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ABSTRACT 
The covariances of the third- and fourth-order sample 
cumulants of stationary processes are derived. The 
resulting expressions are then used to obtain the analytical 
performance of FIR System Identification methods as a 
function of the coefficients and the statistics of the input 
sequence. The lower bound in the variance is also 
compared for different sets of sample statistics to provide 
insight about the information carried by each sample 
statistic. Finally the effect that the presence of noise has 
in the accuracy of the estimates is also studied 
analytically. The results are illustrated graphically with 
plots of the variance of the estimates as a function of the 
parameters or the signal to noise ratio. Monte Carlo 
simulations are also included to compare their results with 
the predicted analytical performance. 

1. INTRODUCTION 
Several parametric cumulant-based system identification 
methods are now available in the literature [1,2]. 
Nevertheless, in almost all cases, the performance of these 
methods has been evaluated only through Monte Carlo 
simulations and for a limited number of examples. 
Clearly, these simulations are insufficient to predict the 
general behavior of cumulant-based algorithms. The 
purpose of our work is to develop the analytic tools 
required to perform the asymptotic perfomance evaluation 
of algorithms based on second-, third-, and fourth-order 
sample cumulants. This paper does a fast presentation of 
the results obtained so far. In the journal version, we will 
include more details about the derivation of the formulas 
and more examples of their applications. 
The first and most difficult step encountered in the 
analytic study of cumulant-based methods is the 
calculation of the covariances of higher-order moment 
estimates. This problem was addressed in part in [3] where 
the asymptotic covariances of second and third-order 
sample moments were derived. Here, those results are 
completed with the covariances of sample fourth-order 
moments and both the covariances of third- and fourth- 
order sample cumulants are obtained from the derived 
sample moments covariances. The effect of noise is also 
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The derivation of the CO- requires the computation 
of up to eighth-order moments which involves several 
hundred terms. Although it is possible to work to these 
terms in a compact form [7], hand calculation and 
simplification of explicit expressions is a very tedious 
task. Symbolic algorithms for Murhematica [8] have been 
used to avoid hand derivations and obtain simplified 
expressions. With this symbolic math package it is not 
difficult to obtain the general expression of moments of 
any order as a function of the cumulants of the process. 
Then, we can program the steps followed in [3] and 
additional simplification rules to obtain expressions of the 
covariances of sample moments. Using the relation 
between sample cumulants and sample moments, the 
analytic simplified expression of the covariances of 
sample cumulants can also be obtained. 

2. MOMENTS AND CUMULANTS 
Let (XI, x2, . . ., Xk) be a collection of random variables. 
The moments of these random variables will be denoted as 

mom[{xl, x2, . . ., XJ J = E[xl  x2 . . . XJ 

With this notation, cumulants can be defined as a function 
of moments with the expression 

cum[{xl, ... x J J  = (-l)q-l(q-l)! R mom[Zd (2.1) 

where the summation extends over all partitions of set I. 
This moment-to-cumulant equation can be inverted to 
obtain the cumulant-to-moment formula 

A complete example which illustrates the use of (2.1) and 
(2.1) for the case m==4 can be found in the Appendix A of 
[2]. For that case, the number of partitions is 15, but it 
increases very fast with the order and for m=8. the number 
of partitions is 4140. For zero mean variables the 
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partitions that have a subset with one element Can be 
discarded. Even in this case, the number of ternif is still 
715 for -8. 

Stationary Linear Processes 
The mth-order moment of a strictly stationary random 
process ~ ( t ) ,  denoted by M m , x ( i l ,  i 2 ,  ..., i m - l ) ,  is 
defined as the joint mth-order moment of the random 
variables (xft) .  x(t+il), x(t+i2), . . ., x(t+im_l)) 

MmJfil ,  i2. . . .. im) = mom[{x(t)x(t+il),. . .,x(t+im))] 
(2.3) 

CmJil,  i2, ..., im) = cum[{x(t), k(t+il) ,..., x(t+im))l 
(2.4) 

Due to the stationarity of the process, the right side of 
(2.3) and (2.4) are independent of t ,  i.e., the mth-order 
moment and cumulant are only a function of the m-1 lags 

Linear processes are defined as the output y( t )  of a linear 
system whose input is a sequence of independent, 
identically distributed (i.i.d) random variables. 

The mth-order cumulant is similarly defined as 

. .  tit '2,  ...s "-1. 

We will assume that the impulse response h(r) is 
exponentially stable, and the cumulants ym of the i.i.d. 
input v( t )  are finite. Then, the cumulants of the linear 
stationary process y(t )  are related to the impulse response 
h(t) by the Bartlett-Brillinger-Rosenblatt formula 

Where 

Hm(il ,  4 ,  ..., im-l)  = 2 ~ h(n+ik) : (io=O) 
nZ-00 k=O 

(2.7) 
The output may be observed in presence of additive noise 
w(t )  which will be assumed to be independent of the 
input and summable. Under the above assumptions, it is 
well-known that the cumulants of the resulting process 

dt) = YO) + (2.8) 

cm,J i lp  i2. ..., im-l)  = Ym Hm(il ,  i2. ..., i , - l)  + 

It is also straightforward to check that CmJ.. .) is finite 
and infinite summation over any or all of the indices is 
also finite. 

are the sum of the cumulants of each term 

cm,,Jil, i2, ..., im-I) (2.9) 

3. SAMPLE MOMENTS AND CUMULANTS 
The sample moments of a process x(t) can be defined in 
different ways depending on the kind of data-windowing 
considered. Asymptotically, all those definitions are 
equivalent, i. e., they all converge with probability one to 
the true moments with the same asymptotic covariance. 

Sample cumulants are then computed from (2.1,2.3,2.4) 
with the sample moments ml( ...) instead of the true 
moments M l J . .  .). In practice, the sample mean m l  is 
subtracted from x( t )  and the simpler but equivalent 
formulas that follow are used to compute the sample 
cUmulants: 

(3.1) xo(t) = x(t) - ml 

xo(t)xo(t+i)xo(t+j) (3.3) 

c&,k) = f5 xo(t)xo(t+i)xo(t+j)xo(t+k) - 
r=I 

cz(i)c~(k-j) - c2(j)c2(k-i) - c2(k)c2(j-i) (3.4) 

Observe that, even if the process is known to be zero- 
mean, we will consider that the sample mean is subtracted 
from the given samples of the process. This procedure is 
usually recommended in the literature [ 13. We have also 
observed that this subtraction simplifies the expressions 
of the covariances of sample cumulants. 

Let "=(mi( . . . ) ,  mi(.. .),  ...)' be a vector of sample 
moments, M = ( M ~ . J . .  J, M~,.(. . .), ...I' the vector with 
the same-indexed true moments, and g(") be a vector- 
valued continuous function with continuous and bounded 
partial derivatives of first and second orders in some open 
neighborhood of M ,  then SN = g(") converges almost 
surely to S = g(M),  i.e. 

lim SN = S a.s. 
N + w  

and its asymptotic covariance is given by the following 
theoEm 
Theorem 1 : 

Under the above assumptions, 

lim N E[(sN - S)(SN - S)'] = G(M) QM) Gr(M) 

where G(M) is the Jacobian matrix of g(m), evaluated at 
m =M. 

N + -  
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This theorem allows one to obtain the asymptotic 
perfarmame of any method based on higher- statistics 
form the asymptotic covariance of the sample moments 
c ( M )  and the Jacobian of the method respect to the% 
statistics G(M). 
Clearly, Theorem I can also be applied to a function of 
s,. Since most of the methods based on higher-order 
statistics deal directly with cumulants instead of 
moments, it will be easier to work with the covariances 
of the sample cumulants and the Jacobian of the method 
with respect to these statistics. The computation of the 
asymptotic covariances of the sample moments and 
cumulants is discussed in the following section. Then, in 
Section 5,  several MA System Identification methods are 
analyzed. Due to the limitations of space, only the results 
in the t h i K l d  c8se are included. 

4. ASYMPTOTIC COVARIANCES OF THE 
SAMPLE MOMENTS AND CUMULANTS OF 

STATIONARY PROCESSES. 
4.1. Sample moments 
The asymptotic cross-covariance of two sample moments 
mi(al  ,..., ai-1) and mj(b1 ,..., bj-1)  is given by the 
summation [31 

2 IMi+jJ(al ,..., a i - ] ,  t .  t+bl ,..., t+bj-l)  - 
*-W 

MiJ(al , .  ..$ ai-l)Mj,x(bl,. . ., bj-l)l  (4.1) 

and it is finite under the assumptions of section 2. 

Observe that the evaluation of the above formula requires 
the computation of moments whose order is equal to the 
sum of the orders of each sample moment. Hence, if we 
are interested in the covariances of sample fourth-order 
moments we have to be able to express the eighth-order 
moments of a process BS a function of its parameters. For 
linear systems, the computation of these moments as a 
function of the impulse response is performed through the 
Bartlett-Brillinger-Rosenblatt and cumulant-to-moment 
formulas (2.2) and (2.7). Although the catalogue of 
complementary set partitions provided by McCullagh in 
[7] may simplify this task, symbolic packages as 
Mathmatica [8] seem to be the best tool to deal with the 
huge number of cumulants required to compute sixth-, 
seventh- and eighth-order moments of linear processes. 
Explicit expressions for sample moments of order three or 
less were derived in [3]. We have completed that work 
with the expressions of the covariances of sample fourth- 

order moments and the cross-covariances of these 
moments with others of lower order. Even if the process 
is symmetric, i.e., its odd cumulants are zero, the 
resulting formulas in the fourth-orda case have hundreds 
of terms. Nevertheless, since most of the methods based 
on higherader statistics deal directly with cumulants 
instead of moments, the covatiances of sample moments 
are interesting only as an intermediate step in the 
calcuhtion of the covariances of the sample cumulants. 

4.2. Sample cumulants 
Theorem I ,  with sample cumulants as the function SN of 
the sample moments, gives the asymptotic expression of 
the covariances of sample cumulants. 
For zero-mean processes the covariances of sample 
second-order moments are equal to those of sample 
cumulants, i.e., the subtraction of the sample mean does 
not affect the asymptotic covariance of the 
autocorrelation. This is not the case when thirdader 
statistics are considered. The following equations show a 
reduced number of terms compared to those presented in 
[3] for third-order moments of zero mean processes. 
Moreover, the expmsions presented here are valid for any 
stationary process and they do not depend on the mean of 
the process. 
Let us denote 

GSCi, j ,  k) = 2 Cs,x(i, t ,  t+j, t+k) 

~ 2 3 ( i ,  j )  = C ~ 2 d t ) ~ j ~ r ( t + i ,  t+j) 

~ g ( i ,  j ,  I ,  m) = 2 cgr( i ,  j ,  t ,  t+l ,  t+m) 

G24(c, i ,  j )  = 2 CzJ(t)C4,(c, t+i, r+j) 

~ 3 3 ( c ,  i ,  j )  = 2 c3,x(c ,  t)Cjsr(t+i, t+j) 

(4.1) 

(4.2) 

(4.3) 

t=-w 
W 

t=-- 

t=-w 

G222(i, j )  = 2 C2J(t)C2,dt+i)C2,dt+j) (4.4) 
k - W  

(4.5) 

(4.6) 

The asymptotic expression for the cross-covarianm of the 
sample third-order cumulants and the sample second-order 
cumulants of stationary processes is 

lim N cov{c2(k), c~(1,m)J = Gg(k,l,m) + 
N - 9 -  

t=-w 

1Z-W 

G23(1-k,m-k) + G23(-l-k,m-l-k) + 
G23(-m-k,l-m-k) + G23(f+k, m+k) + 
G23(-l+km-l+k) + G23(-m+k,l-m+k) (4.7) 
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and the asymptotic expression for the covaridxes of thti 
sample third-order cumulants of stationary processes is 

lim N cov{c3(k,l), c3fl.m)) = Gg(k,l,m,n) + 
N + d  

G222(m-k,n-I) + G222(n-k,m-l) + 
G222(m+k, n+k-1) + G222(m+l,n+l-k) + 
G222(n+k,m+k-l) + G222(n+l,m+l-k) + 
G33(k, m-1, n-1) + G33(k,-l-m,n-l-m) + 
G33(k,-l-n,m-l-n) + G33(l,m-k,n-k) + 
G33(1,-k-m,n-k-m) + G~~(I,-k-n.m-k-n) + 
G33(1-kR-n,m+k-n) + G33(l-k,k-m,n+k-m) + 
G~~(l-k,k+m.k+n) + Gz&k,m-k,n-k) + 
G24(l-kI-m-k,n-m-k) + G24(l-k,-n-k,m-n-k) + 
G~q(l,m+k,n+k) + G24(1,-m+k,n-m+k) + 
G24(l,-n+k.m-n+k) + G24(k,m+l,n+l) + 
G24(k;m+l,n-m+1) + G24(k,-n+l,m-n+l) (4.8) 

For linear processes, (2.9) is used to obtain the final 
expressions of the covariances as a function of the 
impulse response and the cumulants of the noise. If the 
noise is Gaussian, G5 and G6 can be expressed simply as 

Gj(k,l,m) = y5H2(k)H3(l,m) 

Gg(k,l,m,n) = y#3(k,1)H3(mpn) (4.9) 
The covariances of sample fourth-order cumulants will not 
be included here. Nevertheless we can point out that the 
resulting expressions show much fewer terms that those 
corresponding to sample moments. 

5. PERFORMANCE ANALYSIS 

Theorem I and the discussion following it allows one to 
compute the covariance of the estimates given by any 
cumulant-based method from the covariances of the 
sample cumulants and the Jacobian matrix of the 
estimates with respect to the sample cumulants. For an 
MA process and using a symbolic algorithm, it is not 
difficult to obtain the performance as a function of M A  
coefficients and the statistics of the noise. 
Figure I compares the information carried by different sets 
of sample cumdants as a function of the coefficient bl of 
an exponential MA(1) process without noise. The three 
curves show the asymptotic variance in the estimation of 
bl. L2 corresponds to the lower bound using the sample 
autocorrelation (c2(0) and cl(O)), L3 to the lower bound 
using sample third-order cumulants (c3(O,O). c3(O,l) and 
c3(1.1)) and L23 to the lower bound using both sets. 
From this figure, it is clear that second order statistics, 
apart from being phase-blind, do not provide good 
estimates when the zeros are close to the unit circle. 

U' I 

-3 -2 -1 0 1 2 3 

Figure 1. Asymptotic variance of the estimate as a function 
of the coefficient (bl) of an MA(1) process. Lower bound 
using autocorrelation (L2). using third-order cumulants (U). 
and using both (La). 
Figure 2 shows the performance, (asymptotic variance in 
the estimation of bl), of three linear methods. GM is the 
method proposed by Giannakis and Mendel in [4] and 
GMT is the Modification to Reformulated GM Algorithm 
described in [SI. These two algorithms use second- and 
third-order cumulants whereas the WS method developed 
in [6] uses only third-order cumulants. 

0 
-1.5 -1 -0.5 0 0.5 1 1.5 

Figure 2. Asymptotic variance of the estimate as a function 
of the coefficient (bl). MA(1) process. GM [4], GMT [5], and 
WS 161 methods. 

The following table shows the agreement between the 
predicted performance by the analytic formulas and the 
simulation results for the WS method. For the Monte 
Carlo simulations the number of samples of each record 
was N=1000, and the value of the asymptotic standard 
deviation was computed from the estimates as 
(N V d l )  )lD. 
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Table 1. Variances of the estimates for the WS method. 
Analytical and simulation results of lo00 runs. N=lOOO. 

TNe I ws I ws 
pal&&€? 
b l =  -0.80 
b1 =-1.25 

Analytical, Simulation 
1.1604 1.1611 
2.1834 2.1762 * -  I I 1 bi = 1.25 I 2.8146 I 2.8395 I 

Figure 3 shows the performance of WS method as a 
function of the signal to noise ratio, for an MA( 1) process 
with bl=-1.25. The lower bound of the asymptotic 
standard deviation is also included. The noise is white and 
Gaussian. SNR is computed here as the ratio between the 
power of the noise and the power of the output signal 
(MApmess)anditrangesbetweenOandl. 

(I . . . . . . . .  

In the last example, a BPSK signal is used instead of the 
exponential considered in previous examples. A 
BPSK signal is transmitted through an MA(1) channel 
and we want to estimate bl from the sample fourth order 
cumulants c4(O,O,O), c4(l,l,l), and q(-l , - l , - l )  of the 
received signal. Figure 4 illustrates the number of 
samples required to obtain an asymptotic standard 
deviation of 0.01 in the estimation of bl (lower bound). 
Observe that the number of samples ranges between 
hundreds and millions depending on the coeffxient by of 
the channel and the signal to noise ratio. 

. . . . .. . . . . ... . . . .... . . .c.. . . ... . . . . 
. . . . a  
* . I . .  * . . . . . . . .  

ai a i  0.9 a4 0.9 0.6 a7 0.1 a# I 

Figure 3. Asymptotic variance in the estimation of bl with 
the WS method [a] as a function of signal to noise ratio. 
MA(1) process with bl=-1.25. White Gaussian noise. The 
lower line corresponds to the lower bound (minimum variance 
of any method using the sample third-order cumulants ~~(0 .0 ) .  
cs(0.1) and c3(1,1) 1- 
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Figure 4. Number of sample required to estimate the 
coefficient b, with with an standard deviation equal to 0.01 as 
a function of the signal to noise ratio and b,. BPSK signal 
transmitted through an MA(1) channel with additive white 
Gaussian noise at the output. Lower bound using sample 
fourth-order cumulants c4(0,0.0), c4( 1,l.l) and c4(- 1, - 1 ,-1). 

CONCLUSIONS 
The expressions of the covariances of the sample 
cumulants of stationary linear processes in noise have 
been used to analyze the performance of MA system 
identification methods. 
The lower bounds using different sets of sample 
cumulants have also been compared. From the results it is 
clear that higher-order statistics, apart from providing 
phase information, carry useful information to reduce the 
variance of the estimates. 

The effect of noise has also been studied. We have found 
that for signal to noise ratios below 0-10 dB, the 
P e r f o r m a n c e ~ ~ v e r y f a s t .  
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