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ANALYTIC FOURIER-FEYNMAN TRANSFORMS
AND CONVOLUTION

TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

ABSTRACT. In this paper we develop an L, Fourier-Feynman theory for a class
of functionals on Wiener space of the form F(x) = f( fOT aydx, ..., foT apdx).
We then define a convolution product for functionals on Wiener space and show
that the Fourier-Feynman transform of the convolution product is a product of
Fourier-Feynman transforms.

1. INTRODUCTION AND PRELIMINARIES

The concept of an L; analytic Fourier-Feynman transform was introduced
by Brue in [1]. In [3] Cameron and Storvick introduced an L, analytic Fourier-
Feynman transform. In [6] Johnson and Skoug developed an L, analytic
Fourier-Feynman transform theory for 1 < p < 2 which extended the results
in [1, 3] and gave various relationships between the L; and the L, theories.

In this paper we first develop an L, Fourier-Feynman theory for a class of
functionals not considered in [1, 3, 6]. We next define a convolution product for
functionals on Wiener space and then show that the Fourier-Feynman transform
of the convolution product is a product of Fourier-Feynman transforms.

In [3, 6] all of the functionals F on Wiener space and all the real-valued
functions F on R” were assumed to be Borel measurable. But, as was pointed
out in [7, p. 170], the concept of scale-invariant measurability in Wiener space
and Lebesque measurability in R” is precisely correct for the analytic Fourier-
Feynman theory.

Let Co[0, T] denote Wiener space; that is, the space of real-valued contin-
uous functions x on [0, 7] such that x(0) = 0. Let .# denote the class of
all Wiener measurable subsets of Cy[0, T], and let m denote Wiener measure.
(Co[0, T], #, m) is a complete measure space and we denote the Wiener
integral of a functional F by

/ F(x)m (dx).
Gol0, T)

A subset E of Cy[0, T] is said to be scale-invariant measurable [4, 7] pro-
vided pE € # for each p > 0, and a scale-invariant measurable set N is said
to be scale-invariant null provided m(pN) = 0 for each p > 0. A property
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662 TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

that holds except on a scale-invariant null set is said to hold scale-invariant al-
most everywhere (s-a.e.). If two functionals F and G are equal s-a.e., we write
F=G.

Let C, C,,and C; denote respectively the complex numbers, the complex
numbers with positive real part, and the nonzero complex numbers with non-
negative real part. Let F be a C-valued scale-invariant measurable functional
on Cy[0, T'] such that

J() = / F(~"2x)m (dx)
Col0,T]

exists as a finite number for all 4 > 0. If there exists a function J*(4) analytic
in C, such that J*(4) = J(4) for all A > 0, then J*(A) is defined to be the
analytic Wiener integral of F over Cy[0, T'] with parameter A and for A € C,
we write

/ M Fym (dx) = I (),

Col0, T
Let g # 0 be a real number, and let F be a functional such that -
anw,

/ F(x)m (dx)
Gol0, T

exists for all 4 € C,. If the following limit exists, we call it the analytic
Feynman integral of F with parameter ¢ and we write

anf, anw,

/ F(x)m(dx) = lim F(x)m (dx)
Col0,T) A——ig Jcyl0,T)

where 4 — —ig through C, .

Notation. (i) For A€ C, and y € Gy[0, T] let

(L.1) (Ta(F) () = /C a{:‘nnx + y)m (dx).

(ii) Given a number p with 1 <p <400, p and p’ will always be related
by 1/p+1/p'=1.

(iii) Let 1 < p < 2, and let {H,} and H be scale-invariant measurable
functionals such that for each p >0,

(1.2) lim |H,(py) — H(py)|” m (dy) = 0.
n—=00 J [0, T]
Then we write

(1.3) lhi_.'ror.}.(wf')(H,,) ~H

and we call H the scale invariant limit in the mean of order p’. A simi-
lar definition is understood when n is replaced by the continuously varying
parameter A.We are finally ready to state the definition of the L, analytic
‘FoatteriFeyiitia o[ 6] whnd our definition of the convolution product.



ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION 663

Definition. Let ¢ # 0 be a real number. For 1 < p < 2 we define the L,
analytic Fourier-Feynman transform Té")(F) of F by the formula (1 € C,)

(1.4) (TP FNE) = Limwf ) (T(F))

whenever this limit exists. We define the L; analytic Fourier-Feynman trans-
form T}”(F ) of F by the formula

(1.5) T(F)y) = lim (Ty(F))()

for s-a.e. y. We note that for 1 < p < 2, T}”)(F ) is defined only s-a.e.
We also note that if T (F,) exists and if F, ~ F;, then T (F) exists and
T(F) ~ TP(Fy) .

Definition. Let F; and F, be functionals on Cy[0, T]. For A € C; we define
their convolution product (if it exists) by

(1.6) .
2 y+x) (y—x)
F F m(dx), AeC,,
/CO[O,T] 1( V2 )P\vz2 (dx) *

(Fi « By)(y) = /C[: A (y;ix) A (y \;;) m (dx),

A=-iq9q€R9q¢o°

Remark. Our definition of convolution is different than the definition given by
Yeh in [9]. For one thing, our convolution product is commutative; that is
to say (Fy x F3); = (F, * Fy); . Next we briefly describe a class of functionals
for which we establish the existence of T}" ) (F). Let n be a positive integer,
and let oy, oy, ..., a, be an orthonormal set of functions in L,[0, T']. For
1<p<olet .sa/,,(p) be the space of all functionals F on Cy[0, T] of the form

(1.7) F(x):f(/Ta.dx,...,/Ta,,dx>
0 0

s-a.e. where f: R" — R isin L,(R") and the integrals foTa,-(t) dx(t) are
Paley-Wiener-Zygmund stochastic integrals. Let .2, " be the space of all func-
tionals of the form (1.7) with f € Cy(R"), the space of bounded continuous
functions on R” that vanish at infinity. It is quite easy to see that if F is
in .M,,("), then F is scale-invariant measurable. If p > 1 the Feynman inte-
gral above should be interpreted as the scale-invariant limit in the mean of the
analytic Wiener integral.

2. THE TRANSFORM OF FUNCTIONALS IN .s/,,(P )

In this section we show that the L, analytic Fourier-Feynman transform

TP (F) exists for all F in &, and belongs to %4, . We start with some
Liwliminawicliem&to redistribution; see https://www.ams.org/journal-terms-of-use
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Lemma 2.1. Let 1 < p < oo, and let F € 54,7 be given by (1.7). Then for all

AeC,,
T T
2.1) (TA(F))(Y)=g(1;/O wrdy, ... [ andy)
where
g, wy, ..., wy)
(2.2) =g(A; W) = <2n>n/2/ f@) exp{ ; - ( _wj)2} di

Proof. For A > 0, using a well-known Wiener integratlon theorem we obtain

(Ty(F))(y) = /C oy PO md)

T T
=/ f(j._l/z/‘ aldx+/ aldy,...,l“/z
Col0,T) 0 0
T T
x/ a,,dx+/ a,,dy)m(dx)
0 0
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where g is given by (2.2). Now by analytic continuation in A, (2.1) holds
throughout C,. O

Lemma 2.2. Let F € &4,") be given by (1.7), and let g(A; W) be given by (2.2).
Then

(i) g(4;-) € Co(R") forall A€ C7;
(ii) g(A; W) converges pointwise to g(—iq; W) as A — —iq through C,;
and
(iii) as elements of Co(R"), g(A; W) converges weakly to g(—iq; W) as
A — —iq through values in C, .

Proof. We first note that for all (1, @) € C7 x R", |g(4; @)| < |&["2||f]l: -
Then g)hfollows from a standard argument and the dominated convergence
theorem establishes (i1). 10 establish"(Tij’let" "€ M (R") , the dual of Co(R").
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By the dominated convergence theorem,

A——iq

. }h n/z — l " 2 d-od -
=jim [ (&) [ e ~3 2wy diduto)

lim /R g4 @) du(id)

j=

= /" (__2%)”/2 /Rn f(ﬁ)exp{%i ‘n (uj — j)2} dil d u(w)

Our first theorem, which is a direct consequence of Lemma 2.2, shows that
the analytic L, Fourier-Feynman transform exists for all F in RARN

Theorem 2.1. Let F € %" be given by (1.7). Then T,;”(F ) exists for all real
q#0 and

| T T
@23)  @POE)) ~g (—iq; |y [ dy) € 4™

where g is given by (2.2).

Remark. When 1 < p < 2 and Red = 0, the integral in (2.2) should be
interpreted in the mean just as in the theory of the L, Fourier transform [8].

Theorem 2.2, Let 1 <p <2,andlet F € P be given by (1.7). Then the L,
analytic Fourier-Feynman transform of F, Tép )(F ) exists for all real q # 0,
belongs to 4, and is given by the formula

T T
(2.4) (Té"’(F))(y)zg(—iq; /0 ardy, ..., /0 a,,dy)

where g is given by (2.2).

Proof. We first note that for each 1 € C}, g(4; @) isin L, (R") [S, Lemma
1.1, p. 98]. Furthermore by [5, Lemma 1.2, p. 100]

(2.5) lgigliq llg(4; ) — g(=iq; )|l = 0.

Now to show that TP)(F 2 exists and is given by (2.4) it suffices to show that

jeense or copyright restrictigns may applyqto redistribution; see https://www.ams.org/journal-terms-of-use
foréach” p S
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T T
lim g A;p/ aldy,...,p/ andy
A=—iq Jcy[0,T] 0 0

'

T T p
—g(—iq;p/O aldy,...,p/O andy) m(dy) = 0.
But
T T
/ g(hﬂ/ axdy,...,p/ andy)
Col0, T 0 0
T T p
—g(—iq;p/o axdy,---,p/O andy) m(dy)

: 1 &
=p " - 17) — —ia-° )IP _ 2 -
P /Rnlg(l,u) g(-iq; ) eXp{ —2p2j§=lu,}du
<p"g(R; +) - g(—ig; )b

which goes to zero as 4 — —ig by (2.5). Thus T}" )(F ) exists, belongs to R /),
and is given by (2.4). O

The following example generates an interesting set of functionals belonging
to .M,,(").

Example. Let 1 < p < +o0o be given, and let a;, a;, ... be an orthonormal
set of functions from L,[0, T]. Let F € L,(Co[0, T]), and for each n define
fn by

Jn (/oTaldx,~--,/0Tandx) EE[F(x)l/oraldx,...,/oTa,,dx}.

Then, by the definition of conditional expectation, f,(&;, ..., &,;) is a Borel
measurable function, and || f,||, < ||F||,, where
p]

T T
fn(/ aldX,-..,/ a,,dx)
0 0

IFIl5 = E[IF(x)].

Wfallp = £ [

and

Thus f, € %%, and so the analytic Fourier-Feynman transform Té” )( fn) exists
forall real ¢ #0.

We finish this section by obtaining an inverse transform theorem for F in

I:W{par copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
n .
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Theorem 2.3. Let 1 <p <2, andlet F e 4% . Let q # 0 be given. Then @)
for each p >0,

,Jim ITZTA(F)(py) = E(py)Pm (dy) = 0
—THJG0,T]

and (ii) T;T,F — F s-a.e. as A — —iq through C, .
Proof. Proceeding as in the proof of Lemma 2.1, we obtain for all A€ C,,

mmEm= (%) [ s0; w)exp{ >3 (wj—/oTajdy)z} i
(@) L&) Lroee{ 40w

pR T\’
X exp =3 (wj——/ ajdy) diidw
Jj=1 0
T T
=k().,l;/ aldy,...,/ a,,dy)
0 0

where g(A; w)) is given by (2.2) and
k(A,2;v1,...,u,) =k(A, 1;7)

/;p:: f(ﬁ) exp {—% ;(uj - wj)Z - %ng('w] - ’Uj)z} didw.

“2n
But [2, p. 525]

/CXD {-%(“1 ~w))? - %(w,- - Uj)z} dw;
R

T \1/2 A2
= (e7) °"P{ 4|R|e).(u’_v’)2}

Hence
- . L n/2 FIE.
k@, 2;0) = 57| J, @ )(Rex) e"p{ 4|R|e). Z(“J ”1)2}
=(f*de)(V1, ..., Vp)
where

n
d’(’Ul,...,'Un)E(Zﬂ)—n/Zexp{_%Zij} , e = VZRCA’

and
AT vn)-5;=—¢( ).

Now

License or copyright‘r/sl;r’ilctegtngyépbli t réd%)tﬁbztg;géei*n;p;:W%or}/journgﬁgg»of»ug(v1 LA ] v") > 0’
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so using [8, Theorem 1.18, p. 10] it follows that

Ahm Ik(l v, e, Un) = f(U1, ..., vp)|PdT
——iq
(26) = Jim [ 120001 o) = f0r, e )P AT

Jim |1+ g — fIlp = 0

since ¢ — 0 as A — —ig through C,. But now (i) of the theorem follows
easily since for each fixed p >0,

/ ILTy(F)(py) — F(py)Pm (dy)
Col0, T

=p~" Ik( v) - f() IPexp{ 22211} 7

<SPS * e = SIS
Finally, (ii) of the theorem follows since by [8, Theorem 1.25, p. 13] it follows
that the function k(4, 1; vy, ..., vy = (f*¢e)(vy, ..., V,) cOnverges pointwise
to the function f(v,,...,v,) as A — —iq through C,. O

Note that in the case p =2, p’ = 2, and so for F in %%, Téz)(F) is in
%(2) by Theorem 2.2. Hence we have the following theorem.

Theorem 2.4. Let F € 4,2 be given by (1.7). Then for all real q # 0,

T_o(T,(F)) ~ F.

3. CONVOLUTIONS AND TRANSFORMS OF CONVOLUTIONS
Our first lemma gives an expression for (F; x F>); for A€ C, .

Lemma 3.1. Let 1 <p < oo, and let F; € Ulgpgoo%(p) for j=1,2 be given
by (1.7). Then for all 4 € C,,

T T
(31) (ﬁ‘]"‘1:2)l(y)=h</1’\/0 aldys-“,\/o andJ’)

Lﬁffferféopyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3.2)

h(l;wl,...,w,,)sh(g;w')=(%)nﬁ/" ﬁ(“t%’z fz(w‘\/-ia‘)

Proof. For A > 0, using a well-known Wiener integration formula we obtain

Y+\A/§‘/2x) 2<y—\1/;/2x)m(dx)

n/2
( /f]( 1/2[ ala'y+u1],...,
R'l
T
2-12 [/ a,,dy+u,,])
0
T T
><f2<2‘1/2[/ aldy—ul},..., 2“/2[/ a,,dy—u,,])
0 0

l n
x exp{—iguf} dil
T T
=h(1;/ aldy,...,/ a,,dy)
0 0

where h is given by (3.2), so (3.1) holds for A > 0. Now by analytic continu-
ation in A, we see that (3.1) holds forall A in C,. O

(Fy * By () F (
C0[0 T]

Our next theorem establishes an interesting relationship involving convolu-
tions and analytic Wiener integrals.

Theorem 3.1. Let 1 < p < oo, and let F; € U1<p<°°.5/ Jor j=1,2 be given
by (1.7). Then for all 1€ C,,

(33) (T,I(Fl * Fz);')(z) = (T).(Fl))(2_1/22)(]‘)_(172))(2_1/22),

Proof. 1t will suffice to establish (3.3) for A > 0 since T;(F; * F3);, I}(Fl) ,
affd® T70 ) 4N HAVE AAT T ExXtenisions tRYGUERGHT C,. . So let A > 0 be given.
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Then by (3.1) and (3.2),

(Ta(Fy * F);)(z) = /C o (B e G 4 2ym ()

T
= / h (A;/ adlA " Vx + 21, ...,
Gol0, 7] 0

T
/ and[A71? + z]) m (dx)
0

n/2 T T
) /h(A;v1+/ aldz,...,v,,+/ a,,a’z)
n 0 0
A = 2\ g
X —'E'jz:ty v
j=1
T
v1+u1+/ aldz},...,
0
T
2-12 [v,,+u,,+/ a,,dzl)
0

T
sz (2_1/2 |:’U1—u1+/ ale] g eeey
0
T
0 .

i
~—
>

(%)n/mﬁ (2—1/2

Next we make the transformation
w; =272 (v; + u))

and
ri= 2_1/2(’0]' - uj)

for j=1,2,...,n. The Jacobian of this transformation is one and

n n
D_[w}+rfl=3 4] +vfl
j=1 Jj=1

"HERCE TEYA"S°07) WiRE T2, 1) A (2:2); We 'Se€ that®
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(TZ(F1 * F2)3)(2)

A T .
= (_) / .fl ('UJI + 2_1/2/ (s3] dZ, vee s Wy +2—1/2/ an dz
27 ) Jgen A [

X exp —-2-ij
Jj=1

T T
><f2<r1+2"/2/ ardz, ..., rm +2"/2/ a,,dz)
0 0

. (%)"/Z/Rnfl(w)exp{—%

T 2
( 2 1/2/ ajdz) }dzb’
0

(Zn)m/ f2 i’)exp{_%g (r~_2—1/2/0Tade)2} 7

= (Ty(F1))(2722)(Ti(F2)) (271 /22).

Theorem 3.2. The following hold for all A € C7 .

() If F, e 4" and F, € %4V, then (F, x F,); € &Y.

(i) If F, € %42 and F, € %42, then (Fy x F); € %4, .

(iil) If F, € %4\ and F, € %42, then (F, x F,); € 4,2 .

(iv) If F, € %4V and F, € 40 n 42, then (Fy x F); € 4, no,?.
v) If F, e 4" and Fy € 54, then (F, * F,); € &,

Proof. (i) Assume F, and F, belong to &V and are given by (1.7). It will
suffice to show that A(4; -) given by (3.2) is in L;(R") for every A € C; . But
Lithis)rfguowsrifmmy m@oca%ulmigntss://www.ams.org/journal-lerms»of»use
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n/2
hs @) di < |22 [ 1@ + )G - )| did d
R” /4 R27
) n/2
=5l [in@e [ 1A/ -o)deds
R# R"
l n/2
= 2| WAlIAIL.

(ii) In this case for f;, f2 in L,(R") we first note that A(4; -) isin L. (R")
since for all w € R",

. A. n/2 . . - . .
h(2; W) < |5 /R" IAQTV2(B + D) 27V (D - @) did
J) 1/2

27 [ e v apead)

1/2
—1/2007 _ N2 J7
x{ [ 160G - 2) du}

n/2

_ % V2" lIfillllfalla
J) n/2
=12 1Al Al

A standard argument now shows that 4 belongs to Co(R").
(iii) Let F; € %" and F, € &, be given by (1.7). It will suffice to show
that A(4;:) given by (3.2) is in L,(R"). But this follows from the calculations

n

A
a2 i s
Jo s o an < | |2

x / A2 + ) (2 - 7)) dﬁ] 4
R’l

A" "
= 5| [1A®1 [ 1501 [ 1425 -7

« (V20 — §)| dib d5 dF
< 52| WAl [ 1420 - PP a7

[ AQVA( + ) 2725 — @) di
R’l

n
= |2=| @"PIAIRIAIR

Hence ||A||; < |2/2V21"2|| filli]lfall2 -
Finally we note that (iv) follows directly from (i) and (iii) while (v) is im-
mediate. O

In our next theorem we show that the Fourier-Feynman transform of the
corvolutionproduetis theproduet of sransforms.orus.
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Theorem 3.3. (i) Let F,, F; € &,V . Then forallreal ¢ #0,

(B4) (T (Fx F)g)(2) = (T (R) Q@ 2)(T ) (F) (27 22).
(i) Let F, € &Y and F, € 242 . Then forall real ¢ #0,

(3.3 (T(Fi x B)o)(2) = (T3 (F)) 27 22) (T3 (F) (27 22).
(iti) Let Fi € %" and F, € 4" n 94,2, Then for all real q # 0,

(3:6) (T (Fix Fa)g)(2) = (T, (F)) 2P 2) (T3 () (27 72)

and

(3.7)  (TP(Fix F))(2) = (T3 (F) @7 P2)(T ()27 2).

Proof. Theorem 3.2 together with Theorem 2.2 assures us that all of the trans-
forms on both sides of (3.4) through (3.7) exist. Equations (3.4) through (3.7)
now follow from equation (3.3). O

Remark. Throughout this paper, for simplicity we assumed that {a;, ..., a}
was an orthonormal set of functions in L,;[0, T]. However, all of our results
hold provided that {a;, ..., @y} is a linearly independent set of functions
from L,[0, T].
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