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Abstract—A representation based on the phase of analytic
image is proposed to address the issue of illumination variation
in face recognition task. The problem of unwrapping in the
computation of analytic phase is avoided by using trigonometric
functions of phase. Template matching is used to compare the
functions of analytic phase for face recognition. For template
matching, the functions of the analytic phase are compressed
using eigenanalysis. Performance of the face recognition is
improved by using weights derived from the eigenvalues in the
template matching.

I. INTRODUCTION

The objective of face recognition task is to recognize a
person using his/her face image information [1]. The issues
involved in this task are inter-class variation and intra-class
variation. Inter-class variation refers to the difference between
face images of two persons, which is due to unique information
present in the human face image. Intra-class variation refers
to the differences in the face images of a given person under
varying conditions of pose, illumination and expressions [1]. In
this paper we address the issue of variation due to illumination
in face recognition.

Changes in illumination are normally dealt with either by
modeling the effect of illumination of faces, or by extracting
features that are less sensitive to illumination. Modeling the
effect of illumination requires samples of the face image
for various illumination conditions. These approaches are
discussed in [2], [3]. Another drawback of these approaches is
that they may introduce artifacts that may smear some unique
information of the person’s face. These artifacts may in turn
decrease the performance of face recognition. On the other
hand, extracting features that are less sensitive to illumination
requires suitable representation of the face image. Some of the
representations are given in [4], [5]. All these representations
are based on the edge map of the given face image.

Edge information can also be represented by the phase of
the analytic image. But the issue of unwrapping the phase
of analytic image needs to be addressed before using it.
Phase unwrapping is avoided by using trigonometric functions
of phase of the analytic image. These functions cannot be
used directly for template matching because they give poor
performance under the intra-class variation. Eigenanalysis is
applied on the functions of analytic phase to derive a suitable
representation of these functions for template matching to
improve the performance of the face recognition.

Performance of the proposed approach is evaluated using
illumination angle variation of the FacePix database [6], [7].
The illumination set in this database was captured with the
subject looking directly into the camera, while the light source
was moved around the subject. The light source was moved
at 1◦ interval from −90◦ to 90◦. These images are denoted
by L1, . . . , L181. The sizes of the face images are rescaled to
50×50 pixels in our experiments.

The proposed representation of the face image is described
in Section II. Eigenanalysis on the proposed representation
is discussed in Section III. Section IV gives the results of
experimental studies. A summary of the work is given in
Section V.

II. ANALYTIC IMAGE

The analytic signal of a real one-dimensional (1-D) signal
was proposed by Gabor in 1946 [8]. This idea was extended to
two dimensional signals and was applied for texture classifica-
tion and segmentation [9]. There are three definitions proposed
toward this aim [10]. One of the definitions of analytic signal
in two-dimension is as follows:

Let x(t1, t2) is the given face image, then the analytic image
can be written as [10]

xA(t1, t2) = x(t1, t2) + jH{x(t1, t2)},
= x(t1, t2) + jxH(t1, t2), (1)

where

xH(t1, t2) = H{x(t1, t2)}
= p.v

∫ ∫
1
π2

x(τ1, τ2)
(t1 − τ1)(t2 − τ2)

dτ1dτ2,

is the Hilbert transform of the image x(t1, t2). This defini-
tion does not satisfy exactly the properties of 1-D analytic
signal [10]. The definition of analytic signal for 2-D signal
is still a research issue [10]. We have followed the definition
given by (1) in this work.

Equation (1) can be broken into two components, namely
magnitude and phase as

xA(t1, t2) = x(t1, t2) + jxH(t1, t2)
= |xA(t1, t2)| exp(φ(t1, t2)), (2)

where |xA(t1, t2)| =
√
x(t1, t2)2 + xH(t1, t2)2, and φ =

arctan{xH(t1,t2)
x(t1,t2)

}. It is difficult to visualize how the infor-
mation in these two components are related, because the
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magnitude and phase are not directly comparable. Analytic
phase (φ(t1, t2)) is used to characterize the sharp variations
in texture and fingerprint images [9]. The computation of
analytic phase using arctan gives the wrapped phase, as
this computation gives only the principal value in the range
(−π, π]. Any value outside this interval will be wrapped
around to produce the wrapped phase (φw(t1, t2)), which is
related to actual phase φ(t1, t2) by

φ(t1, t2) = φw(t1, t2) ± l(t1, t2)2π, (3)

for some integer l(t1, t2). This issue was addressed in the
literature using phase unwrapping and group-delay process-
ing [11], [12]. In this work, the phase unwrapping is avoided
using trigonometric functions of phase computed as

xs(t1, t2) = sin(φ(t1, t2)) =
xH(t1, t2)√

x2(t1, t2) + x2
H(t1, t2)

,

and

xc(t1, t2) = cos(φ(t1, t2)) =
x(t1, t2)√

x2(t1, t2) + x2
H(t1, t2)

. (4)

These two functions of the analytic phase of a face image
are shown in Fig. 1. It shows that the two functions contain
complementary information. Thus they are used separately for
template matching. The smearing of edges in the functions of
analytic phase while using eigenanalysis is explained in next
section.

III. EIGENANALYSIS USING FUNCTIONS OF PHASE OF

ANALYTIC IMAGE

Let the training face images of the ith person be denoted
by the set Di. For all the available training face images the
sin and cos functions of the analytic phase are computed
using (4). Let xc and xs be vector representations of the
cos and sin functions of the analytic phase respectively,
for the given face image x(t1, t2). The eigenvector matrix
Ψs ∈ R

N×N = [ψs
1 , . . . , ψ

s
N ], and diagonal eigenvalue matrix

Λs ∈ R
N×N = diag{λs

1, λ
s
2, . . . , λ

s
N} with diagonal elements

(eigenvalues) in decreasing order (λs
1 ≥ λs

2 . . . ≥ λs
N ),

are computed using xs representations of the given training
face images. Similarly Ψc ∈ R

N×N and Λc ∈ R
N×N

are computed using xc representations of face images. Here
N = R × C, where R and C are the number of rows and
columns of a given face image, respectively. The eigenvectors
are used to represent the given face image x(t1, t2) as follows:

as,N
x = (Ψs)txs

ac,N
x = (Ψc)txc. (5)

These new representations also known as projected coeffi-
cients, are used for template matching for face recognition
task. If we use all the coefficients (all N values of the vectors
as,N
x and ac,N

x ), the matching of face images will be poor, as
this will not address the issue of intra-class variation. The
matching can be improved by slightly smearing the edges
while matching. Smearing of the edges takes place when only
the first few coefficients are considered. But removing many

coefficients may lead to loss in the identity information of
that face image. Thus there is a trade-off in the choice of the
number of coefficients in eigenanalysis.

The Euclidean distance measure is used in template match-
ing. Let dc,m

i,y denote the minimum Euclidean distance obtained
for a given test face image y(t1, t2) using cos function of the
analytic phase (first m coefficients) of the available training
face images of the ith person. It can be written as

dc,m
i,y = min

x∈Di

||ac,m
y − ac,m

x ||2. (6)

Similarly, the minimum Euclidean distance is computed using
sin function of the analytic phase of the test and training face
images, and is denoted by ds,m

i,y . The identity (i∗) of a given
face image is obtained using the combined Euclidean distance
as follows:

i∗ = arg min
i

[(ds,m
i,y )2 + (dc,m

i,y )2]1/2. (7)

The performance (η) of face recognition is computed as

η =
Number of correctly identified face images

Total number of available face images
× 100. (8)

One can reconstruct the cos function of the analytic phase of
a given face image using the projected coefficients (ac,N

x ) as
follows

xc = Ψcac,N
x =

N∑
i=1

ac,N
x,i ψ

c
i , (9)

where ac,N
x = [ac,N

x,1 , . . . , a
c,N
x,N ]. This representation can be

divided into three terms as

xc =
l1∑

i=1

ac,N
x,i ψ

c
i +

l2∑
i=l1+1

ac,N
x,i ψ

c
i +

N∑
i=l2+1

ac,N
x,i ψ

c
i , (10)

where l1 and l2 are indices. The first term defined by the
coefficients {ac,N

x,i , i = 1, . . . , l1}, corresponds to the
information which is common to all the training face im-
ages (cos function of the analytic phase). The second term
corresponds to the unique information present in that face
image (cos function of the analytic phase) and defined by the
coefficients {ac,N

x,i , i = l1+1, . . . , l2}. The third term contains
mostly noise only. Thus for discrimination, the coefficients
corresponding to the second term will be more useful as
compared to the coefficients of first and third terms. The third
and first terms do not have any discriminative information of
the face image. It can be justified by reconstructing the cos of
the analytic phase for different number of coefficients. Fig. 2
shows the approximately reconstructed cos of analytic phase
x̂c =

∑l2
i=l1

ac,N
x,i ψ

c
i for different values of l1 and l2. One can

observe from the figures that it is easy to discriminate between
face images (Fig. 2 (a) and (d)) using representations shown
in Fig. 2 (c) and (f) as compared to Fig. 2 (b) and (e). Based
on these observations, one can improve the performance of the
face recognition by assigning more weights to the coefficients
in the second term as compared to the coefficients of first and
third terms for matching. One of the issues that need to be
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(a) (b) (c)

Fig. 1. (a) Gray level image. (b) Cos of analytic phase, and (c) Sine of analytic phase.

(a) (b) (c)

(d) (e) (f)

Fig. 2. Illustration of the importance of eigenvectors. (a) Gray level face image. Reconstruction of cos of analytic phase of face
image using eigenvectors: (b) 1 to 5, and (c) 6 to 10. (d) Gray level face image. Reconstruction of cos of analytic phase of face
image using eigenvectors: (g) 1 to 5, and (h) 6 to 12.

addressed is how to decide the values of the indices l1 and l2
to divide the given face image representation in three terms as
discussed above. The indices l1 and l2 are generally specific
for a given face image.

In this work the eigenvalues are used to decide the weights
to the projected coefficients in template matching. In general
the eigenvalues decay rapidly initially. The inverse of the
eigenvalues are used as the weights to the projected coeffi-
cients in matching. This will give more weight to the coeffi-
cients which have more discriminative information of a given
face image. Following these ideas the weighted Euclidean
distance will be

ds,m
i,y = min

x∈Di

||as,m
y Ws

m − as,m
x Ws

m||2
dc,m

i,y = min
x∈Di

||ac,m
y Wc

m − ac,m
x Wc

m||2, (11)

where Wc
m = diag{ 1√

λc
1
, . . . , 1√

λc
m

}, and Ws
m =

diag{ 1√
λs
1
, . . . , 1√

λs
m

} are diagonal matrices. One has to take

care of the weights obtained with eigenvalues close to zero.
In this work we have assigned a very small positive value for
those eigenvalues.

IV. EXPERIMENTS

The performance of the sin and cos functions of the analytic
phase using the two distance measures for different sets of
training face images of the FacePix database is shown in
Table I. The performance using weighted Euclidean distance
is better than normal Euclidean distance for both the functions
of the analytic phase. The sin function of the analytic phase
gives better performance than the cos function of the analytic
phase. The reason could be that the cos function is similar to
original gray level face image as compared to the sin function.
Another observation that one can make from the table is that
combining the sin and cos functions of the analytic phase
does not improve the performance in case of one training
face image. For comparison, the performances with existing
approaches [6], [7] are also given in the same table. It shows
that the performance of the proposed approach is better than
that of the existing approaches, except for the case of one
training face image.

V. SUMMARY

The issue of illumination variation in face recognition
task is addressed using trigonometric functions (sin and cos)
of analytic phase. These functions are analyzed separately
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TABLE I

RECOGNITION RATE (IN %) ON FACEPIX DATABASE. HERE E = EUCLIDEAN DISTANCE, WE = WEIGHTED EUCLIDEAN DISTANCE. THE COMPUTATION OF

THE PERFORMANCES WITH PCA, LDA, HMM, AND BIC ARE GIVEN IN [6], [7]

Representation WE/E
Set of training face images

L91 L1, L91 and L181 L1, L46, L91,L136, and L181

Cos
E 33.84 70.6 93.7

WE 39.2 92.7 99.13

E 60.75 86.84 99.04Sine
WE 61.93 95.65 99.27

E 48.5 85.3 98.28
Combine

WE 51.5 96.67 99.8

PCA 48.84 71.71 90.33

LDA 53.04 79.52 94.92

HMM 19.26 37.38 59.37

BIC 49.80 79.10 93.54

Edginess [5] 81.53 94.32 99.72

because they contain some complementary information of the
given face image. The proposed approach avoids the problem
of unwrapping in the computation of analytic phase. These
functions are used in template matching based approach for
face recognition. The template matching-based approach give
poor performance under the intra-class variation. It is improved
by smearing the edges in the images functions of the analytic
phase. The smearing of edges is performed by considering
only the first few coefficients obtained from eigenanalysis.
The performance is further improved by assigning weights
to the projected coefficients in the template matching. The
experimental results show that the proposed representation
exploits the analytic phase effectively, and provide results
comparable to the existing approaches.
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