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Analytic Implementations of the Cardinalized
Probability Hypothesis Density Filter

Ba-Tuong Vo, Ba-Ngu Vo, and Antonio Cantoni

Abstract— The probability hypothesis density (PHD) recursion
propagates the posterior intensity of the random finite set of
targets in time. The cardinalized PHD (CPHD) recursion is a
generalization of the PHD recursion, which jointly propagates the
posterior intensity and the posterior cardinality distribution. In
general, the CPHD recursion is computationally intractable. This
paper proposes a closed-form solution to the CPHD recursion
under linear Gaussian assumptions on the target dynamics and
birth process. Based on this solution, an effective multi-target
tracking algorithm is developed. Extensions of the proposed
closed form recursion to accommodate non-linear models are also
given using linearization and unscented transform techniques.
The proposed CPHD implementations not only sidestep the need
to perform data association found in traditional methods, but also
dramatically improve the accuracy of individual state estimates
as well as the variance of the estimated number of targets
when compared to the standard PHD filter. Our implementations
only have a cubic complexity, but simulations suggest favourable
performance compared to the standard JPDA filter which has a
non-polynomial complexity.

Index Terms— Multi-target tracking, Random finite sets,
Multi-target Bayesian filtering, Probability hypothesis density
filter, Cardinalized probability hypothesis density filter

I. INTRODUCTION

The objective of multi-target tracking is to simultaneously
estimate the time-varying number of targets and their states
from a sequence of observation sets in the presence of data
association uncertainty, detection uncertainty, and noise. The
random finite set (RFS) approach, introduced by Mahler as
finite set statistics (FISST) [1], [2] is an elegant formulation
of the multi-target tracking problem which has generated
substantial research interest [3]–[19]. In essence, the collec-
tion of target states at any given time is treated as a set-
valued multi-target state, and the corresponding collection
of sensor measurements is treated as a set-valued multi-
target observation. Using RFSs to model the multi-target state
and observation, the multi-target tracking problem can be
formulated in a Bayesian filtering framework by propagating
the posterior distribution of the multi-target state in time [2],
[3].

This work is supported in part by the Australian Telecommunications
Cooperative Research Centre and discovery grant DP0345215 awarded by
the Australian Research Council.

B.-T. Vo is with the Western Australian Telecommunications Research
Institute, The University of Western Australia, Crawley, WA 6009, Australia
(email: vob@watri.org.au).

B.-N. Vo is with the Electrical Engineering Department the University of
Melbourne, Melbourne, Vic. 3010, Australia. (email: bv@ee.unimelb.edu.au).

A. Cantoni is with the Western Australian Telecommunications Research
Institute, The University of Western Australia, Crawley, WA 6009, Australia
(email: cantoni@watri.org.au).

Due to the inherent combinatorial nature of multi-target
densities and the multiple integrations on the (infinite dimen-
sional) multi-target state and observation spaces, the multi-
target Bayes recursion is intractable in most practical appli-
cations [2], [3]. To alleviate this intractability, the probabil-
ity hypothesis density (PHD) recursion [2] was developed
as a first moment approximation to the multi-target Bayes
recursion. The PHD recursion in fact propagates the posterior
intensity of the RFS of targets in time. The PHD recursion
has the distinct advantage that it operates only on the single-
target state space and avoids data associations. Contrary to
the belief that the PHD recursion is intractable [20], a closed
form solution for linear Gaussian models was proposed in [4],
and a full sequential Monte Carlo (SMC) implementation was
proposed in [3] with relevant convergence results established
in [3], [15], [16]. Multi-target filters based on the PHD
recursion have since found successful application in a host of
practical problems, for example, terrain vehicle tracking [5],
radar tracking [6], feature point tracking of image sequences
[7], bistatic radar tracking [8], and sonar image tracking [9],
[21]. Novel extensions of the PHD recursion have also been
proposed in [19] for multiple models, and in [12], [13], [22],
[23] for performing track estimation.

The PHD recursion propagates cardinality information with
only a single parameter (the mean of the cardinality distribu-
tion), and thus it effectively approximates the cardinality distri-
bution by a Poisson distribution. Since the mean and variance
of a Poisson distribution are equal, when the number of targets
present is high, the PHD filter estimates the cardinality with
a correspondingly high variance. In practice, this limitation
manifests itself in erratic estimates of the number of targets
[11]. To address this problem, in [24], [25] Mahler relaxed the
first order assumption on the number of targets and derived a
generalization of the PHD recursion known as the cardinalized
PHD (CPHD) recursion, which jointly propagates the intensity
function and the cardinality distribution (the probability distri-
bution of the number of targets). The pressing question is: does
the additional propagation of cardinality information improve
the accuracy of multi-target state estimates? The answer to
this question hinges on solving the CPHD recursion. So far
however, no closed form solutions for the CPHD recursion
have been established [24], [25].

The key contribution of this paper is a closed form solu-
tion to the CPHD recursion for linear Gaussian multi-target
models. Based on this solution, we also develop:
• An efficient filter for tracking an unknown time-varying

number of targets in clutter (Sections III,IV),
• A reduced complexity filter for tracking a known fixed
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number of targets in clutter (Section V),
• Extensions of the proposed closed form recursion to

accommodate non-linear multi-target models using lin-
earization and unscented transform techniques (Section
VI).

Our proposed multi-target filter is a generalization of the
Gaussian mixture PHD filter described in [4]. Although both
filters propagate Gaussian mixture intensities analytically in
time, there are two key differences. Firstly, the intensity propa-
gation equation in the CPHD filter is much more complex than
that in the PHD filter. Secondly, in the CPHD filter there is the
additional propagation of the posterior cardinality distribution
which is coupled to the propagation of the posterior intensity.
Indeed, the Gaussian mixture CPHD filter reduces to the
Gaussian mixture PHD filter if the cardinality distributions
of the posterior and predicted RFSs are Poisson.

In simulations, our example of tracking an unknown time-
varying number of targets in clutter illustrates that an average
12.5 times reduction in the variance of the cardinality estimate
of the PHD filter can be obtained. In addition, our example of
tracking a known fixed number of targets in clutter illustrates
that favourable estimation performance compared to the JPDA
filter can be obtained. In the latter comparison, the JPDA
filter is run with a gating threshold such that both filters have
comparable throughput times.

Preliminary results have been published in previous con-
ference papers; a summary of the closed form solution has
appeared in [26], and a performance comparison with the PHD
filter has appeared in [27].

This paper is organized as follows. Section II provides
an overview of random finite sets, the multi-target Bayes
recursion, and the PHD recursion. Section III then introduces
the CPHD recursion and proposes a closed form solution to
the CPHD recursion for linear Gaussian multi-target models.
Demonstrations and numerical studies are considered in Sec-
tion IV. The reduced complexity filter for tracking a fixed
number of targets is derived along with a closed form recursion
for linear Gaussian models in Section V. Non-linear extensions
are proposed in Section VI. Closing remarks are given in
Section VII.

II. BACKGROUND

In this section, we review the multi-target tracking problem
formulated in the random finite set or point process framework.
In Section II-A, the central ideas in random set modelling
are described and the full multi-target Bayes recursion is
presented, and in Section II-B the PHD recursion is presented.
This sets the scene for Section III, where the cardinalized PHD
(CPHD) recursion is considered.

A. Random Finite Sets

Suppose at time k there are N(k) targets with states
xk,1, . . . , xk,N(k) each taking values in a state space X ⊆
Rnx . Suppose also at time k that M(k) measurements
zk,1, . . . , zk,M(k) are received each taking values in an ob-
servation space Z ⊆ Rnz . Then, the multi-target state Xk and

the multi-target measurement Zk, at time k, are defined as

Xk = {xk,1, . . . , xk,N(k)} ∈ F(X ), (1)
Zk = {zk,1, . . . , zk,M(k)} ∈ F(Z), (2)

where F(X ) and F(Z) denote the respective collections of
all finite subsets of X and Z . By modelling the multi-target
state and multi-target observation as random finite sets (RFSs),
the multi-target filtering problem can be posed as a Bayesian
filtering problem [1]–[3] with state space F(X ) and obser-
vation space F(Z). Intuitively, an RFS is simply a finite-set-
valued random variable which can be completely characterized
by a discrete probability distribution and a family of joint
probability densities. The discrete distribution characterizes
the cardinality of the set, whilst for a given cardinality, an
appropriate density characterizes the joint distribution of all
elements in the set [1], [28], [29].

In this paper, we consider multi-target dynamics modelled
by

Xk =


 ⋃

ζ∈Xk−1

Sk|k−1(ζ)


 ∪ Γk, (3)

where Xk−1 is the multi-target state at time k−1, Sk|k−1(ζ) is
the surviving RFS of target at time k that evolved from a target
with previous state ζ, and Γk is the RFS of spontaneous births
at time k (for simplicity we do not consider target spawning1).
Similarly, the multi-target sensor observations are modelled by

Zk =

[ ⋃

x∈Xk

Θk(x)

]
∪Kk, (4)

where Θk(x) is the RFS of measurements generated by the
single-target state x at time k, and Kk is the RFS of clutter
measurements or false alarms at time k.

The multi-target transition density2 fk|k−1(·|·) describes
the time evolution of the multi-target state and encapsulates
the underlying models of target motions, births and deaths.
Similarly, the multi-target likelihood2 gk(·|·) describes the
multi-target sensor measurement and encapsulates the under-
lying models of detections, false alarms, and target generated
measurements. The multi-target Bayes recursion propagates
the multi-target posterior density πk(·|Z1:k) in time [1]–[3]
according to

πk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|X)πk−1(X|Z1:k−1)µs(dX),

(5)

πk(Xk|Z1:k) =
gk(Zk|Xk)πk|k−1(Xk|Z1:k−1)∫

gk(Zk|X)πk|k−1(X|Z1:k−1)µs(dX)
,

(6)

where µs is an appropriate reference measure on F(X ). For
further details on a measure theoretic description of the multi-
target Bayes recursion, the reader is referred to [3]. However,

1Generally, the RFS framework for multi-object filtering encompasses target
spawning, for further details see [2].

2The same notation is used for multi-target and single-target densities
throughout. There should be no conflict since in the single-target case the
arguments are vectors whereas in the multi-target case the arguments are
finite sets.
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due to the combinatorial nature of multi-target densities and
the multiple integrations in (5)-(6), the multi-target Bayes
recursion is intractable in most practical applications.

B. The PHD Recursion

The PHD or the intensity function of a random finite set X
on X , is a non-negative function v on X with the property
that for any closed subset S ⊆ X

E [|X ∩ S|] =
∫

S

v(x)dx

where |X| denotes the number of elements of X . In other
words, for a given point x, the intensity v(x) is the density
of expected number of targets per unit volume at x. Indeed,
the intensity function is the first order moment of a RFS [28],
[29].

An important class of RFSs are the Poisson RFSs, which
are completely characterized by their intensity function. They
have the unique property that the distribution of the cardinality
of X is Poisson with mean N =

∫
v(x)dx, and for a

given cardinality the elements of X are each independent
and identically distributed (i.i.d) with probability density v/N .
More generally, an RFS whose elements are i.i.d according to
v/N , but has arbitrary cardinality distribution is called an i.i.d
cluster process [29].

The PHD recursion was proposed by Mahler in [2] as a first
moment approximation to the full multi-target Bayes recursion
(5)-(6). It propagates the posterior intensity of the RFS of
targets in time and does not require any data association com-
putations. Let vk|k−1 and vk denote the intensities associated
with the predicted and posterior multi-target state. Then, based
on the following assumptions
• Each target evolves and generates measurements indepen-

dently of one another;
• The birth RFS and the surviving RFSs are independent

of each other;
• The clutter RFS is Poisson and independent of the mea-

surement RFSs;
• The predicted multi-target RFS is Poisson,

the PHD recursion is given by

vk|k−1(x) =
∫

pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ + γk(x) (7)

vk(x) = [1− pD,k(x)]vk|k−1(x)

+
∑

z∈Zk

pD,k(x)gk(z|x)vk|k−1(x)
κk(z) +

∫
pD,k(ξ)gk(z|ξ)vk|k−1(ξ)dξ

(8)

where at time k, fk|k−1(·|ζ) is the single target transition
density given previous state ζ, pS,k(ζ) is the probability of
target existence given previous state ζ, γk(·) is the intensity
of target births, Zk is the multi-target measurement set, gk(·|x)
is the single target measurement likelihood given current state
x, pD,k(x) is the probability of target detection given current
state x, and κk(·) is the intensity of clutter.

A closed form solution to the PHD recursion (7)-(8) has
been established for linear Gaussian multi-target models, full
details on the derivation and implementation are given in
[4]. The PHD recursion also encompasses target spawning,

however such provisions are not required here and are omitted
for clarity.

The primary weakness of the PHD recursion is a loss of
higher order cardinality information. Since the PHD recursion
is a first order approximation, it propagates cardinality infor-
mation with only a single parameter and effectively approxi-
mates the cardinality distribution by a Poisson distribution with
matching mean. Since the mean and variance of a Poisson dis-
tribution are equal, when the number of targets present is high,
the PHD filter estimates the cardinality with a correspondingly
high variance. Additionally, the mean number of targets is
effectively an expected a posteriori (EAP) estimator, which
can be erratic because of minor modes induced by clutter in
low signal-to-noise ratio (SNR) conditions.

III. SOLUTION TO THE CARDINALIZED PHD RECURSION

The cardinalized PHD (CPHD) recursion was proposed by
Mahler in [24], [25] to address the limitations of the PHD
recursion. In essence, the strategy behind the CPHD recursion
is to jointly propagate the intensity function and the cardinality
distribution (the probability distribution of the number of
targets). An interesting interpretation of the CPHD recursion
was given in [30].

In subsection III-A, we derive a special form of the CPHD
recursion which explicitly shows the propagation of the in-
tensity and cardinality. This particular form is central to our
derivation of a closed form solution presented in subsection
III-B. Extraction of multi-target state estimates is described in
subsection III-C and implementation issues are considered in
subsection III-D.

The following notation is used throughout the paper. We
denote by C`

j the binomial coefficient `!
j!(`−j)! , Pn

j the per-
mutation coefficient n!

(n−j)! , 〈·, ·〉 the inner product defined
between two real valued functions α and β by

〈α, β〉 =
∫

α(x)β(x)dx,

(or
∑∞

`=0 α(`)β(`) when α and β are real sequences), and
ej (·) the elementary symmetric function [31] of order j
defined for a finite set Z of real numbers by

ej (Z) =
∑

S⊆Z,|S|=j


∏

ζ∈S

ζ


 ,

with e0 (Z) = 1 by convention.

A. The Cardinalized PHD Recursion

The CPHD recursion rests on the following assumptions
regarding the target dynamics and observations:
• Each target evolves and generates measurements indepen-

dently of one another;
• The birth RFS and the surviving RFSs are independent

of each other;
• The clutter RFS is an i.i.d cluster process and independent

of the measurement RFSs;
• The prior and predicted multi-target RFSs are i.i.d cluster

processes.
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The above assumptions are the similar to those in the PHD
recursion, except that in this case, i.i.d cluster processes are
encountered. Let vk|k−1 and pk|k−1 denote the intensity and
cardinality distribution associated with the predicted multi-
target state. Let vk and pk denote the intensity and cardinality
distribution associated with the posterior multi-target state.
The following propositions show explicitly how the posterior
intensity and posterior cardinality distribution are jointly prop-
agated in time. (See Appendix A for the proofs).

Proposition 1 Suppose at time k − 1 that the posterior in-
tensity vk−1 and posterior cardinality distribution pk−1 are
given. Then, the predicted cardinality distribution pk|k−1 and
predicted intensity vk|k−1 are given by

pk|k−1(n) =
n∑

j=0

pΓ,k(n− j)Πk|k−1[vk−1, pk−1](j), (9)

vk|k−1(x) =
∫

pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ+γk(x), (10)

where

Πk|k−1[v, p](j) =
∞∑

`=j

C`
j

〈pS,k, v〉j〈1− pS,k, v〉`−j

〈1, v〉`
p(`),

(11)
fk|k−1(·|ζ) = single target transition density at time k

given previous state ζ,

pS,k(ζ) = probability of target existence at time k

given previous state ζ,

γk(·) = intensity of spontaneous births at time k,

pΓ,k(·) = cardinality distribution of births at time k.

Proposition 2 Suppose at time k that the predicted intensity
vk|k−1 and predicted cardinality distribution pk|k−1 are given.
Then, the updated cardinality distribution pk and updated
intensity vk are given by

pk(n) =
Υ0

k[vk|k−1, Zk](n)pk|k−1(n)
〈Υ0

k[vk|k−1, Zk], pk|k−1〉
, (12)

vk(x) =
〈Υ1

k[vk|k−1, Zk], pk|k−1〉
〈Υ0

k[vk|k−1, Zk], pk|k−1〉
[1− pD,k(x)]vk|k−1(x)

+
∑

z∈Zk

〈Υ1
k[vk|k−1, Zk\{z}], pk|k−1〉
〈Υ0

k[vk|k−1, Zk], pk|k−1〉
ψk,z(x)vk|k−1(x),

(13)

where

Υu
k [v, Z](n) =

min(|Z|,n)∑

j=0

(|Z| − j)!pK,k(|Z| − j)Pn
j+u×

〈1− pD,k, v〉n−(j+u)

〈1, v〉n ej (Ξk(v, Z)) , (14)

ψk,z(x) =
〈1, κk〉
κk(z)

gk(z|x)pD,k(x), (15)

Ξk(v, Z) = {〈v, ψk,z〉 : z ∈ Z} , (16)
Zk = measurement set at time k,

gk(·|x) = single target measurement likelihood at time

k given current state x,

pD,k(x) = probability of target detection at time k

given current state x,

κk(·) = intensity of clutter measurements at time k,

pK,k(·) = cardinality distribution of clutter at time k.

Propositions 1 and 2 are, respectively, the prediction and
update steps of the CPHD recursion. The CPHD cardinality
prediction (9) is simply a convolution of the cardinality
distributions of the birth and surviving targets. This is because
the predicted cardinality is the sum of the cardinalities of
the birth and surviving targets. The CPHD intensity pre-
diction (10) is the same as the PHD prediction (7). Note
that the CPHD cardinality and intensity prediction (9)-(10)
are uncoupled, while the CPHD cardinality and intensity
update (12)-(13) are coupled. Nonetheless, the CPHD intensity
update (13) is similar to the PHD update (8) in the sense
that both have one missed detection term and |Zk| detection
terms. The cardinality update (12) incorporates the clutter
cardinality, the measurement set, the predicted intensity and
predicted cardinality distribution. Indeed (12) is a Bayes
update, with Υ0

k[vk|k−1;Zk](n) being the likelihood of the
multi-target observation Zk given that there are n targets, and
〈Υ0

k[vk|k−1; Zk], pk|k−1〉 as the normalizing constant.

B. Closed Form Solution to the CPHD Recursion

Based on the above form of the CPHD recursion (9)-(10)
and (12)-(13), we now derive a closed form solution to the
CPHD recursion for the special class of linear Gaussian multi-
target models.

The class of linear Gaussian multi-target models consists
of standard linear Gaussian assumptions for the transition and
observation models of individual targets, as well as certain
assumptions on the birth, death and detection of targets:
• Each target follows a linear Gaussian dynamical model

i.e.

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1), (17)
gk(z|x) = N (z; Hkx,Rk), (18)

where N (·; m,P ) denotes a Gaussian density with mean
m and covariance P , Fk−1 is the state transition matrix,
Qk−1 is the process noise covariance, Hk is the observa-
tion matrix, and Rk is the observation noise covariance.

• The survival and detection probabilities are state inde-
pendent, i.e.

pS,k(x) = pS,k, (19)
pD,k(x) = pD,k. (20)

• The intensity of the birth RFS is a Gaussian mixture of
the form

γk(x) =
Jγ,k∑

i=1

w
(i)
γ,kN (x; m(i)

γ,k, P
(i)
γ,k). (21)

where w
(i)
γ,k, m

(i)
γ,k, P

(i)
γ,k are the weights, means and

covariances of the mixture birth intensity.
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For the linear Gaussian multi-target model, the follow-
ing two propositions present a closed-form solution to the
CPHD recursion (9)-(10) and (12)-(13). More concisely, these
propositions show how the posterior intensity (in the form
of its Gaussian components) and the posterior cardinality
distribution are analytically propagated in time.

Proposition 3 Suppose at time k − 1 that the posterior in-
tensity vk−1 and posterior cardinality distribution pk−1 are
given, and that vk−1 is a Gaussian mixture of the form

vk−1(x) =
Jk−1∑

i=1

w
(i)
k−1N (x;m(i)

k−1, P
(i)
k−1). (22)

Then, vk|k−1 is also a Gaussian mixture, and the CPHD
prediction simplifies to

pk|k−1(n) =
n∑

j=0

pΓ,k(n−j)
∞∑

`=j

C`
jpk−1(`)p

j
S,k(1−pS,k)`−j

,

(23)
vk|k−1(x) = vS,k|k−1(x) + γk(x), (24)

where γk(x) is given in (21),

vS,k|k−1(x) = pS,k

Jk−1∑

j=1

w
(j)
k−1N (x; m(j)

S,k|k−1, P
(j)
S,k|k−1),

(25)

m
(j)
S,k|k−1 = Fk−1m

(j)
k−1, (26)

P
(j)
S,k|k−1 = Qk−1 + Fk−1P

(j)
k−1F

T
k−1. (27)

Proposition 4 Suppose at time k that the predicted intensity
vk|k−1 and predicted cardinality distribution pk|k−1 are given,
and that vk|k−1 is a Gaussian mixture of the form

vk|k−1(x) =
Jk|k−1∑

i=1

w
(i)
k|k−1N (x; m(i)

k|k−1, P
(i)
k|k−1). (28)

Then, vk is also a Gaussian mixture, and the CPHD update
simplifies to

pk(n) =
Ψ0

k[wk|k−1, Zk](n)pk|k−1(n)
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
, (29)

vk(x) =
〈Ψ1

k[wk|k−1, Zk], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
(1− pD,k)vk|k−1(x)

+
∑

z∈Zk

Jk|k−1∑

j=1

w
(j)
k (z)N (x; m(j)

k (z), P (j)
k ), (30)

where

Ψu
k [w,Z](n) =

min(|Z|,n)∑

j=0

(|Z| − j)!pK,k(|Z| − j)Pn
j+u×

(1− pD,k)n−(j+u)

〈1, w〉j+u
ej (Λk(w, Z)) , (31)

Λk(w, Z) =
{ 〈1, κk〉

κk(z)
pD,kwT qk(z) : z ∈ Z

}
, (32)

wk|k−1 = [w(1)
k|k−1, ..., w

(Jk|k−1)

k|k−1 ]T , (33)

qk(z) = [q(1)
k (z), ..., q(Jk|k−1)

k (z)]T , (34)

q
(j)
k (z) = N (z; η(j)

k|k−1, S
(j)
k|k−1), (35)

η
(j)
k|k−1 = Hkm

(j)
k|k−1, (36)

S
(j)
k|k−1 = HkP

(j)
k|k−1H

T
k + Rk, (37)

w
(j)
k (z) = pD,kw

(j)
k|k−1q

(j)
k (z)×

〈Ψ1
k[wk|k−1, Zk\{z}], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
〈1, κk〉
κk(z)

, (38)

m
(j)
k (z) = m

(j)
k|k−1 + K

(j)
k (z − η

(j)
k|k−1), (39)

P
(j)
k = [I −K

(j)
k Hk]P (j)

k|k−1, (40)

K
(j)
k = P

(j)
k|k−1H

T
k

[
S

(j)
k|k−1

]−1

. (41)

Remark: It was shown in [24], [25] that the PHD recursion
is a special case of the CPHD recursion. Using a similar
argument, it can be shown that the Gaussian mixture PHD
recursion [4] is a special case of the recursions given by
Propositions 3 and 4.

Propositions 3 and 4 can be established by applying the fol-
lowing standard results for Gaussian distributions, for further
details on these results, see [4] and the references therein.

Lemma 1 Given F , d, Q, m, P of appropriate dimen-
sions, and that Q, P are positive definite,

∫ N (x; Fζ +
d,Q)N (ζ; m,P )dζ = N (x; Fm + d,Q + FPFT ).

Lemma 2 Given H , R, m, P of appropriate dimensions, and
that R, P are positive definite, N (z; Hx, R)N (x; m,P ) =
q(z)N (x; m̃, P̃ ) where q(z) = N (z; Hm, R+HPHT ), m̃ =
m + K(z −Hm), P̃ = (I −KH)P,K = PHT (HPHT +
R)−1.

Proposition 3 is established as follows. The prediction for
the intensity is obtained by substituting (17), (19), (22) into
the CPHD intensity prediction (9), and replacing integrals
involving products of Gaussian with appropriate Gaussians
as given in Lemma 1. The prediction for the cardinality is
obtained by using the assumption in (19) to simplify the
expression for the CPHD cardinality prediction (10).

Proposition 4 is established as follows. Firstly, equation (31)
is obtained by substituting (18), (20), (28) into (14), and using
Lemma 2 to simplify the resulting expression. The update for
the intensity is then obtained by substituting (18), (20), (28)
and the result in (31) into the CPHD intensity update (13), and
replacing products of Gaussians with appropriate Gaussians as
given in Lemma 2. The update for the cardinality is obtained
by substituting the result in (31) into the CPHD cardinality
update (12).

It follows by induction from Propositions 3 and 4 that if
the initial intensity v0 is a Gaussian mixture (including the
case where v0 = 0), then all subsequent predicted intensities
vk|k−1 and posterior intensities vk, are also Gaussian mixtures.
Proposition 3 provides closed-form expressions for computing
the means, covariances and weights of vk|k−1 from those of
vk−1, and also for computing the distribution pk|k−1 from
pk−1. Proposition 4 then provides closed-form expressions
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for computing the means, covariances and weights of vk

from those of vk|k−1, and also for computing the distribution
pk from pk|k−1, when a new set of measurements arrives.
Efficient techniques for computing the elementary symmetric
functions are described in Section III-D. Propositions 3 and 4
are, respectively, the prediction and update steps of the CPHD
recursion for linear Gaussian multi-target models.

Remark: The above propositions can easily be extended to
linear jump Markov models for handling multiple maneuvering
targets analogous to the approach in [19]. However, for reasons
of clarity and space constraints, these extensions are omitted.

C. Multi-Target State Extraction

Similar to the Gaussian mixture PHD filter [4], state ex-
traction in the Gaussian mixture CPHD filter involves first
estimating the number of targets, and then extracting the
corresponding number of mixture components with the highest
weights from the posterior intensity as state estimates.

The number of targets can be estimated using for example
an expected a posteriori (EAP) estimator N̂k = E[|Xk|] or a
maximum a posteriori (MAP) estimator N̂k = arg max pk(·).
Note that the EAP estimator is likely to fluctuate and be
unreliable under low SNR conditions. This occurs because
false alarms and target missed detections tend to induce
minor modes in the posterior cardinality, and consequently
the expected value is randomly shifted away from the target
induced primary mode. On the other hand, the MAP estimator
is likely to be more reliable since it ignores minor modes and
locks directly onto the target induced primary mode. For these
reasons, the MAP estimator is usually preferred over the EAP
estimator [24], [25].

Note that the sequential Monte Carlo (SMC) implementa-
tion of the PHD filter in [3] can easily be extended to the
CPHD case [24], [25]. In SMC implementations, state ex-
traction involves clustering to partition the particle population
into a given number of clusters, e.g. the estimated number of
targets N̂k. This works well when the posterior intensity vk

naturally has N̂k clusters. Conversely, when N̂k differs from
the natural number of clusters in the particle population, the
state estimate becomes unreliable. In contrast, the Gaussian
mixture representation of the intensities obviates the need for
clustering.

D. Implementation Issues

1) Computing Cardinality Distributions: Propagating the
cardinality distribution essentially involves using (23) and
(29) to recursively predict and update the weights of the
distribution. However, if the cardinality distribution is infi-
nite tailed, propagation of the entire posterior cardinality is
generally not possible since this would involve propagating
an infinite number of terms. In practice, if the cardinality
distributions are short or moderate tailed, they can be truncated
at n = Nmax and approximated with a finite number of terms
{pk(n)}Nmax

n=0 . Such an approximation is reasonable when
Nmax is significantly greater than the number of targets on
the scene at any time.

2) Computing Elementary Symmetric Functions: Evaluat-
ing the elementary symmetric functions directly from the
definition is clearly intractable. Using a basic result from
combinatorics theory known as the Newton-Girard formulae
or equivalently Vieta’s Theorem, the elementary symmetric
function ej(·) can be computed using the following procedure
[31]. Let ρ1, ρ2, . . . , ρM be distinct roots of the polynomial
αMxM + αm−1x

M−1 + . . . + α1x + α0. Then, ej(·) for
orders j = 0, . . . , M is given by ej(ρ1, ρ2, . . . , ρM ) =
(−1)jαM−j/αM . The values ej(Z) can thus be evaluated by
expanding out the polynomial with roots given by the elements
of Z, which can be implemented using an appropriate recur-
sion or convolution. For a finite set Z, calculation of ej(Z)
requires |Z|2 operations. It is shown in [32] (see Theorem
8.14) that this complexity can be reduced to O (|Z| log2 |Z|)
operations using a suitable decomposition and recursion.

In the CPHD recursion, each data update step requires the
calculation of |Z|+1 elementary symmetric functions, i.e. one
for Z and one for each set {Z\{z}} where z ∈ Z. Thus, the
CPHD recursion has a complexity of O (|Z|3). Furthermore,
using the procedure in [32], the CPHD filter has a complexity
of O (|Z|2 log2 |Z|). Although this appears to be a modest
saving, when |Z| is large the reduction in complexity may be
of some advantage. In practice, the number of measurements
can be reduced by gating techniques as done in traditional
tracking algorithms [33], [34].

3) Managing Mixture Components: Similar to Gaussian
mixture PHD filter [4], the number of Gaussian components
required to represent the posterior increases without bound. To
mitigate this problem, the ‘pruning’ and ’merging’ procedure
described in [4] is also directly applicable for the Gaussian
mixture CPHD filter. The basic idea is to discard compo-
nents with negligible weights and merge components that
are close together. More sophisticated techniques for mixture
approximation are available e.g. [35], however these are more
computationally expensive.

IV. NUMERICAL STUDIES

In this section, two simulations are presented to demonstrate
the performance of the proposed Gaussian mixture CPHD
filter. Each scenario also presents a performance comparison
with the Gaussian mixture PHD filter (see [4] for complete
details on this filter), with a view towards investigating the
relative advantages and disadvantages of propagating complete
cardinality information.

The following single-target model is used in all scenar-
ios. The target state is a vector of position and velocity
xk = [ px,k, py,k, ṗx,k, ṗy,k ]T and follows a linear Gaussian
transition model (17) with

Fk =
[
I2 ∆I2

02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

where In and 0n denote the n× n identity and zero matrices
respectively, ∆ = 1s is the sampling period, and σν =
5(m/s2) is the standard deviation of the process noise. The
probability of target survival is fixed to pS,k = 0.99. The
single-target measurement model is linear Gaussian (18) with

Hk =
[
I2 02

]
, Rk = σ2

εI2,
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where σε = 10m is the standard deviation of the mea-
surement noise. The surveillance region is the square X =
[−1000, 1000] × [−1000, 1000] (units are in m). Clutter is
modelled as a Poisson RFS with intensity κk(z) = λcV u(z),
where u(·) is the uniform probability density over X , V =
4× 106m2 is the ‘volume’ of X , and λc = 1.25× 10−5m−2

is the average clutter intensity (hence the average number of
false detections per frame is 50). The probability of target
detection is fixed at pD,k = 0.98.

In all examples, the pruning procedure described in [4]
is performed at each time step using a weight threshold of
T = 10−5, a merging threshold of U = 4m, and a maximum
of Jmax = 100 Gaussian components (see [4] for the meaning
of these parameters). The number of targets is estimated using
an MAP estimator on the cardinality distribution which is
calculated to a maximum of Nmax = 200 terms.

Two criteria known as the Wasserstein distance (WD) [36]
and circular position error probability (CPEP) [37] for a radius
of r = 20m are used for performance evaluation. Let X̂ and X
denote the estimated and true multi-target states respectively.
The WD between X̂ and X is defined by

d(X̂, X) = min
C



|X̂|∑

i=1

|X|∑

j=1

Cij ‖x̂i − xj‖2



1/2

,

where C is the set of all transportation matrices (a trans-
portation matrix is one whose entries Cij satisfy Cij > 0,∑|X̂|

i=1 Cij = 1/|X|, ∑|X|
j=1 Cij = 1/|X̂|). The CPEP is defined

by

CPEP(r) =
1
|X|

∑

x∈X

P{‖Hkx̂−Hkx‖ > r ∀ x̂ ∈ X̂}.

Note that the WD penalizes errors in both the estimated
state and cardinality, whilst the CPEP only penalizes errors
in individual state estimates but not errors in the estimated
cardinality.

Example 1: Consider a typical tracking scenario in which
up to 10 targets are present at any time. Target births appear
from 4 different locations according to a Poisson RFS with
intensity γk(x) =

∑4
i=1 wγN (x; m(i)

γ , Pγ) where wγ = 0.03,
m

(1)
γ = [ 0, 0, 0, 0 ]T , m

(2)
γ = [ 400, 0,−600, 0 ]T , m

(3)
γ =

[ − 800, 0,−200, 0 ]T , m
(4)
γ = [ − 200, 0, 800, 0 ]T , and

Pγ = diag([ 10, 10, 10, 10 ]T ). In Figure 1, the true target
trajectories are shown in the xy plane, whilst in Figure 2 the
trajectories are shown in x and y coordinates versus time
with a sample CPHD filter output superimposed. Note that
3 targets cross at time k = 40 whilst another 2 cross at
time k = 60. It can be seen from Figure 2 that the CPHD
filter is able to correctly identify target births, motions and
deaths, and has no trouble handling target crossings. To give
an indication of processing time, the Gaussian mixture CPHD
filter consumed approximately 10.2s per sample run over 100
time steps, whilst the Gaussian mixture PHD filter consumed
2.7s for the same data (both implemented in MATLAB on a
standard notebook computer).

To verify the performance of the proposed Gaussian mixture
CPHD filter, 1000 Monte Carlo (MC) runs are performed on
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Fig. 1. Target trajectories shown in xy plane. The start/end points for each
track are denoted by •/¥ respectively.
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Fig. 2. CPHD filter estimates and true target tracks in x and y coordinates
versus time

the same target trajectories but with independently generated
clutter and (target originated) measurements for each trial.
For comparison, 1000 MC runs are performed on exactly the
same data using the Gaussian mixture PHD filter. In Figure 3,
the true number of targets at each time step is shown along
with the MC average of the mean and standard deviation
of the cardinality distribution for both the CPHD and PHD
filters. The plots demonstrate that both filters converge to the
correct number of targets present, and that the variance of the
cardinality distribution is much smaller in the CPHD filter than
in the PHD filter (the average reduction in the variance over
100 time steps is approximately 12.5 times).

Remark: The correct convergence of both the PHD and
CPHD filters’ mean number of targets is only true as average
behaviour. More importantly, it is the variance of this estimate
that determines the usefulness of the filter since for any given
sample path, the PHD filter’s estimate of the number of targets
is extremely jumpy and inaccurate, whereas the CPHD filter’s
estimate is far more reliable and accurate.
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Fig. 3. 1000 MC run average of cardinality statistics versus time for (a)
CPHD filter (b) PHD filter

0 20 40 60 80 100
0

200

400

600

800

Time

W
D

 (
m

)

CPHD
PHD

(a)

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Time

C
P

E
P

CPHD
PHD

(b)

Fig. 4. Comparison of performance measures for PHD/CPHD filters (a) WD
vs time (b) CPEP (with r = 20m) vs time

Further examination of the cardinality statistics reveals a
difference in performance regarding the filters’ response to
changes in the number of targets. Indeed, the simulations also
suggest that the average response time of the CPHD filter is
slower than that of the PHD filter. A possible explanation for
this observation is that the PHD filter’s cardinality estimate
has a relatively high variance, thus it has low confidence
in its estimate and is easily influenced by new incoming
measurement information. On the other hand, the CPHD
filter’s cardinality estimate has a lower variance, and as a
consequence it is much more confident in its estimate and
is not easily influenced by new incoming measurements.

For each time step the MC average of the WD is shown in
Figure 4a, and the MC average of the CPEP is shown in Figure
4b, for both the CPHD and PHD filters. The figures show
that the WD and CPEP exhibit peaks when there is a change
in the number of targets. This observation can be expected
since the filters are adapting to changes in cardinality at those

corresponding time instants. Also note that the peaks in the
both the WD and CPEP curves are smaller in the PHD filter
than in the CPHD filter. A possible explanation here is that
the PHD filter has a faster response to cardinality changes
and so on average incurs a lower penalty in this respect.
Also note that during time intervals when number of targets
is steady, the PHD filter has a higher WD value whilst both
filters have similar CPEP values. A possible explanation here is
that CPHD filter produces more accurate state and cardinality
estimates in such conditions and so on average incurs a lower
WD. On the other hand, while the PHD filter estimates are
further away from the true position, many still fall within a
surrounding 20m radius, resulting in roughly the same CPEP.

Example 2: This example examines the PHD and CPHD
filters’ responses to rapid changes in the number of targets. For
simplicity, a total of 10 targets travel along parallel horizontal
trajectories, where each trajectory covers a distance of 500m
parallel to the x-axis and is separated at 200m intervals along
the y-axis. For the first half of the simulation, target births
occur at consecutive 1 unit time intervals, and for the second
half target deaths occur at consecutive 1 unit time intervals.
Essentially, there is a rapid succession of births to begin,
followed by a brief period of having 10 targets simultaneously,
and a rapid succession of deaths to finish. Target births
are modelled on a Poisson RFS with intensity γk(x) =∑10

i=1 0.05N (x; m(i)
γ , Pγ) where m

(i)
γ = [ − 900, 30,−900 +

200(i − 1), 0 ]T , and Pγ = diag([ 5, 15, 5, 15 ]T ). The
processing times of the Gaussian mixture CPHD and PHD
filters were approximately 2.8s and 1.0s respectively per
sample run over 22 time steps (in MATLAB on a standard
notebook computer).

As before, 1000 Monte Carlo runs are performed. In Figure
5, the MC average of the mean and standard deviation of
the cardinality distribution are shown versus time for both
the CPHD and PHD filters. As expected, the variance of the
cardinality distribution is much smaller in the CPHD filter
than in the PHD filter. Furthermore, considering the filter
response to changes in the number of targets, it appears that
the CPHD filter response is delayed by several time instants
whilst the PHD filter response is almost instantaneous. These
observations suggest a trade off between average response
times and reliability of cardinality estimates.

The MC average of the WD and CPEP versus time are
shown in Figure 6a and Figure 6b respectively. The plot of
the WD shows that the CPHD filter is penalized more than the
PHD filter throughout the entire simulation. This is most likely
because the number of targets constantly changes causing
the CPHD filter to be constantly penalized for errors in its
estimated cardinality (having a lagging response to cardinality
changes). Note that the plot of the WD for the CPHD filter
increases over the second half of the simulation because the
lag on the filter increases (as seen in Figure 5a). If there are
no further cardinality changes after k = 22s and the filter
is run for several more time steps, the WD values actually
drop and settle. The plot of CPEP on the other hand reveals
further differences. For the first half of the simulation where
there are only target births, the PHD filter appears to perform
better. This is most likely because the PHD filter has a fast
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Fig. 5. 1000 MC run average of cardinality statistics versus time for (a)
CPHD filter (b) PHD filter

2 4 6 8 10 12 14 16 18 20 22
0

200

400

600

Time

W
D

 (
m

)

CPHD
PHD

(a)

2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Time

C
P

E
P

CPHD
PHD

(b)

Fig. 6. Comparison of performance measures for PHD/CPHD filters (a) WD
vs time (b) CPEP (with r = 20m) vs time

response to cardinality changes and is able to correctly identify
targets births as soon as they appear. For the second half
where there are only target deaths, the CPHD appears to
perform better. This is most likely a result of the CPHD
filter having a slower response to cardinality changes and
consequently overestimating the number of targets whilst not
being penalized by the CPEP for doing so.

V. SPECIAL CASE OF THE CPHD FILTER FOR TRACKING A
FIXED NUMBER OF TARGETS

In a number of applications, there are neither target births
nor deaths and the number of targets is known a priori (and
fixed), e.g. tracking footballers on a field during playing time.
While the CPHD filter is applicable in this case, it is more
efficient to exploit the explicit knowledge of the number of
targets. This section presents a special case of the CPHD
recursion for tracking a fixed number of targets in clutter and

proposes a closed form implementation for linear Gaussian
multi-target models.

A. Recursion

Since there are no births nor deaths, the birth intensity is
γk(x) = 0 and the probability of survival is pS,k(x) = 1.
Let N ∈ N be the fixed and known number of targets. Then,
it follows from the CPHD cardinality recursion (9) and (12)
that the cardinality distribution at any time must be a Dirac
delta function centred on N , i.e. pk|k−1(·) = pk(·) = δN (·).
Moreover, it can be seen that the predicted and updated
intensities (10) and (13) reduce to

vk|k−1(x) =
∫

fk|k−1(x|ζ)vk−1(ζ)dζ, (42)

vk(x) =
Υ1

k[vk|k−1, Zk](N)
Υ0

k[vk|k−1, Zk](N)
[1− pD,k(x)]vk|k−1(x)

+
∑

z∈Zk

Υ1
k[vk|k−1, Zk\{z}](N)
Υ0

k[vk|k−1, Zk](N)
ψk,z(x)vk|k−1(x),

(43)

where Υu
k [v, Z](·) is given in (14).

Equations (42)-(43) define a special case of the CPHD
recursion for tracking a fixed number of targets in clutter
(including the case of a single target). The above recursion
also admits a closed form solution under linear Gaussian
assumptions as stated in the next section.

B. Closed Form Recursion

A closed form solution for CPHD recursion was established
for the special class of linear Gaussian multi-target models
in Section III-B. Since the recursion (42)-(43) for tracking a
fixed number of targets in clutter is a special case of the CPHD
recursion, it also admits a closed form solution for the class of
linear Gaussian multi-target models. The following corollaries
follow directly from Propositions 3 and 4, and establish an
analytic propagation of the posterior intensity given by the
recursion (42)-(43).

Corollary 1 Suppose at time k−1 that the posterior intensity
vk−1 is a Gaussian mixture of the form (22). Then, the
predicted intensity at time k is also a Gaussian mixture and is
given by vk|k−1(x) = vS,k|k−1(x) where vS,k|k−1(·) is given
by (25).

Corollary 2 Suppose at time k that the predicted intensity
vk|k−1 is a Gaussian mixture of the form (28). Then, the
posterior intensity at time k is also a Gaussian mixture and
is given by

vk(x) =
Ψ1

k[wk|k−1, Zk](N)
Ψ0

k[wk|k−1, Zk](N)
(1− pD,k)vk|k−1(x)

+
∑

z∈Zk

Jk|k−1∑

j=1

w
(j)
k (z)N (x; m(j)

k (z), P (j)
k ), (44)
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where

w
(j)
k (z) = pD,kw

(j)
k|k−1q

(j)
k (z)

Ψ1
k[wk|k−1,Zk\{z}](N)
Ψ0

k[wk|k−1,Zk](N)
〈1, κk〉
κk(z)

,

(45)
Ψu

k [w, Z](·) is given by (31)-(32) and (34); wk|k−1 is given
by (33); q

(j)
k (z) is given by (35); m

(j)
k (z) is given by (39);

and P
(j)
k is given by (40)-(41).

C. Demonstrations and Comparison with JPDA

We examine the performance of the special case CPHD filter
for tracking a fixed number of targets by benchmarking with
the JPDA filter. Note that whilst the JPDA filter assumes a
known and fixed number of targets, the general CPHD filter
does not. For this reason, a direct comparison between the
CPHD and JPDA filters is normally not a fair assessment.
However, using the special case of the CPHD filter proposed
here, a direct comparison with the JPDA filter is fair since both
filters use the same prior knowledge. Note that in terms of
complexity, the CPHD filter is linear in the number of targets
and cubic in the number of measurements, whilst the standard
JPDA filter is an NP-hard formulation [38].

In this demonstration, there is a total of 100 time steps and
exactly 4 targets which all cross paths at time k = 50. The
true target tracks are shown in Figure 7. Each target moves
with a fixed velocity according to the motion and measurement
model given in Section IV. For the CPHD filter, pruning and
merging of mixture components is performed using a weight
threshold of T = 10−3, a merging threshold of U = 15m,
and a maximum of Jmax = 100 Gaussian components (see
[4] for the meaning of these parameters). Per scan of data,
the throughput time for the CPHD filter is typically around
0.05s, whilst the throughput time for the standard JPDA
filter is several orders of magnitude larger (implemented in
MATLAB on a standard notebook computer). It can be seen
that performing MC runs for the standard JPDA filter would
require an inordinate amount of time. Hence, for the purposes
of comparison, the JPDA filter is run with measurement gating
using a 99% validation region around each individual target so
that its typical throughput time is the same order of magnitude
as that of the CPHD filter.

To compare the performance of the Gaussian mixture CPHD
filter and the JPDA filter, 1000 MC runs are performed for both
filters over varying clutter rates and detection probabilities.
Firstly, the average clutter intensity λc is varied from 0m−2

to 2.5 × 10−5m−2 whilst the probability of target detection
remains unchanged at pD,k = 0.98. The time averaged WD
and time averaged CPEP are shown versus the clutter rate in
Figure 8. Secondly, the detection probability pD,k is varied
from 0.7 to 1.0 whilst the average clutter rate is fixed at λc =
1.25× 10−5m−2. The time averaged WD and time averaged
CPEP are shown versus the probability of detection in Figure
9.

These results suggest (at least in this particular scenario)
that there is a definite performance advantage favouring the
Gaussian mixture CPHD filter over the standard JPDA filter.
For high rates of clutter and low probability of detection,
the observed performance difference is noticeable; however
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Fig. 7. True target tracks in the x-y plane. The start/end points for each
track are denoted by •/¥ respectively.
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Fig. 8. Tracking performance for varying λc (pD,k = 0.98 is fixed, CPEP
radius r = 20m)

0.7 0.75 0.8 0.85 0.9 0.95 1
0

20

40

60

80

100

p
D,k

T
im

e 
A

ve
ra

ge
d 

W
D

 (
m

)

CPHD
JPDA

(a)

0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.2

0.4

0.6

0.8

1

p
D,k

T
im

e 
A

ve
ra

ge
d 

C
P

E
P CPHD

JPDA

(b)

Fig. 9. Tracking performance for varying pD,k (λc = 1.25 × 10−5m−2

is fixed, CPEP radius r = 20m)
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for high SNR the observed performance difference tends to
be smaller. These observations are most likely caused by
the JPDA filter having difficulty resolving target crossings,
whereas the CPHD filter is less adversely affected by target
crossings owing to its propagation of the complete posterior
intensity.

VI. EXTENSION TO NON-LINEAR MODELS

In this section, two non-linear extensions of the Gaussian
mixture CPHD recursion are proposed using linearization and
unscented transforms, analogous to the approach in [4] for
extending the Gaussian mixture PHD filter. In essence, the
assumptions on the form of the single target dynamical and
measurement model given by the transition density fk|k−1(·|·)
and the likelihood gk(·|·) are relaxed to the non-linear func-
tions in the state and noise variables

xk = ϕk(xk−1, νk−1),
zk = hk(xk, εk),

where ϕk and hk are the non-linear state and measurement
functions respectively, and νk−1 and εk are independent zero-
mean Gaussian noise processes with covariance matrices Qk−1

and Rk respectively.

A. Extended Kalman CPHD (EK-CPHD) Recursion
Analogous to the extended Kalman filter (EKF) [39], [40],

a non-linear approximation to the Gaussian mixture CPHD
recursion is proposed based on applying local linearizations
of ϕk and hk as follows.

In Proposition 3, the prediction step can be made to approxi-
mate non-linear target motions by predicting the mixture com-
ponents of surviving targets using first order approximations
wherever non-linearities are encountered, i.e. by using the
approximations (46)-(47) given below in place of the originals
(26)-(27):

m
(j)
k|k−1 = ϕk(m(j)

k−1, 0), (46)

P
(j)
k|k−1 = G

(j)
k−1Qk−1[G

(j)
k−1]

T + F
(j)
k−1P

(j)
k−1[F

(j)
k−1]

T , (47)

where

F
(j)
k−1 =

∂ϕk(x, 0)
∂x

∣∣∣∣
x=m

(j)
k−1

, G
(j)
k−1 =

∂ϕk(m(j)
k−1, ν)

∂ν

∣∣∣∣∣
ν=0

.

(48)
In Proposition 4, the update step can be made to ap-

proximate non-linear measurement models by updating the
each of the predicted mixture components using first order
approximations wherever non-linearities are encountered, i.e.
by using the approximations (49)-(50) given below in place
of the originals (36)-(37), and using the linearizations in (51)
for the calculation of (40)-(41):

η
(j)
k|k−1 = hk(m(j)

k|k−1, 0), (49)

S
(j)
k = U

(j)
k Rk[U (j)

k ]T + H
(j)
k P

(j)
k|k−1[H

(j)
k ]T , (50)

where

H
(j)
k =

∂hk(x, 0)
∂x

∣∣∣∣
x=m

(j)
k|k−1

, U
(j)
k =

∂hk(m(j)
k|k−1, ε)

∂ε

∣∣∣∣∣∣
ε=0

.

(51)

B. Unscented Kalman CPHD (UK-CPHD) Recursion

Analogous to the unscented Kalman filter (UKF) [41],
a non-linear approximation to the Gaussian mixture CPHD
recursion is proposed based on the unscented transform (UT).
The strategy here is to use the UT to propagate the first and
second moments of each mixture component through the non-
linear transformations ϕk and hk as follows.

To begin, for each mixture component of the posterior
intensity, using the UT with mean µ

(j)
k and covariance C

(j)
k ,

generate a set of sigma points {y(`)
k }L

`=0 and weights {u(`)}L
`=0

where

µ
(j)
k =

[
m

(j)
k−1 0T 0T

]T

,

C
(j)
k = diag(P (j)

k−1, Qk−1, Rk).

Then, partition the sigma points into

y
(`)
k = [(x(`)

k−1)
T , (ν(`)

k−1)
T , (ε(`)k )T ]T

for ` = 0, . . . , L and proceed as follows.
For the prediction, the sigma points are propagated

through the transition function according to x
(`)
k|k−1 =

ϕk(x(`)
k−1, ν

(`)
k−1) for ` = 0, . . . , L. Then, in Proposition 3, the

prediction step can be made to approximate non-linear target
motions by using the approximations (52)-(53) given below in
place of the originals (26)-(27):

m
(j)
k|k−1 =

L∑

`=0

u(`)x
(`)
k|k−1, (52)

P
(j)
k|k−1 =

L∑

`=0

u(`)(x(`)
k|k−1−m

(j)
k|k−1)(x

(`)
k|k−1−m

(j)
k|k−1)

T .(53)

For the update, the sigma points are propagated
through the measurement function according to z

(`)
k|k−1 =

hk(x(`)
k|k−1, ε

(`)
k ) for ` = 0, . . . , L. Then, in Proposition 4,

the update step can be made to approximate non-linear mea-
surement models by using the approximations (54)-(55) given
below in place of the originals (36)-(37), and using (56)-(57)
given below in place of the originals (40)-(41):

η
(i)
k|k−1 =

L∑

`=0

u(`)z
(`)
k|k−1, (54)

S
(i)
k =

L∑

`=0

u(`)(z(`)
k|k−1− η

(i)
k|k−1)(z

(`)
k|k−1− η

(i)
k|k−1)

T , (55)

P
(i)
k =P

(i)
k|k−1 −G

(i)
k [S(i)

k ]−1[G(i)
k ]T , (56)

K
(i)
k =G

(i)
k [S(i)

k ]−1, (57)

G
(i)
k =

L∑

`=0

u(`)(x(`)
k|k−1−m

(i)
k|k−1)(z

(`)
k|k−1−m

(i)
k|k−1)

T. (58)

Notice that the EK-CPHD and UK-CPHD recursions have
similar advantages and disadvantages to their single-target
counterparts. In particular, the EK-CPHD recursion requires
the calculation of Jacobians and hence is only applicable
when the state and measurement models are differentiable.
In contrast, the UK-CPHD recursion completely avoids the
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differentiation requirement and is even applicable to models
with discontinuities. Finally, note that the EK-CPHD and UK-
CPHD approximations are much less computationally expen-
sive than SMC approximations in dealing with non-linearities,
and that state estimates can still be extracted very easily due
to the underlying Gaussian mixture implementation.

Remark: The non-linear EK-CPHD and UK-CPHD filter
approximations apply directly to the Gaussian mixture imple-
mentation of the special case CPHD filter for tracking a fixed
number of targets in clutter.

C. Non-Linear Demonstrations

This section presents a non-linear tracking scenario in order
to demonstrate the performance of the Gaussian mixture EK-
CPHD and UK-CPHD filters. Here, a nearly constant turn
model with varying turn rate [42] together with bearing and
range measurements is considered. The observation region is
the half disc of radius 2000m. For clarity, only 5 targets
appear over the course of the simulation in which there are
various births and deaths. The target state variable xk =
[ x̃T

k , ωk ]T comprises the planar position and velocity x̃T
k =

[ px,k, ṗx,k, py,k, ṗy,k ]T as well as the turn rate ωk. The state
transition model is

x̃k = F (ωk−1)x̃k−1 + Gwk−1, (59)
ωk = ωk−1 + ∆uk−1, (60)

where

F (ω) =




1 sin ω∆
ω 0 − 1−cos ω∆

ω
0 cos ω∆ 0 − sin ω∆
0 1−cos ω∆

ω 1 sin ω∆
ω

0 sin ω∆ 0 cos ω∆


, G =




∆2

2 0
T 0
0 ∆2

2
0 ∆


,

wk−1 ∼ N (·; 0, σ2
wI), and uk−1 ∼ N (·; 0, σ2

uI) with
∆ = 1s, σw = 15m/s2, and σu = π/180rad/s. The sensor
observation is a noisy bearing and range vector given by

zk =

[
arctan(px,k/py,k)√

p2
x,k + p2

y,k

]
+ εk, (61)

where εk ∼ N (·; 0, Rk), with Rk = diag([ σ2
θ , σ2

r ]T ),
σθ = 2(π/180)rad, and σr = 10m. The birth pro-
cess follows a Poisson RFS with intensity γk(x) =
0.1N (x;m(1)

γ , Pγ) + 0.1N (x;m(2)
γ , Pγ) where m

(1)
γ = [ −

1000, 0,−500, 0 0 ]T , m
(2)
γ = [ 1050, 0, 1070, 0 0 ]T , and

Pγ = diag([ 50, 50, 50, 50, 6(π/180) ]T ). The probability of
target survival and detection are pS,k = 0.99 and pD,k = 0.98
respectively. Clutter follows a Poisson RFS with intensity
λc = 3.2×10−3 (radm)−1 over the region [−π/2, π/2]rad×
[0, 2000]m (hence the average number of false detections per
frame is 20).

For both the EK-CPHD and UK-CPHD filters, pruning and
merging of mixture components is performed as described in
Section IV, whilst the number of targets is estimated with
an MAP estimator on the cardinality distribution which is
calculated to Nmax = 200 terms.

Both the EK-CPHD and UK-CPHD filters are run on the
same measurement data. The true trajectories and a sample
filter output for the EK-CPHD and UK-CPHD are shown in
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Fig. 10. True tracks and EK-CPHD filter estimates
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Fig. 11. True tracks and UK-CPHD filter estimates

Fig. 10 and 11 respectively. It can be seen that the both EK and
UK approximation to the Gaussian mixture CPHD filter are
able to identify all target births and track the non-linear motion
well. Notice also that the filters have no trouble estimating the
states of the two targets which cross paths at time k = 80.

VII. CONCLUSION

This paper has proposed a Gaussian mixture implementation
of the cardinalized PHD (CPHD) filter as a solution to the
multi-target detection and estimation problem. It has been
shown that for the class of linear Gaussian multi-target models,
the CPHD recursion admits a closed form solution. In partic-
ular, closed form expressions for propagating the Gaussian
mixture intensity, as well as for the cardinality distribution
have been derived. Furthermore, efficient techniques for prop-
agating the intensity and cardinality distribution have been
given. A special case of the CPHD filter for tracking a fixed
number of targets has been proposed, along with a closed form
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recursion for linear Gaussian multi-target models. Extensions
to non-linear models have been provided via linearization and
unscented transform techniques. Simulations have verified that
the proposed Gaussian mixture CPHD filter performs accu-
rately and shows a dramatic reduction in the variance of the
estimated number of targets when compared to the Gaussian
mixture PHD filter. Moreover, interesting differences in the
CPHD and PHD filters’ response to changes in the number
of targets have been observed. Additionally, simulations have
suggested that the special case CPHD filter for tracking a fixed
number of targets has a noticeable performance advantage
compared to the standard JPDA filter. The complexity of the
CPHD filter is linear in the number of targets and cubic in
the number of measurements, whilst the standard JPDA filter
is an NP-hard formulation. Finally, simulations have shown
that the proposed extensions to non-linear models are suitable
algorithms for problems involving mild non-linearities.
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APPENDIX A

In this section, we derive the CPHD recursion given in
Section III from the original recursion proposed in [24], [25].
Recall that vk|k−1 and vk denote the predicted and posterior
intensities respectively. Following [24], [25], let Gk|k−1 and
Gk denote the probability generating functions of pk|k−1 and
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vk(x) = qD,k(x)vk|k−1(x)




∑|Zk|
j=0 G

(|Zk|−j)
K,k (0) · Ĝ(j+1)

k|k−1(
〈
qD,k, v̄k|k−1

〉
) · σj(Zk)

∑|Zk|
i=0 G

(|Zk|−i)
K,k (0) · Ĝ(i)

k|k−1(
〈
qD,k, v̄k|k−1

〉
) · σi(Zk)




+ pD,k(x)vk|k−1(x)
∑

z∈Zk

gk(z|x)
ck(z)




∑|Zk|−1
j=0 G

(|Zk|−j−1)
K,k (0) · Ĝ(j+1)

k|k−1(
〈
qD,k, v̄k|k−1

〉
) · σj(Zk\{z})

∑|Zk|
i=0 G

(|Zk|−i)
K,k (0) · Ĝ(i)

k|k−1(
〈
qD,k, v̄k|k−1

〉
) · σi(Zk)


, (A.4)

pk(n) =

∑|Zk|
j=0 G

(|Zk|−j)
K,k (0) · 1

(n−j)! Ĝ
(j)(n−j)
k|k−1 (0) · 〈qD,k, v̄k|k−1

〉n−j · σj(Zk)
∑|Zk|

i=0 G
(|Zk|−i)
K,k (0) · Ĝ(i)

k|k−1(
〈
qD,k, v̄k|k−1

〉
) · σi(Zk)

. (A.5)

pk respectively; GΓ,k and GK,k denote the probability generat-
ing functions of pΓ,k and pK,k respectively; G(i)(·) denote the
ith derivative of G(·) and Ĝ(i)(·) = G(i)(·)/G(1)(1)i; ck(z) =
κk(z)/ 〈1, κk〉 denote the density of clutter measurements, and
qD,k = 1−pD,k denote the missed detection probability. Also,
let v̄ = v/ 〈1, v〉 for any unnormalized density v.

1) Proof of Proposition 1: Consider the original CPHD
prediction as given in [24], [25]

vk|k−1(x)=
∫

pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ + γk(x), (A.1)

pk|k−1(n)=
n∑

j=0

pΓ,k(n− j)×
[

1
j!

G
(j)
k−1(1−〈pS,k, v̄k−1〉)〈pS,k, v̄k−1〉j

]
. (A.2)

Note that the intensity prediction (A.1) and (10) are identi-
cal. To simplify the cardinality prediction (A.2), using v̄k−1 =
vk−1/ 〈1, vk−1〉 and G

(j)
k−1(y) =

∑∞
`=j P `

j pk−1(`)y`−j , the
bracketed expression in (A.2) simplifies to

1
j!

∞∑

`=j

P `
j · pk−1(`)

[
1− 〈pS,k, vk−1〉

〈1, vk−1〉
]`−j [ 〈pS,k, vk−1〉

〈1, vk−1〉
]j

=
∞∑

`=j

P `
j

j!
pk−1(`)×

[ 〈pS,k, vk−1〉
〈1, vk−1〉

]j [
1− 〈pS,k, vk−1〉

〈1, vk−1〉
]`−j [ 〈1, vk−1〉

〈1, vk−1〉
]`−j

=
∞∑

`=j

C`
j ·
〈pS,k, vk−1〉j 〈1− pS,k, vk−1〉`−j

〈1, vk−1〉`
pk−1(`)

= Πk|k−1 [vk−1, pk−1] (j). (A.3)

Hence, substituting (A.3) into (A.2), we obtain the CPHD
cardinality prediction (9) as required.

2) Proof of Proposition 2: Consider now the original
CPHD update as given in (A.4)-(A.5) (see [24], [25])

We first simplify the intensity update (A.4). Note that both
the numerator and denominator of the two bracketed terms in
(A.4) are all of the general form

|Z|∑

j=0

G
(|Z|−j)
K,k (0) · Ĝ(j+u)

k|k−1

(〈
qD,k, v̄k|k−1

〉) · σj(Z). (A.6)

Using v̄k|k−1 = vk|k−1/
〈
1, vk|k−1

〉
, G

(i)
K,k(0) = i!pK,k(i),

Ĝ
(i)
k|k−1(y) =

〈
1, vk|k−1

〉−i ∑∞
n=i Pn

i · pk|k−1(n) · yn−i, and
Pn

i = 0 for all integers n < i, it can be seen that (A.6)
simplifies to

∑|Z|
j=0

(|Z| − j)!pK,k(|Z| − j)
1〈

1, vk|k−1

〉j+u
×

∑∞
n=j+u

Pn
j+upk|k−1(n)

〈
qD,k, vk|k−1

〉n−(j+u)

〈
1, vk|k−1

〉n−(j+u)
σj(Z)

=
∑|Z|

j=0
(|Z| − j)!pK,k(|Z| − j)×

∑∞
n=j+u

Pn
j+upk|k−1(n)

〈
qD,k, vk|k−1

〉n−(j+u)

〈
1, vk|k−1

〉n σj(Z)

=
∑min(|Z|,n)

j=0
(|Z| − j)!pK,k(|Z| − j)×

∑∞
n=0

Pn
j+upk|k−1(n)

〈
qD,k, vk|k−1

〉n−(j+u)

〈
1, vk|k−1

〉n σj(Z)

=
∑∞

n=0
pk|k−1(n)

[∑min(|Z|,n)

j=0
(|Z|−j)!pK,k(|Z|−j)×

Pn
j+u

〈
qD,k, vk|k−1

〉n−(j+u)

〈
1, vk|k−1

〉n σj(Z)

]

Since the bracketed expression in the last line above is
precisely the definition of Υu

k

[
vk|k−1, Z

]
(n), it follows that

(A.6) can be written as
∞∑

n=0

pk|k−1(n)Υu
k

[
vk|k−1, Z

]
(n) =

〈
pk|k−1,Υu

k

[
vk|k−1, Z

]〉
.

(A.7)
Substituting into (A.7): Z = Zk\{z} and u = 1 yields the

numerator of the first bracketed term in (A.4) ; Z = Zk and
u = 1 yields the numerator of the second bracketed term in
(A.4); Z = Zk and u = 0 yields the denominator of the both
bracketed terms in (A.4). Thus, we have established the CPHD
intensity update (13) as required.

We now simplify the cardinality update (A.5). The numera-
tor in (A.5) can be simplified using G

(i)
K,k(0) = i!pK,k(i) and

Ĝ
(j)(n−j)
k|k−1 (0) =

〈
1, vk|k−1

〉−j
n!pk|k−1(n) as follows

|Z|∑

j=0

G
(|Z|−j)
K,k (0)
(n− j)!

Ĝ
(j)(n−j)
k|k−1 (0)

〈
qD,k, v̄k|k−1

〉n−j
σj(Zk)
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=
|Z|∑

j=0

(|Z| − j)!pK,k(|Z| − j)
(n− j)!

×

n!pk|k−1(n)
〈
1, vk|k−1

〉j

〈
qD,k, vk|k−1

〉n−j

〈
1, vk|k−1

〉n−j
σj(Zk)

=
|Z|∑

j=0

(|Z|−j)!pK,k(|Z|−j)Pn
j ×

〈
qD,k, vk|k−1

〉n−j

〈
1, vk|k−1

〉n σj(Z)pk|k−1(n)

= Υ0
k

[
vk|k−1, Z

]
(n)pk|k−1(n).

Furthermore, since the denominator in (A.5) is of the form
(A.7), we have established the CPHD cardinality update (12)
as required.


