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Abstract Presented here is a model of neural tissue in a conductive medium stim-

ulated by externally injected currents. The tissue is described as a conductively

isotropic bidomain, i.e. comprised of intra and extracellular regions that occupy the

same space, as well as the membrane that divides them, and the injection currents

are described as a pair of source and sink points. The problem is solved in three

spatial dimensions and defined in spherical coordinates (r, θ,φ). The system of cou-

pled partial differential equations is solved by recasting the problem to be in terms

of the membrane and a monodomain, interpreted as a weighted average of the in-

tra and extracellular domains. The membrane and monodomain are defined by the

scalar Helmholtz and Laplace equations, respectively, which are both separable in

spherical coordinates. Product solutions are thus assumed and given through certain

transcendental functions. From these electrical potentials, analytic expressions for

current density are derived and from those fields the magnetic flux density is cal-

culated. Numerical examples are considered wherein the interstitial conductivity is

varied, as well as the limiting case of the problem simplifying to two dimensions due

to azimuthal independence. Finally, future modeling work is discussed.
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1 Introduction

The purpose of this paper is to model the electric potentials in and around a finite

volume of excitable tissue that result from externally applied injection current. Our

motivation toward quantitative understanding of the distributed electrophysiology of

excitable tissue is due to the emergence of magnetic resonance electrical impedance

tomography (MREIT) [1]. The contrast in MREIT—as well as in another MR tech-

nique, Electrical Properties Tomography (EPT) [2]—depends on the electrical prop-

erty distribution throughout the region of interest. Briefly, in an MREIT scan, cur-

rent is injected into an object in concert with the pulse sequence of an MRI scanner.

This current will induce a magnetic field [3] whose distribution throughout the entire

region can be captured via the phase component of the reconstructed MR images.

Electrical conductivity maps may then be constructed from the phase data using the

Laplacian of the z component of the induced magnetic field, ∇2Bz [4, 5]. MREIT has

already shown clinical promise, e.g. lesion characterization [6], but it is the possibil-

ity of monitoring brain activity with MREIT [7] that especially motivates this study.

If MREIT is to be used to detect neural activity it is useful to estimate the influence

of MREIT imaging currents on both active and passive tissues. Therefore, we have

constructed from first principles an analytic mathematical model of tissue stimulated

by injection currents, not unlike that of an MREIT scan.

Excitable tissues are comprised of cells, discrete units through which electric sig-

nals may propagate via action potentials [8]. While many have studied and mod-

eled the behavior of individual cells in both sub- and supra-threshold conditions, it

is also very important to understand excitability behavior at the tissue level. This

approach has been particularly useful in understanding cardiac activity [9]. The bido-

main model [10], a generalization of the cable equation [11], has been employed in

this area avoiding the discrete constructs of tissue, assuming instead a continuum

of two domains, intra- and extracellular, connected by a membrane and that occupy

the same volume [12]. Each domain represents an average, then, of all its individual

components. MR imaging also necessarily involves averaging over tissues. If we seek

to image neural activity using MREIT it is convenient to use a geometrically simple

model to predict changes in these images created by neural activity.

Many authors have modeled excitable tissue with the bidomain equations, choos-

ing the coordinate system that most closely resembles the tissue geometry. In circular

cylindrical coordinates, Altman and Plonsey modeled a bundle of nerves as an infi-

nite cylinder in an infinite conducting bath, studying first the steady state [13] and

transient stimulation [14]. In the former they incrementally increased the realism of

their model, going from an isotropic monodomain to an anisotropic bidomain, while

in the latter they investigated the effect of fiber diameter on stimulation and impulse

propagation. Henriquez et al. [15–17] and Trayanova et al. [18] investigated the mer-

its of assuming a single fiber vs. a bundle, i.e. bidomain, of fibers when modeling

an infinite cylinder of tissue excited by either a disk or a line source. They showed

that the single fiber core conductor model is not an unreasonable approximation of

the control region of a large bundle of fibers, but loses its validity toward the periph-

ery of the bundle and is entirely unsatisfactory for small bundles. Plonsey and Barr

showed in a two dimensional rectangular framework, except for special cases, the
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bidomain approach to modeling tissue electrophysiology is not a mere generaliza-

tion of one dimensional cable theory [19, 20]. They found that current flowed very

differently in isotropic tissue compared to anisotropic tissue with unequal anisotropy

ratios. Roth gave approximate analytic solutions to the problem of bisyncytia with un-

equal anisotropy ratios [21], using rectangular coordinates. His perturbation method

involved expansion in a parameter defined through the anisotropy ratios. He consid-

ered two sources: an expanding wave front that was approximated with a step func-

tion, and a point source. Trayanova et al. considered the case of bidomain tissue in a

uniform electric field, modeling the heart as a sphere of anisotropic tissue with a core

of blood [22]. The uniform field meant that they could assume azimuthal indepen-

dence, leaving only a two dimensional problem in the spherical coordinates r and θ .

Heretofore none has studied a three spatial dimension bidomain problem in spherical

coordinates.

Our present study is motivated by the need to understand the effect on MREIT

images of excitable tissue—specifically, a ganglion excised from the abdomen of a

sea slug (Aplysia californica)—affected by injection currents injected through elec-

trodes set into the boundary of its artificial sea water bath [7]. We develop a model

that is a dramatic simplification of the actual experiment but which still is novel for

its generalization to three spherical dimensions. In and of itself this model will de-

pict basic electrophysiological phenomena and can act as a standard against which

numeric simulations such as finite element models (FEM) are held, lending credi-

bility to those in concurrence. Seen in a broader context, this work can serve as the

foundation for more and more sophisticated analytic modeling, e.g. nonlinear trans-

membrane currents and mixed boundary conditions.

In this first study of three dimensional analysis of distributed neural tissue we

model the Aplysia abdominal ganglion (AG), known to be electrically coupled by

gap junctions [23], as an isotropic bidomain sphere, the artificial sea water bath as

an infinite isotropic conducting medium, and the injection currents as source as sink

points. We assume isotropic conductivity here for simplicity. However, anisotropy

may be the subject of future work, as active tissue is generally anisotropic.

2 Problem Formulation

2.1 Geometry

Let there be given a sphere of isotropic excitable tissue in a uniform isotropic infi-

nite conducting bath which also contains a point current source and a point current

sink. We shall consider this problem in terms of spherical coordinates (r, θ,ϕ) [24].

The sphere of tissue, whose radius is r = a, has its center at the origin. The current

source and sink points are distances p+ = (r+, θ+, ϕ+) and p− = (r−, θ−, ϕ−), re-

spectively, from the origin, as shown in Fig. 1. The current source and sink are in

the conducting bath, not in the tissue, i.e. a < r+, r−. The segments Rsource and Rsink

are the respective distances from the source and sink to any field point with position

vector r = (r, θ,ϕ). The angles γ+ and γ−, drawn with a dot-dashed line in Fig. 1 are

between p+ and r, and p− and r, respectively.
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Fig. 1 Sphere with radius r = a

in an infinite conducting

medium with current points

source and sink at

p+ = (r+, θ+, ϕ+) and

p− = (r−, θ−, ϕ−),

respectively. The dot-dashed

curves labeled as γ are the

angles between the points’

position vectors and that of a

field point r = (r, θ,ϕ)

2.2 Bidomain Tissue

The tissue is modeled as a bidomain: two regions—intracellular and extracellular—

that occupy the same volume along with the membrane that separates them. Any

transmembrane current must be either from the intracellular region to the extracellular

region, Im = ∇ · Ji , or vice versa, Im = −∇ · Jo [10]. From Ohm’s law, J = E/ρ,

where E is electric field strength and ρ is resistivity [3]. Assuming that E is quasistatic

[25] and, further, that there is no tissue capacitance, we may express E in terms of

scalar potentials, φ, i.e. E = −∇φ. Thus we arrive at the bidomain equations,

∇2φi = Imρi, (1a)

∇2φo = −Imρo, (1b)

where the bidomain potentials, φi and φo, are the intra- and extracellular potentials,

respectively, and ρi and ρo are the corresponding resistivities. Throughout this anal-

ysis we assume the membrane to be passive resistor which makes Im depend upon

the difference between φi and φo,

Im = (φi − φo)
β

Rm

, (2)

where Rm is the membrane resistance times unit area and β is the ratio of the mem-

brane’s surface area to volume of the cell. Equations (1a)-(1b) are coupled and must

be un-coupled to solve for φi and φo by recasting the system in terms of the trans-

membrane potential, Vm, and the monodomain potential, ψ [26],

Vm = φi − φo, (3a)

ψ =
ρo

ρo + ρi

φi +
ρi

ρo + ρi

φo. (3b)
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The bidomain potentials are, then, given as

φi =
ρi

ρo + ρi

Vm + ψ, (4a)

φo = −
ρo

ρo + ρi

Vm + ψ. (4b)

To solve for Vm, let us subtract Eq. (1b) from Eq. (1a)

∇2φi − ∇2φo = Im(ρi + ρo), (5)

and then insert Eq. (2),

∇2(φi − φo) =
φi − φo

ρm

(ρi + ρo), (6)

where ρm = Rm/β is the membrane resistance times unit volume. If we define a

length constant, λ =
√

ρm/(ρi + ρo), from Eq. (3a) we can immediately see that Vm

satisfies the scalar Helmholtz equation,

∇2Vm −
Vm

λ2
= 0. (7)

To find a relationship that only involves ψ , let us apply the Laplacian operator to

Eq. (3b):

∇2ψ =
ρo

ρi + ρo

∇2φi +
ρi

ρi + ρo

∇2φo. (8)

When we put our expressions from Eqs. (1a)-(1b) for ∇2φi and ∇2φo into the right

side of Eq. (8), the two terms on that side add to 0, leaving us with the Laplace

equation through ψ ,

∇2ψ = 0. (9)

2.3 Infinite Medium

External to the tissue the potential, φe, is given by

φe = φbath + φsource + φsink, (10)

where φsource and φsink are the fields due to the current point source and current point

sink, respectively, and φbath is the secondary field [27] which satisfies the Laplace

equation,

∇2φbath = 0. (11)
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3 Solutions

3.1 Transmembrane Potential

The scalar Laplacian of a function f is defined as the divergence of the gradient of f

[24]

∇2f ≡ ∇ · ∇f =
√

g

3
∑

i=1

∂

∂ui

(√
g

gi

∂f

∂ui

)

, (12)

where, in spherical coordinates, u1 = r , u2 = θ , u3 = ϕ, g1 = 1, g2 = r2, g3 =
r2 sin2(θ), and

√
g = r2 sin(θ), whence we arrive at the familiar expression [24]

∇2f =
∂2f

∂r2
+

2

r

∂f

∂r
+

1

r2

∂2f

∂θ2
+

cot(θ)

r2

∂f

∂θ
+

1

r2 sin2(θ)

∂2f

∂ϕ2
. (13)

If we apply Eq. (13) to Eq. (7) and assume a product solution of the transmembrane

potential Vm = R(r)Θ(θ)Φ(ϕ), we can use the method of separation of variables to

get three independent, linear, ordinary, second order, differential equations [24],

∂2R(r)

∂r2
+

2

r

∂R(r)

∂r
−

(

1

λ2
+

α

r2

)

R(r) = 0, (14a)

∂2Θ(θ)

∂θ2
+ cot(θ)

∂Θ(θ)

∂θ
+

(

α −
ν2

sin2(θ)

)

Θ(θ) = 0, (14b)

∂2Φ(ϕ)

∂φ2
+ ν2Φ(ϕ) = 0, (14c)

where α = µ(µ + 1). Equation (14a) admits two solutions, iµ and kµ, the modified

spherical Bessel functions of the first and second kind of order µ, respectively [28].

We only use iµ, however, because the domain includes the origin, where kµ is singu-

lar. The transmembrane potential, then, is

Vm(r, θ,ϕ) =
∞
∑

µ=0

µ
∑

ν=−µ

aµν iµ

(

r

λ

)

Y ν
µ(θ,ϕ), (15)

where Y ν
µ is the tesseral spherical harmonic [29] of degree µ and order ν, and aµν is

the coefficient determined from the boundary conditions.

3.2 Monodomain Potential

For the monodomain potential, let us once again assume a product solution

ψ(r, θ,ϕ) = R(r)Θ(θ)Φ(ϕ). Applying Eq. (13), we separate Eq. (9) into three equa-

tions. The radial equation is [24]

∂2R(r)

∂r2
+

2

r

∂R(r)

∂r
−

α

r2
R(r) = 0, (16)



Journal of Mathematical Neuroscience  (2016) 6:9 Page 7 of 20

and the equations through Θ(θ) and Φ(ϕ) are the same as in Eqs. (14b) and (14c),

respectively. Like Eq. (14a), Eq. (16), too, admits two solutions, rµ and r−µ−1. For

the sake of analyticity, clearly we must omit r−µ−1, making the solution for the

monodomain potential

ψ(r, θ,ϕ) =
∞
∑

µ=0

µ
∑

ν=−µ

bµνr
µY ν

µ(θ,ϕ), (17)

where bµν is the a coefficient to be determined by the boundary conditions.

3.3 External Potential

The potential from the external bath also satisfies the Laplace equation, but its domain

does not include the origin, so we may immediately write its solution as

φbath(r, θ,ϕ) =
∞
∑

µ=0

µ
∑

ν=−µ

cµνr
−µ−1Y ν

µ(θ,ϕ), (18)

where cµν is determined by the boundary conditions. The potentials due to the current

source and sink points with magnitude Io are given as [10]

φsource =
Ioρe

4πRsource
, (19a)

φsink = −
Ioρe

4πRsink
, (19b)

where ρe is the resistivity of the conducting bath, and Rsource and Rsink are the dis-

tances from their respective points to any point (r, θ,ϕ) in the problem domain,

shown in Fig. 1. To satisfy the boundary conditions, φsource and φsink must be written

in terms of r , θ , and ϕ, the derivation of which can be found in the Appendix.

4 Boundary Conditions

We have three boundary conditions [30] at the tissue-bath interface, where r = a,

through which we will determine the unknown coefficients, aµν , bµν , and cµν . They

are continuity of external and extracellular potentials,

φe(a, θ,ϕ) = φo(a, θ,ϕ), (20)

continuity of normal current between bath and interstitium,

ρ−1
e

∂φe(r, θ,ϕ)

∂r

∣

∣

∣

∣

r=a

= ρ−1
o

∂φo(r, θ,ϕ)

∂r

∣

∣

∣

∣

r=a

, (21)

and no intracellular normal current

ρ−1
i

∂φi(r, θ,ϕ)

∂r

∣

∣

∣

∣

r=a

= 0, (22)
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whose solutions yield

aµν = Io(−1)νµaµ+1(r+r−)−µ−1ρeρo(ρi + ρo)p(2µ + 1)−1q−1, (23a)

bµν = Io(−1)ν+1(r+r−)−µ−1ρeρiρo(2µ + 1)−1q−1

× p

(

λµiµ

(

a

λ

)

+ aiµ+1

(

a

λ

))

, (23b)

cµν = Io(−1)νµa2µ+1(r+r−)−µ−1ρe(2µ + 1)−1q−1

×
(

r
µ+1
− ρ0

(

aρi iµ+1

(

a

λ

)

+ λµ(ρi + ρo)iµ

(

a

λ

))

×
(

Y−ν
µ (θ+, ϕ+) − Y−ν

µ (θ−, ϕ−)
)

− ρe(ρi + ρo)

(

λµiµ

(

a

λ

)

+ aiµ+1

(

a

λ

))

×
(

r
µ+1
− Y−ν

µ (θ+, ϕ+) − r
µ+1
+ Y−ν

µ (θ−, ϕ−)
)

)

, (23c)

where

p =
(

(µ + 1)r
µ+1
+ + µr

µ+1
−

)

Y−ν
µ (θ−, ϕ−)

− (2µ + 1)r
µ+1
− Y−ν

µ (θ+, ϕ+) (24)

and

q = λµ(ρi + ρo)
(

µρe + (µ + 1)ρo

)

iµ

(

a

λ

)

− aiµ+1

(

a

λ

)

(

µρe(ρi + ρo) + (µ + 1)ρiρo

)

, (25)

completely determining all potential fields.

5 Current Densities

Current density is proportional to the negative gradient of the scalar electric potential,

J = −ρ−1∇φ. The gradient of a function f is given as [31]

∇f =
3

∑

i=1

1
√

gi

∂f

∂ui

ai . (26)

In spherical coordinates ui and gi are the same as in Eq. (12) and the unit vectors are

a1 = r, a2 = θ , and a3 = ϕ which gives us

∇f =
∂f

∂r
r +

1

r

∂f

∂θ
θ +

1

r sin(θ)

∂f

∂ϕ
ϕ. (27)
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Applying Eq. (27) to Eqs. (4a)-(4b) and (10) and dividing by the resistivities of their

respective domains gives us expressions for the current densities throughout our prob-

lem. They are

Ji(r, θ,ϕ) = −
(

aµν

ρo + ρi

(

µ
λ

r
iµ

(

r

λ

)

+ iµ+1

(

r

λ

))

+
µ

ρi

bµνr
µ−1

)

Y ν
µ(θ,ϕ)r

−
((

aµν

ρo + ρi

1

r
iµ

(

r

λ

)

+
bµν

ρi

rµ−1

)

×
(

ν cot(θ)Y ν
µ(θ,ϕ) + f (µ, ν)e−iϕY ν+1

µ (θ,ϕ)
)

)

θ

− csc(θ)

(

aµν

ρo + ρi

1

r
iµ

(

r

λ

)

+
bµν

ρi

rµ−1

)

iµY ν
µ(θ,ϕ)ϕ, (28)

Jo(r, θ,ϕ) =
(

aµν

ρo + ρi

(

µ
λ

r
iµ

(

r

λ

)

+ iµ+1

(

r

λ

))

−
µ

ρo

bµνr
µ−1

)

Y ν
µ(θ,ϕ)r

+
((

aµν

ρo + ρi

1

r
iµ

(

r

λ

)

−
bµν

ρo

rµ−1

)

×
(

ν cot(θ)Y ν
µ(θ,ϕ) + f (µ, ν)e−iϕY ν+1

µ (θ,ϕ)
)

)

θ

+ csc(θ)

(

aµν

ρo + ρi

1

r
iµ

(

r

λ

)

−
bµν

ρo

rµ−1

)

iµY ν
µ(θ,ϕ)ϕ, (29)

Je(r, θ,ϕ) =
(

cµν

ρer2+µ
+

I0

2µ + 1

(

f−(r)Y−ν
µ (θ−, ϕ−)

− f+(r)Y−ν
µ (θ+, ϕ+)

)

)

Y ν
µ(θ,ϕ)r

−
(

cµν

ρer2+µ
+

s

r

)

(

ν cot(θ)Y ν
µ(θ,ϕ) + τe−iϕY ν+1

µ (θ,ϕ)
)

θ

−
(

cµν

ρer2+µ
+

s

r

)

iν csc(θ)Y ν
µ(θ,ϕ)ϕ, (30)

where

f+,−(r) =

⎧

⎨

⎩

µ rµ−1

r
µ+1
+,−

, if r < r+,−,

−(µ + 1)
r
µ
+,−

rµ+2 , if r > r+,−,

(31)

s =
I0

2µ + 1

(

(g<
+)µ

(g>
+)µ+1

Y−ν
µ (θ+, ϕ+) −

(g<
−)µ

(g>
−)µ+1

Y−ν
µ (θ−, ϕ−)

)

, (32)
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and

τ =
√

Γ (µ − ν + 1)
√

Γ (µ + ν + 2)
√

Γ (µ − ν)
√

Γ (µ + ν + 1)
. (33)

Here g<
+,− = min(r, r+,−), g>

+,− = max(r, r+,−), and Γ is the gamma function [32].

6 Magnetic Flux Density

Here we summarize the theory behind our numeric calculation of the magnetic flux

density, B, due to J. Within a current-carrying volume, B may be calculated from the

Biot–Savart law [33],

B(r) =
µ0

4π

∫

V

J(r′) × |r − r′|
|r − r′|3

dV ′, (34)

thus every point in B requires integration over the entire current-carrying volume.

Since the numerator of the integrand of Eq. (34) is a cross product the individual

components of B in cartesian coordinates are given as

Bx =
µ0

4π

∫

V

Jy(z − z′) − Jz(y − y′)

((x − x′)2 + (y − y′)2 + (z − z′)2)
3
2

dx′ dy′ dz′, (35a)

By =
µ0

4π

∫

V

Jz(x − x′) − Jx(z − z′)

((x − x′)2 + (y − y′)2 + (z − z′)2)
3
2

dx′ dy′ dz′, (35b)

Bz =
µ0

4π

∫

V

Jx(y − y′) − Jy(x − x′)

((x − x′)2 + (y − y′)2 + (z − z′)2)
3
2

dx′ dy′ dz′. (35c)

In an MREIT scan we are only concerned with the component of the magnetic field

that is along the axis of the bore of the MRI scanner, i.e. Bz; so, we will focus on that

now but the following would apply to Bx and By as well. We can see that Bz is the

difference of two integrals,

Bz =
µ0

4π

∫

V

Jx(y − y′)

((x − x′)2 + (y − y′)2 + (z − z′)2)
3
2

dx′ dy′ dz′

−
µ0

4π

∫

V

Jy(x − x′)

((x − x′)2 + (y − y′)2 + (z − z′)2)
3
2

dx′ dy′ dz′. (36)

If we define the x and y components of a function G as

Gx =
x

(x2 + y2 + z2)
3
2

, (37a)

Gy =
y

(x2 + y2 + z2)
3
2

, (37b)
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Table 1 Modeling inputs

Parameter Value

Bath resistivity, ρe 0.29 Ωm

Intracellular resistivity, ρi 0.19 Ωm

Membrane resistance times unit area, Rm 0.15 Ωm2

Ratio of surface area to volume, β 20,000 m−1

Source and sink magnitude, I0 1 mA

Tissue radius, a 2 mm

Point source position, p+ (5, π
2
,0)

Point sink position, p− (5,π,0)

Summation upper bound, µ 10

then we can define Bz as a difference of two convolutions [34],

Bz =
µ0

4π
(Jx ∗ Gy) −

µ0

4π
(Jy ∗ Gx). (38)

Convolution becomes multiplication in the Fourier domain [34] thus Bz finally is

calculated as

Bz =
µ0

4π
F

−1
{

F{JxGy} −F{JyGx}
}

, (39)

where F is the Fourier transform [34].

7 Numeric Examples and Discussion

We now demonstrate our modeling with some simple examples in which we show the

effect of varying ρo. Let us assume the tissue radius is a = 2 mm, the point current

source is at p+ = (5, π
2
,0), and the point current sink is at p− = (5,π,0). Plainly

said, there is a cathode 2 mm to the right of, and an anode 2 mm directly below, a

ball of tissue in an otherwise uniform ocean of artificial sea water. We choose resis-

tivities in a range known to be biologically realistic [10], specifically ρe = 0.29 Ωm,

ρi = 0.19 Ωm, and ρm = 0.15 Ωm. The source and sink are positive and negative,

respectively, with equal magnitude I0 = 1 mA. The upper bound was chosen that the

solution stabilized to 5 decimal places, i.e. µ = 10. All of these inputs are summa-

rized in Table 1. In our first three examples we hold ρo = ρe, ρo = 10ρe, ρo = 0.1ρe,

shown in Figs. 2, 3, and 4, respectively. The figures are squares of 3 mm so as not

to include the source and sink which would obscure the behavior in and immediately

surrounding the sphere. In the top graph of each figure is plotted φo and φe where they

appear in the xy plane that includes the origin. The solid black lines are the equipo-

tentials with the shade of color between them corresponding to the magnitude. The

middle graphs show the current densities: Je outside the sphere and Ji +Jo inside the

sphere. The arrows give the direction of the current while the color corresponds to the

magnitude |J| =
√

J 2
x + J 2

y + J 2
z . It should be noted that there is a symmetry about
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Fig. 2 The top, middle, and

bottom images are plots of the

electric potential, current

density, and magnetic flux

density, respectively, in the

plane z = 0. The dashed white

line indicates the circumference

of the sphere. In the cartesian

coordinates on this graph the

current point source is at (5,0)

and the current point sink is at

(0,−5). The ratio ρe/ρo = 1. In

the top graph we show

extracellular potential of the

sphere of tissue amid the

external potential in the

conducting bath. There the black

lines are equipotentials and the

shade of color corresponds to

the magnitude. In the middle

graph we show the external

current density in the bath and

the sum of the intracellular and

extracellular current densities in

the sphere. The magnetic flux

density shown in the bottom

graph was calculated from the

current density field
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Fig. 3 The top, middle, and

bottom images are plots of the

electric potential, current

density, and magnetic flux

density, respectively, in the

plane z = 0. The dashed white

line indicates the circumference

of the sphere. In the cartesian

coordinates on this graph the

current point source is at (5,0)

and the current point sink is at

(0,−5). The ratio ρe/ρo = 0.1.

In the top graph we show

extracellular potential of the

sphere of tissue amid the

external potential in the

conducting bath. There the black

lines are equipotentials and the

shade of color corresponds to

the magnitude. In the middle

graph we show the external

current density in the bath and

the sum of the intracellular and

extracellular current densities in

the sphere. The magnetic flux

density shown in the bottom

graph was calculated from the

current density field
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Fig. 4 The top, middle, and

bottom images are plots of the

electric potential, current

density, and magnetic flux

density, respectively, in the

plane z = 0. The dashed white

line indicates the circumference

of the sphere. In the cartesian

coordinates on this graph the

current point source is at (5,0)

and the current point sink is at

(0,−5). The ratio ρe/ρo = 10.

In the top graph we show the

extracellular potential of the

sphere of tissue amid the

external potential in the

conducting bath. There the black

lines are equipotentials and the

shade of color corresponds to

the magnitude. In the middle

graph we show the external

current density in the bath and

the sum of the intracellular and

extracellular current densities in

the sphere. The magnetic flux

density shown in the bottom

graph was calculated from the

current density field
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Fig. 5 On the left is a contour plot of the extracellular potential of the sphere of tissue amid the external

potential in the conducting bath. The dashed white line indicates the circumference of the sphere. On the

right is a contour plot of the transmembrane potential within the sphere. In both graphs, the black lines are

equipotentials and the shade of color corresponds to the magnitude. In the cartesian coordinates on these

graphs the current point source is at (0,5) and the current point sink is at (0,−5). The ratio ρe/ρo = 1

the plane depicted since it contains the source and sink points and the orthodrome

of the sphere of tissue, thus all the current is in the plane of the page, i.e. Jz = 0. In

the bottom graphs we show the magnetic flux density to which Je, Ji , and Jo give

rise. We composed a program in MATLAB (The MathWorks, Inc., Natick, MA) that

employs the fast Fourier and inverse Fourier transforms to compute Bz from the sim-

ulated J data throughout a 3 mm × 3 mm × 3 mm cube whose origin is the same

as the sphere’s. The J sampling was 13 slices, evenly spaced along the z axis, each

containing 128 × 128 data points. All of these results are as expected. But for the

dashed white line, the sphere of tissue is indistinguishable from the surrounding bath

in Fig. 2. When the interstitium has one tenth the bath’s resistivity (Fig. 3) the current

can be seen to go toward the sphere resulting in a large Bz at the sphere’s edge in the

fourth quadrant of the field of view. Accordingly, when the interstitium is ten times

as resistive as the bath (Fig. 4), the current flows mostly around it. In terms of the

Bz field, there appears a faint glow around the sphere’s edge, surrounding a region

of relative darkness, due to this flow pattern. In both cases of ρo �= ρe the tissue is

clearly visible in all three field types, φ, J, and Bz.

As a limiting example, let us move the source point to be directly above the tissue

such that p+ = (5,0,0). This is an axially symmetric problem, identical to our earlier

work [35], and we get the same results, shown in Figs. 5 and 6. The white line in Fig. 5

is the horizontal axis in the plot in Fig. 6 where we have plotted φo, φi , Vm, and φe

as a function of distance, along the segment joining the sink and source. The vertical

lines at y = −2 and 2 indicate the extent of the tissue where it is clear by inspection

that all the boundary conditions are satisfied. At the tissue radius φo (solid line) and

φe (dashed line) are equal as are their slopes, and the slope of φi (dot-dashed line) is

zero. Furthermore, we can see that Vm (dotted line) is the difference between φi and

φo, fulfilling Eq. (3a).

In this article we set out to model the electromagnetic fields in and around a vol-

ume of neural tissue stimulated by current that is injected in close proximity to it.
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Fig. 6 The intracellular

(dot-dashed), extracellular

(solid), transmembrane (dotted),

and bath (dashed) potentials are

shown as a function of y, along

the white line where x = 0 in

Fig. 5. The vertical lines at

y = −2 and 2 correspond to the

radius of the sphere, r = a,

where are also plotted the lines

tangent to the curves of the

potentials in the boundary

conditions

The geometry selected is expected in an in vitro MREIT scan, where an AG may be

submerged in a bath of artificial seawater contained in a cylindrical sample chamber

that has injection current ports on opposing sides [7]. We note that the effect of the

applied external field is to simultaneously depolarize and hyperpolarize portions of

the simulated tissue nearby the current sources. If a portion of tissue is sufficiently

depolarized to form an action potential it may propagate throughout the tissue from

these regions. It has been suggested [36] that modest depolarizations or hyperpolar-

izations caused by weak external currents applied to the skull are sufficient to excite

or inhibit neural excitability in brain structures. More complex models of the tissue

and field geometry used here may prove useful methods of exploring the mecha-

nisms of such neuromodulation techniques. In these numeric examples we have held

the source and sink points to be equidistant from the sphere of tissue, r+ = r−. This

gives the problem a symmetry about the lines y = −x in Figs. 2, 3, and 4 and y = 0

in Fig. 5. However, the AG is smaller than the diameter of the sample chamber; so, it

will not necessarily be directly between the ports, spoiling this axial symmetry. Thus

a complete three dimensional treatment of this type of problem is finally required.

From Eqs. (4a)-(4b) we can see that each region, intracellular and extracellular, has

a monodomain component ψ that obeys the Laplace equation. Plots of this potential

produce results similar to those of Rush and Driscoll [37, 38]. They solved for the

electric potential in a brain from electrodes placed directly on a scalp, modeling the

brain, skull, and scalp as different layers of monodomain tissues, i.e. a sphere encased

in a thin shell of bone which was itself encased in a thin shell of skin. We could amend

our model to include similar surrounding layers, each with its own expressions for

φ and J and coefficients determined from the boundary conditions. The boundary

conditions themselves would change, e.g. the interstitium would have continuity of

potential and normal current with the skull rather than with artificial sea water. Such

changes would be appropriate for a model on the scale of e.g. a dog’s head [39].

We have modeled both domains as being ohmic, i.e. their impedivities z = ρ are

only real valued, but z can be made complex by introducing a frequency dependence

[34]. In their extensive literature review [40] and experimental measurements [41],

Gabriel et al. show that most tissues have frequency dependent electrical properties.

More recently, Bédard et al. [42] and Bazhenov et al. [43] explored frequency depen-

dence in local field potentials. In a series of theoretical papers Bédard and Destexhe
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provide a general framework for modeling electromagnetic fields in brain tissue with-

out assuming the interstitium to be purely resistive. Absent those assumptions, they

developed a generalized formalism of current source density analysis with the goal

of relating the extracellular potential to current sources in the tissue [44], considering

monopolar sources, dipolar sources, and combinations thereof. Next they incorpo-

rated frequency dependent extracellular and intracellular impedivities, zo and zi , to

generalize the cable theory [11] for neurons embedded in a complex interstitium [45].

They showed that zo and zi have a non-trivial impact on the properties of neurons,

e.g. voltage attenuation with distance and the spectral profile of Vm. Finally, they

calculated the magnetic fields generated from a current-carrying neuron and, using

superposition, a population of neurons [46]. They showed that since the electrical

properties of neural tissue impact the transmembrane and axial currents of a neuron,

they will necessarily also impact the magnetic fields these currents create. By con-

trast, in our study we have concerned ourselves with the interaction of neural tissue

and an aphysiologic stimulus. The effects of this stimulus will naturally also depend

upon complex tissue properties, but over a larger scale determined by the stimulus

geometry. Future work should explore the impact non-ohmic impedivities have on a

tissue interactions with applied external fields.

Let us now consider possible next steps to build on this first study. As well as

modeling tissue properties as complex, it should also be possible to examine the

transient behavior of excitable tissue using a Hodgkin–Huxley-like model [47]. These

analytical models of spheres could then be validated and used to estimate the scale of

changes expected in MREIT images due to different neural activity patterns.
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Appendix

The potential due to the current point source, shown in Fig. 7, goes as the inverse of

the distance from it which is given as

Rsource = |r − p+| =
√

r2 + r2
+ − 2rr+ cos(γ+), (40)
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Fig. 7 Geometry of the point

current source at

p+ = (r+, θ+, ϕ+) in relation to

the origin (0,0,0) and a field

point r = (r, θ,ϕ), with Rsource

being the distance between r

and p+

and whose inverse has the form of the generating function of the Legendre polynomial

[32], allowing us to write

1
√

r2 + r2
+ − 2rr+ cos(γ+)

=
∞
∑

µ=0

(g<
+)µ

(g>
+)µ+1

Pµ

(

cos(γ+)
)

, (41)

where Pµ is the Legendre polynomial of order µ. The spherical law of cosines [29]

lets us write γ in terms of θ and ϕ,

cos(γ+) = cos(θ) cos(θ+) + sin(θ) sin(θ+) cos(ϕ − ϕ+), (42)

which, from spherical harmonic addition theorem [48], allows us to expand Pµ in

terms of Y ν
µ ,

Pµ

(

cos(γ+)
)

=
4π

2µ + 1

µ
∑

ν=−µ

Y ν
µ(θ,ϕ)Y−ν

µ (θ+, ϕ+). (43)

The analysis for a current point sink proceeds analogously. From Eqs. (19a)-(19b), the

potentials for current points source and sink finally are given in spherical coordinates

as

φsource(r, θ,ϕ) = I0ρe

∞
∑

µ=0

µ
∑

ν=−µ

(g<
+)µ

(g>
+)µ+1

1

2µ + 1
Y ν

µ(θ,ϕ)Y−ν
µ (θ+, ϕ+), (44a)

φsink(r, θ,ϕ) = −I0ρe

∞
∑

µ=0

µ
∑

ν=−µ

(g<
−)µ

(g>
−)µ+1

1

2µ + 1
Y ν

µ(θ,ϕ)Y−ν
µ (θ−, ϕ−). (44b)
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