a term coined in Ref. �1�� have been the

subject of extensive research due to their potential use in a wide

range of applications �2–6�. Unlike articulated designs of snake-

like robots, continuum robots substitute articulated spines with

flexible members �often called backbones�. These members may

be elastomers �2�, springs �7,8�, bellows �4,5�, flexures �9�, or

flexible beams �10–12�. Use of these flexible members presents

various advantages in terms of reduced weight, obstacle avoid-

ance, flexibility, safe interaction with unstructured environments,

tolerance for geometric variations in grasped objects, and so on.

Continuum robots have a great potential for a variety of medi-

cal applications since they provide a safe and soft interaction with

the human anatomy due to their inherent flexibility. Suzumori et

al. �13� fabricated a flexible actuator driven by an electropneu-

matic system at various diameters as catheter tips, robotic hands,

and snakelike manipulators. Haga et al. �14� fabricated continuum

catheters using shape memory alloy �SMA� coils and etched SMA

plates for actuation. Dario et al. �15� fabricated a steerable end

effector for knee arthroscopy using four extensible SMA wires,

while Asari et al. �16� used pneumatically actuated bellows to

fabricate continuum robots for endoscopy and colonoscopy. The

design of Ref. �7� using wire-actuated flexible spring for con-

tinuum robots was adapted for medical applications by Breedveld

and Hirose �8� and Patronik et al. �17�. Breedveld and Hirose �8�
designed a dexterous endoperiscope while Patronik et al. �17� re-

cently developed the HeartLander robot for the minimally inva-

sive therapy delivery to the surface of a beating heart. Peirs et al.

�9� designed a surgical robot using a wire-actuated NiTi tube

equipped with flexure joints as a flexible backbone. In addition,

continuum robots have been investigated for use as steerable can-

nulas for image-guided drug delivery, biopsy, and brachytherapy

�18–21�.
Recently, Simaan et al. �11� presented a new type of continuum

robot using multiple flexible backbones with a push-pull actua-

tion. This design is a modification of the designs that use a single

flexible backbone actuated by wires �22–24�. Figure 1�c� shows a

prototype developed for Minimally Invasive Surgery �MIS� of the

throat and the upper airways �25�.
This type of continuum robot consists of several disks and four

superelastic NiTi tubes as its backbones. As shown in Figs.

1�a�–1�c� and 2�a�–2�c�, one primary backbone is centrally lo-

cated and is glued to all the disks. Three identical secondary back-

bones are equidistant from each other and from the primary back-

bone. The secondary backbones are only attached to the end disk

and can slide in appropriately toleranced holes in the spacer disks

and in the base disk. Two consecutive disks form a subsegment of
the robot. Each secondary backbone is actuated in a push-pull
mode. A 2-DoF bending motion of the continuum robot is
achieved through a simultaneous independent actuation of three
secondary backbones �actuation redundancy�.

In order to fully understand the characteristics of this type of
continuum robot, the following topics need to be addressed.

• Kinematic and static modeling: given the desired orientation
of the end disk, find the actuation lengths of the secondary
backbones, as well as obtain the internal load distribution
within the robot structure.

• Stiffness modeling: given an external wrench acting on the
end disk, find the variation in its position and orientation.

Among the aforementioned examples of continuum robots,
Refs. �22–24� presented kinematics, manipulability, control, and
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compliance analysis for cable-actuated continuum robots with one
flexible backbone. In these works, it was assumed that each flex-
ible segment bends into a circular shape. To address the issue of a
circular bending assumption, Li and Rhan �26� provided a numeri-
cal solution for the nonlinear elasticity equations governing the
shape of a planar cable-actuated continuum robot in addition to
presenting modeling errors. However, these results do not apply
here due to the structural differences.

This paper presents an analytic formulation for kinematics, stat-
ics, and shape restoration for this type of continuum robot. The
contributions include:

• A novel and unified analytic modeling framework is formu-
lated for continuum robots with multiple flexible backbones.
This framework solves kinematics, statics, and stiffness of
the entire continuum robot via elliptic integrals.

• The modeling framework is used to investigate the effects of
different actuation redundancy resolutions on shape varia-
tions of the multibackbone continuum robot. A method for
actuating the backbones in order to partially restore the
shape of an externally loaded continuum robot is presented.

The approach taken in this paper is as follows: elliptic integrals
are used to express the backbones’ deflected shapes within a sub-
segment of the continuum robot; static equilibrium is formulated
such that both the kinematics problem and the stiffness problem
can be solved within the same framework; results for the distal
subsegment are propagated to adjacent subsegments; the results

for both the actuation redundancy resolutions and the shape res-
toration are then obtained for the entire robot.

Although finite element methods could also be used to solve
these problems, elliptic integrals are chosen for two major advan-
tages: �i� the formulation and the related partial derivatives are
obtained analytically, which allows a fast convergence; this im-
plies the possibility of extending the presented results for future
real-time applications �e.g., online shape restoration and actuation
compensation�; and �ii� the circular bending shape of the robot in
one particular actuation mode is analytically proven, while the
shape can only be observed to numerically approach a circular arc
if a finite element method is used.

Section 2 summarizes coordinate systems and modeling as-
sumptions. Using elliptic integrals, Sec. 3 presents a unified kine-
static formulation framework for solving kinematics, statics, and
shape restoration. Section 4 presents solutions for kinematics and
statics of the continuum robot under different actuation modes as
well as validates an approximate model through simulations and
experiments. Section 5 presents solutions of shape restoration and
Sec. 6 provides conclusions.

2 Coordinate Systems and Modeling Assumptions

2.1 Coordinate Systems. The following coordinate systems
�shown in Figs. 2�a�–2�c�� are defined to help derive and describe
the kinematics and statics of the continuum robot.

• Base disk coordinate system �BDS� �x̂b , ŷb , ẑb� is attached to

the base disk, whose XY plane is defined to coincide with
the upper surface of the base disk and its origin is at the

center of the base disk. x̂b points from the center of the base

disk to the first secondary backbone while ẑb is normal to
the base disk. The three secondary backbones are numbered

according to the definition of �i.
• Bending plane coordinate system �BPS� �x̂1 , ŷ1 , ẑ1� is de-

fined such that the continuum robot bends in its XZ plane,
with its origin coinciding with the origin of BDS. When the

robot is in a straight configuration, x̂1 is defined by the com-
manded �desired� instantaneous linear velocity of the end
disk.

• End disk coordinate system �EDS� �x̂e , ŷe , ẑe� is obtained

from BPS by a rotation about ŷ1 such that ẑ1 becomes the
backbone tangent at the end disk. The origin of EDS is also
translated to the center of the end disk.

• Gripper coordinate system �GCS� �x̂g , ŷg , ẑg� is attached to

an imaginary gripper affixed to the end disk. x̂g points from
the center of the end disk to the first secondary backbone

and ẑg is normal to the end disk. GCS is obtained by a

right-handed rotation about ẑe.
• Subsegment coordinate system �SPS� �x̂

s

�t�
, ŷ

s

�t�
, ẑ

s

�t�� �t

Fig. 1 Continuum robots with actuation redundancy: „a… a
�7.5 mm one, „b… a �4.2 mm one, and „c… a two-segment
robot

Fig. 2 Kinematics nomenclature with the definition of � for „a… a bent robot, „b… a
straight robot, and „c… the distal subsegment
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=1,2 , . . . ,n, numbering first from the distal end� is defined
to facilitate solving the kinematics and statics for each sub-

segment. Its XY plane is aligned with the robot bending

plane, while its YZ plane is centered at the corresponding

spacer disk of the subsegment. �x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1�� is shown in

Fig. 2�c� for the distal subsegment.

2.2 Modeling Assumptions. The following modeling as-
sumptions are made.

• The superelastic material NiTi is assumed to have linear and
isotropic relations between stain and stress �27� in the pre-
sented robot. The backbones behave like Euler–Bernoulli
beams.

• The robot is under static equilibrium.
• According to Fig. 3, gravity is ignored in the analysis, since

the gravitational potential energy is less than 0.014% of the
elastic deformation energy for a small continuum robot. This
plot was generated for a vertically placed robot using nu-
merical values from Table 1. Its shape is assumed circular

�density of NiTi is 6.2 g /cm3, each disk weighs 0.32 g�.
• The robot disks are thin and rigid. Friction between the

backbones and the disks is neglected.
• The primary and the secondary backbones are always per-

pendicular to the base, the spacer, and the end disks. The
perpendicularity of the backbones with respect to the spacer
disks will be validated later in Sec. 4.1 where results for
adjacent subsegments are obtained.

3 Kinestatic Formulation

This section introduces a unified formulation framework.
Within one subsegment made up of four elastic beams and two
disks, there are constraints for the static equilibrium of the robot
disks, as well as constraints for the geometric compatibility be-
tween the disks and the backbones. Formulation of these two sets
of constraints will be used in later sections to solve for kinematics,
statics, and shape restoration of the robot.

As shown in Fig. 2�a�, three secondary backbones are actuated
in a push-pull mode to bend the continuum robot to a desired tip

angle �specified by �L� in a desired bending plane �specified by ��.
In order to solve the kinematics and statics for the entire robot,
analysis was first applied to the distal subsegment of the robot, as

shown in Fig. 2�c�. Results for the distal �first� subsegment were
then propagated to adjacent subsegments to form the solution for
the entire robot.

An implicit assumption adopted here is that all of the back-
bones bend in a planar manner: the primary backbone bends in the
bending plane while the secondary backbones bend in planes par-
allel to the bending plane. Solutions obtained in Sec. 4.1 will
validate this assumption. This assumption eventually holds be-
cause in addition to neglecting the gravity the external wrench is
assumed in the bending plane.

3.1 Static Equilibrium Constraints. The analysis for each
subsegment involves four backbones and two disk planes

�B
1

�t�
B

2

�t�
B

3

�t�
and G

1

�t�
G

2

�t�
G

3

�t��. Figure 2�c� shows the first subseg-
ment, while Fig. 4 shows two consecutive subsegments. For the

tth subsegment, there is a force f
p

�t�
and a moment m

p

�t�
acting on

the primary backbone at point G
p

�t�
as well as force f

i

�t�
and mo-

ment m
i

�t�
acting on the ith secondary backbone at point G

i

�t�
by

disk G
1

�t�
G

2

�t�
G

3

�t�
. For the first �distal� subsegment, the robot disk

G
1

�1�
G

2

�1�
G

3

�1�
could also be subject to an external force fe and a

moment me.
Referring to Fig. 2�c�, static equilibrium of the end disk

G
1

�1�
G

2

�1�
G

3

�1�
in the first subsegment gives

cs
�1� = � �

i=1

3

�− fi
�1�� + �− fp

�1�� + fe

�
i=1

3

�− mi
�1� + Gp

�1�Gi
�1� � �− fi

�1��� + �− mp
�1�� + me

	 = 0

�1�

where G
p

�1�
G

i

�1�
is the vector from point G

p

�1�
to G

i

�1�
.

Equation �1� states the static equilibrium of the end disk, which
is glued to all of the backbones. In contrast, a spacer disk is only
glued to the primary backbone while the secondary backbones can
slide in its holes.

Referring to the side view of Fig. 4, the spacer disk with

�x̂
s

�t−1�
, ŷ

s

�t−1�
, ẑ

s

�t−1�� is under static equilibrium. −f
j

�t�
and −m

j

�t�
are

the force and moment exerted on the disk by the backbones in the

subsegment t, while f
j

�t−1�
and m̃

j

�t−1�
are the force and moment

exerted on the disk by the backbones in the subsegment t−1.

Since the secondary backbone can slide in the direction of x̂
s

�t−1�
,

−f
i

�t�
and f

i

�t−1�
need to balance each other in this direction. In

Fig. 3 Gravitational energy over the elastic energy ratio

Table 1 Numerical values of the robot variables

L
sp

�1�
=30 mm r=3 mm �=15 deg Ep=Es=62 GPa

��1�=30 deg dop=doi=0.889 mm dip=dii=0.762 mm

Fig. 4 Static equilibrium of a spacer disk
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addition, if −f
i

�t�
counteracts f

i

�t−1� �i=1,2 ,3�, −f
p

�t�
will also coun-

teract f
p

�t−1�
. Otherwise the force balance in the direction of x̂

s

�t−1�

will not hold. Hence, the static equilibrium constraints for the
spacer disk are formulated as follows:

cs
�t� = �

− f j
�t� · x̂s

�t−1� + f j
�t−1� · x̂s

�t−1�, j = 1,2,3,p


�
i=1

3

�− fi
�t�� + �− fp

�t�� + �
i=1

3

�fi
�t−1�� + fp

�t−1�� · ŷs
�t−1�

�
i=1

3 
 − mi
�t� + Gp

�t�Gi
�t� � �− fi

�t��

+ m̃i
�t−1� + Gp

�t−1�Gi
�t−1� � fi

�t� � − mp
�t� + m̃p

�t−1� 	 = 0

�2�

where t=2,3 , . . . ,n. In the equilibrium, f
j

�t−1�
and m

j

�t−1�
are trans-

lated from G
j

�t−1�
to B

j

�t−1�
, f

j

�t−1�
remains the same, and m̃

j

�t−1�

=m
j

�t−1�
+B

j

�t�
G

j

�t�
� f

j

�t−1�
. The second row indicates the force bal-

ance in the direction of ŷ
s

�t−1�
and the third row indicates the mo-

ment balance.

Please note that f
p

�t�
, m

p

�t�
, f

i

�t�
, m

i

�t�
, x̂

s

�t�
, ŷ

s

�t�
, and ẑ

s

�t� �t
=1,2 , . . . ,n� are different vectors for the n subsegments in the

robot. They have different forms when expressed in different co-
ordinates. For the manipulations such as those in Eqs. �1� and �2�,
these vectors need to be expressed in one consistent coordinate
system. According to the planar bending assumption mentioned

before, f
j

�t�
and m

j

�t�
assume the following form in �x̂

s

�t�
, ŷ

s

�t�
, ẑ

s

�t��,
with f

j

�t�
�0:

f j
�t� = � f j

�t� cos � j
�t� f j

�t� sin � j
�t� 0 �T �3�

m j
�t� = �0 0 m j

�t� �T �4�

where f
j

�t�
is the amplitude and �

j

�t�
is the angle indicating the force

direction.
Since only the planar bending problem of a thin beam has a

closed-form expression, fe and me assume the following forms in

�x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1��:

fe = � fex fey 0 �T and me = �0 0 me �T �5�

3.2 Geometric Compatibility Constraints. Besides the stat-
ics equilibrium constraints formulated in Eqs. �1� and �2�, there
also exist geometry compatibility constraints. According to Eq. �3�
from Ref. �28� or a similar derivation in Refs. �29–32�, the differ-
ential equation governing the planar shape of the primary back-

bone and the ith secondary backbone can be written as in Eq. �6�
�j=1,2 ,3 , p�. The equation is written in �x̂

s

�t�
, ŷ

s

�t�
, ẑ

s

�t�� and the

minus sign comes from the downward deflection, as shown in

Figs. 2�c� and 5. �L
sj

�t� is the deflection angle at the distal tip of the

backbones in the tth subsegment. Integrating Eq. �6� along the
backbones leads to Eqs. �7�–�9�

ds =�E jI j

2

− d�

�a j
�t� − f j

�t� cos�� − � j
�t��

�6�

where a
j

�t�
= �m

j

�t��2
/ �2E jI j�+ f

j

�t�
cos��L

sj

�t� −�
j

�t��


0

Lsj
�t�

ds =�E jI j

2
I1j

�t� �7�

where I1j
�t� �

0

�L
sj
�t�

− d�

�a j
�t� − f j

�t� cos�� − � j
�t��


0

Lsj
�t�

cos �ds =�E jI j

2
Intcj

�t� �8�


0

Lsj
�t�

sin �ds =�E jI j

2
Intsj

�t� �9�

where Intcj
�t� �

0

�L
sj
�t�

− cos �d�

�a j
�t� − f j

�t� cos�� − � j
�t��

and Intsj
�t� �

0

�L
sj
�t�

− sin �d�

�a j
�t� − f j

�t� cos�� − � j
�t��

as well as �
0

L
sj

�t�

cos �ds= �B
j

�t�
G

j

�t�� �x and �
0

L
sj

�t�

sin �ds= �B
j

�t�
G

j

�t�� �y
while �x and �y stand for the X and the Y coordinates.

According to Fig. 2�c�, since the disk G
1

�t�
G

2

�t�
G

3

�t�
is rigid and is

perpendicular to all backbones, the value of �L
sj

�t� and the geomet-

ric compatibility constraints are given in Eqs. �10� and �11�, re-
spectively

�L
sj
�t� = − ��t�, j = 1,2,3,p �10�

�Bp
�t�Bi

�t� + Bi
�t�Gi

�t���x,y = �Bp
�t�Gp

�t� + Gp
�t�Gi

�t���x,y �11�

where B
p

�t�
B

i

�t�
, B

i

�t�
G

i

�t�
, B

p

�t�
G

p

�t�
, and G

p

�t�
G

i

�t�
are all vectors in

�x̂
s

�t�
, ŷ

s

�t�
, ẑ

s

�t��. The X and Y components are the only active con-

straints because the primary and secondary backbones bend in
parallel planes.

The geometric compatibility constraints of Eq. �11� can be re-
written as below, with details in Appendix A

cc
�t� = 0 =�

�EpIp

2
Intcp

�t� −�E1I1

2
Intc1

�t� − r sin ��t� cos �1

�EpIp

2
Intsp

�t� −�E1I1

2
Ints1

�t� − r cos �1�cos ��t� − 1�

�EpIp

2
Intcp

�t� −�E2I2

2
Intc2

�t� − r sin ��t� cos �2

�EpIp

2
Intsp

�t� −�E2I2

2
Ints2

�t� − r cos �2�cos ��t� − 1�

�EpIp

2
Intcp

�t� −�E3I3

2
Intc3

�t� − r sin ��t� cos �3

�EpIp

2
Intsp

�t� −�E3I3

2
Ints3

�t� − r cos �3�cos ��t� − 1�

	
�12�

If f
j

�t�
=0, the integrals of I

1j

�t�
, Int

cj

�t�
, and Int

sj

�t�
can be directly de-

rived from Eqs. �7�–�9�, using Eq. �10�, j=1,2 ,3 , p

Fig. 5 Deformed primary backbone of the tth subsegment as a

result of force f
p

„t…
and moment m

p

„t…
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I1j
�t� = �2E jI j�

�t�
/�m j

�t�� �13�

Intcj
�t� = �2E jI j sin ��t�

/�m j
�t�� �14�

Intsj
�t� = �2E jI j�cos ��t� − 1�/�m j

�t�� �15�

If f
j

�t�
�0, the integrals of I

1j

�t�
, Int

cj

�t�
, and Int

sj

�t�
can be analytically

expressed using elliptic integrals. Derivation details are listed in
Appendix B with results summarized below

Intcj
�t� = cos � j

�t�Icj
�t� + sin � j

�t�Isj
�t� �16�

Intsj
�t� = sin � j

�t�Icj
�t� − cos � j

�t�Isj
�t� �17�

where I
1j

�t�
and I

cj

�t�
are listed in Table 2 and

Isj
�t� =

2

f j
�t�
 �m j

�t��
�2E jI j

− �a j
�t� − f j

�t� cos � j
�t�� �18�

where a
j

�t�
= �m

j

�t��2
/ �2E jI j�+ f

j

�t�
cos���t�+�

j

�t��, which is rewritten

from a
j

�t�
in Eq. �6� by using Eq. �10�.

In Table 2, F�z ,k� and E�z ,k� are the incomplete elliptic inte-

grals of the first kind and the second kind, respectively. They are
defined as the following:

F�z,k� =
0

z
d�

�1 − k2 sin2 �
�19�

E�z,k� =
0

z

�1 − k2 sin2 �d� �20�

Results of Eqs. �25�–�28� are directly based on the equations of
289.00, 289.03, 293.07, 331.01, 290.00, 290.04, 291.00, 291.03,
315.02, and 318.02 from Ref. �33�. In Table 2, the expressions for

I
1j

�t�
and I

cj

�t�
are listed for four different scenarios because the afore-

mentioned equations have their valid input value ranges.

4 Kinematics

The continuum robot’s kinematics can be presented more con-

veniently by using a configuration variable �, as defined in the
Nomenclature. Its instantaneous direct kinematics from the con-

figuration space � to the task space x, and the instantaneous

inverse kinematics from the configuration space � to the joint

space q are then given by

ẋ = Jx��̇ �21�

q̇ = Jq��̇ �22�

where both Jx� and Jq� depend on the actual shape of the back-
bones of the continuum robot.

4.1 Actuation Redundancy Resolution. With the analysis
formulated in Sec. 3 the inverse kinematics problem of bending

the distal subsegment to a specific angle ��1� under different ac-
tuation modes can be written as a constrained optimization prob-
lem

xa
�1� = arg min��f123p − fuser�

TW�f123p − fuser�� �23�

subject to:��
cs

�1�

cc
�1� � = 0

�EpIp/2I1p
�1� − Lsp

�1� = 0
� �24�

where x
a

�t�
�R

12�1

= �f
1

�t�
f
2

�t�
f
3

�t�
f

p

�t�
�

1

�t�
�

2

�t�
�

3

�t�
�

p

�t�
m

1

�t�
m

2

�t�
m

3

�t�
m

p

�t��T and

f
123p

�t�
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1

�t�
f
2

�t�
f
3

�t�
f

p

�t��T. f
j

�t�
, �

j

�t�
, and m

j

�t�
are from Eqs. �3� and

�4�. The first two sets of constraints are defined in Eqs. �1� and
�12�, while the third set of constraints states the length of the
primary backbone equals its predetermined value.

In Eq. �23�, fuser= �f1_user f2_user f3_user fp_user�T is a user speci-

fied target value for the backbone loads while W is a weight
matrix.

The constrained minimization problem in Eq. �23� can be
treated by seeking the solutions of its Karush–Kuhn–Tucker
�KKT� equations, as described in Ref. �34�. The KKT equations of
this optimization problem are solved using sequential quadratic
programming �SQP� as detailed in Refs. �34–36�. The actual
implementation uses MATLAB 2008A

®
’s optimization toolbox. Since

the formulation of the KKT equations involves the partial deriva-
tives of the constraints in Eq. �24�, the analytical expressions of
these partial derivatives are derived, with some details presented
in Appendix C.

Actuation mode 1. Minimal force on the primary backbone. The

minimization problem of Eq. �23� is solved for fuser

= �0 0 0 0�T and W=diag�0,0 ,0 ,1�. Numerical values of the

structure of the continuum robot are from the Nomenclature. Re-
sults are from Table 1 as well as plotted in Figs. 6 and 7. Com-
putation was conducted on a 2.4 GHz duo core laptop with an
average convergence time of 95–120 ms. Figure 7 registers and
overlays the theoretic results to an image of an actuated subseg-
ment under a microscope �shown in Fig. 15�. The predicted shapes
of the backbones fit the actual shape very well �the maximal dis-
crepancy between the actual shape and the predicted shape is 0.09
mm�. Hypothetical circular arcs are also drawn in dashed lines to
show the shape deviation between the actual backbones and cir-
cular arcs in Figs. 6 and 7.

From the results in Table 3, the primary backbone is subject to

negligible force �f
p

�1�
=0.000�10−7N�. According to the

Bernoulli–Euler beam theory, a beam with a pure-moment load
will resemble a purely circular arc. The obtained loading condi-
tion that converges to a pure-moment scenario suggests that the
primary backbone bends into a perfectly circular shape.

With results obtained for the distal �first� subsegment, the shape
of the remaining subsegments �from the second subsegment to the

nth subsegment� now can be obtained sequentially by solving

��x
a

�t��T ��t��T for the tth subsegment from the following nonlinear

equations:
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�
cs

�t�

cc
�t�

�EpIp/2I1p
�t� − Lsp

�t� 	 = 0 �29�

where x
a

�t�
is defined in Eq. �23� �t=2,3 , . . . ,n� and c

s

�t�
and c

c

�t�
are

defined in Eqs. �2� and �12�, respectively.

For a robot with the same subsegment length �identical L
sp

�t�
for

all the subsegments�, results for the tth subsegment �t
=2,3 , . . . ,n� solved from Eq. �29� are identical to the results of

the distal �first� subsegment

xa
�t� = xa

�1�, t = 2,3, . . . ,n �30�

Then the following relations hold:

Table 2 Integration results using elliptic integrals
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Table 3 Results for the actuation mode 1

Unit: N Unit: rad Unit: mN m Unit: mm

f
1

�1�
=12.144 �

1

�1�
=−0.2618 m

1

�1�
=−28.888 L

s1

�1�
=28.396

f
2

�1�
=8.890 �

2

�1�
=2.8798 m

2

�1�
=−0.009 L

s2

�1�
=31.291

f
3

�1�
=3.254 �

3

�1�
=2.8798 m

3

�1�
=−10.483 L

s3

�1�
=30.452

f
p

�1�
=0.000 �

p

�1�
=0.000 m

p

�1�
=−15.269 L

sp

�1�
=30.000 Fig. 6 The actual shape and circular arcs of one subsegment

in actuation mode 1
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Li = nLsi
�1� �31�

�0 − �L = n��1� �32�

qi = Li − L = nLsi
�1� − L �33�

i = fi
�n� · x̂s

�n�, i = 1,2,3 �34�

where �L, qi, i, and so on, are defined in the Nomenclature.
This phenomenon can be qualitatively verified according to Fig.

4: If the length of two adjacent subsegments is identical, the ith

subsegment and the �i−1�th subsegment are symmetric with re-

spect to the XY plane of �x̂
s

�t−1�
, ŷ

s

�t−1�
, ẑ

s

�t−1�� in the absence of

external disturbances. Hence, the values of x
a

�t�
for these two sub-

segments should be the same. This symmetry also validates the
assumption that spacer disks are perpendicular to the secondary
backbones. If the tangent to the secondary backbones is not per-
pendicular to the spacer disk, this symmetry cannot hold.

The shapes for all of the backbones for the entire robot are now
solved. The obtained results validate the assumption of planar
bending patterns in Sec. 3.

Please note that in this actuation mode the shape of the primary
backbone is exactly circular. A closed-form instantaneous direct

kinematics from the configuration space � to the task space x can
be derived, as in Ref. �37�

Jx� = �
L cos �

��L − �0�cos �L − sin �L + 1

��L − �0�2
− L

sin ��sin �L − 1�

�L − �0

− L sin �
��L − �0�cos �L − sin �L + 1

��L − �0�2
− L

cos ��sin �L − 1�

�L − �0

L
��L − �0�sin �L + cos �L

��L − �0�2
0

− sin � cos � cos �L

− cos � − sin � cos �L

0 − 1 + sin �L

	 �35�

The exact inverse kinematics from the configuration space � to

the joint space q is shown in Eq. �33�. However, there is not a

closed-form expression for Jq�.
Actuation mode 2. Distributed loads on all the backbones. It

was shown in Ref. �38� that the use of multiple flexible backbones
could allow improved distribution of load among the backbones
via proper actuation redundancy resolutions. This property will be
explored here. One possible formulation of this load redistribution
problem could be the same as the minimization problem in Eq.

�23� for fuser= �5 5 5 5�T and W=diag�1 / �EsIs�, 1 / �EsIs�,
1 / �EsIs�, 1 / �EpIp��. Larger values in fuser lead to smaller compres-

sive forces, since the compressive forces are defined negative in

�x̂
s

�t�
, ŷ

s

�t�
, ẑ

s

�t��. However, values in fuser should not be too large

otherwise the pulling force on one backbone can exceed the
strength of the backbone or the strength of the backbone-to-end-

disk connection. W takes the bending stiffness of each backbone
into account.

Simulation results are listed in Table 4 as well as plotted in Fig.

8 for the same structure defined by Table 1. Figure 8 also draws

the shape of the subsegment under actuation mode 1.

As shown in Fig. 8�a�, the end disk is retracted in the x̂
s

�1�

direction with the orientation remaining the same in actuation

mode 2. The end disk retraction is about 0.03 mm or 0.01% of the

subsegment length.

The rest of the subsegments can be solved using Eq. �29� to

form the kinematics for actuation mode 2.

From the obtained results, the structural characteristics of this

type of continuum robot can be concluded: loads on the back-

bones can be redistributed by fine actuation of the secondary

backbones. The position variation in the tip is truly negligible and

the orientation will remain the same.

In this actuation mode, although the exact shape can be ob-

tained, neither the instantaneous inverse kinematics nor the instan-

taneous direct kinematics has a closed-form expression. Although

load distributions for the two actuation modes are very different,

the shape discrepancy between them is quite small. An approxi-

mate model is derived and validated through experiments in Sec.

4.2.

Results in Tables 3 and 4 can be qualitatively justified through

Fig. 9, which shows the distal subsegment subject to no external

disturbance. Since the constraint conditions at the two disks in

Fig. 9 are symmetric �at both disks, backbones are perpendicular

to the disks and all are in static equilibrium�, there should be a

central plane, to which the shape and loading conditions of the

backbones are symmetric. The forces exerted on the backbones by

the robot disk G
1

�1�
G

2

�1�
G

3

�1�
would only have components in the

Fig. 7 The calculated shape „solid lines… and circular arc
„dashed lines… overlaid over the actual shape of one subseg-
ment in actuation mode 1

Table 4 Results for the actuation mode 2

Unit: N Unit: rad Unit: mN m Unit: mm

f
1

�1�
=13.016 �

1

�1�
=−0.2618 m

1

�1�
=−29.680 L

s1

�1�
=28.361

f
2

�1�
=8.120 �

2

�1�
=2.8798 m

2

�1�
=−1.595 L

s2

�1�
=31.236

f
3

�1�
=2.456 �

3

�1�
=2.8798 m

3

�1�
=−11.681 L

s3

�1�
=30.408

f
p

�1�
=2.440 �

p

�1�
=2.8798 m

p

�1�
=−11.958 L

sp

�1�
=30.000

Journal of Mechanisms and Robotics FEBRUARY 2010, Vol. 2 / 011006-7



direction of x̂c. If there were Y components in these forces, the

other robot disk in Fig. 9 would generate identical Y components
due to the symmetry. Since there is no external force to balance

them, the Y component cannot exist. Hence, all of the forces will

be in the direction of x̂c or −x̂c, as seen in Tables 3 and 4, where

�
j

�1�
values are either identical or offset by 
. Furthermore, m

2

�1�

values in Tables 3 and 4 are small, which indicates the bending
shape of the next secondary backbone, which is generated mainly

by the compressing force f
2

�1�
.

4.2 An Approximate Kinematic Model and Its Experimen-
tal Validation. When these continuum robots are implemented as
distal dexterity enablers, a formulation of the inverse kinematics

from the configuration space � to the joint space q for fast cal-
culation is required to facilitate telemanipulation and the robot
control �6,39�. Based on the fact proved in Sec. 4.1 that the shape
of the continuum robot is circular under the actuation mode 1, an
approximate formulation of the inverse kinematics is derived, also
available in Refs. �11,22,24�

Li = L + qi = L + �i��L − �0� �36�

�i � r cos��i�, i = 1,2,3 �37�

This approximate model is verified by a continuum robot and its
actuation unit, as shown in Figs. 10�a�–10�c�. The diameter of this
robot is 7.5 mm. Each secondary backbone is actuated in a push-
pull mode by the actuation unit. The linear slider and the encoder
at the motor shafts allow a positioning accuracy of 0.025 mm.

The robot was actuated by rods, which were glued to the sec-
ondary backbones. These actuation rods were driven by lead

screws in the actuation unit. Actuation length qi is calculated us-
ing the approximate model, Eq. �36�. A series of pictures of the
robot shown in Figs. 10�a�–10�c� was taken while the robot was
bent to different angles. These pictures were transformed into gray
scale and edges were detected using Canny masks �40�. Then a
third order polynomial was fitted to each bending shape of the
robot to parameterize the shape �37�.

Figure 11 shows the actual shape of the primary backbone com-
pared with a circular shape, when the actual end effector angle is

set equal to: �L=70 deg, �L=40 deg, and �L=15 deg. To quan-
titatively estimate how close the actual bending shape is to a cir-
cular shape, the actual tip position is calculated by an integral
along the actual primary backbone shape. The results show that

the robot tip position variation is smaller than �0.45 mm.
When actuation commands were issued according to Eq. �36�,

the actual �L was larger than the desired value �less bending�. A

series of experiments were conducted. The actual �L was extracted
from pictures similar to the ones shown in Figs. 10�a�–10�c�. The

actual versus the desired values of �L were plotted in Fig. 12. A
linear regression was fitted to these experimental results and the

result is given in Eq. �38�, where �̄L is the desired end effector

value, �=1.169 and �Lc=15.21 deg.

Fig. 8 Calculated shapes of the last subsegment under differ-
ent actuation modes: insets „a… and „b… provide enlarged side
views

Fig. 9 Diagram for qualitative justification of the simulation
results

Fig. 10 A �7.5 mm continuum robot with its actual bending
shape under configurations of „a… �L=60 deg,�=0 deg; „b… �L

=15 deg,�=0 deg, and „c… a close-up view of one spacer disk
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�̄L = ��L − �Lc �38�

The appearance of �Lc is due to defining the straight configuration

as �L=
 /2. Based on the experimental results, Eq. �36� needs to
be corrected as follows:

Li = L + qi = L + �i����L − �c� − �0� �39�

Equation �36� is from the approximate kinematic model based on
the assumption that all of the backbones are circular. Equation
�39� is from Eq. �36� based on experimental corrections. In order
to compare the theoretic results with the experimental results,

theoretic results of q solved from Sec. 4.1 are plotted in Fig. 13,

together with q values calculated from Eq. �39�. From Fig. 13,
there is still some discrepancy between the theoretical results and
the experimental results. This can be due to the manufacturing and
assembling accuracy, compliance of the actuation unit, material
uncertainties, local bending within the holes in the spacer disks,
system friction, and so on.

5 Shape Restoration

When an external wrench is exerted at the tip of the continuum
robot, the structure is deformed, which involves variations in both
the tip orientation and the tip position. The deflection can be quan-
tified and the robot can be actuated to partially restore its original
shape.

The external force fe and moment me can be precisely esti-
mated according to Ref. �37�. However, they are expressed in

�x̂b , ŷb , ẑb� instead of in �x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1��. Before they can be substi-

tuted into Eq. �1�, they need to be transformed into �x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1��.
This transformation is unknown because with fe and me applied,

all the ��t� �t=1,2 ,3 , . . . ,n� could be changed. Hence, calculation

of both the shape restoration and the deflection will involve a
shooting method.

The shooting method starts with the actual shape of the robot

before the external loads fe and me are applied. The steps include
the following. Some entities are also indicated in Fig. 14 for a
clearer explanation.

• Initial values of ��t� �t=1,2 ,3 , . . . ,n� are used to calculate

the transformation from �x̂b , ŷb , ẑb� to �x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1��.
• The transformed fe and me are now substituted into Eq. �1�

to form the constraint of c
s

�1�
.

• A new value of ��1� �designated by �̃�1�� is assumed. With

predefined fuser and W, Eq. �23� is solved.
• The remaining subsegments are solved sequentially using

Eq. �29�, updated values of ��t� �designated by �̃�t�� �t
=2,3 , . . . ,n� are obtained.

• �̃�1� is adjusted until the shooting target is reached.

The shooting targets for the computations of the deflection, the
tip position restoration, and the tip orientation restoration are all
different.

Fig. 11 Bending shape along the primary backbone of the
continuum robot

Fig. 12 Actual �L value versus desired �̄L value

Fig. 13 The theoretical results from Sec. 4.1 compared with
the experimentally corrected results in the joint space

Fig. 14 The shooting method is initialized using the local tan-
gents of the subsegments based on the shape of an unloaded
robot
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For the restoration of the tip orientation, the shoot target is
simply the following, which states that the overall bending angle
remains the same:

�0 − �L = �
t=1

n

��t� �40�

For the restoration of the tip position, the shooting target is for-
mulated as follows:

bBp
�n�Gp

�1� = b�Bp
�n�Gp

�1��no load �41�

This target states the position vector from B
p

�n�
to G

p

�1�
in

�x̂b , ŷb , ẑb� remains the same.

For the calculation of the robot’s deflected shape under the
external wrench, the shooting target is as shown below, which

indicates that the length of the ith secondary backbone remains
the same before and after the external load is applied

�
t=1

n

Lsi
�t� = 
�

t=1

n

Lsi
�t��

no load

, i = 1,2,3 �42�

As the aforementioned procedures show, calculations of the shape
deflection or of the shape restoration are independent processes.
Hence, shape restoration can be obtained without calculating the
deflected shape.

For demonstration purposes, a one-subsegment robot is actu-
ated and then deformed. The restorations of its tip orientation and
its tip position are simulated.

As shown in Fig. 15, the subsegment is bent to 30 deg and then

an external force of fe= �0−0.5 0�T in �x̂
s

�1�
, ŷ

s

�1�
, ẑ

s

�1�� was applied.

Numerical values for the parameters are listed in Table 1. Please
note that the subsegment is bending upwards in Fig. 15 because
the image from the utilized microscope is flipped. By bending
upwards, the experimental results and the simulation are kept con-
sistent.

Table 5 lists all of the calculation results, where �px and �py are

the XY coordinates of the tip position of the primary backbone.
The units in Table 5 are all millimeters, except in the first row.
Comparing the first and the second column in Table 5 and refer-

ring to Fig. 16�a�, when fe is applied, the subsegment is deflected

downwards with ��1� increased, while L
si

�1�
remains the same. In

Figs. 16�a�–16�c�, the actual defected shape fits the calculation
results well; the maximal discrepancy between the actual deflected
shape and the predicted result is 0.15 mm.

Figure 16�b� plots the shape with the tip orientation restored,
while Fig. 16�c� plots the shape with the tip position restored. The
calculation results are listed in the third and fourth column in

Table 5. Actuating the secondary backbones to these new L
si

�1�

values will partially restore the robot’s shape. All of the results in
Figs. 16�a�–16�c� and Table 5 were generated under the actuation
mode 2 �mentioned in Sec. 4.1�.

We note that shape can only be partially restored because of
parasitic motions/deflections resulting from external disturbances.
One may define control strategies for compensating for these de-
flections. For example, Ref. �41� considered a recursive linear
estimation approach that uses external monitoring of the end disk

Fig. 15 Experimental setup for validating shape restoration

Table 5 Results for the shape restoration

No load Deflected Orientation restored Position restored

��1�=30 deg ��1�=30.23 deg ��1�=30 deg ��1�=28.81 deg

�px=28.618 �px=28.524 �px=28.539 �px=28.619

�py =−7.668 �py =−8.013 �py =−7.955 �py =−7.668

L
s1

�1�
=28.361 L

s1

�1�
=28.361 L

s1

�1�
=28.367 L

s1

�1�
=28.438

L
s2

�1�
=31.236 L

s2

�1�
=31.236 L

s2

�1�
=31.209 L

s2

�1�
=31.150

L
s3

�1�
=30.408 L

s3

�1�
=30.408 L

s3

�1�
=30.402 L

s3

�1�
=30.385

L
sp

�1�
=30.000 L

sp

�1�
=30.000 L

sp

�1�
=30.000 L

sp

�1�
=30.000

Fig. 16 Shape restoration simulation and experiment: „a…
simulated deflected and simulated undeflected shapes overlaid
over an actual externally loaded subsegment, „b… simulation of
the deflected subsegment in „a… with and without tip orientation
restoration, and „c… simulation of the deflected subsegment in
„a… with and without tip position restoration
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orientation in order to overcome parasitic motions that stem from
the flexibility of the actuation lines. The same approach may be
considered for compliant parasitic motions. In a realistic surgical
scenario, these robots are telemanipulated by a surgeon who has
full view of the surgical field. The user inherently compensates for
the parasitic motions. Results of the preliminary telemanipulation
study using this robot were reported in Ref. �42�.

6 Conclusion

This paper presented an analytic formulation for kinematics,
statics, and shape restoration of a new type of continuum robot
with multiple flexible backbones. Although a comprehensive
study should also include an analysis of the structural stability
�backbone buckling�, with enormous results directly applicable
from previous studies �e.g., Ref. �43� and example No. 1 from
Ref. �44��, this paper chose to focus on deriving the kinestatic and
stiffness properties of the robot via an analytic approach, which
uses elliptic integrals.

Two major problems were studied in this paper. The actuation
redundancy resolution problem of the continuum robots was first
solved. It was shown that the shape of the entire robot is perfectly
circular when applying one particular actuation redundancy reso-
lution. This provided a proof to the experimentally verified as-
sumption that this type of continuum robot bends into a circular
shape, which was used in the authors’ previous studies. In addi-
tion, a closed-form direct kinematics from the configuration space

� to the task space x was also obtained. The other actuation
resolution was also solved, showing that the loads on all of the
backbones can be redistributed without introducing significant
variation on the robot’s shape. This property reduces the risk of
backbone buckling and supports further miniaturization of this
robot. Based on these solutions, an approximate model was de-
rived and experimentally validated.

The shape restoration problem was solved and the derived ac-
tuation strategies were shown to achieve a partial shape restora-
tion of the robot. Although the deflection could be also quantified
through a shooting method, a formulation of this shape restoration
problem provided an additional advantage that the shape restora-
tion could now be obtained without calculating the actual deflec-
tion. The implementation of this shape restoration algorithm in a
real-time environment is being considered.

Acknowledgment

This is supported by NSF Career Award No. 0844969 and by
Columbia University internal funds.

Nomenclature
i � index of the secondary backbones, i=1,2 ,3

j � index of all the backbones, j=1,2 ,3 , p

n � number of the subsegments in the continuum
robot

L ,Li � length of the primary and the ith secondary
backbone measured from the base disk to the
end disk

L
sp

�t�
,L

si

�t�
� length of the primary and the ith secondary

backbone within the tth subsegment,

Li=�t=1
n L

si

�t�
and L=�t=1

n L
sp

�t�

q � q= �q1 q2 q3�T is the actuation lengths of the

secondary backbones and qi=Li−L

r � radius of the pitch circle defining the positions
of the secondary backbones in all the disks

� � division angle of the secondary backbones

along the circumference of the pitch circle, �
=2
 /3

��s� � radius of curvature of the primary backbone

�i�s� � radius of curvature of the ith secondary
backbone

��s� � the angle between ẑ1 and the tangent to the

primary backbone in the bending plane; ��L�
and ��0� are designated by �L and �0, respec-

tively; �0=
 /2

�i � a right-handed rotation angle about ẑ1 from x̂1

to a line passing through the primary backbone

and the ith secondary backbone at s=0; at a

straight configuration, x̂1 is along the same
direction as the desired instantaneous linear
velocity of the end disk

� � ���1 and �i=�+ �i−1��, i=1,2 ,3; in Figs.

2�a� and 2�b�, �=−
 /12=−15 deg

� � ����L ��T is a two-dimensional vector that

is used to characterize the configuration of the
continuum robot

�i � radial offset from the primary backbone to the

projection of the ith secondary backbone on
the bending plane

� � �= �1 2 3�T is the actuation forces of the

secondary backbones �positive i defined as
pushing�

Ep ,Ei � Young’s modulus of the primary and the ith
secondary backbone

Ip , Ii � cross-sectional moments of inertia of the pri-

mary and the ith secondary backbone
1R2 � rotation matrix of frame 2 with respect to

frame 1

dop ,doi

dip ,dii � outer and inner diameters of the primary and

the ith secondary backbone, respectively

Jyx � Jacobian matrix of the mapping ẏ=Jyxẋ where
the dot over the variable represents the time
derivative

ẋ � the twist ẋ�R
6�1 of the end disk, defined

with the linear velocity preceding the angular
velocity

B
p

�t�
,B

i

�t�
� starting points of the primary and the ith sec-

ondary backbone within the tth subsegment

G
p

�t�
,G

i

�t�
� ending points of the primary and the ith sec-

ondary backbone within the tth subsegment

�L
sj

�t�
� the angle between x̂

s

�t�
and the tangent to the

backbone at G
j

�t�
point in �x̂

s

�t�
, ŷ

s

�t�
, ẑ

s

�t��
��t� � bending angle of the tth �t=1,2 , . . . ,n� subseg-

ment, shown in Fig. 2�c�. its value is assumed
to be positive

f
p

�t�
, f

i

�t�
and

m
p

�t�
,m

i

�t�
� forces and moments acting at the tip of the

primary and the ith secondary backbone by the

robot disks, in the tth subsegment

Appendix A

Equation �11� can be rearranged as the following:

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���x,y = �Bp
�t�Bi

�t� − Gp
�t�Gi

�t���x,y �A1�

Vectors B
p

�t�
B

i

�t�
and G

p

�t�
G

i

�t�
are expressed in �x̂

s

�t�
, ŷ

s

�t�
, ẑ

s

�t�� as the

following:

Bp
�t�Bi

�t� = − r�0 cos �i sin �i �T �A2�

Gp
�t�Gi

�t� = − r�sin ��t� cos �i cos ��t� cos �i sin �i �T �A3�

The right hand side of Eq. �A1� becomes
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Bp
�t�Bi

�t� − Gp
�t�Gi

�t� = �
r sin ��t� cos �i

r cos �i�cos ��t� − 1�

0
	 �A4�

From Eqs. �8� and �9�

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���x =�EpIp

2
Intcp

�t� −�EiIi

2
Intci

�t� �A5�

�Bp
�t�Gp

�t� − Bi
�t�Gi

�t���y =�EpIp

2
Intsp

�t� −�EiIi

2
Intsi

�t� �A6�

Combining the above results gives Eq. �12�.

Appendix B

Substituting Eq. �10� into Eqs. �7�–�9�

I1j
�t� �

0

−��t�
− d�

�a j
�t� − f j

�t� cos�� − � j
�t��

�B1�

Intcj
�t� �

0

−��t�
− cos �d�

�a j
�t� − f j

�t� cos�� − � j
�t��

�B2�

Intsj
�t� �

0

−��t�
− sin �d�

�a j
�t� − f j

�t� cos�� − � j
�t��

�B3�

After change of the variables ��→�
j

�t�
−��, the above integrals

simplify as

I1j
�t� =

�j
�t�

��t�+�j
�t�

d�

�a j
�t� − f j

�t� cos �
�B4�

Intcj
�t� =

�j
�t�

��t�+�j
�t�

cos � j
�t� cos � + sin � j

�t� sin �

�a j
�t� − f j

�t� cos �
d� �B5�

Intsj
�t� =

� j
�t�

��t�+�j
�t�

sin � j
�t� cos � − cos � j

�t� sin �

�a j
�t� − f j

�t� cos �
d� �B6�

Hence, the following results are obtained:

Intcj
�t� = cos � j

�t�Icj
�t� + sin � j

�t�Isj
�t� �B7�

Intsj
�t� = sin � j

�t�Icj
�t� − cos � j

�t�Isj
�t� �B8�

Icj
�t� =

�j
�t�

��t�+�j
�t�

cos �d�

�a j
�t� − f j

�t� cos �
�B9�

Isj
�t� =

�j
�t�

��t�+�j
�t�

sin �d�

�a j
�t� − f j

�t� cos �
�B10�

Equation �B10� can be directly integrated

Isj
�t� =

2

f j
�t� ��a j

�t� − f j
�t� cos���t� + � j

�t�� − �a j
�t� − f j

�t� cos � j
�t��

�B11�

Depending on the range of �
j

�t�
as listed in Table 2, Eqs. �B4� and

�B9� have analytic expressions using the identities of 289.00,
289.03, 293.07, 331.01, 290.00, 290.04, 291.00, 291.03, 315.02,
and 318.02 from Ref. �33�.

Appendix C

The term

�

�xa
�1�
��cs

�1��T�cc
�1��T�EpIp

2
I1p

�1� − Lsp
�1��T�

involves the partial derivatives of the incomplete elliptic integrals
of the first kind and the second kind, which can be derived from
their definitions

�F

�z
=

1

�1 − k2 sin2�z�
�C1�

�F

�k
=

E�z,k�

k�1 − k2�
−

F�z,k�

k
−

k sin z cos z

�1 − k2��1 − k2 sin2 z
�C2�

�E

�z
= �1 − k2 sin2�z� �C3�

�E

�k
=

E�z,k� − F�z,k�

k
�C4�

Based on the above results, the following could be obtained to
form the derivative matrix:

� Intcj
�1�

� f j
�1� = c�

j
�1�

�Icj
�1�

� f j
�1� + s�

j
�1�

�Isj
�1�

� f j
�1� �C5�

� Intcj
�1�

�� j
�1� = − s�

j
�1�Icj

�1� + c�
j
�1�

��cj
�1�

�� j
�1� + c�

j
�1�Isj

�1� + s�
j
�1�

�Isj
�1�

�� j
�1� �C6�

� Intcj
�1�

�m j
�1� = c�

j
�1�

�Icj
�1�

�m j
�1� + s�

j
�1�

�Isj
�1�

�m j
�1� �C7�

� Intsj
�1�

� f j
�1� = s�

j
�1�

�Icj
�1�

� f j
�1� − c�

j
�1�

�Isj
�1�

� f j
�1� �C8�

� Intsj
�1�

�� j
�1� = c�

j
�1�Icj

�1� + s�
j
�1�

��cj
�1�

�� j
�1� + s�

j
�1�Isj

�1� − c�
j
�1�

�Isj
�1�

�� j
�1� �C9�

� Intsj
�1�

�m j
�1� = s�

j
�1�

�Icj
�1�

�m j
�1� − c�

j
�1�

�Isj
�1�

�m j
�1� �C10�

The expression for I
cj

�1�
is available in Table 2 and its partial de-

rivatives also have four different expression sets depending on the

value of �
j

�1�
.
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