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Abstract
Despite a number of recent advances made in the un-

derstanding of the bias temperature instability (BTI), there
is still no simple model available which can capture BTI
degradation during DC or duty-factor (DF) dependent stress
and the following recovery. By exploiting the intuitive features
of the recently proposed capture/emission time (CET) maps
[1, 2], we suggest an analytic model capable of handling a
wide number of BTI stress and recovery patterns. As the
model captures both the temperature- and bias- dependence of
the degradation, it allows for realistic lifetime extrapolation.
Compared to available models which do not consider the
saturation of the degradation, our model predicts considerably
more optimistic lifetimes.

Introduction
At the heart of the model stand the CET maps, which

describe the wide distribution of capture and emission times.
The CET maps have so far been extracted by numerically
differentiating a set of ΔVth recovery curves [1]. It has been
shown that this approach can explain a wide class of both
NBTI [2] as well as PBTI [3] stress and recovery patterns,
including DC, AC, and DF stress. Although accurate, such
a table-based model is valid for a single stress/recovery
voltage/temperature combination only, becomes prone to nu-
merical errors at lower stress conditions, and does not allow for
extrapolation. In a first attempt to overcome these limitations,
a log-normal distribution with higher-order polynomials for
the mean and variance for the emission times was used [2],
which is unfortunately at odds with physical models.

Analytic Capture/Emission Time Map Model
We base our CET map model on the capture and emission

times as described by the non-radiative multiphonon model
for charge exchange [4], with time-constants of the form
τ = τ0 exp(βEA). Rather than considering the various defect
parameters impacting EA, like the Huang-Rhys factor or the
energy levels of the trap, we deal with the effective activation
energy EA directly. We consider the following: (i) Since both
capture and emission are thermally activated processes [1, 4],
we model the distribution of the activation energies rather than
the time constants themselves. (ii) As the time constants are
uncorrelated with the depth of the defect into the oxide [5], we
use an effective prefactor ⟨τ0⟩. (iii) Recent results have shown
that BTI degradation consists of a recoverable component R
which dominates the recovery over the whole experimental
window, starting from a microsecond up to weeks [6]. Further-
more, a more permanent component P is observed, which is
not fully permanent but merely recovers on timescales outside
usual experimental windows [6]. By heating the sample, these
time constants are dramatically reduced, leading to accelerated

recovery also of P [7, 8]. Since in physical models the capture
and emission times are correlated [9], we express the mean of
the emission time as μe = μc+Δμe. As such, both components
can be described by regular bivariate normal distributions, see
Fig. 1. (iv) While the temperature dependence is inherently
considered by the distribution of the activation energies, the
bias-dependence of the CET maps is modeled by assuming
the amplitude of each component to follow A = (Vs/Vs0)

m,
with the stress voltage Vs and constants Vs0 and m. Also, as
previous studies on individual defects have shown [4], the
mean values of the distribution are expected to approximately
follow μc = μc0+kVs and Δμe = Δμe0−kVs, with k a constant.
The main effect of k is to shift the capture times to shorter
values without affecting the emission times. However, the
effect of the bias on the mean values was found to be small
and completely negligible for the permanent component.

Analytic Degradation Model
Using the analytic model for the CET maps, the degradation

in response to arbitrary digital switching between a given
stress and recovery voltage can be calculated in a straight-
forward manner [1, 2]. We give explicit analytic solutions for
the most important cases (see Fig. 2), while other cases follow
analogously: (i) The simplest solution is obtained for a delay-
free on-the-fly measurement (OTF), which is simply given by
the integral of the capture-time distribution starting from the
first measurement point t0 up to the stress time ts. (ii) In a
measure-stress-measure (MSM) experiment, first all defects
with capture time constants smaller than the stress time ts are
filled. Then, during the subsequent recovery, all defects with
emission time constants smaller than the recovery time tr are
discharged. Thus, for any combination of ts and tr, the total
ΔVth is obtained by integrating the CET maps from 0 to ts and
tr to ∞. As such, ΔVth can be expressed via the cumulative
distribution function of the bivariate normal distribution, see
Fig. 3. (iii) Finally, for a DF stress with duty-factor α and
period T , three regions of the CET map are filled in a different
manner [2]: first, defects with emission times smaller than
(1 − α)T are completely discharged during each emission
cycle and recharged in the following stress cycle. Second,
defects with large emission times are not discharged during
the emission cycle and charge up to τc < αts. Finally, in the
transition region, defects with τe > τc/γ , with the on-off ratio
γ = α/(1−α), remain charged as well, resulting in a beveled
box. Using basic integrals of the bivariate normal distribution,
the total ΔVth can be analytically determined at all stress and
recovery times.

Model Evaluation
The model is first evaluated on a 2.2nm SiON technology

[10], where very detailed MSM data was acquired for the
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construction of the CET maps. Recording of each dataset
required about one to two weeks. Fig. 4 shows a comparison
of the numerically determined CET map with the analytic
model, which contains all essential features. In particular,
the rightward slant of the distribution with increasing capture
times, which previously necessitated the introduction of the
higher-order polynomials for the mean and variance of the
single normal distribution is well captured by the superposi-
tion of two bivariate normal distributions. By simultaneously
extracting the analytic distribution for a number of datasets
recorded at different Vs and TL, a bias- and temperature-
dependent analytic CET map model is obtained, see Fig. 5. A
convincing comparison of the analytic model to experimental
data for a number of Vs/TL combinations is given in Fig. 6.
Furthermore, Fig. 7 and Fig. 8 demonstrate how the analytic
model captures the build-up of a more permanent degrada-
tion by low-frequency duty-factor cycling of the samples.
Finally, the model is successfully evaluated against different
samples in Fig. 9 (3nm SiO2) and Fig. 10 (2.5nm HfSiO).
As a comparison, extracted activation energy distributions
are shown in Fig. 11, which, although qualitatively similar,
show interesting differences. For instance, the HfSiON sample
shows a large recoverable component with small activation
energies, consistent with earlier reports [11].

Long-Term Stability of the CET Maps
In order for our model to be exact, the CET maps have to

remain stable with repeated cycling. Interestingly, this is not
always the case. It has already been previously observed that
the amount of ΔVth which can be cycled in a DF experiment
can decrease [12]. In terms of the CET maps, which predict
a constant amount of cycle-able charge, this implies that the
density of the recoverable defects decreases with time. While
nitrided samples have been reported to be relatively stable [12–
14], as confirmed in Fig. 7 and Fig. 8, non-nitrided samples
can display a significant reduction in R. This is shown in
Fig. 12 for a 3nm SiO2 technology, with about 25% reduction
after 30 cycles of 10ks stress/10ks recovery at 200 ∘C. Still,
the degradation at large times is dominated by P, so that the
overall accuracy of the model appears to be not dramatically
affected by this effect. Another test [2, 3] for the stability of
R is to compare the recovery traces after an AC stress of
duration 2× ts to a DC stress of duration ts, which according
to Fig. 2 have to merge at tr ≈ ts. Two extreme cases are given
in Fig. 13, for a non-nitrided and nitrided high-k oxide, with
good agreement of the analytic model with the data.

Lifetime Prediction
Being physics-based rather than an empirical fit, the analytic

model allows for lifetime extrapolation from higher Vs and TL

to operating conditions. Conventionally used power-law fits
do not differentiate between the two components and do not
consider saturation, leading to very pessimistic lifetimes. Also,
the popularized reaction-diffusion model enforces a relatively
large power-law slope of 1/6 even at longer stress times
[15], leading to even more pessimistic lifetime estimates. In
contrast, our model predicts ΔVth to basically follow the sum

of two error-functions, which results in increasingly lower
n with increasing stress time [16] until complete saturation
(Fig. 14). This saturation level is predicted to be bias- but not
temperature-dependent. As a consequence of this saturation, a
dramatic increase in the predicted lifetimes is observed, see
Fig. 15. Also, as already frequently suspected, extrapolation
from higher Vs results in strong non-linearities and thus
uncertainties due to the bias-dependence of the saturation
level. On the other hand, as the saturation-level is temperature-
independent, extrapolation from higher TL is much better
behaved and therefore to be recommended.

Conclusions
We have suggested a physics-based analytic model for BTI

which covers DC, AC, and duty-factor dependent stress and
the subsequent recovery as a function of stress voltage and
temperature. Since the model is intuitively based on the occu-
pancy of defects in the capture/emission time maps, it can be
easily generalized to other more complicated stress/recovery
patterns. Although the occasional reduction of the recoverable
component in non-nitrided oxides is not well understood, the
model provides an upper bound for the degradation which is
considerably more optimistic than predictions obtained from
previously suggested extrapolation methods.
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Fig. 1: The analytic CET map model using two
bivariate normal distributions f for the activation
energies of the recoverable and permanent compo-
nents R and P. The emission and capture times τc
and τe are correlated with correlation coefficient ρ
and obtained from the normalized variates x and
y. TL is the temperature and φ(x) the p.d.f. of the
univariate normal distribution.
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Fig. 2: Three examples on how the contribution
V of each component to ΔVth is calculated by
simple analytical integration of the CET map. The
recovery-free OTF scheme misses the lower part
of the distribution (τc < t0), the measure-stress-
measure scheme (MSM) the left part (τe < tM), and
duty-factor stress with period T and duty-factor α
has to consider a beveled box [2], determined by
on/off ratio γ = α/(1−α).
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Fig. 3: The two integrals F and Fγ of the bivariate
normal distribution f required to determine a wide
range of stress/recovery patterns. While no exact
solution for F exists, various approximations are
available, with most of them being too crude for
our purposes. The above approximation is derived
using the method suggested in [17], with c =√

3/(2(1−ρ2)) and the normal integral Φ(x) =
(1+ erf(x/

√
2))/2.

Fig. 4: Left: The CET map extracted from experimental MSM data by
numerically differentiation [1, 9], which is limited to the experimental win-
dow. To evaluate the method, we used an extremely wide window of ts =
[1 μs . . .100ks] and tr = [1 μs . . .9days]. All maps are normalized and plotted
using a signed log operator sign(g) log10(1+κ∣g/gmax∣)/ log10(1+κ) with
κ = 100 to bring out all important details. Right: The analytic CET map
model of Fig. 1 fit to the same MSM data set, which contains all essential
features.

Fig. 5: The analytic activation energy map extracted from data recorded
at the bias conditions Vs = [−1.7V . . .− 3.2V] and Vrelax = −0.5V at two
temperatures (170∘C and 125∘C). While the temperature dependence is
inherently considered, the applied bias changes the map only slightly, left
for −3.2V, right for −1.7V. The strongest changes is due to the change of
the amplitudes Ar and Ap. Since both amplitudes change in a comparable
way, this aspect is barely visible in the above plots due to the normalization
to unity.
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Fig. 6: Comparison of the analytic model using the activation energies of Fig. 5 to experimental data at different stress biases and temperatures. Excellent
agreement is obtained for all stress and relaxation times in the extremely wide experimental window also on a logarithmic scale (right-most figure).
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Fig. 8: Using the definitions P = ΔVth(trelax,last) and R = ΔVth(trelax,first)−P,
the data of Fig. 7 is replotted as a function of the total stress time. Consistent
with the observations of [12], the amount of recoverable ΔVth per cycle, R, is
stable. As a consequence, the CET map model (lines) is in excellent agreement
with the data.
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Fig. 9: Comparison of the analytic model to detailed MSM data for a 3nm SiO2 device.
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Fig. 10: Comparison of the analytic model to detailed MSM data for a EOT=2.5nm HfSiO device [18].

Fig. 11: The CET maps extracted for a number of different oxides. The first corresponds to Fig. 9 while the second belongs to Fig. 10. The trappy HfSiON
from [11] (fourth map) shows a four-times larger NBTI degradation and an order of magnitude larger noise power than its non-nitrided HfSiO counterpart
(third map).
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Fig. 12: Left: Similar low-frequency duty-factor experiment as in Figs. 7 and
8 but now performed on a non-nitrided oxide where the relative loss in R can
be significant. Contrary to [12], in this device the effect is stronger at higher
temperatures and appears to be only weakly field-dependent. Right: Repeated
cycling between −3V and −0.2V dominantly builds up P, maintaining the
good accuracy of the model (lines).

Fig. 13: Two extreme cases of recovery after DC and AC stress for the
non-nitrided HfSiO device at 25∘C (left) and the nitrided HfSiON device at
125∘C. As already demonstrated in [2, 3] for PBTI, recovery after AC stress
of duration 2× ts merges with the DC recovery after stress of duration ts
at tr = ts. The analytic model (solid lines for DC and dashed lines for AC)
reproduces the data very well.

Fig. 14: Extrapolated degradation at constant temper-
ature (left) and constant bias (right). While in the
shown measurement range the data with a delay of
1 μs (syms and dashed lines) can be well fitted with
a power-law, the CET map model results in the sum
of two error-functions, one for R and the other for
P. When the data is extrapolated to zero delay (solid
lines), the degradation level becomes larger but the
slope decreases, which is beneficial for the lifetime.
Furthermore, particularly for P a relatively strong
curvature is observed (dotted lines), consistent with
previous observations [10, 19]. Finally, the degradation
saturates with the predicted final total degradation
level depending only on the bias but not on the
temperature.
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Fig. 15: The calculated lifetimes (ΔVth(tlifetime) =
30mV) obtained from the CET map model extrap-
olated at constant temperature (left) and constant bias
(right). Also shown are the results obtained from
a power-law (PL) extrapolation fitted in the range
ts = [1s . . .10ks] and to the prediction of the reaction-
diffusion (RD) model [15]. For the last two extrapola-
tion schemes data recorded with a delay of 1 μs was
taken. For the conventional power-law extrapolation,
the initial amplitude is lower but the slope higher, lead-
ing to a ‘benefit’ at higher Vs but an overly pessimistic
lifetime at operating conditions (VG = 1.5V). The RD
model postulates a saturated hole-trapping component
at ts = 1s and enforces a high longer-term slope of
1/6, leading to very pessimistic lifetimes.
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