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ANALYTIC FOURIER-FEYNMAN TRANSFORMS
AND CONVOLUTION

TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

Abstract. In this paper we develop an Lp Fourier-Feynman theory for a class

of functionals on Wiener space of the form F(x) = f(J0 axdx, ... , /0 a„dx).

We then define a convolution product for functionals on Wiener space and show

that the Fourier-Feynman transform of the convolution product is a product of

Fourier-Feynman transforms.

1. Introduction and preliminaries

The concept of an Lx analytic Fourier-Feynman transform was introduced

by Brue in [1]. In [3] Cameron and Storvick introduced an L2 analytic Fourier-

Feynman transform. In [6] Johnson and Skoug developed an Lp analytic
Fourier-Feynman transform theory for 1 < p < 2 which extended the results

in [1, 3] and gave various relationships between the Lx and the L2 theories.
In this paper we first develop an Lp Fourier-Feynman theory for a class of

functionals not considered in [1, 3, 6]. We next define a convolution product for

functionals on Wiener space and then show that the Fourier-Feynman transform

of the convolution product is a product of Fourier-Feynman transforms.
In [3, 6] all of the functionals F on Wiener space and all the real-valued

functions F on W were assumed to be Borel measurable. But, as was pointed

out in [7, p. 170], the concept of scale-invariant measurability in Wiener space
and Lebesque measurability in E" is precisely correct for the analytic Fourier-

Feynman theory.
Let Cn[0, T] denote Wiener space; that is, the space of real-valued contin-

uous functions x on [0, T] such that x(0) = 0. Let J( denote the class of

all Wiener measurable subsets of Co[0, T], and let m denote Wiener measure.
(Cq[0, T], ^, m) is a complete measure space and we denote the Wiener

integral of a functional F by

/ F(x)m (dx).
JC0[0,T]

A subset E of Co[0, T] is said to be scale-invariant measurable [4, 7] pro-
vided pE G ̂  for each p > 0, and a scale-invariant measurable set tV is said

to be scale-invariant null provided m(pN) = 0 for each p > 0. A property
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662 TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

that holds except on a scale-invariant null set is said to hold scale-invariant al-
most everywhere (s-a.e.). If two functionals F and G axe equal s-a.e., we write
F&G.

Let C, C+ , and C~ denote respectively the complex numbers, the complex
numbers with positive real part, and the nonzero complex numbers with non-

negative real part. Let F be a C-valued scale-invariant measurable functional
on Co[0, T] such that

J(X)= j        F(X-x'2x)m(dx)
JC0[0,T]

exists as a finite number for all X > 0. If there exists a function J*(X) analytic

in C+ such that J*(X) = J(X) for all X > 0, then J*(X) is defined to be the
analytic Wiener integral of F over C0[0, T] with parameter X and for Xe C+

we write

/ F(x)m(dx) = J*(X).
JC0[0,T]

Let q ^ 0 be a real number, and let F be a functional such that

/•anwj

/ F(x)m(dx)
JC0[0,T]

exists for all X e C+. If the following limit exists, we call it the analytic
Feynman integral of F with parameter q and we write

/•anf, /"anw^

/ F(x)m (dx) =  lim   / F(x)m (dx)
JC0[0,T] k—-lq Jc0[0,T]

where A —► -iq through C+ .

Notation, (i) For X e C+ and y e C0[0, T] let

(1.1) (Tx(F))(y)= F(x + y)m(dx).
JC0[0,T]

(ii) Given a number p with 1 < p < +00 , p and p' will always be related

by l/p+l/p'=l.
(iii) Let 1 < p < 2, and let {//„} and H be scale-invariant measurable

functionals such that for each p > 0,

(1.2) lim /        \Hn(py)-H(py)\P'm(dy) = 0.
n^°°Jc0[0,T)

Then we write

(1.3) l.i.m.(w?)(Hn)*H
n—>oo

and we call H the scale invariant limit in the mean of order p'. A simi-
lar definition is understood when n is replaced by the continuously varying

parameter X .We are finally ready to state the definition of the Lp analytic
Fourier-Feynman transform [6] and our definition of the convolution product.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Definition. Let q / 0 be a real number. For 1 < p < 2 we define the Lp

analytic Fourier-Feynman transform 7^(.F) of F by the formula (A e C+)

(1.4) (T^(F))(y) = li.m.(wf)(T,(F))(y)
A.—> — iq

whenever this limit exists. We define the Lx analytic Fourier-Feynman trans-

form TJjl\F) of F by the formula

(1-5) 7<l\F)(y) = lim (Tx(F))(y)
k—*-iq

for s-a.e. y. We note that for 1 < p < 2, TJf\F) is defined only s-a.e.

We also note that if TJf\Fx) exists and if Fx «F2i then TJf\F2) exists and

T^(F2)^T^(FX).

Definition. Let Fx and F2 be functionals on C0[0, T]. For A € C~ we define
their convolution product (if it exists) by

(F''FMnCA^H^h^
X = -iq, q e K, q ^ 0.

Remark. Our definition of convolution is different than the definition given by

Yeh in [9]. For one thing, our convolution product is commutative; that is

to say (Fx * F2)k = (F2 * Fx)x . Next we briefly describe a class of functionals

for which we establish the existence of r^'(F). Let n be a positive integer,
and let ax, a2, ... , a„ be an orthonormal set of functions in L2[0, T]. For

1 < p < co let J^w be the space of all functionals F on C0[0, T] of the form

(1.7) F(x) = f(j\xdx,...,j\ndx\

s-a.e.  where / : W -► K is in LP(R") and the integrals ^ aj(t)dx(t) axe

Paley-Wiener-Zygmund stochastic integrals. Let J^,(oo) be the space of all func-

tionals of the form (1.7) with / e C0(E"), the space of bounded continuous
functions on R" that vanish at infinity. It is quite easy to see that if F is

in j/„ , then F is scale-invariant measurable. If p > 1 the Feynman inte-
gral above should be interpreted as the scale-invariant limit in the mean of the
analytic Wiener integral.

2. The transform of functionals in s/}P)

In this section we show that the Lp analytic Fourier-Feynman transform

T^](F) exists for all F in J3^(p) and belongs to sn?„{pl). We start with some
preliminary lemmas.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



664 TIMOTHY HUFFMAN, CHULL PARK, AND DAVID SKOUG

Lemma 2.1. Let 1 < p < oo, and let F e ssf„{p) be given by (1.7). Then for all
AeC+,

(2.1) (Tx(F))(y) = g lx; j\xdy,..., J*andy\

where

g(X;wx, ... ,wn)

= g(X;w)= (^)      I   f(u)expl -- 22(uj <~ wj? \ du"-

Proof. For A > 0, using a well-known Wiener integration theorem we obtain

(UF))(y)= j        F(X-x'2x + y)mdx)
JC0[0,T]

=   / f(x-x>2 jTaxdx+ fTaxdy,...,X-x'2
JC0[0,T]      \ Jo JO

x   /   andx +       andy\m (dx)

xexp\-2z2tf\diJ

= glX;       ax dy, ... ,       andy\

where g is given by (2.2). Now by analytic continuation in A, (2.1) holds

throughout C+.      □

Lemma 2.2. Let F e j/„(1) be given by (1.7), and let g(X; w) be given by (2.2).
Then

(i)   g(X;-)eC0(R") forall A e C; ;
(ii)   g(X;w) convergespointwise to g(-iq;w) as X —► -iq through C+;

and
(iii) as elements of Co(R"),   g(X;w)  converges weakly to g(-iq;w)  as

X —> -iq through values in C+ .

Proof. We first note that for all (A, tx?) € C; x R", \g(X; w)\ < |^r/2||/||i.
Then (i) follows from a standard argument and the dominated convergence

theorem establishes (ii). To establish (iii) let p e M(W), the dual of C0(R").
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ANALYTIC FOURIER-FEYNMAN TRANSFORMS AND CONVOLUTION 665

By the dominated convergence theorem,

lim   /   g(X; w)dp(w)
l->-iq 7r"

=Ja, L (4)"' /,.m exp {-5 p-> - a')2\ did"w

= /,. (^)"'7,./(")exp{Tg("'-ro')2} """^

= /  g(-iq\ w)dp(w).   a

Our first theorem, which is a direct consequence of Lemma 2.2, shows that

the analytic Lx Fourier-Feynman transform exists for all F in s/„ '.

Theorem 2.1. Let F6J/»(1) be given by (1.7). Then T^i](F) exists for all real
q ± 0 and

(2.3) (T?\F))(y)Kg(-iq- j\xdy,..., j\ndy\ e ^„(oo)

w/zere g is g/ve« Z>y (2.2).

Remark. When 1 < p < 2 and Re A = 0, the integral in (2.2) should be
interpreted in the mean just as in the theory of the Lp Fourier transform [8].

Theorem 2.2. Let 1 <p < 2, and let F ts/^ be given by (1.7). Then the Lp

analytic Fourier-Feynman transform of F, TJf\F) exists for all real q ^ 0,

belongs to srf^p ' and is given by the formula

(2.4) (TJf](F))(y) « g (-iq; J\xdy, ... , £<*„dy\

where g is given by (2.2).

Proof. We first note that for each A e C~ , g(X; w) is in Lp,(W) [5, Lemma
1.1, p. 98]. Furthermore by [5, Lemma 1.2, p. 100]

(2.5) lim ||*(A; .)-*(-fo; 01lj>'=0.
X—>-iq

Now to show that TJf^F) exists and is given by (2.4) it suffices to show that

for each p > 0
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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lim   / g[X;p      axdy,...,p      andy)
*■-*-•<! JQ,[0,T] \ JO JO J

-g\-iQ\PJ    axdy, ... , p j    andy\     m(dy) = 0.

But

/ g[X; p      axdy,...,p\   andy)
JC0[0,T]       \ Jo Jo J

-g[-iq\P]   aidy,...,p      andy\     m(dy)

= p~n £ \g(X; u) - g(-iq; u)\"' exp J -^ 22 u) \ dU

<p-n\\g(X;.)-g(-iq ;.)\\p:

which goes to zero as A -> —iq by (2.5). Thus TqP\F) exists, belongs to st}p ',

and is given by (2.4).      □

The following example generates an interesting set of functionals belonging

to st™.

Example. Let 1 < p < +oo be given, and let ax, a2, ... be an orthonormal
set of functions from L2[0, T]. Let F € Lp(Cn[0, T]), and for each n define

fn by

fn[ j   axdx, ... ,       an dx ) = E  F(x) \       axdx, ... ,       andx   .
\Jo Jo J Jo Jo

Then, by the definition of conditional expectation, fn(clx.£„) is a Borel

measurable function, and ||/n||p < \\F\\P , where

\\fn\\p = E    fn(       aidx,...,       andx\

and

\\F\\p = E[\F(x)n

Thus /„ e stn™ , and so the analytic Fourier-Feynman transform T^'(f„) exists
for all real q ^ 0.

We finish this section by obtaining an inverse transform theorem for F in

Stn™.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 2.3. Let 1 < p < 2, and let F e stn™ . Let q^O be given. Then (i)
for each p > 0,

lim   / \TjTk(F)(py)-F(py)\pm(dy) = 0,
*■-*- it Jc0[0,T]

and (ii) TjT^F -» F s-a.e. as A -> -iq through C+ .

Proof. Proceeding as in the proof of Lemma 2.1, we obtain for all A e C+ ,

(Ji(7i(*))(y) - (i)ml*»--^\-jt(*>J-£«J<ly) J-*3

x exp < --? ^ I U7ji - /   aj dy j   > dudw

= k lx, A;  /   airfy, ... ,  /   a„ dy j

where g(A; to)) is given by (2.2) and

k(X,X;vx, ... , v„) = k(X,X;v)

X \" f X   " X  " ]
= ^r"    J 2nf(U)exP\-2z2^uJ-wJ^- 2^Wj~Vj>>  | dUd™-

But [2, p. 525]

^exp|--(Mj - Wj)2 - -(Wj - Vj)2\ dwj

' -(ei)"-!-^-^}-
Hence

*<*•*; *>" \Ulm (^^{Sitc" ~<"r] da
= (f * <t>e)(Vl , ... ,V„)

where

tt>(vl,...,vn) = (2n)-l2exJ-l-±v2\,        8h^?,

and

*<*.""'4=>(t.t)-
Now

/   «/•(«!, ... , v„)dvx---dvn = 1    and    r^,..., w„) > 0,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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so using [8, Theorem 1.18, p. 10] it follows that

lim   /   \k(X, A; vx, ..., vn) - f(vx, ... ,vn)\"dv
X-*-iq JR"

(2.6) =1™/  \(f*<t>s)(vx,...,vn)-f(vx,...,vn)\"dv
E —0+ JR„

= lim||/*&-/||* = 0

since e —> 0+ as X ̂  -iq through C+ . But now (i) of the theorem follows
easily since for each fixed p > 0,

f \TjTx(F)(py)-F(py)\»m(dy)
JC0[0,T]

= p-" j^ \k(X,X;v)- f(v)\<>exp i ~ 22 vj \ diJ

<p-"\\f*<l>e-f\\p.

Finally, (ii) of the theorem follows since by [8, Theorem 1.25, p. 13] it follows

that the function k(X ,X;vx, ... ,vn = (f*(f>E)(vx, ... , v„) converges pointwise

to the function f(vx, ... , vn) as A -> -iq through C+ .     D

Note that in the case p = 2, p' = 2, and so for F in stnm , TJj2)(F) is in

st£2> by Theorem 2.2. Hence we have the following theorem.

Theorem 2.4. Let F e st„{2] be given by (1.7). Then for all real q^O,

T_q(Tq(F)) « F.

3. Convolutions and transforms of convolutions

Our first lemma gives an expression for (Fx * F2)x for A e C+ .

Lemma 3.1. Let 1 < p < co, and let Fj G {Jx<p<00JtnP) for j = 1,2 be given

by (I J). Then for all AeC+,

(3.1) (Fx*F2)x(y) = hU; J   axdy,...,J^   andy\

whereLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(3.2)

h(X;wx,...,wn)^h(X;w)=^     £    /, (^) f2 (^)

xexp^-^X^f du-

Proof. For A > 0, using a well-known Wiener integration formula we obtain

2-'/2 \j\ndy + un  J

x/2(2-1/2   j   axdy-ux    ,...,   2-x>2 \f   andy-un   j

xexp i ~2^2u2j\ d"

= hlX;       ai dy,...,       a„dy)

where h is given by (3.2), so (3.1) holds for A > 0. Now by analytic continu-
ation in A, we see that (3.1) holds for all A in C+ .      D

Our next theorem establishes an interesting relationship involving convolu-

tions and analytic Wiener integrals.

Theorem 3.1. Let 1 < p < co, and let Fj e Ui<p<oo ̂ n* for J = 1 > 2 oe given

fey (1.7). Then for all XeC+,

(3.3) (TX(FX * F2)x)(z) = (Tx(Fx))(2-xl2z)(Tx(F2))(2-x'2z).

Proof. It will suffice to establish (3.3) for A > 0 since TX(FX *F2)X, TX(FX),
and TX(F2) all have analytic extensions throughout C+ . So let A > 0 be given.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Then by (3.1) and (3.2),

(Tx(Fi*F2)x)(z)=  f        (Fx*F2)x(X-x'2x + z)m(dx)
JC0[0,T]

=  I        h[X; [  axd[X-x'2x + z],...,
Jc0[0,T]      \      Jo

f   and[X-xl2 + z]\m(dx)

=(4)/ih(*>vi+sir ***>->**+siTa»dz)

= (s)7../'(2",/2h+"'+ra'H---

2-'/2   vn + u„+ j    andz   j

x/2l2_1/2   vx-ux+       axdz   ,...,

2-'/2   vn-un+ J    andz   )

f   A °° 1
x exp < -- 22^u) + VA \ dudv.

Next we make the transformation

Wj = 2-x'2(vj + Uj)

and

rj = 2-x'2(Vj-Uj)

for j = 1, 2, ... , n . The Jacobian of this transformation is one and

EK + ft = EK2+»ft
7=1 7=1

Hence for A > 0, using (2.1) and (2.2), we see that
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(Tx(Fx*F2)x)(z)

= (J^j j^fx(wx+2-xl2 j\xdz,...,wn+2~xl2 fS*ndz\

xexP j-^EW}

x h \rx+2-x'2 JT axdz, ...,rn +2~xl2 j"andz\

f   A   "      1
x exp <-T^r]> dw dr

I       v=i    J

= \[^y2 j^fx(wx+2-xl2 j\xdz,...,wn+2-xl2 [«ndz\

f   A  "       1
xexp< -^E^2 f dw

xexp|-2Er72|^

K^)"7R/2(^xp{-it(^-2-,/2r^^)2}^

= (r/l(F1))(2-1/2z)(r/l(F2))(2-1/2z).

Theorem 3.2. The following hold for all X G C~ .

(i) // F, e J/„(1) am/ F2 G J/„(1), r^« (Fj * F2)x 6 J/„(1).

(ii) // F G ̂ (2) and F2 G J/„(2), then (Fx * F^ G s/n{co).

(iii) // F, g stnw and F2 G stn{2), then (Fx * F2)x g stn{2).

(iv) If Fx G J/„(1) a/W F2 G J/„(1) n J/„(2), then (Fx * F2)x G stnwnstn{2).

(v) // F, g j/„(1) au/ F2 G stn{oc), then (F, * F2)A g j/„(oo) .

Froo/. (i) Assume Fx and F2 belong to st„w and are given by (1.7). It will
suffice to show that h(X; •) given by (3.2) is in LX(R") for every A G C+ . But
this follows from the calculationsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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f  \h(X;w)\dw<   A| '    f   \fx(2-l'2(w + u))f2(2-x'2(w-u))\dwdu
Jr" £it \     7r2"

=   t-I      /  \Mv)\2n/2 [  \f2(V2w-v)\dwdv
^7T |        JR" JR"

=     ̂ "f     II/1II1II/2II1.In I

(ii) In this case for fx, f2 in L2(W) we first note that h(X; •) is in L^W1)
since for all tiiel",

\h(X;w)\<   AI"     /"  |/1(2-'/2(7i; + l?))||/2(2-1/2(w;-M))|^
271 I        Jrh

< ^   |yKj/1(2-i/2(tt7+t?))i2c/M|

*{jjf2(2-{l2(w-u))\2du}

= i" (v^rii/.iuii^ib
Z7T

; "i2

= -     II/.II2II/2II2.

A standard argument now shows that h belongs to Co(Rn) .

(iii) Let Fx e stn({) and F2 G st}2) be given by (1.7). It will suffice to show
that h(X; •) given by (3.2) is in L2(W). But this follows from the calculations

/  \h(X;w)\2dw<   f   |A|"[/  \fx(2-x'2(w + u))f2(2-xl2(w-u))\du
Jr" Jr" I ̂ 7T I     [_•/«"

x f  \fx(2~x'2(w + u))f2(2-x'2(ul - u))\dv   dw
Jr"

I ̂ 71 I     ,/Rn Jftn Jr/i

x f2(\f2w - s)\dw dsdr

<   ifll/illi/  |/2(>/2ti;-r1|2rfr

=   ^"(2)«/2||/1||?||/2||i
Z7T

Hence \\h\\2 <\X/nV2\"l2\\fx\\x\\f2\\2.,
Finally we note that (iv) follows directly from (i) and (iii) while (v) is im-

mediate.      □

In our next theorem we show that the Fourier-Feynman transform of the

convolution product is the product of transforms.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Theorem 3.3. (i) Let Fx, F2 g stnw . Then for all real q^O,

(3.4) (jf\Fx * F2)q)(z) = (T^(Fx))(2-xl2z)(T^(F2))(2-x'2z).

(ii) Let Fx es/n{l} and F2 G st„{2). Then for all real q^O,

(3.5) (Ff (F, * F2)q)(z) = (Tt}l)(Fx))(2-x'2z)(Tf\F2))(2-x'2z).

(iii) Let F. G j/„(1) and F2 e/„(1) n^(2). Then for all real q^O,

(3.6) (72V, * F2)q)(z) = (T^(Fx))(2-x'2z)(T^(F2))(2-x'2z)

and

(3.7) (7f (F * F2),)(z) = (ri1)(F1))(2-'/2z)(Ff (F2))(2-'/2z).

Proof. Theorem 3.2 together with Theorem 2.2 assures us that all of the trans-

forms on both sides of (3.4) through (3.7) exist. Equations (3.4) through (3.7)
now follow from equation (3.3).      □

Remark. Throughout this paper, for simplicity we assumed that {ax, ... , an}

was an orthonormal set of functions in L2[0, T]. However, all of our results

hold provided that {ai, ... , an} is a linearly independent set of functions

from L2[0, T].
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