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We correct the statement of Theorem 2.5 in [2], which generalizes Avila’s “quantiza-
tion of the acceleration” [1] from analytic SL (2, C)-cocycles to arbitrary non-singular
cocycles. All notation is kept precisely as in the paper.

Correctly stated, the theorem should read as follows:

Theorem 1 (Quantization of the acceleration). Consider an analytic cocycle (8, D)
where B is irrational and det D (x) is bounded away from zero on a strip Ts. For |€| < 6,
w(B, D;e) € %Z. Moreover, for (non-singular) Jacobi cocycles, w(B, AE; €) € Z.

Thus, even though in general the acceleration is only half-integer valued, for Jacobi
cocycles!

_(E—v(x) —cx—p8)
AE(x).—( () 0 ) (1)

the object of interest in the paper, one still has integer-valued acceleration. In particular,
the correction of Theorem 2.5 does not have any effect on the conclusions for extended
Harper’s model.

1 We mention that despite the appearance of the complex conjugate in the Jacobi operator, the resulting
Jacobi cocycle can still be realized as an analytic M (2, C)-valued function on T: Given ¢ € C¥(T; C), ¢(x) =:

C(e2”fx), we simply “re-interpret” the complex-conjugate of ¢ as ¢(x) := Cn(ezni") with C* (2) := C(%),
corresponding to a reflection of C on the unit circle. Note that for x € T this has no effect since c(x) = c¢(x).
It was pointed out to us by some readers, that our notation ¢(x) may be confusing at first glance, which is why
we comment on it here.
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The error resulted from accidentally dropping a factor of % on one side of (2.13),
which correctly reads

1 1
5/Tlog|c1et(l)(x+ie)|olx = 5L (,3, (det I();(x) et ge(x))) . 2)

It is shown in Lemma 2.6 of [2] that the integral on the left hand side of (2) takes values
in 27 Z which, taking into account the factor of % in (2), yields w(B, D; €) € % € 7, as
now stated in Theorem 1.

Integer-valued acceleration for Jacobi cocycles only boils down to the following
observation:

l/ log | det A% (x +i€)|dx = 1 (I.(c) + I_c(¢)) = I(c), 3)
2 )y 2

where I.(c) = fﬂ- log|c(x + i€)|dx. The second equality in (3) uses that by
Lemma 2.6 (i),

I.(c) = 1I(c)+2meN, 4)

for some N € Z and |e| < §.

More generally, one can claim integer-valued acceleration for any non-singular
cocycle (8, D), where /det D can be defined as a one-periodic holomorphic function
as opposed to rwo-periodicity, which always holds due to Lemma 2.3. This is a conse-
quence of (2.12) and the following simple fact which may be considered an amendment
to Lemma 2.3:

Fact 1. Let f € CO(T; C) with minjim ;j<s| £ (z)| > 0. If

L (D+/log|f(x+ie)|dx)
2 T

there exists g € C (T; C) satisfying =7

€27, (%)
e=0

Proof. If f is a trigonometric polynomial, the claim follows directly from the form of
g, explicitly constructed in the proof of Lemma 2.3, Step 1, therein. For general analytic
f, approximating by trigonometric polynomials f,, — f on Ts, the same arguments
as in the proof of Lemma 2.6 (i) imply that (D, [rlog| f,(x +i€)|dx) |€:0 eventually

stabilizes to its limit (D4 [plog|f(x +i€)|dx)| __,. Since, /f; = +/f. we conclude
the statement as claimed. O

Finally, for the sake of completeness, we would like to correct two minor misprints.
Equation (2.22) of course only holds at € = 0; for € # 0, in agreement with (3) and (4),

L(B, (AEY) = L(B, BE) + I.(c) — I(c) = L(B, BE) + 27 Ne . (6)

Similarly, the second equality in (2.4) only holds at € = 0.
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