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SUMMARY

Some plates deform across zones that are many hundreds to thousands of kilometres
wide, much broader than traditional boundaries such as mid-ocean ridges, deep-sea
trenches and oceanic transform faults, across which most deformation is concentrated in
a zone just a few kilometres wide. These wide zones of deformation, commonly referred
to as diffuse plate boundaries, occur in both continental and oceanic lithosphere.
Composite plates are composed of two or more rigid, or nearly rigid, component plates
separated by one or more diffuse plate boundaries (Royer & Gordon 1997); such
‘complete’ diffuse boundaries are terminated at both ends by triple junctions (although
there are other diffuse boundaries that transform into narrow boundaries). Here we
consider the dynamics of complete diffuse oceanic plate boundaries by constructing
simple analytical models on a flat earth and on a spherical earth assuming that the
viscous force resisting deformation is described by either a linear Newtonian law or a
high-exponent power law.

We investigate the observed tendency for the pole of relative motion between com-
ponent plates separated by a diffuse plate boundary to lie within the diffuse boundary
itself. We show that this tendency is due to geometrical effects that make it unlikely that
the total torque acting between plates at a diffuse boundary could be oriented such
that relative rotation occurs between the plates about a pole lying outside the boundary.
This is demonstrated for both flat and spherical earth cases, assuming that resistance to
strain along the diffuse boundary increases linearly with stress (Newtonian rheology).
We further show that the pole of rotation is even more likely to lie in the diffuse plate
boundary if the viscous force resisting deformation is described by a high-exponent
power law rather than a Newtonian law.

Key words: diffuse plate boundary, East African Rift, Indo–Australian plate, plate
tectonics.

1 I N T R O D U C T I O N

Much of the deformation of the Earth’s surface occurs in

boundary regions between any two of about 15 rigid or near-

rigid plates that are in relative motion with respect to each

other (Wilson 1965; McKenzie & Parker 1967; Morgan 1968).

Motion between two plates may be described by their relative

angular velocity about the centre of the Earth, which can be

specified by a rate of rotation and an axis or pole of rotation.

Most plate boundaries, including mid-ocean ridges, oceanic

transform faults and the main thrust fault at trenches, are

narrow, that is, all or nearly all the deformation occurs in a

zone probably just a few kilometres wide. It now appears, how-

ever, that many other plate boundaries in both oceanic and

continental settings are diffuse (Gordon & Stein 1992), that is,

the relative velocity between plates is accommodated by defor-

mation across a zone of deformation that is hundreds or even

thousands of kilometres wide.

Royer & Gordon (1997) distinguished plates separated

by diffuse plate boundaries from other types of plates. They

defined ‘composite’ plates as those composed of two or more

‘component’ plates separated by one or more diffuse plate

boundaries. A component plate is internally rigid or nearly so

but moves relative to one or more other component plates in

the same composite plate. Composite plates are bordered by

narrow plate boundaries. Not all diffuse boundaries separate

component plates, so we introduce the terminology ‘complete
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diffuse plate boundary’ to refer to a diffuse boundary that

separates component plates and that terminates at triple

junctions at both ends, and ‘partial diffuse plate boundary’

to refer to a diffuse boundary that shows a transition into a

narrow plate boundary (such as the continuation of the Arctic

ridge towards Asia).

The poles of rotation for motion across component plates

meeting at complete diffuse plate boundaries have a tendency

to lie within the boundaries themselves (Gordon 1998).

This generalization holds for all the major examples of diffuse

oceanic boundaries that separate composite plates into com-

ponent plates: the boundary separating the North and South

American plates between the Caribbean and the Mid-Atlantic

Ridge (Argus 1990), the two boundaries separating the Indo–

Australian plate into the Indian, Australian and Capricorn

plates (Gordon et al. 1990; Royer & Gordon 1997), and a

boundary separating the African plate into the Nubian and

Somalian plate, which includes the East African Rift and

continues south and southeast to the Southwest Indian Ridge

(Chu & Gordon 1999). Other diffuse boundaries such as in the

Western United States and between Africa and Eurasia are not

of this form as these diffuse boundaries convert into a narrow

boundary on at least one side (with subduction or sea-floor

spreading) rather than ending at triple junctions, so that they

are partial diffuse boundaries. Hereinafter we only consider

complete diffuse plate boundaries (Fig. 1).

Although it has long been recognized that plate boundaries

through continents are prone to broad bands of deformation

(such as at the Andes or the Tibetan plateau), only recently

have enough diffuse oceanic plate boundaries become suffi-

ciently well documented for them to be recognized as globally

significant tectonic features (Royer & Gordon 1997; Gordon

1998; Chu & Gordon 1999). Diffuse plate boundaries are

associated with slow relative velocities between the com-

ponent plates, with rates of 2–16 mm yrx1 rather than the

12–160 mm yrx1 velocities observed across mid-ocean ridges

and the 20–100 mm yrx1 velocities inferred across trenches

(Gordon 1998). This may be because fast motions are required to

develop narrow plate boundaries, or because diffuse boundaries

are more resistant to motion than narrow boundaries, or

perhaps because of both of these. It is also in a sense true that

the relative velocities are small because the pole lies within

the boundary, which implies that even for high rates of spin the

surface speeds will be low as the speed is proportional to

the distance from the axis of rotation.

Building on an analysis of Martinod & Molnar (1995),

Gordon (2000) estimated that the force per along-strike unit

length driving deformation in diffuse oceanic plate boundaries

is between 9r1012 and 34r1012 N mx1. Below this level of

force, oceanic lithosphere appears to be rigid or nearly rigid;

above this level, the lithosphere appears to deform approxi-

mately as a power-law fluid with an exponent between #3 and

#30 (Gordon 2000). The diffuse plate boundary between the

North and South American component plates lies in a relatively

narrow neck between the two plates, which may cause sufficient

focusing of stresses to attain the level of force per unit length

required to deform oceanic lithosphere. In contrast, the along-

strike length of diffuse oceanic plate boundaries is larger in

the Indo–Australian composite plate, where areas of stress

concentration may result from a large outward push by the

Tibetan plateau, by the arrangement of subducting slabs and

by the focusing of stresses by collisions in the Himalayas and

New Guinea (Cloetingh & Wortel 1986; Molnar et al. 1993;

Coblentz et al. 1998).

Here we consider the dynamics of diffuse oceanic plate

boundaries by constructing some simple analytical models, and

then solving the force and torque balances in these models

for the implied deformation across the boundary. The main

issue that we address is why the motion between component

plates separated by a diffuse oceanic plate boundary is described

by a rotation pole that generally lies in the diffuse boundary

itself. We find that geometrical effects are an important part

of the explanation. In Section 2 we specify our key assump-

tions. In Section 3 we present a diffuse boundary model on a

flat earth and an easily performed illustrative experiment. In

Section 4 we present a diffuse boundary model on a spherical

earth. In later sections we discuss the relative sizes of the

components of the angular velocity between component plates,

and explore the effects of non-Newtonian rheology and the

implications of our analysis for the state of stress in stable plate

interiors.

2 M O D E L S E T - U P

We consider an idealized composite plate consisting of two

component plates sharing a diffuse plate boundary (Fig. 1). We

assume that the component plates are rigid, but that the

Component
   Plate A

Component
    Plate B

central strike
        line

Figure 1. A cartoon example of a composite plate consisting of two

component plates (A and B) separated by a diffuse plate boundary.

This diffuse boundary contains the pole for the relative motion of

component plate A relative to component plate B. In this case the

diffuse boundary is pictured lying between a trench (on the right) and a

mid-ocean ridge (on the left). The diffuse boundary is located between

the dashed lines, with arrows marking extension and contraction. Also

shown is a central strike line chosen for the boundary.
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lithosphere of the diffuse plate boundary can be approximated

by a fluid, that is, it will deform at a constant strain rate in

response to a constant applied stress. The justification for this

is that the diffuse plate boundary forms where the deviatoric

stress within the composite plate exceeds some yield stress,

fluidizing a zone within an otherwise rigid plate. However, we

also assume that the boundaries are ‘strong’ in comparison

with narrow plate boundaries (more precisely, that diffuse

boundaries have high effective viscosities), as is suggested by

the observation that strain rates accommodated across diffuse

boundaries are at least two orders of magnitude smaller than

those accommodated across narrow plate boundaries (Gordon

1998; Gordon 2000).

We consider the forces acting on each of the component

plates due to the boundary. We do this by picking a ‘central

strike line’ through the middle of the boundary and consider-

ing the traction across this line, which is then the force per

unit length of the boundary on the component plates on either

side. This traction is related to the local rate of strain by the

constitutive relation for the material in the boundary, and acts

to resist deformation. We can estimate the strain rate along

the central strike line by finding the difference between the

velocities of the rigid components projected onto the central

strike line, and dividing this by the strike-perpendicular width

of the boundary, and assuming that velocity gradients across

the boundary are much more important than velocity gradients

along the boundary (that is, that the boundaries are not too

wide or complex). We consider two simple relationships between

the local traction along the central strike line and the overall

deformation of the boundary: (1) that the traction is a linear

function of the difference in the velocities of the two com-

ponent plates projected onto the central strike line, and (2) that

the magnitude of the traction is independent of the velocity

difference.

The first assumption would be approximately valid if the

diffuse oceanic plate boundary deformed as a thin sheet of

Newtonian viscous fluid and if the across-strike width of the

deforming zone were constant. Results from several seismic

profiles spanning most or all of the deforming zone in the

equatorial Indian Ocean indicate that the across-strike width

of the diffuse boundary between the Indian and Capricorn

plates is approximately constant (Chamot-Rooke et al. 1993;

Van Orman et al. 1995). Although the assumption of Newtonian

rheology is unlikely to be true, it simplifies the analysis

and leads to results that help in understanding the role of the

geometry and rheology in controlling the location of the pole of

rotation.

The second assumption would be approximately valid if the

diffuse oceanic plate boundary deformed with a high-exponent

power law (plastic-like) rheology. If the rheology of diffuse

plate boundaries can be approximated as a power-law fluid,

the Newtonian and the plastic-like cases bound the possible

behaviour as they represent limiting cases (n=1 and np?) of

the power-law exponent.

One reason that diffuse boundaries may behave differently

from narrow boundaries is that the overall dynamics of narrow

boundaries in many cases may not lead to net resistance to

motion across the boundary, as the narrow boundaries may

become associated with tractions that act to reinforce the

motion. Plate separation at mid-ocean ridges, for example, may

be enhanced via ‘ridge push’, and plate convergence at trenches

may be enhanced via ‘slab pull’.

3 D I F F U S E O C E A N I C P L A T E
B O U N D A R I E S O N A F L A T E A R T H

A flat earth model provides some insights into the physics of

diffuse plate boundaries and may eventually be more readily

testable by analogue laboratory models or numerical models

than the spherical earth case. The geometry for the flat earth

model is shown in Fig. 2. The position of the pole of rotation

of component plate A relative to component plate B is defined

to be (x0, y0), and we consider a central strike line for the

boundary that follows a straight line along y=0 from x=xL /2

to x=L /2. Dynamic equilibrium requires that the force and

torque exerted on each component plate through the diffuse

boundary must balance the sum of the forces and torques from

the other boundaries of the component plate plus mantle traction

on the underside of the component plate. We can represent this

balance by claiming that the boundary must provide a net force

and torque on component plate B equivalent to that from some

force F applied at some point along the central strike line of

the diffuse oceanic plate boundary xF=(D, 0). This equivalent

force does not have to be applied at a point in the diffuse

boundary (that is, it is possible for D>L /2 or D<xL/2).

If the diffuse oceanic plate boundary has a high effective

viscosity (that is, depth-averaged ratio between stress and strain

rate), as we have assumed, then the resultant deformation

will be slow and will only slightly perturb the velocities of the

component plates relative to all the other plates and the under-

lying mantle. Thus such deformation may have only a small
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Figure 2. Geometry of a complete diffuse plate boundary model on

a flat earth. The shaded region marks the boundary, and its ends

are ‘diffuse triple junctions’, where the diffuse boundary meets other

boundaries. L is the length of the boundary. The pole of rotation shown

is for the motion of plate A relative to plate B. F is the equivalent force

acting on plate B from the boundary. For mechanical equilibrium, the

force and torque from F applied at a distance D from the middle of the

boundary along the central strike line of the boundary must balance

the other forces and torques on plate B from other plate boundaries and

mantle traction.
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effect on the forces and torques on the component plates due to

other plate boundaries and mantle traction. We can therefore

neglect the dependence of the equivalent force F and distance D

on the deformation at the diffuse boundary. The following

analysis still holds for boundaries with lower effective viscosities,

but the interpretation is trickier as F and D are then themselves

functions of the deformation (they are different from what they

would be if there was no deformation in the boundary region).

The force balances in the x- and y-directions are

Fx ¼ au
ðL=2

�L=2

y0dx ¼ auy0L , (1)

Fy ¼ 2au
ðL=2

�L=2

x � x0ð Þdx ¼ �2aux0L , (2)

where v is the angular speed and a is some constant

related to the resistance to deformation between the two com-

ponent plates. a is approximately proportional to the viscosity

and inversely proportional to the width of the diffuse oceanic

plate boundary. The factor of 2 present in Fy that is not present

in Fx comes from the definition of the strain rate tensor

eij=(1/2)(hui/hxj+huj/hxi), and our assumption that y gradients

in the velocity are much more important than x gradients, so that

Fx arises from exy and Fy from eyy. The torque about the origin

due to the equivalent force is

xF|F½ �z¼ DFy : (3)

This torque must be balanced by the torque that one component

plate exerts on the other component plate across the diffuse

oceanic plate boundary,

2au
ðL=2

�L=2

x x � x0ð Þdx ¼ auL3

6
: (4)

These give the solutions

x0 ¼ � L2

12D
, (5)

y0 ¼ Fx

Fy

L2

6D
: (6)

Thus given Fx, Fy, D and L, one can determine the location of the

pole of rotation, which is specified by x0 and y0. x0 is independent

of both Fx and Fy; it depends only on L, the along-strike length of

the diffuse plate boundary, and on D, the distance that the force

is applied from the centre of the diffuse plate boundary. In

contrast, y0 depends not only on L and D, but also on the ratio

Fx/Fy, that is, it depends on the orientation of F but not on its

magnitude. In particular, if F is perpendicular to the strike line,

then y0 vanishes. Eq. (5) indicates that the pole of rotation will

lie inside the diffuse boundary in the along-strike (x) direction

(i.e. xL/2<x0<L/2) unless F is applied within the middle

third of the diffuse boundary (i.e. xL/6jDjL/6). Physically,

the further the location of F from the centre of the boundary, the

greater the torque about the centre of the boundary and hence

the more likely it will be that some cancellation of deviatoric

tensional and compressional forces will be required along the

boundary to satisfy simultaneously the torque balance and the

force balance. x0 and y0 both decrease as L decreases: they scale

with L multiplied by the non-dimensional number L/D. Hence,

the shorter the diffuse plate boundary, the less likely it is that the

pole of rotation lies outside it.

A simple desktop demonstration provides some analogous

physics. Place two long, thin strips of paper alongside each

other on a smooth table, then use two sharp objects to pull the

strips away from each other at various points along their lengths.

Unless the strips are pulled apart precisely halfway along their

lengths, they will rotate as they move apart. The farther from

their midpoint that the forces are applied, the larger the torques

and hence the greater the rotation. If the forces are applied

sufficiently far from the midpoint, the strips will overlap at one

end even as they are pulled apart, with ‘extension’ occurring at

one end of their mutual boundary and ‘contraction’ occurring

at the other. In this example, the inertial response of the paper

or the friction between the paper and the table are analogous to

resistance to deformation across a diffuse boundary. If friction

can be neglected (and inertial effects dominate), the location of

the pole is similar to that expected in the case considered above

in which the resistance is proportional to the velocity. If the

inertia of the paper can be neglected (and frictional forces

dominate), the case is analogous to the case considered below

in which the resistance is proportional to the nth power of the

relative motion for large n because the resistance to motion is

independent of velocity.

That an applied force generally imparts faster spin than

translation can be seen in many other everyday processes. For

example, consider an elongate object floating in a tub of water

(or better still a tub of viscous fluid such as honey or molasses).

If a horizontal normal force is applied to the side of the object

by a pen or pencil or other sharp object, the elongate floating

object will spin in response to the applied force unless the force

is applied precisely to the midpoint of its side.

The location of the pole of rotation in the y-direction is

also restricted in this geometry unless |Fy|%|Fx|. If DcO(L)

and Fx=Fy, then y0 is an order of magnitude smaller than the

length of the boundary, L, unless D=0 (that is, F is applied to

the precise middle of the diffuse oceanic plate boundary, the

probability of which is vanishingly small). Thus the strike-slip

motion across the diffuse boundary is likely to be small.

4 D I F F U S E B O U N D A R I E S O N A
S P H E R I C A L E A R T H

In spherical geometry, it is simpler to consider the torque

balance of plates about the centre of the Earth rather than a

mixture of force and torque balances. An increment of torque

dT on a plate due to an increment of force df is given by

dT ¼ r|df , (7)

where r is the position vector at which the torque is applied

with respect to the centre of the Earth.

For each of the two component plates that meets at a

diffuse boundary, one may integrate the moments due to the

forces at all of its other plate boundaries and mantle traction to

find the torque, T, that must be matched by the torque due

to the stresses in the boundary between the component plates.

Similarly to the flat earth model, the assumption that the

boundary has high effective viscosity implies that the torque T

is still approximately equal to its rigid boundary value, although

some deformation does take place. Otherwise, if the boundary

is of low effective viscosity and allows rapid movement between

the plate components, the velocities of these components with

respect to the rest of the Earth will change and the torques at the
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other plate boundaries and in the mantle traction (and hence T)

will be significantly different. Our simplification allows us

to assume a torque T and then solve for the angular velocity

required between the two component plates to match this

torque. The following analysis still holds for boundaries with

low effective viscosities, but again the interpretation is trickier

as T then depends on the deformation.

Fig. 3 shows the geometry. We assume that the boundary

roughly follows a central strike line, which lies along a great

circle and defines a plane that also contains the centre of the

Earth. The radial line h=0 lies in this plane and runs through

the centre of the boundary. v will not in general be parallel

to T, and here we show it lying within the diffuse boundary. T,

arising as it does from the torques at other boundaries and the

underlying mantle flow, would have no particular tendency

to be oriented towards the diffuse boundary. yT is the angle

between T and the plane defined by the central strike line of the

boundary, whereas hT is the angle between T and the line h=0

through the centre of the boundary when yT is set to 0. yv

and hv are the similarly defined coordinates of v. This is not a

spherical polar coordinate system but conversions are simple

(see note in Appendix). We also define a Cartesian coordinate

system (x, y, z) oriented with z parallel to the h=0 line and x

parallel to the strike; the natural centre for this coordinate

system is the Earth’s centre (in Fig. 3 it is offset for clarity).

Some intuition for this system can be gained by consider-

ing the components of the torque T and angular velocity v in

the Cartesian system, and assuming that each component of the

resisting torque Ti arises from a differential rotation across

the boundary about the corresponding axis, vi. The material

of the diffuse plate boundary is much closer to the z-axis than

to the x- or y-axes. Therefore, to balance an arbitrary but equal

component of torque about each of the three axes requires

much faster rotation about the z-axis than about the x-axis

[by a factor of order (hL /2) [b0
hL /2h2dh]x1=12/h2

L if the angular

length of the diffuse boundary, hL, is small; the strain rate

tensor consideration described earlier for the flat earth case

suggests that the rotation about the y-axis will be double that

for the x-axis]. In other words, if Tx, Ty and Tz have similar

orders of magnitude, then |vx /vz|y|vy /2vz|yO(h2
L/12), where

hL is given in radians.

With the assumption that the force per unit length resisting

deformation across the boundary is a linear function of the

relative velocity, then following the notation of Fig. 3,

T ¼ a
ðhL=2

�hL=2

Mr| ø|rð Þdh (8)

for some constant of proportionality a, where v is the rate of

relative rotation between the two component plates about the

pole of rotation. M=2Ixŷŷ, and is different from the identity

matrix due to the nature of the strain rate tensor as described

earlier for the flat earth case. Hence

Tx ¼ �2aur2 costu

ðhL=2

�hL=2

sin hu � hð Þ cos hdh , (9)

Ty ¼ �aur2 sintu

ðhL=2

�hL=2

dh , (10)

Tz ¼ �2aur2 costu

ðhL=2

�hL=2

sin hu � hð Þ sin hdh : (11)

Hence, using tan hT=xTx /Tz,

tan hu ¼ b tan hT , where b ¼ hL � sin hL

hL þ sin hL
, (12)

where angles are given in radians. A plot of b is shown in Fig. 4.

For the diffuse oceanic plate boundaries south of India,

hLc30u=p/6 radians, indicating that bc0.02. The orientation

of the pole of rotation in the direction parallel to the strike only

depends on the components of T that lie in the plane of the

central strike line. Therefore, for the pole of rotation to lie

outside the diffuse boundary in this direction (i.e. |hv|>hL/2)

would require hTct(85ux95u), or, equivalently, |Tx| to be

at least 11 times as large as |Tz|. For the diffuse oceanic

plate boundary between North America and South America,

hLc15u=p /12 radians, indicating that bc0.006. For its pole

of rotation to lie similarly outside the diffuse boundary in the

along-strike direction would require hTct(87.4ux92.6u), or,

equivalently, |Tx| to be at least 22 times as large as |Tz|. The

other case we consider is the diffuse plate boundary between

θ = 0

Τ

ω

θ
 

L

2

θω

ψ
T

ψω

θT

X
Y

Z

Diffuse plate
boundary

Central strike line

Figure 3. The geometry used in this paper for considering the torque

balance of diffuse plate boundaries on a spherical earth. The line

marked h=0 runs through the centre of the Earth and the centre of

the boundary. A central strike line through the boundary is chosen

as shown. These can then be used to define a Cartesian frame: the

z-direction is parallel to the line marked h=0, the x-direction is parallel

to the central strike line where it meets the line marked h=0 at the

centre of the boundary and the y-direction is orthogonal. We also

define an angular coordinate system: h is the angular coordinate along

the central strike line of the diffuse boundary and y is the angular

displacement from the central strike line. The angle subtended by the

boundary at the centre of the Earth (that is, the angular length of

the boundary, or the angular separation of the triple junctions at each

end of the boundary) is hL. The angular coordinate of T (the torque

from the boundary acting on the component plate in front of the diffuse

boundary) is (hT, yT), and the angular coordinate of the pole of

rotation v is (hv, yv). The directions of an (x, y, z) Cartesian system

oriented with z parallel to the h=0 line and x parallel to the central

strike line are shown; the natural centre for this coordinate system is the

Earth’s centre (in this diagram it is offset for clarity).
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Nubia and Somalia, for which hL is much larger, c55u,
indicating that bc0.08. For its pole of rotation to lie similarly

outside the diffuse boundary in the along-strike direction would

require hTct(79ux101u), or, equivalently, |Tx| to be at least

five times as large as |Tz|. The shaded regions of Fig. 5 indicate

the conditions on hT and hL that must be met for |hv|>hL/2

according to eq. (12). Even for long diffuse boundaries, hT

must be within a narrow range of values for the projection of

the pole of rotation on the plane of the central strike line of the

boundary to lie outside the boundary.

Eq. (7) implies that the torque arising from a resistive force

at the boundary will be perpendicular to both the radius vector

from the centre of the Earth and the direction of the resistive

force. As Fig. 6 shows, if we temporarily neglect the contri-

bution of Ty, the net torque on the boundary is a sum of vectors

locally tangential to the Earth’s surface lying in the plane

defined by Fig. 3. In particular, the torques due to deviatoric

compression and tension oppose each other in the direction

perpendicular to the angular velocity (the x-direction) in this

plane but reinforce in the direction parallel to the angular

velocity (the z-direction) due to the curvature of the Earth’s

surface. However, locally the torques are predominantly in the

x-direction of Figs 3 and 6 (as the Earth’s radius of curvature

is large). Therefore, unless the components of the boundary

torque are such that |Tx|&|Tz|, there will in general have to be

some cancellation of torques in the x-direction. This implies

that there will probably be both horizontal contraction and

horizontal extension in different along-strike portions of the

diffuse plate boundary, or in other words that the projection of

the pole of rotation on the plane lies within the boundary itself.

For the angular separation between the pole of rotation

and the plane defined by the central strike line, eqs (9), (10)

and (11) yield

tantu ¼ c tantT ,
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Figure 4. Variation of the parameter b defined in eq. (12) as a function

of the angular length of the boundary hL. A small value of b implies

that the displacement of the pole of rotation along the strike of the

diffuse plate boundary is small: for hLc30u, bc0.025.

Figure 5. Parameter regimes where the pole of rotation will lie

inside and outside a diffuse boundary within the x–z plane of Fig. 3,

according to the length of the boundary (measured by the angle

subtended by the boundary at the centre of the Earth, hL) and the angle

hT at the centre of the Earth between the net torque of the boundary

T projected into the x–z plane and the middle of the boundary (see

Fig. 2). This graph illustrates the simplest case (as used to derive eq. 2)

where the local resistance to deformation is proportional to the local

difference in surface velocity between the two plates. For the pole of

rotation to be oriented outside the boundary, hT and hL must lie within

one of the shaded bands. For hL<114u, the range of such values of hT

decreases with the length of the diffuse boundary; that is, shorter

diffuse boundaries are more likely to contain their pole of rotation.

Figure 6. Cartoon of a cross-section through a diffuse plate boundary

showing the relationship between convergence and divergence on a

diffuse plate boundary, and the implied torques on the near plate

(that is, the plate lying between the boundary and us). Circles with

crosses mark convergence at the boundary (that is, the plate between us

and the boundary is moving towards the boundary) and circles with

dots mark divergence at the boundary. In this example the pole of

rotation lies within the boundary, but is oriented downwards (implying

divergence to its left and convergence to its right). There is more

convergence than divergence in this example, and the net torque will

be downwards and towards the right. However, the x-component of

the net torque is reduced by cancellation between the convergent and

divergent torques.
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where

c ¼ 1

hL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

sin2 hT

hL þ sin hLð Þ2
þ cos2 hT

hL � sin hLð Þ2

 !
vuuuut

: (13)

The displacement of the pole of rotation in the out-of-

plane direction is greatly diminished as c tends to be very small

(see Fig. 7), particularly for diffuse boundaries of length hLc30u,
unless hT is very close to t90u. A conceptual argument similar

to that presented above for why we would expect hv to be small

can be constructed to explain why we would expect yv to be

small.

In the limit where the radius of the Earth r is large com-

pared to L and D from the flat earth model, then by using

L=rhL, D=r(p/2xhT), x0=rhv, y0=ryv, Fx /Fy=xtan yT

and appropriate small-angle approximations (where angles

are in radians), eqs (12) and (13) can be converted into eqs (5)

and (6) for the flat earth case.

5 T H E P O S I T I O N O F T H E R O T A T I O N
P O L E

5.1 Off-strike position of the rotation pole (comparison
of vx with vy)

A comparison of Fig. 4 (b=tan hv/tan hT as a function of hL)

with Fig. 7 (c=tan yv/tan y as a function of hL and hT)

indicates that the factor c in eq. (13) tends to be around twice

the value of the factor b in eq. (12) unless hT is close to t90u.

One would therefore expect that |vy|c2|vx| [that is, the poles

of rotation would usually be less well centred in the middle of

the diffuse boundary in the along-strike (x) direction than

in the across-strike (y) direction if TycTx]. The origin of the

factor of 2 lies in the strain tensor consideration discussed

in Section 3. Observations, however, suggest the opposite: the

location of the poles of rotation indicate that |vx| is larger than

|vy| in the Indo–Australian diffuse plate boundaries (DeMets

et al. 1994; Royer & Gordon 1997; Royer et al. 1997) and the

Nubia–Somalia boundary (Chu & Gordon 1999).

The long-wavelength pattern of the orientation of stress

in the Indo–Australian and African composite plates may

provide some insight into this apparent difference between the

theoretical and observed |vy/vx|. In both the contractional

and extensional portions of the diffuse plate boundaries, the

inferred orientation of maximum horizontal contractional/

extensional strain (and presumably maximum/minimum hori-

zontal deviatoric compressional stress) is fairly uniform over

broad regions. Diffuse plate boundaries tend to be oriented

perpendicular to the direction of the maximum/minimum hori-

zontal deviatoric compressional stress (Gordon et al. 1990; Argus

1990; DeMets et al. 1994; Royer & Gordon 1997; Gordon 1998;

Chu & Gordon 1999). The implication is that diffuse oceanic

plate boundaries strike perpendicular to a principal horizontal

normal stress, which in turn implies that shear stresses nearly

vanish along diffuse plate boundaries. It follows that |Ty/Tx|%|1.

If true, it explains why vy effectively vanishes across the diffuse

plate boundaries and why the pole of rotation is so tightly

constrained to lie near the central strike line of the diffuse plate

boundary.

Figure 7. Values of the parameter c as defined in eq. (13) as a function of the torque angle in the x–z plane hT and the angular length of the

boundary hL. A small value of c means that the component of torque Ty that would induce shear motion in the diffuse boundary only produces a small

displacement of the pole of rotation out of the x–z plane (i.e. vy and yv are small). The contour interval is 0.05 and contours are shown up to c=1.6.

Except when hTc90u, c tends to be small (c0.05) for hLc30u, which is the relevant case for the oceanic diffuse plate boundaries in the Indian Ocean.
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A possible explanation for the small size of Ty is that

the softening process that leads to the formation of diffuse

boundaries might be associated with deviatoric tensional stresses

or deviatoric compressional stresses, or both, rather than with

shear stresses. If so, proto-boundaries would tend to form in an

orientation such that Ty=0. Alternatively, the boundary may

soften with time so as to be weaker in tension or compression

than in shear. The former might happen if, for example,

magmatic activity under the proto-boundary were important,

while the latter might happen if, with sufficient deformation,

buoyancy effects become important.

5.2 Along-strike position of the rotation pole
(comparison of vx with vz)

As discussed in Section 4 and shown in Figs 5 and 6, geo-

metrical factors make it very unlikely that the pole of rotation

for a diffuse boundary will lie beyond the boundary in the

along-strike direction: for this to happen the torque associated

with the boundary would have to be oriented at an angular

separation very close to 90u from the centre of the boundary.

The India–Capricorn, Capricorn–Australia and Nubia–Somalia

poles of rotation do lie within the respective diffuse boundary

zones, but are, however, significantly displaced from the along-

strike centre of their respective zones. This points to differences

between the magnitudes of Tx and Tz, specifically |Tx| is larger

(perhaps much larger) than |Tz|. (The North America–South

America pole of rotation may also not lie in the centre of its

diffuse plate boundary, but the uncertainties are too large to

confirm or deny this.) Moreover, the sense of offset of the pole

of rotation from the centre of the diffuse plate boundary

provides information about the sign or sense of Tx. Both Indo–

Australian diffuse plate boundaries, which lie entirely within

oceanic lithosphere, have longer contractional portions than

extensional portions, which indicates that the sign of Tx is such

that it produces deviatoric compression across the diffuse plate

boundaries. Given the dominance of horizontal compression in

older oceanic lithosphere worldwide (Mendiguren 1971; Sykes

& Sbar 1974; Bergman & Solomon 1980; Zoback 1992), it is

unsurprising that there would be a bias towards horizontal

deviatoric compression in the sign of Tx. Finite element models

for the stress in the Indo–Australian composite plate indicate

that a combination of ridge push and concentrated collisional

resistance in the Himalayas would tend to orient the horizontal

compression north–south in the equatorial Indian Ocean, as is

observed (Cloetingh & Wortel 1986; Coblentz et al. 1998).

The sign of Tz may also be expected to be predictable from

seafloor age gradients, if the magnitude of the horizontal

non-lithostatic compressional force per unit length increases

with the age of the seafloor, as is expected from the pressure

gradients predicted from simple models of cooling of oceanic

lithosphere. These indicate that the sign of Tz is such that

greater deviatoric compression is expected in older seafloor

than in younger seafloor, which is consistent with the sign of

Tz we infer for the Indo–Capricorn, Capricorn–Australia and

North America–South America diffuse plate boundaries. Finite

element models for the stress in the Indo–Australian composite

plate also predict a west to east increase in horizontal deviatoric

compression in the equatorial Indian Ocean (Cloetingh &

Wortel 1986; Coblentz et al. 1998), consistent with the inferred

sign of Tz in the India–Capricorn diffuse oceanic plate boundary.

The Nubia–Somalia diffuse plate boundary provides an

interesting contrast in that most of it occurs within elevated

continental lithosphere, in which the most common state of

stress is horizontal deviatoric tension, not compression (Zoback

1992). In this case, we would expect the sign of Tx to have the

opposite bias from the purely oceanic diffuse boundaries, as

it does, given that the extensional portion of the boundary is

much longer than the contractional portion of the boundary.

Also, the sign of Tz is what we expect given the expected

gradient in state of stress from horizontal deviatoric tension

along the continental portion of the boundary to horizontal

deviatoric compression in much of the oceanic portion of the

boundary.

There is another possible explanation, however, for the greater

length of the extensional relative to the contractional portion

of the Nubia–Somalia boundary. If the boundary resists con-

traction more effectively than extension, then to maintain the

torque balance the proportion of the boundary in extension

must increase relative to the proportion in contraction: the

pole of rotation would be located further towards the con-

tractional end of the boundary, as is the case for Nubia–

Somalia. Similarly, if the extensional region weakens faster than

the contractional region (as might happen, for example, if the

divergent end of the boundary begins to extend volcanically),

then the pole would move with time towards the contractional

end (see Fig. 8). If the relative strengths of the two regions vary

with time (as might happen if faults are initiated in an irregular

fashion) then the pole of rotation may well move around within

the diffuse boundary.

6 N O N - N E W T O N I A N V I S C O S I T Y

The assumption that the local resistance to motion is pro-

portional to the relative velocity may break down in several

ways. An alternative assumption is that the effective vertically

averaged rheology of the lithosphere is non-Newtonian (England

& McKenzie 1982; Bercovici 1995; Trompert & Hansen 1998).

Here we examine whether the pole of rotation must lie close to

the centre of the boundary if resistance is not proportional to

relative velocity. We do so by assuming a power-law relation-

ship between rate of deformation and the local contribution to

the torque dT from an element dh along the boundary,

jdTjn�1dT ¼ aMr|ø|rdh , (14)

where a is some constant of proportionality. This is strain rate

thinning in that the effective viscosity decreases with increasing

strain rate, and a linear increase in torque is associated with a

greater than linear increase in rate of deformation. In the limit

of large n [such that (nx1)/nc1], which results in plastic-like

behaviour (that is, the lithosphere in the diffuse oceanic plate

boundary deforms only when the stress exceeds a yield stress),

it can be shown for the case yv=0 (no shearing across the

boundary) that

sin hT � huð Þ ¼ sin hT cos hL=2ð Þ (15)

and thence that |hv|<hL /2 (that is, the pole of rotation lies

inside the boundary in the along-strike direction) unless hT is

asymptotically close to 90u. In Fig. 5, the shaded regions where

the pole can lie outside the boundary would be confined to two

lines of infinitesimal thickness at t90u. Thus at least when yT

is small, strain rate thinning intensifies the confinement of the
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pole to the diffuse boundary (Fig. 9). On the other hand, for

|tan hT|yO(1) or smaller, for which |hv|<hL/2, hv is #50 per

cent larger for large n than for the Newtonian case, as is shown

in the Appendix. This dependence of the location of the pole of

rotation on the rheology shows the influence of the rheology on

the pattern of deformation and, hence, the stress field within the

boundary. For example, between the two predicted locations

for the pole of rotation, the sign of the predicted deviatoric

principle stress is reversed.

7 I M P L I C A T I O N S F O R S T A T E O F
S T R E S S I N S T A B L E P L A T E I N T E R I O R S

The arguments we have constructed for diffuse plate boundaries

can be applied within plates where there is little ongoing defor-

mation to show that it is likely that the horizontal deviatoric

normal stress perpendicular to a great-circle line within a plate

will change from being compressional to tensional somewhere

on that line within the plate. In this case there may be more

than one such transition, because the elastic deformation may be

more complex than the viscous response to the relative rotation

of plate components considered above. This expectation of a

transition is especially true if the line runs through a narrow

neck in the plate’s interior. It is less likely, however, if the line

remains close to a convergent or divergent plate boundary

so that the torque from one plate margin, which is typically

oriented along an axis #90u from the margin, dominates the

required T for the line. These predictions could be tested

directly should the stress within rigid portions of plates become

reliably observable, or else indirectly using numerical spherical

plate models.

8 D I S C U S S I O N

If the assumption that the boundary straddles a single central

strike line is loosened, it is possible for the pole of rotation to lie

at a kink in the diffuse boundary, so that the boundary follows

parts of two great circles that intersect at the pole and defor-

mation at the boundary still mainly involves contraction and

extension. Chu & Gordon (1999) pictured this happening on

the long diffuse boundary between the Nubian and Somalian

plates, although the location of the contractional arm of the

diffuse boundary is unclear. Perhaps pre-existing weakness in

the plate may encourage such kinking to happen. In the Nubia–

Somalia case, the pole is located near the coast: the extensional

region is continental and the contractional region oceanic. One

may imagine that originally the boundary followed a great circle,

with the pole of rotation within the continent. If the extend-

ing region softened faster than the contracting region, then as

described above the pole may have moved towards the coast.

Upon reaching the coast, it might then have preferentially

moved south-southwest along the coast rather than into the
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Figure 9. Comparison of hv versus hT for the two end-member cases

considered in this paper: (1) resistive force is proportional to relative

plate velocity (quasi-Newtonian rheology), and (2) resistive force is

proportional to the nth power of relative plate velocity when n is large

(plastic-like rheology). For this example the along-strike length of the

diffuse oceanic plate boundary was taken to be 30u and yv was assumed

to be 0. Overall, the two curves are very similar, with important

differences between them occurring only for tan hT&1 for which

hvj15u for the plastic-like case but hvj90u for the quasi-Newtonian

case.

Figure 8. The evolution of the diffuse plate boundary if the end in

extension begins to weaken faster than the end in compression. This

weakening is shown schematically as volcanism in the upper end of the

boundary (the situation between the Somalian and Nubian plates). To

preserve the balance of torques, the pole of rotation moves downwards,

increasing the proportion of the boundary in extension, and the rate of

deformation increases, which provides a positive feedback mechanism

if the extensional end of the boundary is further weakened.
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sea if the continental plate there was intrinsically weaker than

the oceanic plate (essentially, if it was easier to tear along the

continent’s edge than into the oceanic plate). If true, this would

manifest itself as an increasing length of the extensional portion

of the boundary with time to the south-southwest.

If the boundary region softens with strain but the torque T

that it must provide to maintain the torque balance remains

roughly constant, then the rate of deformation will increase. If

this rate continues to increase to the point where the change in

plate velocity causes the torques from the other plate boundaries

and mantle traction to alter appreciably, then T would begin

to differ significantly from the rigid boundary case and the

assumption that the diffuse boundary is strong would need to

be relaxed. Indeed, eventually, if prolonged and increasingly

rapid deformation makes a diffuse boundary more like a con-

ventional narrow plate boundary, the dynamics of the motion

may change entirely: the development, with sufficient extension,

of ‘ridge push’ or, with sufficient contraction, of ‘slab pull’,

may cause the boundary to cease resisting the plate motion and

even start enhancing the plate motion, adding a large torque

in the x-direction of Fig. 6 so as to drive hT towards t90u
(and perhaps then finally driving the pole of rotation off the

end of the boundary). This positive feedback mechanism might

then lead to a fairly abrupt change in the torque balance of the

global plate system.

9 C O N C L U S I O N S

Some aspects of the dynamical behaviour of diffuse plate

boundaries that separate composite plates into component

plates can be understood in terms of simple analytical models.

Geometrical arguments show that while it is possible for the

pole of rotation to lie outside the boundary, for this to happen

the sum of the torques that drive the deformation (which arise

from traction with the underlying mantle and forces at other

plate boundaries) must have a very particular (and unlikely)

orientation. While we assume a very simple boundary where

resistance to deformation is either simply proportional to the rate

of deformation or is independent of the rate of deformation

(as expected for a power-law fluid with a high exponent), our

results are qualitatively true for some more complicated cases,

such as when the boundary is weaker in extension than in con-

traction, where the mathematics become less elegant. Relative

to the linear case, non-linear failure of a diffuse plate boundary

increases the likelihood that the pole of relative rotation of the

two component plates will lie within the boundary.
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A P P E N D I X A : P A R T I C U L A R
S O L U T I O N S F O R T H E P O L E S O F
R O T A T I O N A N D T H E C O O R D I N A T E
S Y S T E M

A1 Location of pole of rotation when np? and yT=0

To obtain eq. (15), rewrite eq. (14) in terms of unit vectors

(where v̂ is a unit vector in the direction of v),

jdTjn�1dT ¼ ar2uMr“|ø“ |r“dh : (A1)

M is defined after eq. (8) in the main text. Hence

jdTj ¼ ar2u Mr“|ø“ |r“j j
� �1=n

dh (A2)

and

dT ¼ Mr“|ø“ |r“
ar2u
� �1=n

Mr“|ø“ |r“j jn�1=n
dh : (A3)

If n is large so that (nx1)/nc1, then

dT ¼ ar2u
� �1=n Mr“|ø“ |r“

Mr“|ø“ |r“j j dh : (A4)

Geometrically, in the (x, y, z) coordinate system,

Mr“|ø“ |r“ ¼

2 costu cos h sin h � huð Þ

sintu

2 costu sin h sin h � huð Þ

0
BBB@

1
CCCA , (A5)

Mr“|ø“ |r“j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 tu þ 4 sin2 h � huð Þ cos2 tu

q
: (A6)

In the special case yv=0, we can use eqs (A4), (A5) and (A6)

to obtain

dT ¼ ar2u
� �1=n

cos h

0

sin h

0
BBB@

1
CCCA

h � hu

h � huj j dh : (A7)

In this case contributions to the torque are proportional to arc

elements. The total torque from the boundary is found via

T ¼
ðhL=2

�hL=2

dTdh

¼ ar2u
� �1=n

ðhL=2

hu

cos h

0

sin h

0
BBB@

1
CCCAdh þ

ð�hL=2

hu

cos h

0

sin h

0
BBB@

1
CCCAdh

2
6664

3
7775 , (A8)

T ¼ 2 ar2u
� �1=n

� sin hu

0

cos hu � cos
hL

2

0
BBBB@

1
CCCCA (A9)

and hence

tan hT ¼ �Tx

Tz
¼ sin hu

cos hu � cos
hL

2

, (A10)

tan hT cos hu � sin hu ¼ tan hT cos
hL

2
: (A11)

Using trigonometry to rewrite the left-hand side and multiplying

through by xcos hT, this can be converted into eq. (15).

To show that the pole of rotation cannot lie beyond the

diffuse boundary in the simplified case yv=0, consider the

limit where it lies on the boundary, hv=hL /2. Substituting this

into eq. (15), we obtain cos hT=0, i.e. hTpp /2, that is, the pole

of rotation reaches the boundary only when the equivalent

torque T lies on the equator of the centre of the diffuse

boundary.

A2 Location of pole of rotation when np? and hL,
hv, yv%1

In this case we allow yvl0 but take the limits hL, hv, yv%1

and large n, and make the additional assumption that tan hT

and tan yT are not divergent (that is, they remain finite

as hLp0; note that this excludes the flat earth geometry of

Section 3). In this case, from eqs (A4), (A5) and (A6),

dT ¼ dh ar2u
� �1=n 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 h � huð Þ2þtu
2

q
2 h � huð Þ

tu

h h � huð Þ

0
BBB@

1
CCCA : (A12)

As before, we expect cancellation to occur over integration for

dTx but not dTy or dTz, in which case yvyO(h(hxhv)), and

it can be neglected within
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 h � huð Þ2þtu

2
p

except in a small

region around h=hv. Hence,

Tx ¼
�2 ar2u
� �1=nhu for jhuj <

hL

2

� ar2u
� �1=n

hL
hu

jhuj
for jhuj >

hL

2

8>>><
>>>:

, (A13)

Tz ¼
ar2u
� �1=n 1

4
h2

L � 2hu
2

� �
for jhuj <

hL

2

0 for jhuj >
hL

2

8>>><
>>>:

: (A14)

Using tan hT=xTx /Tz it is then easy to derive the h-coordinate

of the pole of rotation:

hu ¼ h2
L

8
tan hT : (A15)

The implied scaling hvyO(hL
2 ) suggests that in the limit of

small hL, hv can be neglected in the integration of dTy, in which

case

Ty ¼ ar2u
� �1=n

tu ln
hL

tu

� �
, (A16)

and this, with eq. (A13), provides an equation for the y
coordinate of the pole of rotation,

tu ln
hL

tu

� �
¼ h2

L

4

tantT

cos hT
: (A17)

Eq. (A15) shows that hv is independent of yT, independent of

the magnitude of T, and is a small fraction of tan hT, as is also

implied by Fig. 9.

Dynamics of diffuse oceanic plate boundaries 155

# 2001 RAS, GJI 145, 145–156

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/145/1/145/619957 by guest on 20 August 2022



It is interesting to compare these with the equations for the

‘quasi-Newtonian’ case in the same limit (which can be derived

from eqs 12 and 13),

huqn ¼ h2
L

12
tan hT , (A18)

tuqn ¼ h2
L

6

tantT

cos hT
: (A19)

The flat earth approximation (hL, hv, yv%1, hTcp/2) is tricky

for the large n case except when yv=0, in which case eq. (A11)

and the conversions given at the end of Section 4 can be used to

show that, using the notation of Section 3,

x0 ¼ D+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ L2

4

r
: (A20)

The requirement that the pole of rotation lies within the

boundary still holds for this limit, which means that if D is

positive, the negative root should be taken, and if D is negative,

the positive root should be taken.

A3 Note on the coordinate system used in this paper

The angular coordinates are not of the form (colatitude,

longitude) as y corresponds to an angular distance along

a great-circle path (the one that intersects the central strike

line of the boundary at a right angle at h). It is easy to convert

this into a standard coordinate system: defining colatitude

and longitude (H, w) about the centre of the diffuse boundary,

where w=0 lies in the x-direction (strike parallel),

1

r

x

y

z

0
BBB@

1
CCCA ¼

� cost sin h

sint

cost cos h

0
BBB@

1
CCCA ¼

cos� sin#

sin� sin#

cos#

0
BBB@

1
CCCA , (A21)

so

tan h ¼ � tan# cos� ,

sint ¼ sin# sin� ,

cos# ¼ cost cos h ,

tan� ¼ � tant
sin h

:

(A22)
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