Erratum

Erratum to: Analytic Quasi-Perodic Cocycles with Singularities and the Lyapunov Exponent of Extended Harper's Model*

S. Jitomirskaya¹, C. A. Marx²

- Department of Mathematics, University of California, Irvine, CA 92717, USA
- Mathematics Department, California Institute of Technology, Mathematics 253-37, Caltech, Pasadena, CA 91125, USA. E-mail: cmarx@caltech.edu

Received: 11 September 2012 / Accepted: 14 October 2012 Published online: 2 December 2012 – © Springer-Verlag Berlin Heidelberg 2012

Commun. Math. Phys. **316**, no. 1, 237–267 (2012)

We correct the statement of Theorem 2.5 in [2], which generalizes Avila's "quantization of the acceleration" [1] from analytic $SL(2, \mathbb{C})$ -cocycles to arbitrary non-singular cocycles. All notation is kept precisely as in the paper.

Correctly stated, the theorem should read as follows:

Theorem 1 (Quantization of the acceleration). Consider an analytic cocycle (β, D) where β is irrational and det D(x) is bounded away from zero on a strip \mathbb{T}_{δ} . For $|\epsilon| \leq \delta$, $\omega(\beta, D; \epsilon) \in \frac{1}{2}\mathbb{Z}$. Moreover, for (non-singular) Jacobi cocycles, $\omega(\beta, A^E; \epsilon) \in \mathbb{Z}$.

Thus, even though in general the acceleration is only half-integer valued, for Jacobi cocycles ¹

$$A^{E}(x) := \begin{pmatrix} E - v(x) & -\overline{c}(x - \beta) \\ c(x) & 0 \end{pmatrix}, \tag{1}$$

the object of interest in the paper, one still has integer-valued acceleration. In particular, the correction of Theorem 2.5 does not have any effect on the conclusions for extended Harper's model.

¹ We mention that despite the appearance of the complex conjugate in the Jacobi operator, the resulting Jacobi cocycle can still be realized as an analytic $M(2,\mathbb{C})$ -valued function on \mathbb{T} : Given $c \in \mathcal{C}^{\omega}(\mathbb{T};\mathbb{C})$, $c(x) = C(e^{2\pi i x})$, we simply "re-interpret" the complex-conjugate of c as $\overline{c}(x) := C^{\sharp}(e^{2\pi i x})$ with $C^{\sharp}(z) := \overline{C(\frac{1}{z})}$, corresponding to a reflection of C on the unit circle. Note that for $x \in \mathbb{T}$ this has no effect since $\overline{c}(x) = \overline{c(x)}$. It was pointed out to us by some readers, that our notation $\overline{c}(x)$ may be confusing at first glance, which is why we comment on it here.

^{*} The work was supported by the NSF Grant DMS 1101578.

The online version of the original article can be found under doi:10.1007/s00220-012-1465-4.

The error resulted from accidentally dropping a factor of $\frac{1}{2}$ on one side of (2.13), which correctly reads

$$\frac{1}{2} \int_{\mathbb{T}} \log |\det(D(x+i\epsilon)| \mathrm{d}x = \frac{1}{2} L\left(\beta, \begin{pmatrix} \det D_{\epsilon}(x) & 0 \\ 0 & \det D_{\epsilon}(x) \end{pmatrix}\right) \,. \tag{2}$$

It is shown in Lemma 2.6 of [2] that the integral on the left hand side of (2) takes values in $2\pi\mathbb{Z}$ which, taking into account the factor of $\frac{1}{2}$ in (2), yields $\omega(\beta, D; \epsilon) \in \frac{1}{2} \in \mathbb{Z}$, as now stated in Theorem 1.

Integer-valued acceleration for Jacobi cocycles only boils down to the following observation:

$$\frac{1}{2} \int_{\mathbb{T}} \log|\det A^E(x+i\epsilon)| \mathrm{d}x = \frac{1}{2} \left(I_{\epsilon}(c) + I_{-\epsilon}(c) \right) = I(c), \tag{3}$$

where $I_{\epsilon}(c) := \int_{\mathbb{T}} \log |c(x + i\epsilon)| dx$. The second equality in (3) uses that by Lemma 2.6 (i),

$$I_{\epsilon}(c) = I(c) + 2\pi \epsilon N, \tag{4}$$

for some $N \in \mathbb{Z}$ and $|\epsilon| \leq \delta$.

More generally, one can claim integer-valued acceleration for any non-singular cocycle (β, D) , where $\sqrt{\det D}$ can be defined as a *one*-periodic holomorphic function as opposed to *two*-periodicity, which always holds due to Lemma 2.3. This is a consequence of (2.12) and the following simple fact which may be considered an amendment to Lemma 2.3:

Fact 1. Let $f \in C^{\omega}_{\delta}(\mathbb{T}; \mathbb{C})$ with $\min_{|\operatorname{Im} z| \leq \delta} |f(z)| > 0$. If

$$\frac{1}{2\pi} \left(D_{+} \int_{\mathbb{T}} \log |f(x + i\epsilon)| dx \right) \bigg|_{\epsilon = 0} \in 2\mathbb{Z},$$
 (5)

there exists $g \in \mathcal{C}^{\omega}_{\delta}(\mathbb{T}; \mathbb{C})$ satisfying $g^2 = f$.

Proof. If f is a trigonometric polynomial, the claim follows directly from the form of g, explicitly constructed in the proof of Lemma 2.3, Step 1, therein. For general analytic f, approximating by trigonometric polynomials $f_n \to f$ on \mathbb{T}_{δ} , the same arguments as in the proof of Lemma 2.6 (i) imply that $\left(D_+ \int_{\mathbb{T}} \log |f_n(x+i\epsilon)| \mathrm{d}x\right)|_{\epsilon=0}$ eventually stabilizes to its limit $\left(D_+ \int_{\mathbb{T}} \log |f(x+i\epsilon)| \mathrm{d}x\right)|_{\epsilon=0}$. Since, $\sqrt{f_n} \to \sqrt{f}$, we conclude the statement as claimed. \square

Finally, for the sake of completeness, we would like to correct two minor misprints. Equation (2.22) of course only holds at $\epsilon = 0$; for $\epsilon \neq 0$, in agreement with (3) and (4),

$$L(\beta, (A_{\epsilon}^{E})') = L(\beta, B_{\epsilon}^{E}) + I_{\epsilon}(c) - I(c) = L(\beta, B_{\epsilon}^{E}) + 2\pi N\epsilon . \tag{6}$$

Similarly, the second equality in (2.4) only holds at $\epsilon = 0$.

Acknowledgement. We would like to thank Artur Avila for discussions that led to discovering the error.

References

- Avila, A.: Global theory of one-frequency operators I: Stratified analyticity of the Lyapunov exponent and the boundary of nonuniform hyperbolicity. http://arxiv.org/abs/0905.3902 [math.DS], 2009
- Jitomirskaya, S., Marx, C.A.: Analytic quasi-perodic cocycles with singularities and the Lyapunov Exponent of Extended Harper's Model. Commun. Math. Phys. 316(1), 237–267 (2012)

Communicated by B. Simon