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This work is devoted to deriving and implementing analytic second- and third-order energy derivatives with respect to
the nuclear coordinates and external electric field within the framework of the hybrid quantum mechanics/molecular
mechanics method with induced charges and dipoles (QM/DIM). Using these analytic energy derivatives, one can effi-
ciently compute the harmonic vibrational frequencies, infrared (IR) and Raman scattering (RS) spectra of the molecule
in the proximity of noble metal clusters/nanoparticles. The validity and accuracy of these analytic implementations
are demonstrated by the comparison of results obtained by the finite-difference method and the analytic approaches,
and by the full QM and QM/DIM calculations. The complexes formed by pyridine and two sizes of gold clusters
(Au18 and Au32) at varying intersystem distances of 3, 4, and 5 Å are used as the test systems, and Raman spectra of
4,4′-bipyridine in the proximity of Au2057 and Ag2057 metal nanoparticles (MNP) are calculated by QM/DIM method
and compared with experimental results as well. We find that the QM/DIM model can well reproduce the IR spectra
obtained from full QM calculations for all the configurations, while though it properly enhances some of the vibrational
modes, it artificially overestimates RS spectral intensities of several modes for the systems with very short intersystem
distance. We show that this could be improved, however, by incorporating the hyperpolarizability of the gold metal
cluster in the evaluation of RS intensities. Additionally, we address the potential impact of charge migration between
the adsorbate and MNPs.

I. INTRODUCTION

In the last several decades, plasmonic metal nanoparticles
(MNPs) have generated a great amount of interest due to the
dramatic effect of surface localized plasmon resonance.1–4

Currently, plasmonic MNPs have been widely used to con-
trol and manipulate light at the nanoscale, thus regulating
the photophysical and photochemical properties of molecules
in their vicinity, such as enhancing molecular optical sig-
nals (absorption,5 Raman,6,7 and fluorescence8–10) and me-
diating molecular photochemical reactions.11–14 Meanwhile,
many theoretical and computational methods were developed
to unravel the detailed mechanisms of molecular spectral
enhancements,15 plasmon-mediated chemical reactions,16,17

as well as plasmon-enhanced resonance energy transfer.18–21

In many cases, the plasmon enhancement arises mainly from
the electromagnetic mechanism, where an external electric
field can be substantially magnified by an MNP around its sur-
face. Accordingly, several classical nonatomistic methods22

had been widely applied.
The hybrid MNPs-molecular systems represent a challenge

for theoretical and computational methods because the con-
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stituents can not be treated on the same footing by the state-
of-the-art methods. The properties of molecules require a
quantum mechanics (QM) description thanks to the high ac-
curacy of QM methods.23,24 However, QM methods are un-
able to describe the medium to large-sized MNPs due to their
steep computational cost. Two kinds of simplified treatments
have been usually adopted. One is to simplify the prob-
lem by assuming the molecules bonded to very small metal
clusters.25–32 With this treatment, the optical properties of
molecule-metal cluster systems can be described by the QM
methods. Small MNPs, however, don’t support the bulk plas-
mon. The other is to adopt the mixed quantum/classical ap-
proach, which combines the QM approaches with classical
mechanics or electrodynamics, such as the Mie theory,33 dis-
crete dipole approximation,34 finite difference time domain,5

and polarizable continuum models.35–37

To more accurately capture the plasmonic effect from
MNPs with different sizes, shapes, and compositions, how-
ever, atomistic modeling of the MNP-adsorbate system is
needed. Specifically, to account for the large polarizability
of MNPs, (induced) charges, dipoles, and/or even multipoles
would be introduced at each atom site, leading to several (po-
larizable) force field models for MNPs. These molecular me-
chanics (MM) methods include the point-dipole interaction
model38,39 (including its combination with either electronega-
tivity equalization40 or charge-transfer41), charge-dipole inter-
action model,42,43 discrete interaction model (DIM)44,45 and
its coordination-dependent variant (cd-DIM),46 and atomic
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dipole approximation model.47

These MM models can be employed in combined quan-
tum mechanics/molecular mechanics (QM/MM) modeling of
probe-MNP complexes, where the probe molecule constitutes
the QM region so that its vibrational motions (in infrared
and Raman spectroscopy) or electronic transitions (in fluores-
cence) are treated using ab initio QM theories. Mikkelsen et
al have investigated the hyperpolarizability changes of organic
molecules near gold nanoparticles by a polarizable QM/MM
approach recently.48,49 The DIM model with induced charges
and induced dipoles at each metal atom, in particular, has
been combined with QM methods by Jensen and others50–54

to model MNP-mediated one-photon51,55 and two-photon
absorption,56 Raman,52,57–59 and fluorescence spectra.60 In
parallel to the QM/MM study of MNP-enhanced electronic
transitions, Giovannini, Cappelli, and others have combined
density functional theory (DFT) and time-dependent density
functional theory (TDDFT) with their FQFµ models for wa-
ter molecules, which are also based on fluctuating charges and
induced dipoles.61,62

Analytic energy derivatives can provide computational ad-
vantages in molecular geometry optimizations, vibrational
frequency calculations, and molecular property descriptions.
The analytic Raman intensities of the QM method have been
derived and implemented decades ago.63–65 Recently, the im-
plementations of analytic Hessian and high-order molecular
properties (such as IR and Raman intensities) have been ex-
tended to several hybrid (polarizable) QM/MM schemes for
solvents or protein systems.66–68 Here, inspired by the encour-
aging results of the QM/DIM model from Jensen et al,50–52

we present our implementation of this model and its analytic
energy derivatives with respect to the nuclear coordinates and
perturbed electric field for the study of the adsorbate–MNP
systems. Compared to earlier implementations of IR and Ra-
man intensities within a polarizable QM/MM model,66–68 our
implementation is applicable to polarizable force fields in-
volving both induced charges and dipoles, such as the DIM
model for metal clusters.

The paper is organized as follows. Section II briefly recaps
the basic theoretical foundation of the polarizable QM/MM
model for the ground-state energy of a molecule–MNP system
and presents the analytical expressions for high-order deriva-
tives of the energy with respect to the QM nuclear and field
perturbations. It is followed by the computational details in
Section III. In Section IV, using the pyridine molecule in the
vicinity of three gold clusters as testing systems, the computed
IR and Raman spectra are presented and discussed. In addi-
tion, the SERS of 4,4′-bipyridine on gold and silver MNPs
are simulated by QM/DIM method and compared with experi-
mental spectra. Moreover, the effects of nonlinear response of
MNP and charge migration to Raman intensity are analysed.
Finally, the concluding remarks and potential future improve-
ments are summarized in the last section.

II. THEORY

II.A. Total Energy of Hybrid QM/MM System

Here the DIM method is briefly described with a com-
pact notation and the reader is referred to the original
publications.44,45 The energy of the MM region is given by
the electrostatic interaction,

EMM =
1
2
M ind ·T ·M ind−M ind ·F tot (1)

where M ind represents the collection of induced charges and
dipoles (qind,~µ ind) on MM atoms; T the interaction ma-
trices of charge–charge, charge–dipole, and dipole–dipole
(T (0),T (1),T (2)) as

T (0)
i j =

1
ri j

erf
( ri j

σ

)
, T (n)

i j = (−∇ j)
n T (0)

i j (2)

where ri j is the distance between the i-th and j-th MM atoms,
and σ is the width of Gaussian functions used to damp the
electrostatic interaction between neighboring atoms.44 The di-
agonal block of T is formed by the atomic capacitance (ci)
and polarizability (αi) for charge and dipole self-interactions
at i-th MM atom, respectively. F tot is the total external gener-
alized field exerted on the MM sites, including both potentials
and fields (−V,~E). Using the variational condition, the sta-
tionary solution is given by solving a linear equation,(

T 1′T
1′ 0

)(
M ind

λ

)
=

(
F tot

Q

)
(3)

where the Lagrangian multiplier λ is introduced to constrain
the net charge for the MM region as Q. 1′ refers to a row
vector (1, 0, 0, 0, 1, 0, 0, 0, · · · ) with a value of 1 for only the
induced charge on each MM atom. When Q is equal to 0 (as
for all test cases in this work), the solution to Eq. (3) could be
formally written as,

M ind = T −1 ·F tot (4)

where T −1 represents the upper-left 4NMM×4NMM block of
the inverse of the matrix in Eq. (3). Therefore, the MM energy
is reformulated as

EMM =−1
2
M ind ·F tot =−1

2
M ind ·T ·M ind

=−1
2
F tot ·T −1 ·F tot (5)

The last expression for the MM energy will be used in the
derivation of the high-order derivatives of the energy.

When the MM region is adjacent to the QM region (as de-
scribed on the DFT level of theory), the total generalized field
F tot would include the contributions from the QM region in
addition to the external source,

F tot = F QM +F ext

=−V ·P+∑
I

ZITI +R~f ext (6)
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where the matrix V contains integrals
〈
φµ

∣∣T ∣∣φν

〉
. Namely,

for each pair of basis function (φµ and φν ) and the j-th MM
atom, it contains the interaction between the basis function
pair and a Gaussian MM charge (with width σ ′),

V (0)
j,µν

=

〈
φµ

∣∣∣∣∣∣ 1∣∣∣~r−~R′j
∣∣∣erf


∣∣∣~r−~R′j

∣∣∣
σ ′

∣∣∣∣∣∣φν

〉
(7)

and its first derivatives.

V (1)
j,µν

=−∇ j

〈φµ

∣∣∣∣∣∣ 1∣∣∣~r−~R′j
∣∣∣erf


∣∣∣~r−~R′j

∣∣∣
σ ′

∣∣∣∣∣∣φν

〉 (8)

In Eq. (6), P is the density matrix with elements Pµν , ZI labels
the I-th QM nuclear charge and TI is the corresponding gen-
eralized external field on MM atoms, and R~f ext represents the
generalized field on each MM atom at position (R′jx,R

′
jy,R

′
jz):

R~f ext =



R′1x R′1y R′1z
1 0 0
0 1 0
0 0 1

R′2x R′2y R′2z
1 0 0
0 1 0
0 0 1
· · · · · · · · ·



 f ext
x

f ext
y

f ext
z

 (9)

With the definition of the total generalized field F tot in Eq.
(6), the total electronic energy of the system can then be ex-
pressed as

E = P ·
(

h0 +
1
2

II ·P
)
+Exc−~µQM ·~f ext

− 1
2
M ind ·F tot +EQM/MM

vdW (10)

where the first term is the well-known DFT core Hamiltonian
h0 and the two-electron integral supermatrix II in atomic basis
(φµ ,φν ,φλ ,φσ ) is

Πµν ,λσ = (µν |λσ)−CHFX(µλ | f (~r12)|νσ) (11)

adopting approximate coefficient CHFX and operator f (~r12)
for hybrid and range-separated functionals. Further, Exc =∫

d~r fxc(~r) is the DFT exchange-correction energy, and ~µQM

is the dipole moment of the QM region,

~µQM =−P · ~M+∑
I

ZI~RI (12)

which leads to the interaction between QM and external fields
within the dipole approximation. Here ~M is the dipole mo-
ment matrix and ~RI the I-th QM nuclear coordinate. The cor-
responding Fock matrix to be used in the SCF cycles could be
obtained by differentiating the total energy given by Eq. (10)
with respect to the density matrix (P):

F = h0 + ~M ·~f ext +M ind ·V+ II ·P+Fxc (13)

where the elements of Fxc can be computed as

(Fxc)µν
=
∫

d~r∑
ξ

∂ fxc

∂ξ

∂ξ

∂Pµν
(14)

with variables, ξ , being electron density or its gradient.69

With this Fock matrix, we could define a total core Hamil-
tonian as,

h = h0 + ~M ·~f ext +M indV (15)

and then the expression

E = P ·
(

h+
1
2

II ·P
)
+Exc−∑

I
ZI~RI ·~f ext

− 1
2
M ind ·

(
F nuc−F ele +F ext)+EQM/MM

vdW (16)

will be used for the calculation of the total energy. The last
term is the van der Waals (vdW) interaction between QM and
MM regions. Here we adopt the distance-dependent variance
of the classical Lennard-Jones (LJ) 12-6 potential according
to Jensen et al.52 The expression is presented in Section S1 of
the supporting information (SI).

II.B. Energy Gradient and Hessian Matrix

The first derivatives of the energy in Eq. (16) with respec-
tive to the QM coordinates, x, can be expressed as

Ex = P ·
(

h[x]+
1
2

II[x] ·P
)
+E [x]

xc −W ·S[x]

−∑
I

ZI~Rx
I ·~f ext−M indF nuc,[x]+EQM/MM,[x]

vdW (17)

where superscripts with [] refer to the explicit derivatives ex-
cluding the contributions from orbital rotations. Here

h[x] = h[x]
0 + ~M[x] ·~f ext +M indV[x] (18)

with V [x]
µν =

〈
φµ

∣∣T ∣∣φν

〉[x]. The energy weighted density ma-
trix is

W =
1
2

PFCC† +
1
2

CC†FP = PFP (19)

The contributions from MM part could be found by differen-
tiating the last two terms in Eq. (10) as

EMM,x =−M ind ·F QM,[x]+EQM/MM,[x]
vdW (20)

where

F QM,[x] =−V[x]P−VP[x]+∑
I

ZIT
[x]

I (21)

derived from Eq. (6).
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The Hessian can then be obtained by directly differentiating
the QM gradient in Eq. (17) with respect to the QM coordi-
nates,

Exy = P ·
(

h[xy]+
1
2

II[xy] ·P
)
+Py ·

(
h[x]+ II[x] ·P+F[x]

xc

)
+E [xy]

xc −W ·S[xy]−Wy ·S[x]−M ind ·F nuc,[xy]

−F QM,y ·T −1 ·F QM,[x]+EQM/MM,[xy]
vdW (22)

where

h[xy] = h[xy]
0 + ~M[xy]~f ext +M ind ·V[xy] (23)

with V [xy]
µν =

〈
φµ

∣∣T ∣∣φν

〉[xy]. The MM contributions to the
Hessian matrix could be summarized as

EMM,xy =−M ind ·
(
F QM,[xy]−V[x]Py

)
−F QM,y ·T −1 ·F QM,[x]+EQM/MM,[xy]

vdW . (24)

Here Py includes the derivatives of orbital rotations. The first
term represents the MM charges and dipoles induced by the
seond-order QM potentials and fields with respect to QM nu-
clear coordinate changes, while the second term is the inter-
action between first-order QM potentials and fields and MM
induced charges and dipoles from another first-order QM po-
tentials and fields perturbed by QM atom displacements. After
the construction of the Hessian matrix in the mass-weighted
coordinates, and projecting the rotational and translational
degrees of freedom out of this harmonic force constant ma-
trix, one could obtain the normal modes and vibrational fre-
quencies by diagonalizing the projected matrix.70 Note that
here the Hessian matrix only includes the QM-QM block, and
hence, it is actually partial Hessian within the QM region.

II.C. Infrared and Raman Spectral Intensities

IR and Raman spectra provide information about the
molecular vibrations. IR spectra can be obtained from light
absorption whereas Raman spectra reflect light scattering pro-
cess. The IR and Raman spectral intensities are proportional
to the squares of nuclear derivatives of molecular electric
dipole and polarizability, respectively.65,70,71 When the pertur-
bation is the external field fm, the derivatives of total energy
in Eq. (10) would give the total dipole moment

µ
tot
m =− ∂E

∂ fm
= ∑

I
ZIRI,m−P ·Mm +M ind ·Rm (25)

where the first two terms produce the QM dipole moment
as in Eq. (12), and Rm is the m-th column of matrix R
in Eq. (9). For m = 0 (the x component), for instance,
Rm is [R′1x,1,0,0,R

′
2x,1,0,0, · · · ]. Then M indRm would be

∑ j(qind
j R′jm +µ ind

j,m) with j as the MM atom index.
The first-order changes of the total dipole in Eq. (25) with

respect to nuclear displacements could be derived as

µ
tot,x
m = ∑

I
ZIR

[x]
I,m−Px ·Mm−P ·M[x]

m +F QM,x ·T −1 ·Rm

(26)

Here the last term refers to the monopolar/dipolar response in
the MM region. Namely, as one displaces the QM atoms, it
leads to a variation in the corresponding potential and field
(F QM,x) and thus causes a change to the induced charges and
dipoles on MM atoms.

The electronic polarizability is obtained by differentiating
the total dipole moment given by Eq. (25) with respect to the
external field fn,

αmn =
∂ µ tot

m

∂ fn
=−Pn ·Mm +

(
F QM,n +Rn

)
·T −1 ·Rm

(27)

and its nuclear derivative is derived as

α
x
mn =−Pnx ·Mm−Pn ·M[x]

m +F QM,nx ·T −1 ·Rm

=−Pnx ·
(
Mm +VT −1Rm

)
−Pn ·

(
M[x]

m +V[x]T −1Rm

)
=−Pnx ·M̃m−Pn ·M̃[x]

m (28)

where F QM,nx ·T −1 ·Rm represents the contribution of the
MM part, which indicates that the two perturbations both act
on the QM region (i.e., F QM,nx) in the current framework. It
is incorporated into the dipole moment matrix and its deriva-
tive matrix in the last line.

The derivatives of density matrix are derived in Appendix
A. As in the case of the first-order derivatives of density ma-
trix Px or Pn, only the first-order derivatives of orbital ro-
tations are needed in the second-order derivatives of den-
sity matrix Pnx, which is known as the 2n+ 1 rule.72,73 The
derivatives of orbital rotations are computed by the coupled-
perturbed Hartree-Fock equation or z-vector equation, which
is presented in Appendix B.

III. COMPUTATIONAL DETAILS

The QM/DIM method and its analytic energy derivatives
are implemented in a locally modified version of the Q-CHEM
package.74 The parameters used in this QM/DIM method are
listed in Section S1 of SI. Pyridine (Py) molecule and two
gold clusters including 18 and 32 gold atoms are chosen as
the test system. Based on these components, three complex
configurations shown in Fig. 1 are formed: surficial Py–Au18–
S, vertical Py–Au18–V, and Py–Au32 with the nearest N–Au
distances being 3, 4, and 5 Å. The geometries are obtained
from full QM restrained optimization with a harmonic poten-
tial, so that each of the structures has only one imaginary fre-
quency along with the labeled N–Au direction; their coordi-
nates are provided in the SI. Restrained optimizations are also
carried out by QM/DIM method and the obtained coordinates
show no apparent difference from full QM results (with largest
RMSD value as 0.007 Bohr in Table S3 of SI). The IR and Ra-
man spectra are calculated by full QM and hybrid QM/DIM
methods. In the latter, pyridine is treated by QM and the gold
atoms form the DIM region. The partial Hessian is used in
the QM/DIM method, whose potential errors are discussed in
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Section S3 of SI. To validate the implementation of the ana-
lytic derivatives of the QM/DIM method, analytical and finite-
different approaches are used to compute the frequencies and
Raman spectral intensities of the Py–Au18–V with the labeled
N–Au distance as 3 Å and the values are collected in Tab. S7
of the SI.

Furthermore, to demonstrate the capability of current ana-
lytic derivatives approaches within QM/DIM, we calculate the
normal surface enhanced Raman scattering spectra (SERS) of
4,4′-bipyridine (4,4′-BPy), which is set close to the surfaces of
Au2057 and Ag2057 icosahedral MNPs, respectively (their ge-
ometric arrangements are shown in Fig. S5 of SI). The simu-
lated SERS spectra are compared with experimental ones.75,76

All the calculations are carried out with PBE0 functional
and 6-31+G(d) for N, C, and H atoms and LanL2DZ ECP and
basis set for Au atoms using the locally modified Q-CHEM 5.2
package.74 B3LYP functional is also used for 4,4′-BPy system
for the comparison with previous theoretical works.77,78 The
convergence thresholds of SCF and CPKS are both 10−8 au
while a 10−14 au threshold is used for two-electron integrals.
SG-1 DFT grid79 is utilized for DFT numerical integration.
The vibrational spectra are plotted using a Lorentz function
with a width of 10 cm−1.

FIG. 1. Pyridine–gold cluster configurations: a) surfacial Py–Au18–
S, b) vertical Py–Au18–V, and c) Py–Au32. The nearest N–Au dis-
tance, R, is set to be 3, 4, or 5 Å.

IV. RESULTS

IV.A. Infrared Spectra

The infrared (IR) spectra of pyridine molecule and three
different pyridine–gold complexes (Py–Au18–S, Py–Au18–V,
Py–Au32) computed by QM and QM/DIM methods are dis-
played in Fig. 2. The top row shows the IR spectra of the
gas-phase pyridine minimum-energy structure, while the other
three rows show the spectra calculated using the optimized
configurations (with the distances restrained at 3, 4, and 5Å).
In these three rows, the green curves correspond to the spec-
tra of the pyridine molecule at the geometry extracted from
each of these complexes. Overall, the QM/DIM method (blue
curves) reproduces similar trends in the harmonic frequency
shifts and comparable IR intensities relative to the full QM
profiles (red curves) for the tested systems.

Overall, the harmonic vibrational frequencies of the pyri-
dine molecule are shifted by up to 20 cm−1 from the gas
phase to the complexes. Within each of the three complexes,
however, the frequencies of the adsorbed pyridine molecule
have marginal shifts towards higher frequency (smaller than 7
cm−1) upon the binding to Au clusters. This is not surprising
because the heavy Au atoms vibrate very slowly and have a
negligible effect on the nearby pyridine molecule. For a rep-
resentative structure, Py–Au18–V (3 Å), the numerical values
are provided in Table S13 of the SI, and information for sev-
eral key vibrational modes are collected in Table I.

When the pyridine molecule approaches the Au clusters,
the IR peaks of three vibrational modes (ring breathing and
two C–H wags) within 1000∼1300 cm−1 become increas-
ingly more intense as the distance reduces from 5 to 3 Å. The
second C–H wag at 1238 cm−1 is predicted by full QM calcu-
lations to have the largest enhancement of 24 times (from 2.7
to 48.7 km/mol) for the S configuration, 33 times for V config-
uration, and 24 times for Py–Au32, as shown in the panels (j),
(k), and (l) of Fig. 2, respectively. In contrast, some peaks are
significantly weakened after the binding to Au clusters. This
is especially obvious with the two out-of-plane C–H bends at
744 and 780 cm−1, which have comparable intensities in the
gas phase. While only the IR peak at 744 cm−1 is reduced in
Py–Au18–S (3Å) and Py–Au18–V (3Å) complexes, both peaks
(744 cm−1 and 780 cm−1) lose some strength in the Py–Au32
(3Å) structure.

These changes in the IR intensities are reproduced reason-
ably well by QM/DIM calculations, as illustrated in Fig. 2.
As shown in Table I, for the Py–Au18–V (3 Å) complex, the
aforementioned enhanced C–H wag (mode 16) is predicted to
be 67.28 km/mol (full QM) and 73.73 km/mol (QM/DIM).
Similarly, the calculated IR intensity of mode 14 is predicted
to be enhanced to 35.86 and 38.42 km/mol, respectively, by
the full-QM and QM/DIM calculations. The largest deviation
appears for mode 22: the full QM method predicts an inten-
sity of 43.62 km/mol, whereas a larger value (66.96 km/mol)
is predicted by QM/DIM.
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FIG. 2. Infrared spectra of the gas-phase pyridine (Py′) and the Py–Au18–S, Py–Au18–V, and Py–Au32 complexes with three intersystem
distances, 3, 4, and 5 Å, calculated by full QM and QM/DIM methods with PBE0/6-31+G(d)/LanL2DZ. The green, red, and blue curves
represent the results from the QM calculation for Py molecule and from full QM and QM/DIM for Py–Au complexes, respectively.

TABLE I. Selected vibrational frequencies and corresponding IR and Raman intensities of gas-phase Py′ and Py–Au18–V (3 Å) complex
calculated by full QM and QM/DIM methods with PBE0/6-31+G(d)/LanL2DZ. Here Py′ and Py labels refer to the calculations based on the
geometries of Py optimised in gas-phase and in Py–Au18 complexes, respectively.

No. Freq (cm−1) IIR (km/mol) IRaman (Å4/AMU)

Py′ Py Py–Au18 Py′ Py Py–Au18 Py′ Py Py–Au18

QM QM/DIM QM QM/DIM QM QM/DIM

3 614.45 609.81 613.18 610.82 3.91 3.65 17.87 22.71 4.478 3.873 8.894 114.258
4 666.96 668.16 666.11 667.73 0.38 0.40 0.04 0.04 5.734 5.037 4.339 6.816
5 744.36 717.01 717.64 717.97 41.94 75.96 52.66 57.82 0.114 0.063 0.296 0.020
6 780.49 761.66 764.78 763.01 46.29 11.29 20.94 16.09 0.040 0.094 0.029 0.025

11 1042.75 1020.11 1022.95 1022.55 0.00 7.58 20.85 35.36 0.007 9.500 31.707 125.361
12 1046.25 1058.45 1057.95 1058.29 2.56 2.05 0.68 0.01 41.408 54.055 294.444 236.590
14 1101.06 1105.89 1108.21 1107.01 7.00 7.00 35.86 38.42 2.172 1.492 2.241 47.912
16 1238.39 1254.27 1257.70 1255.92 2.73 3.72 67.28 73.73 7.583 8.893 9.845 11.281
20 1513.58 1530.22 1534.97 1533.16 1.39 2.15 0.69 2.43 3.672 1.832 8.758 52.600
22 1651.11 1665.77 1670.11 1668.91 22.34 24.82 43.62 66.96 12.857 13.733 12.854 58.173

IV.B. Raman Scattering Spectra

Figs. 3 shows the calculated Raman spectra of Py–Au18–
S, Py–Au18–V, and Py–Au32 complexes by full QM and

QM/DIM methods. The results are compared to those of the
isolated pyridine. For all the configurations, we observe that
the Au clusters can significantly enhance the ring breathing
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FIG. 3. Raman spectra of the gas-phase pyridine (Py′) and the Py–Au18–S, Py–Au18–V, and Py–Au32 complexes at 3, 4, and 5 Å intersystem
distances calculated by full QM and QM/DIM methods with PBE0/6-31+G(d)/LanL2DZ.

vibration mode 12 (around 1050 cm−1).
When the distance is 5 Å, although QM/DIM slightly un-

derestimates the intensity of mode 12, it nearly reproduces
the full QM spectra as Figs. 3(d), 3(e), and 3(f) show. As
R decreases, however, QM/DIM gives less satisfying Raman
profiles. Taking Py–Au18–V system with R = 4 Å as an ex-
ample (see Fig. 3(h)), we observe that QM/DIM significantly
underestimates the intensity of mode 12 but overestimates this
of mode 11 compared with the full QM results. When R is fur-
ther shortened to 3 Å, the discrepancy between full QM and
QM/DIM results in all frequency ranges increases. As shown
in Table I, QM/DIM significantly overestimates the intensi-
ties of all the modes except mode 12. In other words, the
QM/DIM approach could provide artificial enhancements for
some vibrational modes, which can be attributed to the ne-
glect of chemical enhancement and nonlinear responses of the
MNP in the current QM/DIM model.

Moreover, we calculate the normal Raman scattering spec-
tra of 4,4′-bipyridine (4,4′-BPy) in the gas phase, and in the
proximity of Au2057 and Ag2057 with respect to the DFT XC
functional PBE0 and B3LYP, respectively. Fig. 4 and Fig. S6
in SI show the calculated results, where the gas-phase Raman
intensities are scaled by a factor of 20. It is noted that the

spectra calculated with PBE0 and B3LYP are almost identi-
cal, indicating that the impact of functional on the spectra is
small.

To compare with the experimental off-resonance SERS
spectra with the incident light of 535 nm, here the Raman scat-
tering intensity (in unit of cm2/sr) for the vibrational mode k
is calculated as

IRaman
k =

(2π)4

45
h

8π2cωk

(ω0−ωk)
4

1− exp(−hcωk/kBT )
Sk (29)

based on short-time and Placzek approximations.80 Here ω0 is
the frequency of the incident light and Sk (in unit of Å4/AMU)
refers to the Raman scattering factor,

Sk = 45ᾱ
′2
k +7γ

′2
k , (30)

where isotropic and anisotropic polarizability derivatives, ᾱ ′

and γ ′, are composed by the components of nuclear derivatives
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of molecular polarizability α ′ as,

ᾱ
′ =

1
3
(
α
′
xx +α

′
yy +α

′
zz
)

γ
′ =

1
2

((
α
′
xx−α

′
yy
)2

+
(
α
′
xx−α

′
zz
)2

+
(
α
′
yy−α

′
zz
)2

+6
(

α
′
xy

2
+α

′
xz

2
+α

′
yz

2
))

(31)

respectively. The constants in Eq. (29) are provided in Table
S2.

Fig. 4 demonstrates that, for the adsorbed configurations,
QM/DIM predicts a 20 times enhancement for most of the Ra-
man peaks due to electromagnetic enhancement. Both the the-
oretical calculation and experimental measurement75,76 yield
a consistent result trend on the MNP-induced changes on the
relative spectral intensities. For example, the gold nanopar-
ticle makes the strongest Raman peak of 4,4′-BPy shift to
1678 cm−1 from 1336 cm−1, the relative intensity at around
1024 cm−1 decrease, and the two Raman peaks in the 600–
800 cm−1 range disappear. However, the QM/DIM predic-
tions hardly alter the molecular vibrational frequencies while
the experimental frequency shifts could be as large as 18
cm−1.75,76 It is unsurprising because after the 4,4′-BPy is ad-
sorbed on the MNP, the QM/DIM optimization yields a simi-
lar geometry as the gas-phase one, thus producing only small
changes in the vibrational frequencies. This is in line with the
Raman spectra of the Py cases. As shown in Table I, the fre-
quencies calculated by full QM and QM/DIM methods have
similar values. The large frequency changes after molecule
adsorbed on MNP come from geometry differences between
Py gas-phase minimum and full QM optimized Py–Au18 com-
plex.

FIG. 4. Raman spectra of the gas-phase 4,4′-bipyridine (4,4′-BPy),
4,4′-BPy–Au2057 and 4,4′-BPy–Ag2057 complexes calculated by QM
and QM/DIM methods with PBE0/6-31+G(d), where QM peaks are
scaled by 20 for comparison. The nearest N–Au and N–Ag bond
lengthes are 3.034 and 2.996 Å, respectively.

IV.C. Contribution of Nonlinear Response of MNP to
Raman Intensity

To shed light on the issue of the QM/DIM approach in the
Raman calculations, we calculate the nuclear derivatives of
the polarizability through the finite-difference (FD) method
based on classical turning points (CTP). Two vibrational
modes are chosen: the ring breathing modes around 1020 and
1050 cm−1 (modes 11 and 12). As shown in Fig. 5, the pyri-
dine nitrogen atom shows little participation in the vibrational
pattern of mode 12 while it gets involved in that of mode 11
(the same for other artificially enhanced modes).

FIG. 5. Vibrational patterns of selected modes of pyridine.

As Eq. (27) shows, the molecular electric polarizability αmn
is related to the density matrix derivatives with respect to the
external field and molecular dipole moment matrix. We can
divide the value of αmn into four terms with respect to the
atomic basis sets contributed by its two components: the Py
molecule and Au cluster. As shown in Table II, for mode 11,
the Au cluster contributes 8.877 au to the final polarizability
change, which largely cancels the other contributions; while
the value (-0.519 au) is negligible for mode 12. This distinc-
tion could be understood from the vibrational motions of the
pyridine. The nitrogen atom plays a major role in the vibration
of the ring breathing mode 11 in Fig. 5(a) and changes the lo-
cal fields exerted on the Au clusters, which requires the contri-
bution from high-order nonlinear response terms, i.e., the hy-
perpolarizability-related terms of the Au atoms, to be incorpo-
rated. On the other hand, as the vibration of ring stretch mode
12 in Fig. 5(b) is symmetric along the chosen z axis, there
is no change in the polarizability of the Au cluster. Further-
more, there is no explicit contribution from the metal atoms to
the Raman intensities in the current QM/DIM method, which
can be revealed by comparing Eqs. (26) and (28).

As stated for Eq. (28), in the current QM/DIM scheme,
the contribution of the MM region only comes from the in-
duced charges and dipoles by the second-order potentials and
fields of the QM counterpart, where the induced dipole mo-
ments are proportional to the first power of the field inten-
sity. MNP may possess a strong nonlinear response, and the
induced dipole moments should include the nonlinear terms
that are proportional to the second and higher powers of the
field intensity. Therefore, it is reasonable to account for the
nonlinear response of MNPs.

The incorporation of the hyperpolarizability has been pro-
posed by Andrews et al in their analysis of molecular Ra-
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TABLE II. Finite-difference polarizability derivatives (au) for two vibrational modes (1020.11 and 1058.45 cm−1) of Py and Py–Au18–V
configuration at 3 Å intermolecular distance calculated by full QM method with PBE0/6-31+G(d)/LanL2DZ.

Pz ·∆Mz ∆Pz ·Mz ∆αzz

Py Py–Au Au–Py Au Py Py–Au Au–Py Au

11 gas-phase 12.556 -9.862 2.694
full QM 8.244 -6.455 -6.455 0.000 -22.239 6.047 6.047 8.877 -5.932

12 gas-phase 1.419 -6.481 -5.062
full QM -5.332 -2.057 -2.057 0.000 -32.657 12.617 12.617 -0.519 -17.390

man scattering mediated by another molecule.81,82 The cor-
responding formula in their derivations is81

α
x
mn = ∑

kl
R−3

AB(δkl−3êkêl)µ
A,x
l β

B
mnk (32)

where RAB is the inter-distance between two fragments, A and
B; êk is a unit number at k-th direction; ~µA,x is the nuclear
derivatives of the ground state dipole moment of A; and βββ

B

represents the electric hyperpolarizability tensor of B. It cor-
responds to the event that the incident and scattered photons of
the Raman scattering are on the same fragment A, meanwhile
one virtual photon is exchanged between the two fragments,
i.e., excitation energy transfer (EET) occurs between two lo-
cally excited states of the two molecules. We note that to ar-
rive at the hyperpolarizability–dipole interaction expression
in Eq. (32), two approximations are made for the coupling
between the two locally excited states: the exchange integrals
are ignored and a multipole expansion of the Coulomb interac-
tion operator is adopted. (The third one is that charge-transfer
excitations are not into consideration.) This expression, how-
ever, is incomplete because the distance could also be differ-
entiable rather than taking the first-order term in dipole mo-
ment (shown in Eq. (37)).

On other hand, if the hyperpolarizability βββ
MM is introduced

in the QM/DIM at the beginning, the additional term of the
energy would be

E =
1
2 ∑

mnl
β

MM
mnl ( f QM

m + f ext
m )( f QM

n + f ext
n )( f QM

l + f ext
l ) (33)

whose second-order derivative with respect to external field is

αi j =
1
2 ∑

mnl
β

MM
mnl

[
3 f QM,i j

m ( f QM
n + f ext

n )( f QM
l + f ext

l )

+6( f QM,i
m +δim)( f QM, j

n +δ jn)( f QM
l + f ext

l )
]

(34)

Then its nuclear derivative is derived as

α
x
i j = ∑

mnl
3β

MM
mnl ( f QM,i

m +δim)( f QM, j
n +δ jn) f QM,x

l (35)

+∑
mnl

β
MM
mnl f QM

l [6 f QM,ix
m ( f QM, j

n +δ jn)+3 f QM,i j
m f QM,x

n

+
3
2

f QM,i jx
m f QM

n ] (36)

Here we had assumed f ext = 0 as in the case of no external
field. The first line at the right-hand-side in the above expres-
sion closely resembles Eq. (32): Provided that the electric
field is generated by a dipole as f QM

l = R−3
AB(δkl − 3êkêl)µ

A
l ,

its nuclear derivative would be

f QM,x
l = R−3

AB(δkl−3êkêl)µ
A,x
l +

(
R−3

AB(δkl−3êkêl)
)x

µ
A
l
(37)

Then the interaction of the first term and the hyperpolariz-
ability yeilds Eq. (32), while the second term is from the
derivatives of the distance rather than molecular dipole. The
rest contributions to the nuclear derivatives of polarizability
αx

i j in Eq. (36) includes the expression β MM
mnl f QM

l , referring to
the first-order change in metal’s polarizability induced by QM
field. As in the QM/DIM method, each metal atom is induced
by QM potential and field by atomic capacitance and polariz-
ability and the induced charges and dipoles interact with each
other, it wold be difficult to distinguish this mutual polariza-
tion from the contributions in Eq. (36) with the use of molecu-
lar hyperpolarizability parameter for metal cluster. Therefore,
we use Eq. (35) to account the effect of hyperpolarizability of
metal in the following.

TABLE III. Hyperpolarizability (au) of the Au18 cluster calcu-
lated using finite-difference with a field strength of 0.001 au at the
PBE0/LanL2DZ level. Coordinates are obtained from the restrained
optimization of Py–Au18–V (3 Å).

x y z

x x 3.979 0.218 −338.778
y 0.218 3.168 −20.482
z −338.778 −20.482 −10.166

y x 0.218 3.168 −20.482
y 3.168 0.944 −792.040
z −20.482 −792.040 0.337

z x −338.778 −20.482 −10.166
y −20.482 −792.040 0.337
z −10.166 0.337 1929.883

This correction is sufficient for our purpose because the
gold cluster has large hyperpolarizability and it has little par-
ticipation in the vibrational modes of the Raman spectral re-
gion we are interested in. The hyperpolarizability of the Au18
cluster calculated by the finite-difference method with a field
strength of 0.001 au is given in Table III. Consistent values are
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obtained with a smaller field strength (0.0002 au). As demon-
strated in Table III, the calculated hyperpolarizability of the
Au18 cluster has large components along the z axis, compara-
ble with the values reported in the literature.83,84

The corrected QM/DIM Raman intensities of selected
modes of Py–Au18–V (3 Å) complex is shown in Table IV.
There are five variations (a–e) of the hyperpolarizability-
related correction for the QM/DIM method since some arbi-
trariness arises when only the molecular hyperpolarizability
parameter is available rather than the atomic ones. The (a),
(b), and (c) columns are calculated by taking the distance RAB
in Eq. (32) as the distance between the two centers of mass
(COM), the COM of pyridine and the location of the near-
est gold atom, and the shortest distance of the two fragments,
respectively. In other words, the distance RAB reduces grad-
ually when moving from (a) to (c). The (d) and (e) columns
collect the Raman intensities corrected using Eq. (35) without
and with QM induced fields, respectively. Even though the
QM/DIM Raman intensity of mode 11 is still larger than the
full QM one, it is unsurprisingly reduced with the correction
of the hyperpolarizability dependent term. On the other hand,
the intensity of mode 12 is also slightly increased by the (a),
(b), and (c) corrections.

TABLE IV. Corrected Raman intensities (Å4/AMU) by QM/DIM
and reference intensities by full QM for vibrational modes 11 and
12 of Py–Au18–V (3 Å) complex with PBE0/6-31+G(d)/LanL2DZ.
(a–c) variations of QM/DIM method use Eq. (32) with different dis-
tance RAB while (d) and (e) correspond to Eq. (35) without and with
QM induced fields, respectively.

No. IQM/DIM
Raman IQM

Raman

0 a b c d e

11 125.361 122.367 103.807 78.106 102.574 65.860 31.707
12 236.590 236.679 237.306 238.874 211.852 168.580 294.444

Fig. 6 displays the corrected QM/DIM Raman spectrum of
the Py–Au18–V (3 Å) complex. For approach (c), even though
more correct intensity is reproduced for mode 11, several
modes are wrongly enhanced such as 5, 16, and 19. It reflects
that the distance is too small within this calculation. When
the distance is larger, for instance, in the case of approach (b),
the green curve moderately approaches the QM one in Fig. 6.
On the other hand, the (e) profile (blue line) improves the in-
tensities of almost all the vibrational modes except that the
intensity of mode 16 is overestimated and that of mode 12
is further reduced relative to the uncorrected QM/DIM result
(from 236 to 168 Å4/AMU, while the full QM reference is 294
Å4/AMU). It is acceptable though that these corrections could
not produce overall satisfying intensities for all the modes, be-
cause only the molecular hyperpolarizability of the gold clus-
ter is employed in these calculations rather than the distributed
atomic hyperpolarizabilities while the fields and their deriva-
tives act on individual gold atoms.

IV.D. Population Analysis

Raman signals can be enhanced by the chemical enhance-
ment and the electromagnetic enhancement. In the current
QM/DIM scheme, we don’t account for the intermolecular
charge transfer (CT) effect, which may be partially respon-
sible for the limited accuracy of the QM/DIM scheme for Ra-
man spectral calculations, especially when the intermolecu-
lar distance is short. To check this effect, we calculated the
amount of charges on pyridine molecule within the complexes
as shown in Table V.

Among the four used population methods, only the elec-
trostatic potential (ESP) and fragment-based Hirshfeld (FBH)
charge schemes consistently predict the expected trend in the
fragment charge population, namely an enhanced CT with a
shorter distance between two fragments. These values clearly
show that the net transferred charge between Py and Au clus-
ter is almost zero when the nearest distance between these two
fragments is 5 Å, while it can be as large as 0.16 e− when the
distance shortens to 3 Å in Py–Au18–V according to the FBH
calculation. It suggests that the ground state charge migration
between the Py molecule and Au cluster might also play an
important role in the limited accuracy of our current QM/DIM
Raman spectral simulations.

V. CONCLUDING REMARKS

In this work, we derived and implemented the QM/DIM
method and its high-order energy derivatives for the calcu-
lation of noble MNP-mediated molecular vibrational spectra,
including IR and Raman scattering. Taking the complexes
composed of a pyridine molecule with MNPs consisting of
18 or 32 gold atoms as testing examples, we assessed the ac-
curacy of the current QM/DIM scheme in the calculations of
molecular vibrational frequencies and IR/Raman intensities.
The QM/DIM method demonstrates the ability to reproduce
the molecular vibrational frequencies and IR spectral intensi-
ties obtained using the full QM approach. The Raman profiles
from QM/DIM calculations behave well for large intermolec-
ular distances such as 5 Å for the tested complexes, while it
shows artificial enhancements at shorter molecule–MNP dis-
tances for some of the vibrational modes. Even though, with
large MNPs such as Au2057 and Ag2057, the simulated normal
SERS of 4,4′-BPy by QM/DIM method are comparable with
experimental spectra.

The deviation of QM/DIM results from full QM results for
small metal clusters, however, can be partially resolved. By
incorporating the term that incorporates the first-order non-
linear polarizability of Au clusters and the dipole (or electric
field) derivatives of the probe molecule, we can capture the
non-negligible three-virtual-photon process of Raman scatter-
ing within this hybrid method. With this correction, the Ra-
man spectra for the short-distance configurations of the Py–
Au clusters calculated using QM/DIM are improved. We
thus suggest that the atomic (distributed) hyperpolarizabil-
ity of metal atoms should be parameterized within the hy-
brid QM/DIM method to enable it to describe Raman scat-
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FIG. 6. Corrected Raman spectrum of Py–Au18–V (3 Å) complex by QM/DIM with PBE0/6-31+G(d)/LanL2DZ. (a–c) variations of QM/DIM
method use Eq. (32) with different distance RAB while (d) and (e) correspond to Eq. (35) without and with QM induced fields, respectively.

TABLE V. Charge populations on the pyridine molecule within the different Py–Au complexes calculated from the Mulliken,85 ChElPG,86

ESP,87 and FBH88 population schemes with PBE0/6-31+G(d)/LanL2DZ.

Py–Au18–S Py–Au18–V Py–Au32

5 Å 4 Å 3 Å 5 Å 4 Å 3 Å 5 Å 4 Å 3 Å

Mulliken −0.12 −0.23 −0.01 −0.01 −0.02 0.12 0.00 0.00 0.09
ChElPG −0.06 −0.09 −0.05 −0.03 −0.01 0.09 −0.05 −0.04 0.01
ESP 0.00 0.00 0.02 0.01 0.04 0.16 0.00 0.02 0.10
FBH 0.00 0.01 0.05 0.00 0.02 0.10 0.00 0.02 0.08

tering spectra more accurately. Besides, as investigated by
Schatz and the coworker,89 the other high-order properties
such as dipole-quadrupole and dipole-magnetic-dipole polar-
izabilities may also play a rule in the Raman intensity if
the electric field derivatives are comparable with the field
strength.

Furthermore, at short intermolecular distances, the overlap
of wave functions opens the possibility of a charge migra-
tion between Py and the Au cluster. In those cases, the ef-
fect of intermolecular CT on the Raman signal should not be
neglected, which may otherwise limit the applicability of the
current QM/DIM scheme for Raman spectral simulations. It
is therefore desirable to develop a scheme to account for the
CT effect in future QM/MM methods. The use of only QM-
QM block Hessian matrix in the current work is also a poten-
tial source of small errors in the simulated vibrational spectra.
In addition, the vdW interaction between the molecule and
MNP could affect the optimized molecular structure and then
its vibrational frequencies predicted by using the QM/DIM
method.

Finally, we note that the plasmon resonance effect of MNPs
has not been taken into account in this work. We expect
to include the resonance effect by adopting the frequency-
dependent parameters for metal atoms in future publications,
which requires solving complex-valued response equations.

SUPPLEMENTARY MATERIAL

Parameters used in DIM model and Raman intensity calcu-
lation; Configurations of 4,4′-bipyridine (4,4′-BPy) and 4,4′-
BPy-Au2057 and 4,4′-BPy-Ag2057 complexes; numerical com-
parison between finite-difference and analytical results of vi-
brational frequencies and Raman intensities for Py–Au18–V
(3 Å) configuration calculated by QM/DIM method; numeri-
cal results of frequencies and IR and Raman intensities of Py–
Au cluster, 4,4′-BPy-Au2057, and 4,4′-BPy-Ag2057 complexes;
and optimized geometry coordinates of studied Py–Au cluster
complexes.
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Appendix A: Derivatives of Density Matrix

The occupied MO coefficients could be expanded to the
second-order in orbital rotations Θvo as Ref. 90 suggested.

Co→ Co +CvΘvo−
1
2

CoΘ
T
voΘvo (A1)

Its first-order derivative is

Cx
o→ C[x]

o +C[x]
v Θvo +CvΘ

[x]
vo→ C[x]

o +CvΘ
[x]
vo (A2)

without second-order terms while the second-order derivative
could be further written as

Cxy
o → C[xy]

o +C[x]
v Θ

[y]
vo +C[y]

v Θ
[x]
vo +CvΘ

[xy]
vo

− 1
2

(
CoΘ

[x],T
vo Θ

[y]
vo +CoΘ

[y],T
vo Θ

[x]
vo

)
(A3)

where we set Θvo = 0 as the MOs are optimized. Here

C[x]
o =−1

2
CCT S[x]Co, C[x]

v =−1
2

CCT S[x]Cv (A4)

When the perturbation (x) in Eq. A2 is the external field in the
n direction, it is simplified to

Cn
o = CvΘ

[n]
vo (A5)

Similarly, if the second perturbation (y) in Eq. (A3) is the
external field in the n-th direction, it reduces to

Cxn
o → C[x]

v Θ
[n]
vo +CvΘ

[xn]
vo −

1
2

(
CoΘ

[x],T
vo Θ

[n]
vo +CoΘ

[n],T
vo Θ

[x]
vo

)
(A6)

As the derivatives of density matrix are dependent on the
derivatives of occupied MOs

Px = Cx
oCT

o +CoCx,T
o

Pxy = Cxy
o CT

o +CoCxy,T
o +Cx

oCy,T
o +Cy

oCx,T
o (A7)

we have

Px = C[x]
o CT

o +CoC[x],T
o +CvΘ

[x]
voCT

o +CoΘ
[x],T
vo CT

v

= C

(
−S[x]

oo − 1
2 S[x]

ov +Θ
[x],T
vo

− 1
2 S[x]

vo +Θ
[x]
vo 0

)
CT (A8)

Pn = C

(
0 Θ

[n],T
vo

Θ
[n]
vo 0

)
CT (A9)

and

Pxn = C[x]
v Θ

[n]
voCT

o +CoΘ
[n],T
vo C[x],T

v +CvΘ
[xn]
vo CT

o +CoΘ
[xn],T
vo CT

v

−CoΘ
[x],T
vo Θ

[n]
voCT

o −CoΘ
[n],T
vo Θ

[x]
voCT

o +C[x]
o Θ

[n],T
vo CT

v

+CvΘ
[n]
voC[x],T

o +CvΘ
[x]
voΘ

[n],T
vo CT

v +CvΘ
[n]
voΘ

[x],T
vo CT

v

=−1
2

(
CCT S[x]Pn +PnS[x]CCT

)
+C

(
−Θ

[x],T
vo Θ

[n]
vo −Θ

[n],T
vo Θ

[x]
vo Θ

[nx],T
vo

Θ
[nx]
vo Θ

[x]
voΘ

[n],T
vo +Θ

[n]
voΘ

[x],T
vo

)
CT

(A10)

The derivatives of orbital rotations (Θ[x]
vo,Θ

[n]
vo , and Θ

[nx]
vo ) are

determined using the procedure outlined in the next section.

Appendix B: Coupled-Perturbed Self-Consistent Field and
z-Vector Equations

To obtain the first-order changes in the density matrix, we
need to solve the coupled-perturbed self-consistent field (CP-
SCF) equation. Differentiating the SCF convergence condi-
tion [F,P]S = FPS−SPF = 0 with respective to an external
perturbation x, we have

[Fx,P]S +[F,Px]S +[F,P]Sx = 0 (B1)

where Fx = F[x] +F(2) ·Px. After moving the Px dependent
terms to one side, we arrive at

[F,Px]S +
[
F(2) ·Px,P

]
S
=−

[
F[x],P

]
S
− [F,P]Sx (B2)

where F(2) = II+ΩΩΩ+VT −1V. Note that ΩΩΩ is the exchange-
correlation portion of the response kernel as defined in Eq.
(14) of Ref. 91. The explicit Fock matrix derivatives, F[x] =

h[x]+ II[x] ·P+F[x]
xc , where h[x] includes the contribution from

the MM region as shown in Eq. (17) and F[x]
xc is defined in Eq.

(25) in Ref. 91. Projecting the first-order equation-of-motion
in Eq. (B2) into vo block, we have

(A+B)Θ[x]
vo = L[x]

vo (B3)

where (A + B) is the orbital Hessian, including the Fock
derivatives with respect to orbital rotations. The right-hand-
side is the vo block of the Lagrangian

L[x] = h[x]
0 + II[x] ·P+F[x]

xc + ~M[x]~f ext +(II+ΩΩΩ) ·P[x]

− 1
2

(
S[x]CCT F+FCCT S[x]

)
+M indV[x]+F tot,[x]T −1V (B4)
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for QM nuclear perturbations, where the last line at the right-
hand-side represents the contribution from MM part. And one
uses

L[n] = Mn +RnT
−1V (B5)

to solve for Θ
[n]
vo with external field perturbations. The prod-

ucts of property vectors and response properties are inter-
changeable, for instance, Θ

[x]
vo ·L

[a]
vo = L[x]

vo · (A+B)−1 ·L[a]
vo =

L[x]
vo ·Θ

[a]
vo .

The second-order CPSCF equation derived from Eq. (B1)
is

[Fnx,P]S +[Fn,Px]S +[Fx,Pn]S +[F,Pnx]S
+[Fn,P]Sx +[F,Pn]Sx = 0 (B6)

with hybrid nuclear coordinate (x) and external field (n) per-
turbations. Here

Fn = Mn +RnT
−1V+(II+ΩΩΩ) ·Pn

Fnx = M[x]
n +RnT

−1V[x]+
(

II[x]+ΩΩΩ
[x]
)
·Pn +(II+ΩΩΩ) ·Pnx

(B7)

After moving Pnx–dependent terms to one side of Eq. (B6)
and keep only the vo block, we arrive at

(A+B)Θ[nx]
vo = L[nx]

vo (B8)

with

L[nx] =− [F,Pn]Sx − [Fn,P]Sx −
[
F[nx],P

]
S
−
[
F,P[nx]

]
S

− [Fn,Px]S− [Fx,Pn]S (B9)

Instead of explicitly solving the second-order response in Eq.
B8, however, we can directly compute the desired product
Pxn

vo ·M̃m,vo in (28) as

Θ
[nx]
vo ·

(
M̃m
)

vo =
(

L[nx]
vo · (A+B)−1

)
·
(
M̃m
)

vo = L[nx]
vo ·Θ

[m]
vo

(B10)

by interchanging the variables. It corresponds to the well-
known 2n+1 rule.
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