
ETH Library

Analytic real-time analysis and
timed automata
A hybrid methodology for the performance analysis of
embedded real-time systems

Journal Article

Author(s):
Lampka, Kai; Perathoner, Simon; Thiele, Lothar

Publication date:
2010-09

Permanent link:
https://doi.org/10.3929/ethz-b-000027956

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Design automation for embedded systems 14(3), https://doi.org/10.1007/s10617-010-9055-1

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000027956
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10617-010-9055-1
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Des Autom Embed Syst (2010) 14: 193–227

DOI 10.1007/s10617-010-9055-1

Analytic real-time analysis and timed automata: a hybrid

methodology for the performance analysis of embedded

real-time systems

Kai Lampka · Simon Perathoner · Lothar Thiele

Received: 15 January 2010 / Accepted: 17 May 2010 / Published online: 16 June 2010

© Springer Science+Business Media, LLC 2010

Abstract This paper presents a compositional and hybrid approach for the performance

analysis of distributed real-time systems. The developed methodology abstracts system com-

ponents by either flow-oriented and purely analytic descriptions or by state-based models

in the form of timed automata. The interaction among the heterogeneous components is

modeled by streams of discrete events. In total this yields a hybrid framework for the com-

positional analysis of embedded systems. It supplements contemporary techniques for the

following reasons: (a) state space explosion as intrinsic to formal verification is limited to

the level of isolated components; (b) computed performance metrics such as buffer sizes,

delays and utilization rates are not overly pessimistic, because coarse-grained analytic mod-

els are used only for components that conform to the stateless model of computation. For

demonstrating the usefulness of the presented ideas, a corresponding tool-chain has been

implemented. It is used to investigate the performance of a two-staged computing system,

where one stage exhibits state-dependent behavior that is only coarsely coverable by a purely

analytic and stateless component abstraction. Finally, experiments are performed to ascer-

tain the scalability and the accuracy of the proposed approach.

Keywords Performance analysis · Timed automata · Real-time calculus · Hard real-time

systems

1 Introduction

The designers of real-time embedded systems need to verify the correctness of their designs

already in early design stages. Due to the increasing complexity of modern system architec-

tures, guaranteeing correct system behavior has become one of the most challenging steps

K. Lampka · S. Perathoner (�) · L. Thiele

Computer Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland

e-mail: perathoner@tik.ee.ethz.ch

K. Lampka

e-mail: lampka@tik.ee.ethz.ch

L. Thiele

e-mail: thiele@tik.ee.ethz.ch

mailto:perathoner@tik.ee.ethz.ch
mailto:lampka@tik.ee.ethz.ch
mailto:thiele@tik.ee.ethz.ch

194 K. Lampka et al.

in the design process. Empirical methods such as testing or simulation are often inadequate

for this task because they are not exhaustive. In order to provide hard guarantees for the

system behavior as required for many application domains, formal analysis methods need to

be applied.

Timed automata [2] are a well accepted formalism for analyzing real-time systems, see

e.g. [17]. However, the finite state/transition system to be derived from some high-level

model tends to grow exponentially with the number of clocks and clock constants. There-

fore, the detailed analysis of a complex system may be hampered in practice, if not im-

possible at all. In contrast, purely analytic (or stateless) methods such as provided by the

Real-Time Calculus [21, 23], SymTA/S [11] or MAST [9] solely depend on solutions of

closed form expressions, yielding a very good scalability with the size of systems to be ana-

lyzed. But, this advantage leads to serious drawbacks: (a) analytic methods are limited to the

computation of a few specific system measures and (b) each method is restricted to a specific

model to which the system specification under analysis must be translated, which in general

may lead to overly conservative analysis results. To overcome these shortcomings, this paper

aims to combine purely analytic and state-based performance analysis methods. Employing

state-based evaluation approaches only for those system components, where stateless analy-

sis delivers overly pessimistic results, will maintain scalability.

In the present work we have chosen to combine TA (Timed Automata) and RTC (Real-Time

Calculus), as the former is widespread for verification of real-time systems and RTC is an

advanced analytic performance analysis approach, see [6, 21, 23]. However, we would like

to point out that the presented method is not limited to RTC. The coupling of TA with other

analytic performance evaluation frameworks such as any method from classical real-time

analysis or SymTA/S can be reduced to a special case of what is discussed here.

Coupling the Modular Performance Analysis framework (MPA) [23] which is based on

RTC [21] and Uppaal [22] for the joint analysis of embedded real-time systems is far from

trivial, since (a) the RTC lacks a concrete execution semantics unlike TA, (b) TA can not

be verified by evaluating closed form expressions, nor can one in general derive an analytic

description from them and (c) RTC and TA not even share the same time domain. TA op-

erate on the conventional time-line, whereas the RTC operates on stream abstractions that

are defined on time intervals. To overcome this obstacles this paper provides the following

contributions:

• A pattern is described allowing to convert abstract stream models such as PJD (periodic

with jitter) or arrival curves to a network of co-operating TA (Sect. 4.2).

• The pattern can be employed for a convex/concave approximation of arrival curves which

is the key factor for ensuring simple and scalable TA models.

• Tightness and correctness of the transformation is proven, i.e., the TA solely generate

event traces complying with the abstract stream model, and they do this for all conforming

event traces (Sect. 4.2.3).

• A pattern is described to automatically derive abstract stream models (such as PJD or

arrival curves) from a TA-based system model (Sect. 4.3).

• Finally the paper presents an implementation, analyzes an exemplarily chosen system,

and investigates the scalability and the accuracy of the proposed methodology (Sect. 5).

Note that this article builds on the work presented in [15]. In the present version we add

several explanation and proves, generalize the pattern for the conversion of arrival curves to

TA, formalize the derivation of arrival curves from TA systems, and extend the experimental

results by evaluating the scalability and the accuracy of the proposed approach.

Analytic real-time analysis and timed automata: a hybrid methodology 195

2 Related work

There are several other approaches known which also tackle the combination of RTC-based

analytic and state-based models for system-wide performance analysis. The authors of [20]

bridge the gap between a state-based methodology and the RTC-method as discussed in

Sect. 3. However, contrary to this paper the work of [20] is based on event count automata

(ECA) [7]. With ECA the user must specify the minimum and maximum number of event

arrivals taking place while the ECA resides in the respective location. For translating an

RTC-based abstract stream representation into an ECA the authors use the principle of a

ring buffer. Each counter represents the number of events associated with the respective

number of unit intervals. When it comes to the interfacing of ECA with RTC, i.e., one needs

to derive abstract stream representations as used in RTC-curves from ECA specifications, the

authors of [20] suggest the usage of observer ECA. They use binary search for extracting the

maximum and minimum number of events seen in a window size Δ via reachability analysis.

In [19] it is shown how the above approach can be employed within a hybrid framework,

allowing to obtain key performance metrics of embedded systems by combining RTC and

ECA-based analysis. However, our usage of TA appears to be more beneficial, since contrary

to ECA they have an explicit notion of time, whereas ECA advance in a lock-step fashion.

In addition, in our work we solely require one observer automaton for a complete staircase

function defined over all time intervals Δ rather than one observer per discrete window

size Δ.

The authors of [8] present an approach, where a system to be analyzed is mapped to a

process network which is analyzed via a compositional response time analysis [11]. The

resulting periodic event stream models and the computed response times serve as parame-

ters for pre-defined TA. The high-level descriptions of system properties to be checked are

also transformed into TA. Finally, the use of standard model checking procedures allows to

check, whether the system model fulfils the desired properties or not. The approach differs

from the new results in this paper as the system is not decomposed into components which

exhibit substantial state-dependent behavior and those which can be analyzed using analytic

approaches. Instead, state-based behavior is not explicitly taken into account.

The authors of [13] also address the combination of RTC-based components and TA. For

including the abstract stream representation used in RTC into TA-based system models one

operates on an array of clocks. Each clock is associated with the number of events produced

so far, as well as with a minimal and maximal number of events to be generated within

the respective time interval length. For deriving RTC-based stream representations from the

combined model, the authors suggest the usage of observer automata and binary search on

the maximal and minimal number of events that appear within any time interval of length

Δ, which is in fact similar to the idea of [20]. As one operates on a finite set of time-interval

lengths Δ only, it is not clear when to stop with the translation of an abstract event stream

representation into a TA and vice versa. The use of observer automata that investigate single

time-interval lengths only implies that one either needs one observer automaton with its

local clock for each interval length, or one must execute a full state space exploration for

each of the interval lengths. Also on the side of the event generating automaton, the number

of clocks may be prohibitively large because one basically needs one clock per upper and

lower bound for the number of events seen on the stream within the resp. time interval Δ.

The approach described in this paper attempts to overcome these limitations by using a

compositional leaky bucket representation of event streams.

196 K. Lampka et al.

3 Background theory

In this section we describe the theoretical notions that form the basis of the approach devel-

oped in this paper. We start with some basic terminology followed by a brief introduction of

the Real-Time Calculus and Timed Automata.

3.1 Terminology

In the following we define some basic terms used in this paper.

• A timed action is a pair (a, t) where a is some action such as the occurrence of an event

and t ∈ R
≥0 is a time stamp.

• A timed trace τ := (a1, t1); (a2, t2); . . . is an (infinite) sequence of timed actions ordered

by non-decreasing time stamps, i.e., ti ≤ ti+1 for i ≥ 1.

• A timed event trace r , shortly denoted as event trace, is a timed trace of the form r :=

(e, t1); (e, t2); . . . where e is a recurring event in a stream.

3.2 Real-time calculus

Real-Time Calculus (RTC) [6, 21] is a compositional framework for performance analysis

that extends the classical Network Calculus, see e.g. [5], towards analyzing distributed (hard)

real-time systems. RTC permits to analyze the flow of event streams through a network of

processing and communication resources. In the following, we will briefly reproduce the

basic concepts of RTC that will be used in this paper.

Definition 1 (Arrival function) Each event trace r can be characterized by an arrival func-

tion r : R
≥0 × R

≥0 → N
≥0 where r(s, t) for 0 ≤ s ≤ t denotes the number of events that

arrive in the time interval [s, t) (including s but not t), with r(s, s) = 0.

For the sake of simplicity, in the following the notation r is used for both the event trace

and the corresponding arrival function; it will be clear from the context to which of the two

we refer.

Contrary to most other analysis techniques, in RTC event streams are not represented in

the time domain, but in the time-interval domain. In particular, when modeling event streams

one can abstract from concrete event traces and describe all traces of an event stream by

means of a tuple of arrival curves α(Δ) := [αu(Δ),αl(Δ)].

Definition 2 (Arrival curves) Let r(s, t) be the arrival function of an event trace r as defined

above. Then r , αu, αl are related to each other by the inequality

αl(t − s) ≤ r(s, t) ≤ αu(t − s) ∀s, t ∈ R
≥0, s ≤ t (1)

with αu(0) = αl(0) = 0. If the above inequality holds for an event trace r , we say that r

conforms to α, denoted as r |= α.

Informally, an upper arrival curve αu : R
≥0 → N

≥0 provides an upper bound on the num-

ber of events seen on the event stream in any time interval of length Δ. Analogously, a lower

arrival curve αl : R
≥0 → N

≥0 denotes a lower bound on the number of events seen in any

time interval of length Δ.

Analytic real-time analysis and timed automata: a hybrid methodology 197

Definition 3 (Set of conforming event traces) Let α be a tuple of arrival curves as defined

above. The set of all event traces that conform to α is defined by

Rα := {r ∈ R : r |= α}, (2)

where R denotes the set of all event traces.

The conformance of an event trace r to an upper (lower) arrival curve αu (αl), as well as

the sets Rαu
, Rαl

are defined accordingly.

Similarly, for representing the availability of processing or communication resources,

RTC employs so-called service curves. A tuple β(Δ) = [βu(Δ),β l(Δ)] of upper and lower

service curves specifies an upper and a lower bound on the service available from a resource

in any time interval of length Δ.

Definition 4 (Service curves) Let c(s, t) be the number of service units (e.g. processing or

communication cycles) available from a resource over the time interval [s, t). Then c, βu,

β l are related to each other by the inequality

β l(t − s) ≤ c(s, t) ≤ βu(t − s) ∀s, t ∈ R
≥0, s ≤ t (3)

with βu(0) = β l(0) = 0.

In the following we will use the term RTC-conforming curves to refer generally to both,

arrival and service curves.

In RTC arrival and service curves provide the inputs to a single analysis component.

For computing the corresponding bounds α′ for the outgoing event stream and β ′ for the

remaining resources one commonly applies operators of min-plus and max-plus algebra,

see [21, 23]. Overall, this component-based analysis methodology allows to obtain (hard)

bounds on job delays, buffer sizes and utilization of hardware units, either for a single com-

ponent or for complex systems.

3.3 Timed automata

In this paper we use timed safety automata as found in the model checker Uppaal [3]. In the

following we briefly re-capitulate only some relevant aspects of TA. For a detailed introduc-

tion please refer to [4].

An extended time safety automaton is a graph, consisting of locations, directed edges

between them, non-negative clocks and a set of local (integer) variables. Conditions imposed

on clocks (time constraints) and variables steer the execution of edges in a TA. An example

of TA is shown Fig. 1 which represents the model of a traffic light. Each edge execution

in a TA establishes a state-to-state transition in a corresponding state graph. A TA can be

expanded into its state graph by iteratively considering all executions until a fixed point

is reached. The state graph captures all the timed behavior of a TA and is used for the

formal verification of system properties. In a TA conditions related to edges are denoted as

guards and conditions related to locations are denoted as location invariants. The execution

of an edge can only take place if both the guard of the edge and the invariant of the target

location evaluate to true. The execution of an edge is typically followed by clock and variable

updates. Note that the invariant of the target location must be satisfied after the clock and

variable updates of the incoming edge have taken place. A location of a TA can be labeled

198 K. Lampka et al.

Fig. 1 Timed Automata modelling a traffic light

as urgent. In urgent locations no time can elapse, meaning that once an urgent location is

entered, any outgoing edge has to be executed in zero time.

A key feature of the TA modeling approach is modularity. Individual TA models can

be composed for the representation of complex systems. The interaction of the different

TA modules is based on shared global variables and synchronized edge executions. For in-

stance, in the example of Fig. 1 the system model consists of two TA components. The TA

on the right represents a traffic light, whereas the TA on the left represents a controller which

switches the light off during some time interval. The two TA make use of a joint (enumera-

tion) variable denoted s which can have the values r , y or g. Moreover, the two TA interact

via synchronized execution of their edges labeled with on and off. Edges of different TA

with the same synchronization label, also denoted as channel, have to be executed contem-

poraneously in an atomic manner. By following Uppaal’s nomenclature we will also speak

of sender and receivers when referring to the synchronization of different TA. In Uppaal we

distinguish the following types of rendez-vous mechanisms:

• Binary synchronization

A sending and a receiving TA synchronize on the joint execution of two dedicated edges,

one in the sending TA, whose edge is labeled by a channel id and an exclamation

mark, and one in the receiving TA, whose edge is labeled by the same channel id, but

extended with a question mark (see, e.g., the event! and event?-labeled edges in the TA of

Fig. 4(B) and 4(C)).

• Broadcast synchronization

One sender synchronizes with up to n receivers. This refers to the situation where one

sending TA executes a sending edge, which can be understood as the emission of a signal

and where between 0 and n receiving TA execute a receiving edge, which can be inter-

preted as the instantaneous reception of this broadcast signal. It is important to note that

although the sender can synchronize with any number of receivers between 0 and n, par-

Analytic real-time analysis and timed automata: a hybrid methodology 199

ticipation in the broadcast synchronization is not facultative for receivers. In particular,

all TA containing a receiving edge have to execute this edge if at the time of the syn-

chronization it is enabled, that is, if the edge can be executed. (see, e.g., the event! and

event?-labeled edges in the TA of Fig. 5(B–D)).

Note that for the sake of better readability, the TA depicted in this paper are not always

syntactically correct. In particular, the if-statement that we employ has to be implemented

in Uppaal with the ?-operator of ANSI C. For the max- and min-operator one needs to define

individual functions as part of Uppaal’s system declaration. Note further that for addressing

the evaluation of a clock x or a counter b at some time t we will use the notation x(t) or

b(t). In cases where the concrete point in time t is clear from the context, we will also use

the clock identifier instead.

4 The approach

In the following we will develop a scheme for interfacing RTC-conforming curves with TA-

based system descriptions, as illustrated in Fig. 2. The major result is the transformation of

event stream specifications in the form of arrival curves (defined in the time-interval domain)

to sets of event traces specified by TA (defined in the time domain) and vice versa. The

developed strategy consists of two independent parts which will be discussed separately:

(i) In Sect. 4.2 we show how to implement RTC-conforming input curves by a network of

TA denoted as input generator. This transformation corresponds to the interface denoted

with ‘RTC→TA’ in Fig. 2.

(ii) In Sect. 4.3 we discuss how to derive output curves from TA-based system specifi-

cations. This transformation corresponds to the interface denoted with ‘TA→RTC’ in

Fig. 2.

These two transformations enable a hybrid approach to performance analysis of distributed

systems where the individual components are either abstracted on the basis of the RTC or

modeled by means of TA.

Fig. 2 Overview of hybrid analysis method

200 K. Lampka et al.

Fig. 3 Transformations among

sets of event traces for the two

described interfaces

In this paper we will focus on the conversion between arrival curves and sets of event

traces. Note, however, that the presented approach is not limited to arrival curves, but can

also be applied to service curves. The only limitation to consider is that with TA, in partic-

ular with Uppaal, one can only make use of discrete variables, rather than continuous ones.

Hence, we can consider only systems with discrete numbers of events or resource units,

where on the level of RTC this refers to staircase functions.

The major complexity faced when developing the mentioned interfaces is the fact that the

bounding functions α = [αu, αl] in time-interval domain implicitly define a possibly infinite

set of event traces Rα .

4.1 Requirements

The main requirement for the discussed hybrid approach to performance analysis of embed-

ded real-time systems is that the described input and output interfaces are correct, in the

sense that they do not harm the safety of the analysis. In particular, in order to guarantee

conservative analysis results, whenever transforming the abstraction of an event stream to

another representation, we have to make sure that the conversion does not suppress any event

trace of the stream.

Consider first a generic input interface (RTC→TA) in which a tuple of arrival curves

α1 is converted to an input generator, that is, to a network of TA. Fig. 3(A) illustrates the

corresponding transformation among sets of event traces where Rα1 denotes the set of event

traces that conform to α1 and R1 represents the set of event traces specified by the input

generator. We denote the set R1 also as the set of event traces producible by the input gen-

erator. We say that the input interface is correct iff R1 ⊇ Rα1 . More precisely, for the input

interface we require that

r |= α1 ⇒ r ∈ R1 ∀r ∈ R. (4)

Now consider a generic output interface (TA→RTC) in which the output of a TA subsystem

is translated to a tuple of arrival curves α2. Fig. 3(B) shows the corresponding transformation

where R2 denotes the set of traces producible by the TA subsystem and Rα2 represents the

set of traces that conform to α2. We say that the output interface is correct iff Rα2 ⊇ R2.

More precisely, for the output interface we require that

r ∈ R2 ⇒ r |= α2 ∀r ∈ R. (5)

Note that the above properties guarantee a correct analysis, but do not exclude pessimistic

analysis results. In particular, the accuracy of the performance analysis can degrade in cases

in which R1 ⊃ Rα1 holds for an input interface or Rα2 ⊃ R2 holds for an output interface.

For instance, this corresponds to the case when the model of a system component is fed with

more event traces than originally specified for the ingoing event stream. Such pessimistic

transformations are avoided if R1 ⊆ Rα1 holds for all input interfaces and Rα2 ⊆ R2 holds

for all output interfaces. Depending on the individual case, this requirement can, however,

be sacrificed, e.g., to improve the efficiency of the analysis.

Analytic real-time analysis and timed automata: a hybrid methodology 201

4.2 Input interface

For interfacing RTC-conforming curves to TA the approach has to translate time-interval-

based functions into TA-based representations of possibly infinitely many timed traces. The

main idea for achieving this is based on the observation that the interval-based arrival curves

α = [αu, αl] can be modeled by sets of individual staircase functions combined by the

(nested) application of minimum or maximum. Each of the involved staircase functions

α
{u,l}
i is guarded by its own TA, where an automaton LTAi guards lower curve αl

i and an

automaton UTAi guards upper curve αu
i . The network of co-operating UTA and LTA emits

a dedicated, instantaneous signal event to the environment, where this signal can be used for

stimulating a user-defined TA-based model description which represents some component

of the system under analysis. Emission of the event-signal has to be done in such a way that

one is capable of producing each trace r = ((event, t0); . . . (event, tn) . . .) of event-signals

such that r |= α. For keeping the discussion as simple as possible, we will start now with the

most simple case, where α{u,l} are defined by a single staircase-function each.

4.2.1 Linear input pattern

We define an upper or lower staircase function as follows:

α{u,l}(Δ) := N {u,l} +

⌊

Δ

δ{u,l}

⌋

(6)

where in our approach each curve is guarded by its own timed automaton denoted UTA,

LTA respectively. Binary synchronization enforces UTA and LTA to produce only those

traces which contain at least αl(Δ) and at most αu(Δ) event signals for any interval of

length Δ ∈ R
≥0.

For exemplification please refer to the curves depicted in Fig. 4. The parameter Nu can

be understood as burst capacity, which describes the number of events producible in zero

time according to curve αu. The parameter δ{u,l} specifies the minimum/maximum distance

of two successive events with respect to curve α{u,l}. The absolute values of parameter N l

of the lower curve can be understood as the fictitious numbers of δl delays before event

emission has to be enforced every δl time unit. The above constants provide the values for

the free parameters in UTA and LTA.

(A) Implementation The actual implementation of UTA and LTA is shown in Fig. 4(B)

and 4(C). Each of them employs its own clock x, counter b, and its constants N {u,l} and

δ{u,l} (Fig. 4(D)). The edge-guards steering the execution of the different edges, clock resets,

variable updates and signal sending and reception are specified next to the respective edge.

Location invariants are stated next to the affected location. UTA and LTA cooperate by

synchronizing on sending and receiving signal event, which enforces the joint execution of

the event! and the event?-labeled edges in the two TA. The non-deterministic emission of

events (sending and receiving of the event-signal by LTA and UTA) is possible as long as

for the UTA b > 0 holds. On the other hand emission of the signal event has to take place

once the local variable b of LTA reaches its local threshold |N l |, which is enforced by the

location invariant x <= δl ∧ b <= |N l |. It is also important to note that for b = 0 and the

production of an event LTA resets its local clock x, whereas UTA does so once b = Nu holds

and the signal event is sent.

202 K. Lampka et al.

Fig. 4 Linear pattern: input curves and their TA-based implementation

(B) Correctness and tightness of interface In the following, we briefly sketch a proof for

the correctness and tightness of the described interface. A more detailed proof that considers

more complex arrival curves follows in Sect. 4.2.3.

Theorem 1 Let Rα be the set of event traces that conform to α = [αu, αl] defined in (6).

Let RT A denote the set of event traces producible by the input generator of Fig. 4. Then,

Rα = RT A.

Sketch of Proof

• Rα ⊇ RT A:

This will be justified separately for αu and αl .

1. UTA enforces that the input generator can only produce traces with at most Nu +⌊ Δ
δu ⌋

timed event-actions seen on any interval of length Δ. This is because event emission

is blocked once the counter b of UTA equals 0 and because the local clock x of UTA

is reset at event emissions for which b = Nu holds.

2. The invariant defined on the initial location of LTA enforces that after (N l +1) ·δl time

units an event is emitted and from then on at least every δl time unit. Therefore, every

Analytic real-time analysis and timed automata: a hybrid methodology 203

trace produced by the input generator contains at least αl(Δ) timed event-actions for

any interval Δ.

• Rα ⊆ RT A:

We have to show that each event trace r such that r |= α is producible by the input gen-

erator. This can be shown by contradiction. Consider the upper bound αu. Let us assume

that there exists an event trace r with r |= αu that is not producible by the input generator.

It follows that there is a time instant t at which UTA is blocked, but r contains a timed

action (event, t). However, by reasoning about the prefix of any trace possibly produced

by the input generator up to time t , it can easily be shown that an additional event at t

would violate αu, which contradicts the assumption r |= αu. Hence, such a trace r does

not exist. For the lower bound αl the reasoning is analogous. �

4.2.2 Convex and concave input pattern

Now we extend the discussion to cases where the input functions αl or αu are modeled as

the maximum or minimum of a set of staircase functions:

αu(Δ) := min
i

(αu
i (Δ)); αl(Δ) := max

i
(0, αl

i(Δ)) (7)

where α
{u,l}
i (Δ) is defined as stated in (6) but now with their individual pairs of parameters

N
{u,l}
i , δ

{u,l}
i . For exemplification one may refer to the curve(s) depicted in Fig. 5(A). In

accordance with (7), as well as with the scenario of Fig. 5 it is required that for all i < j

holds:

|N
{u,l}
i | < |N

{u,l}
j |; δ

{l,u}
i > 0; δl

i > δl
j and δu

i < δu
j . (8)

In the following we informally denote arrival curves α{u,l} that fulfill (7) and (8) as concave

and convex, respectively.

(A) Basic idea of the approach The bound imposed by curve α
{u,l}
i will be guarded by UTA

and LTA i, respectively. Cooperation among the UTA and LTA has to be organized in such

a way, that it complies with the minimum and maximum-operation as employed in (7). Due

to the usage of minimum and maximum the following conditions apply:

1. Minimum-condition: The input generator may emit timed action (event, t) ⇐⇒ bi(t) >

0 ∀bi ∈ Bu, where Bu is the set of the UTA-local b-variables such that i ∈ {1,K} with

K as the number of UTA.

2. Maximum-condition: The input generator has to emit timed action (event, t) ⇐⇒ ∃bi ∈

Bl ∧ ∃xi ∈ C l such that bi(t) = |N l
i | ∧ xi(t) = δl

i , where Bl is the set of the LTA-local

b-variables, C l is the set of their local clocks and δl
i the period for incrementing xi , with

i ∈ {1,L} where L is the number of LTA.

(B) Implementation The implementation is shown in Fig. 5. To be as generic as possible

we make use of Uppaal’s concept of templates, s.t. clock x, constants N
{u,l}
i , δ

{u,l}
i , and the

counter b of the TA shown in Fig. 5(B) and Fig. 5(C) are local entities only, and will be

indexed accordingly. The instances of Fig. 5(B) and Fig. 5(C) implement the single LTAs

and UTAs of the network, respectively. The TA shown in Fig. 5(D) is the scheduler employed

for governing event-emission, which is necessary since instead of binary synchronization we

are using now Uppaal’s concept of broadcast channels, where full synchronization among

204 K. Lampka et al.

Fig. 5 Convex, concave pattern: input curves and their TA-based implementation

Analytic real-time analysis and timed automata: a hybrid methodology 205

the UTAs and LTAs has to be enforced. For bounding the number of producible events each

instance of an UTA and LTA periodically increments its local counter bi as before, namely

every δ
{u,l}
i time units by executing the respective edge, which we denote as clock-tick edge

from now on; it is the top edge of the TA templates of Fig. 5(B) and Fig. 5(C). The emission

of an event can only take place if the minimum-condition applies, whereas event emission

is enforced if the maximum-condition holds. In any case event emission yields an update

of local counter bi which allows each UTA and LTA to track event production accordingly.

The minimum and the maximum-condition are implemented as follows:

1. The minimum-condition is enforced by the location invariant Sync = Num_UTA defined

for the target location of the event!-edge of the scheduler (Fig. 5(D)). The invariant ex-

presses the condition that the location can be entered only if the global variable Sync is

equal to the number of UTA in the network. Since at each broadcast synchronization each

UTA increments Sync by exactly 1, we have that event emission can take place only if

all UTA in the network are participating.

2. The maximum-condition is realized by means of the location invariants of the different

LTA. A single LTA enforces an event generation whenever executing the event!-edge is

the only way for circumventing the violation of the invariant.

The usage of the unique label event within all TA guarantees the joint execution of the

event!-edge of the scheduler and all event?-edges of the LTA and UTA, respectively. Thus

either all event-edges are jointly executed or none, which yields the nice feature that an

input generator of the above kind deadlocks if upper and lower bounding functions are not

consistent. In the case of concave/convex input curves this is the case if the upper and the

lower curve cross each other. Finally, one may note that as before LTA i resets its local clock

xi once bi = 0 and event emission takes place. UTA i does so once bi = Nu
i holds and event

emission occurs.

4.2.3 Tightness and correctness of the interface

In this subsection we will reason formally about the tightness and correctness of the de-

scribed interface. In particular, we will show that Rα = RT A holds also for the con-

vex/concave pattern of staircase curves. This will be done in two steps. In step (A) we prove

that the input generator cannot violate the upper and lower bounds α{u,l}, i.e., Rα ⊇ RT A. In

step (B) we prove that the input generator can produce all the event traces that conform to

α{u,l}, i.e., Rα ⊆ RT A. The final result is summarized in (C).

(A) Tightness (Rα ⊇ RT A)

Lemma 1 Let RT A denote the set of event traces producible by the input generator of Fig. 5.

Let αu be defined according to (7) and (8). Then, r |= αu ∀r ∈ RT A.

Sketch of Proof According to the above discussion the parameters Nu
i and δu

i of an UTA i

correspond to the parameters of the respective step-function αu
i . It is easy to see that UTA

i allows the production of at most Nu
i + ⌊ Δ

δu
i
⌋ events and that with bi = 0 it blocks event

production. Minimum-condition as defined above gives, that for any Δ ∈ R
≥0 the max.

number of events producible is bounded by min
i

(Nu
i + ⌊ Δ

δu
i
⌋). It is important to note that

for bi(t0) = |Nu
i | an event generation resets clock xi , such that the above equation yields an

upper bound for the number of producible events. This is exactly what was defined for αu

in (7) and (8). �

206 K. Lampka et al.

For exemplification please refer to the graph of Fig. 5(A). If y events are produced in a

time interval of length t , then the counter b3 = 0 and hence UTA3 blocks event production

until its local clock x3 expires. From that point on event production is bounded by αu
3 due to

the minimum-operation realized by synchronizing the UTA.

Lemma 2 Let RT A denote the set of event traces producible by the input generator of Fig. 5.

Let αl be defined according to (7) and (8). Then, r |= αl ∀r ∈ RT A.

Sketch of Proof Due to the maximum-operation it seems appropriated to argue over the

index of the LTA currently enforcing the generation of events and the size of the intervals:

• 0 ≤ Δ < (|N l
1| + 1) · δl

1: For intervals of this length event emission does not need to be

enforced. Thus by choosing the parameters of LTA1 accordingly the input generator is

capable of delaying event emission up to (|N l
1| + 1) ·δl

1 time units, since starting with b1 =

0 it is exactly this amount of time which it takes for LTA1 to reach its event generation

threshold (b1 = |N l
1|) and the local clock x1 expiring (x1 = δl

1) given that no event has

been emitted before. This implies also why clock x1 needs to be reset when emitting an

event in case of b1 = 0 (cf. Fig. 5(B))

• (|N l
k| + 1) · δl

k ≤ Δ < (|N l
k+1| + 1) · δl

k+1: For each interval of this length LTA k bounds

the minimum number of emitted events to N l
k + ⌊ Δ

δl
k

⌋, with N l
k ≤ 0. This is because when

holding its threshold (bk = |N l
k|) and with the local clock xk expiring (xk = δl

k) LTA k

enforces the generation of an event and form now on every δl
k time units (see location

invariant of the UTA of Fig. 5(C)). This goes on until LTA k + 1 holds its threshold

|N l
k+1| and its local clock xk+1 expires.

• (|N l
k+1| + 1) · δl

k+1 ≤ Δ < ∞: For intervals of this size we may use the same argument as

above, but now starting with LTA k + 1.

Hence, we can exclude the existence of an interval in which the input generator can generate

less events than specified by αl . �

For exemplification refer to Fig. 6(B) which illustrates a trace produced by the LTAs.

Let event generation take place at time te and let b1(te) = 0 afterwards s.t. clock x1 is set to

Fig. 6 Timed event-traces and

evaluations of bi (τ) and xi (τ)

Analytic real-time analysis and timed automata: a hybrid methodology 207

zero. After another (|N l
1| + 1) · δl

1 time units where no event emission took place b1 = |N l
1|

and x1 = δl
1 will hold which immediately enforces event generation (here at time t0). From

now on this is done at least every δl
1 time units, until b2 = |N l

2| and x2 = δl
2 holds which

enforces event production now every δl
2 time units. In general this means that once started

LTA i − 1 enforces the event generation every δl
i−1 time units. This goes on until bi = |N l

i |

and xi = δl
i holds, which forces LTA i to take over event production, e.g. at time tk as shown

in Fig. 6(B).

Lemma 3 Let Rα be the set of event traces that conform to α = [αu, αl] defined according

to (7) and (8). Let RT A denote the set of event traces producible by the input generator of

Fig. 5. Then, Rα ⊇ RT A.

Proof Follows directly from Lemmata 1 and 2. �

(B) Correctness (Rα ⊆ RT A)

Lemma 4 Let Rαu
be the set of event traces that conform to αu defined according to (7)

and (8). Let RUT A denote the set of event traces producible by the input generator of Fig. 5

without LTAs. Then, Rαu
⊆ RUT A.

Proof This will be shown by contradiction. One may assume that there is a trace r with

r |= αu, but that is not producible by the network of UTAs. From this it follows that there

must be a timed action (event, t) where the UTAs are blocked, but the production of an

additional event would not be contradictory to αu. Let (event, t) ∈ r but (event, t) �∈ rT A,

where rT A is a trace producible by the input generator with the same prefix as r a priori to the

occurrence of (event, t). Let t := tj + ǫ, it must hold that there ∃bi ∈ B, s.t. bi(tj + ǫ) = 0,

otherwise one would be able to produce an event. Let tj be now the earliest point in time

for r where bi(tj) = 0 holds and let t0 < tj be the last point in time where bi(t0) = Nu
i was

satisfied, which is exactly what we have illustrated in Fig. 6(A). The choice of i and the

blocking of events implies now that for the blocking period ǫ it must hold tj + ǫ < tk , where

tk is the next time bi is incremented and the generation of an event would not be blocked

anymore. From this it follows that for the number of events r(t0, tj + ǫ) seen on r in the

interval [t0, tj + ǫ] it must hold:

r(t0, tj + ǫ) = Nu
i +

⌊

(tj + ǫ − t0)

δu
i

⌋

+ 1 = αu
i (tj + ǫ − t0) + 1,

otherwise bi would not be 0. Obviously this violates the bound imposed by αu, since at

time point tj the number of events is bounded by αu
i which is the current minimum and

truly smaller than r(t0, tj + ǫ). Thus from r(0, tj + ǫ) > αu we can conclude that such a

trace r does not exist. Concerning the assumption that t0 was the last point in time where

bi(t0) = Nu
i was satisfied and that for tk : bi(tk) = 0 must hold, one may note that for the

initial point in time we have bi(0) := Nu
i and that bi must be zero at tj , since otherwise UTA

would not block event emission by violating the minimum-condition. �

Lemma 5 Let Rαl
be the set of event traces that conform to αl defined according to (7)

and (8). Let RLT A denote the set of event traces producible by the input generator of Fig. 5

without UTAs. Then, Rαl
⊆ RLT A.

208 K. Lampka et al.

Sketch of Proof Analogously to the proof of Lemma 4, this can be shown by contradiction.

We assume that there is a trace r with r |= αl , but that is not producible by the network of

LTAs. In particular, we assume that for a given time interval [s, t] with Δ = t − s the trace

r contains less events than the minimum number of events enforced by the network of LTAs

for any time interval of length Δ. By reasoning about the behavior of the network of LTAs

for different interval sizes as done in the proof of Lemma 2, it can be shown that such an

event trace does not exist. �

Lemma 6 Let Rα be the set of event traces that conform to α = [αu, αl] defined according

to (7) and (8). Let RT A denote the set of event traces producible by the input generator of

Fig. 5. Then, Rα ⊆ RT A.

Proof Follows directly from Lemmata 4 and 5. �

(C) Identity (Rα = RT A)

Theorem 2 Let Rα be the set of event traces that conform to α = [αu, αl] defined according

to (7) and (8). Let RT A denote the set of event traces producible by the input generator of

Fig. 5. Then, Rα = RT A.

Proof Follows directly from Lemmata 3 and 6. �

4.2.4 Extended input generators

In practice systems may show event streams that do not adhere to the above described input

pattern. While in such cases the pattern can still be used to conservatively approximate the

arrival curves and hence to realize a correct input interface, it is desirable to avoid approxi-

mations for the sake of accuracy. In the present subsection, we will therefore briefly sketch

two possible refinements of the input pattern.

Shifted staircase curves In the input pattern described in Sects. 4.2.1 and 4.2.2 each linear

staircase curve has a uniform step width for all steps. In practice one does, however, often

encounter staircase curves that have an initial offset, meaning that they are horizontally

shifted. For instance, this is the case for the arrival curves of a periodic event stream with

jitter. Figure 7 illustrates an example of such horizontally translated staircase curves.

Such staircase curves with initial offset can be modeled by a slightly more general version

of the TA shown in Fig. 5. In the following we will explain the underlying principle by

means of α̂u
i . The corresponding automaton ˆUTAi is shown in Fig. 8. The differences to the

automaton UTAi are that at each event generation the counter bi is decreased by eu
i units, and

that scaled constants N̂u
i and δ̂u

i are used as maximum counter value and counter increase

period, respectively.

The idea for achieving the initial offset θu
i is now to use a value for eu

i that is not a factor

of N̂u
i . In this way, after the generation of the maximum instantaneous burst of events, the

next event can be generated earlier compared to the previous case. This is because after the

generation of the maximum burst, the counter will be equal to a residual value 0 < bi < eu
i .

The following equations permit to derive eu
i , N̂u

i , and δ̂u
i for given values of θu

i , Nu
i , and δu

i :

δ̂u
i = gcd(δu

i , θ
u
i); eu

i =
δu
i

δ̂u
i

; N̂u
i = (Nu

i + 1) · eu
i −

θu
i

δ̂u
i

. (9)

Analytic real-time analysis and timed automata: a hybrid methodology 209

Fig. 7 Shifted staircase curves with offset θ
{u,l}
i

Fig. 8 TA for shifted upper

staircase curve α̂u
i

Consider for instance α̂u
2 shown in Fig. 7 and defined by Nu

2 = 6, δu
2 = 8, and θu

2 = 4. By

applying (9) we obtain δ̂u
2 = 4, eu

2 = 2, and N̂u
2 = 13. One can easily verify, that by using

those constants in the automaton of Fig. 8, we generate event traces which conform to α̂u
2 .

For lower curves α̂l
i the reasoning is analogous and results in the following equations:

δ̂l
i = gcd(δl

i , θ
l
i); el

i =
δl
i

δ̂l
i

; N̂ l
i = N l

i · el
i −

θ l
i

δ̂l
i

+ 1. (10)

Non-convex/concave patterns Another issue is that in practice systems may sometimes

not show strictly concave or convex patterns. For instance, the overall upper input or output

curves may have parts with decreasing step widths (see, e.g., α′u
2,RTC in Fig. 17), or the lower

curve may contain parts with increasing ones. In the following we will briefly sketch how

one can resolve such situations for the input interface.

In cases where non-concave and non-convex patterns occur only finitely often within an

arrival curve, one can handle this by simply making use of subsets of UTA, LTA and local

synchronization for obtaining local minima and maxima. In order to implement such patterns

one solely needs to encapsulate the respective sets of co-operating LTA or UTA in their own

sub-system. These subsystems can be implemented analogously to the pattern illustrated

above, but requiring slightly adapted TA-specifications w.r.t. the employed thresholds.

210 K. Lampka et al.

Note that in the case of non-concave/convex input curves the specification of an upper and

a lower bound might be inconsistent even if the two curves do not intersect. This problem is

described in more detail in [1]. In our framework the input generator can run into a deadlock

in the presence of such an inconsistency. Hence, we can easily detect such a case by model

checking a corresponding query.

4.2.5 Complexity issues related to input modelling

Complexity of model checking TA is exponentially bounded by the number of clocks and

clock constants [2]. Thus it is straight forward to see that the efficiency of the approach is

closely related to the number of staircase functions employed for modeling lower and upper

input curves.

In the following we propose a simple method that permits to approximate a general arrival

curve with the convex/concave combination of just a few staircase functions. The approach

first approximates the arrival curve by a so called periodic with jitter event arrival model, and

then derives the parameters for the corresponding staircase curves α
{u,l}
i . The periodic with

jitter event model (or PJD model in short) is commonly used in literature and is a simple

representation for the arrival of events in streams [23]. It is specified by a parameter triple

(p, j, d), where p denotes the period, j the jitter and d the minimum inter-arrival time of

events in the modeled stream.

Arrival curves are in general more expressive than PJD models. However, every arrival

curve can be conservatively approximated by a PJD model [14]. Given a general arrival

curve to feed into a TA-based component, we first use the algorithm described in [14] to

approximate it with a PJD model. Subsequently, we convert the PJD parameters to a set of

appropriate parameters N
{u,l}
i and δ

{u,l}
i that are used to specify the input generator for the

TA-based component as described in Sect. 4.2.2.

The upper bound described by a PJD model can be represented by the minimum of at

most two staircase functions αu
1 and αu

2 . In particular, two staircase functions are needed

if d > 0 ∧ d > p − j , while only one staircase function suffices otherwise. For the lower

bound of a PJD model one staircase function αl is always sufficient. The parameters of the

staircase functions are computed as follows:

• Case d = 0 ∨ d ≤ p − j :

Nu :=
⌈

j

p

⌉

+ 1; N l := −
⌈

j

p

⌉

; δu := δl := p

• Case d > 0 ∧ d > p − j :

Nu
1 := 1; δu

1 := d; Nu
2 :=

⌈

j

p

⌉

+ 1; N l := −
⌈

j

p

⌉

; δu
2 := δl := p

Note that an exact representation of a PJD model by means of staircase functions αu
1 , αu

2 and

αl is not always possible if we exclude horizontal shifting of staircase functions. However,

in such a case the above formulae guarantee a correct (i.e., conservative) approximation of

the PJD model. On the other hand, if we use the generalized input model for shifted staircase

functions described in Sect. 4.2.4, then we can exactly represent any PJD model by means

of at most three staircase functions. In this case the parameters of the staircase functions are

computed as follows:

• Case d = 0 ∨ d ≤ p − j :

N̂u = x ∈ N
+, eu = y ∈ N

+ such that x
y

= j

p
+ 1 ∧ gcd(x, y) = 1; δ̂u = p

eu

N̂ l = v ∈ N
+, el = w ∈ N

+ such that v
w

= j

p
∧ gcd(v,w) = 1; δ̂l = p

el

• Case d > 0 ∧ d > p − j :

N̂u
1 = 1; eu

1 = 1; δ̂u
1 = d

Analytic real-time analysis and timed automata: a hybrid methodology 211

N̂u
2 = x ∈ N

+, eu
2 = y ∈ N

+ such that x
y

= j

p
+ 1 ∧ gcd(x, y) = 1; δ̂u

2 = p

eu
2

N̂ l = v ∈ N
+, el = w ∈ N

+ such that v
w

= j

p
∧ gcd(v,w) = 1; δ̂l = p

el

While the approximation of arrival curves with PJD models represents a simple way to

coarsely bound an event stream with few staircase functions, in the presented hybrid analysis

approach the interface between RTC and TA is of course not limited to PJD curves. Any

other algorithm that correctly bounds a general arrival curve with an arbitrary number of

staircase functions α
{u,l}
i can be used as an interface between the two domains.

Now that we have described the interfacing from RTC-based model descriptions to TA,

we will discuss the interfacing from TA-systems back to RTC-conforming performance

models.

4.3 Output interface

This subsection describes the realization of the output interface, that is, the bounding of the

output of a TA subsystem by means of a tuple of arrival curves α = [αu, αl]. As described

in Sect. 4.1, the requirement for a correct output interface is Rα ⊇ RS , where RS denotes

the set of event traces producible by the TA subsystem. In other words, the output of the

TA subsystem can be approximated, but the approximation has to be done in a conservative

manner. The main concept used for constructing valid output curves α′{u,l} can be considered

just the reverse of event generation: We construct a set of staircase functions α′u
i and α′l

i for

the output of the TA subsystem which allows to construct an overall output curve α′{u,l}

by means of minimum and maximum operators, respectively. For achieving this goal, we

couple the system under analysis including the input generator with a set of observing TA.

Checking reachability queries for these TA-systems allows to derive the parameters N
{u,l}
i

and δ
{u,l}
i that uniquely characterize α′u

i and α′l
i . In the following we will first describe the

TA that are used to verify individual staircase parameters. After that, we will describe the

overall composition strategy for constructing a valid output curve α′{u,l}(Δ).

For implementing the above procedure we will employ the observers TA depicted in

Fig. 9:

Fig. 9 Observer automata for deriving upper and lower output curves

212 K. Lampka et al.

(a) Maximum burst size: An upper bound for the maximum number of events that the sys-

tem can generate simultaneously can be verified by means of the observer depicted in

Fig. 9(A) and the query:1 A[] (count<=estimate).

(b) Maximal distance between two successively emitted events: We can verify a bound on

the maximum pause time between two output events by employing the observer shown

in Fig. 9(B) and the query A[] (pause imply x<=estimate).

(c) Arbitrary upper staircase curve α′u
i : For obtaining an individual staircase function

we employ the observer TA of Fig. 9(C) which witnesses the violation or invulner-

ability of the respective curve. The witnessing TA moves into the location viola-

tion, once the respective curve is violated, i.e. the actual system produces too many

events. Thus one simply needs to query for the reachability of location violation

(A[] (not violation)). In other words, given some staircase parameters Nu
i and

δu
i , we can determine whether the corresponding staircase function is a valid upper

bound in time-interval domain of the produced event stream.

(d) Arbitrary lower staircase curve α′l
i : For obtaining an individual lower staircase func-

tion we employ observer TA of Fig. 9(D) and use the same principle as described

above: Given some parameters N l
i and δl

i , we can determine whether the correspond-

ing staircase function is a valid lower bound in time-interval domain of the produced

event stream.

(e) Long-term rates: In order to construct output curves α′{u,l} that approximate the system

behavior well also for large time intervals, we need to make sure that we follow the

long-term event output rate. By long-term rate of an arrival curve α we mean the inverse

of the limit limΔ→∞
α(Δ)

Δ
, which always exists as detailed in [12]. The largest δu

i and the

smallest δl
i of any valid upper and lower output staircase function, respectively, denote

upper and lower bounds on the long-term rate of the output. The principle of efficiently

verifying that a given staircase function represents this upper or lower bound will be

explained by means of α′u
i . The procedure for α′l

i is analogous and is omitted for con-

ciseness. The idea is to verify whether the observed system can produce an event trace

such that for arbitrary long intervals the rate of the trace is not slower than δu
i . To do so

one may employ the TA depicted in Fig. 9(E). This TA monitors the difference between

the number of event arrivals allowed by rate δu
i and the number of events actually pro-

duced by the observed system. Once this difference exceeds a constant D, the TA moves

to the location drift. If there is a trace for which the observer TA stays indefinitely

in the location count, it means that we have found a trace that on the long-term never

gets slower than δu
i , i.e., the rate δu

i is not overly pessimistic for the system output. Such

a trace can be found as counterexample to the query: count -> drift.2

Now, we will describe how the TA introduced above can be used to construct valid upper

and lower bound curves α′{u,l}(Δ) of the system output. There are many possibilities and the

following list summarizes only a few of them:

• A binary search on estimate (see (a) and (b)) yields the maximum burst size and the

maximal pause time, respectively.

• These values can be used to determine one degree of freedom (of the available two) of an

upper or lower staircase automaton, see (c) and (d). For example, using the maximal burst

size from (a) and a binary search on the remaining parameter δu
i in the automaton of (c)

yields an upper staircase function α′u
i that characterizes the maximal burst rate.

1In Uppaal A[] stands for ‘always invariantly’.

2In Uppaal -> stands for ‘always eventually leads to’.

Analytic real-time analysis and timed automata: a hybrid methodology 213

• Fixing any of the two free parameters in the automata of (c), (d) and performing a binary

search on the other yields a valid upper and lower staircase bound, respectively.

• Using the automaton of (c) with a large initial burst capacity Nu
i and performing a binary

search on δu
i leads to a tight upper bound on the maximal long-term rate.

• One may determine a convex hull of the lower and a concave hull of the upper (unknown)

RTC-curves of the event stream by calculating a sequence of staircase functions. For

example, in case of an upper curve, we can consider a sequence of increasing values Nu
i

and use the automaton (c) to determine the corresponding maximal values δu
i that bound

the system output. The sequence ends if the long-term rate is met, see (e).

• All constructed valid upper and lower staircase functions can be combined to a valid

bounding curve by minimum and maximum operations, respectively.

Algorithm 1 defines a simple heuristic procedure for bounding the output of a TA subsystem.

The algorithm makes use of the TA of Fig. 9 and will be employed in the case study and

in the other experiments of Sect. 5.3. The heuristic returns four vectors N̄u, δ̄u, N̄ l , δ̄l that

contain the parameters for the linear staircase curves used to bound the output of the TA

system. The input parameters have the following meaning:

n, m Maximal number of staircase curves α′u
i and α′l

i , respectively, that shall be

used to bound the system output

BMIN , BMAX Delimit the interval in which the maximum burst size is searched

PMIN , PMAX Delimit the interval in which the maximum pause between two events is

searched

δMIN , δMAX Delimit the interval in which the parameters δl
i and δu

i are searched

k Scaling factor > 1 for Nu
i , N l

i

In line 5 the heuristic determines the maximum burst size Nu
1 in the system output. This

is done by means of the function max_burst which implements a binary search coupled

with model checking of the system. In particular, in line 37 the function max_burst calls

the Uppaal model checker to verify whether in the observer TA of Fig. 9(A), denoted as

OMB, a given event counter value is never exceeded. Similarly, in line 6 the maximum value

of δu
1 is determined by the function max_delta such that the system output never violates

the bound specified by the parameter tuple (Nu
1 , δu

1). In this case the model checker is used

to verify whether the observer TA of Fig. 9(C), denoted as OUB, can reach its violation lo-

cation (line 52). At this point the first staircase curve α′u
1 is fixed. Next, the heuristic enters

a loop (line 8) in which at most n − 1 other staircase curves are determined for the upper

bound. At each loop iteration the value T u
i is scaled by a factor k, where T u

i represents a

tentative value for Nu
i . Line 10 is equivalent to line 6, however when looking for the largest

valid δu
i the algorithm considers that δu

i > δu
i−1 and hence uses tighter bounds for the binary

search. In line 11 the heuristic calls the function min_N_upper which determines Nu
i by

verifying whether the found staircase curve with parameters (T u
i , δu

i) can be further shifted

down vertically without being violated by the system output. This is possible, as the stair-

case curve (T u
i , δu

i) is not necessarily the smallest valid staircase curve with rate δu
i . The

function min_N_upper is analogous to max_delta, with the only difference that the bi-

nary search is carried out on Nu
i instead of δu

i . The corresponding pseudo-code is omitted for

conciseness. After α′u
i is fixed, the heuristic calls the function isLongTermRate which

uses the TA of Fig. 9(E) to verify whether δu
i corresponds to the long-term rate of the system

output. If this is the case, there is no point in further increasing T u
i and the approximation of

the upper bound terminates. The derivation of the lower bound for the system output follows

the same line of thoughts, with analogous functions max_pause, min_delta_pause,

214 K. Lampka et al.

Algorithm 1 Bound output of TA component

1: function DERIVE_BOUNDS

2: input: n, m, k, BMIN , BMAX , PMIN , PMAX , δMIN , δMAX

3: output: N̄u , δ̄u , N̄ l , δ̄l

4: // Upper bound
5: Nu

1 ←max_burst(BMIN ,BMAX)

6: δu
1 ←max_delta(Nu

1 , δMIN , δMAX)

7: T u
1 ← Nu

1
8: for i ← 2, n do

9: T u
i ← k ∗ T u

i−1
10: δu

i ←max_delta(T u
i , δu

i−1, δMAX)

11: Nu
i ←min_N_upper(δu

i ,Nu
i−1, T

u
i)

12: if isLongTermRate(δu
i) then

13: break

14: end if

15: end for

16: // Lower bound

17: P ←max_pause(PMIN ,PMAX)

18: [N l
1, δ

l
1] ←min_delta_pause(P, δMIN , δMAX)

19: T l
1 ← N l

1
20: for i ← 2,m do

21: T l
i ← k ∗ T l

i−1

22: δl
i ←min_delta(T l

i , δMIN , δl
i−1)

23: N l
i ←max_N_lower(δl

i ,N
l
i−1, T

l
i)

24: if isLongTermRate(δl
i) then

25: break

26: end if

27: end for

28: remove_redundant_bounds()

29: return N̄u , δ̄u , N̄ l , δ̄l

30: end function

31: function MAX_BURST

32: input: estmin , estmax

33: output: N

34: est ← ⌈(estmin + estmax)/2⌉
35: repeat

36: estold ← est

37: if verifyta (A[] (OMB.count ≤ est)) = satisfied then

38: estmax ← est

39: else

40: estmin ← est

41: end if

42: est ← ⌈(estmin + estmax)/2⌉
43: until est = estold

44: return est

45: end function

46: function MAX_DELTA

47: input: N , estmin , estmax

48: output: δ

49: est ← ⌈(estmin + estmax)/2⌉
50: repeat

51: estold ← est

52: if verifyta (A[] (not OUB.violation)) = satisfied then

53: estmin ← est

54: else

55: estmax ← est

56: end if

57: est ← ⌈(estmin + estmax)/2⌉
58: until est = estold

59: return estmin

60: end function

Analytic real-time analysis and timed automata: a hybrid methodology 215

and max_N_lower that employ the TA of Fig. 9(B), Fig. 9(D), as well as an adapted ver-

sion of the TA in Fig. 9(E). One difference to the upper bound is that we cannot directly

compute N l
1 given the value of P , the maximum pause between two events. In particular,

there are multiple staircase curves that contain the cartesian point (P,0). Hence, in line 18

the heuristic calls the function min_delta_pause which looks for a curve α′l
1 that con-

tains (P,0) and has the smallest value of δl
1 such that α′l

1 is a valid lower bound for the

system output. At this point N l
1 is also determined. Finally, in line 28, the heuristic removes

redundant staircase curves, that is, α′u
i for which we have

∃α′u
j :

((

Nu
j < Nu

i

)

∧
(

δu
j ≥ δu

i

))

∨
((

Nu
j ≤ Nu

i

)

∧
(

δu
j > δu

i

))

, (11)

and α′l
i for which we have

∃α′l
j :

((
∣

∣N l
j

∣

∣ <
∣

∣N l
i

∣

∣

)

∧
(

δl
j ≤ δl

i

))

∨
((

∣

∣N l
j

∣

∣ ≤
∣

∣N l
i

∣

∣

)

∧
(

δu
j < δu

i

))

. (12)

If after termination the upper (lower) long-term rate of the system is not reached, we can

either use a larger value for the parameter n (m), or try a larger value for the scaling factor

k. In many practical systems, however, the long-term rates of the system output are known a

priori. For instance, it is often the case that a component changes the jitter of an event stream,

but not its period. In such cases, it is much better to adopt an inverse search strategy in the

heuristic. For instance, for the upper bound one would start from the known long-term rate

δu
n and derive the corresponding value Nu

n in order to fix the last staircase curve α′u
n . α′u

1 could

be found as described before using the maximum burst size of the output. Successively, one

would use different values Nu
i with Nu

1 < Nu
i < Nu

i and find the corresponding values δu
i to

refine the upper bound.

It remains to show that the heuristic of Algorithm 1 guarantees the correctness of the

output interface.

Theorem 3 Let RS be the set of event traces producible by a TA subsystem S. Let α′ =

[α′u, α′l] be a tuple of arrival curves derived for the output of S by means of the heuristic of

Algorithm 1. Then, Rα′
⊇ RS .

Sketch of Proof We illustrate the idea for the justification of the upper bound α′u. The

reasoning for the lower bound α′l is analogous. Let N̄u and δ̄u be the parameter vectors

derived by the heuristic for the output of S. Let α′u
i with i ∈ {1, . . . , n} be the staircase

curves defined by those parameters. It is sufficient to show that for each individual stair-

case curve α′u
i we have Rα′u

i ⊇ RS , that is, for each output event trace r producible by

S we have r |= α′u
i . Consider first α′u

1 . The function max_burst called in line 5 imple-

ments a binary search on the maximum burst in the output of S. By using the observer

TA of Fig. 9(A), the function verifies that a conservative estimate Nu
1 is returned for the

maximum burst in the stream. Similarly, given Nu
1 , by means of the TA of Fig. 9(C) the

function max_delta guarantees that a value δu
1 is returned such that α′u

1 is never violated

by the output of S. Hence, r |= α′u
1 ∀r ∈ RS . The same argument holds also for all suc-

cessive calls of max_delta, since the scaling factor k is such to assure Nu
i ≥ Nu

1 . Thus,

r |= α′u
i ∀r ∈ RS ∀i ∈ {1, . . . , n}. �

216 K. Lampka et al.

5 Experimental evaluation

In this section we evaluate the performance of the proposed analysis methodology. We will

first discuss a case study that demonstrates the benefits of the hybrid analysis approach.

Subsequently, we will elaborate on the scalability and accuracy of the presented method.

5.1 Case study

The considered system is shown in Fig. 10. It consists of three event-triggered tasks T1,

T2 and T3 that run on two distinct processors CPU1 and CPU2. We assume that each task

is triggered by the events of the corresponding input event stream and that it produces an

event on the corresponding output event stream once its execution is completed. The three

tasks process two event streams SA and SB which are periodic streams with large jitters that

lead to bursts. SA and SB are specified by the parameter triples pA = 7 ms, jA = 28 ms,

dA = 1 ms and pB = 7 ms, jB = 23 ms, dB = 6 ms, respectively. CPU2 implements a pre-

emptive fixed-priority scheduling policy with T2 having higher priority than T3. The ex-

ecution of each task on its respective CPU takes 106 cycles. CPU2 operates at a constant

frequency of 350 MHz. CPU1 implements a load-dependent frequency adaptation. In par-

ticular, it operates at 166 MHz if there are not more than 3 events in its input buffer, and at

500 MHz otherwise. Note that, for the sake of simplicity, we assume that the CPU frequency

cannot be changed during the processing of an event. That is, the new CPU frequency is cho-

sen only at the beginning of an event processing (depending on the current buffer fill level)

and this frequency is kept constant until the next event processing starts. The goals of the

performance analysis are to characterize the event output stream of T1, to determine the

maximum delays and backlogs that events can experience at the single tasks, and to find the

maximum end-to-end delay for stream SA.

In this case study we will compare three different approaches: First we analyze the de-

scribed system with the abstraction of RTC only using the MPA Toolbox [16, 23]. Subse-

quently, we carry out the analysis with the presented hybrid analysis approach, where we

model the state-dependent behavior of CPU1 as TA and analyze CPU2 with RTC. Finally,

we verify the performance of the system by means of a dedicated TA model according to the

method described in [10], which permits to exploit the simple periodic nature of the input

streams.

For the hybrid analysis approach, we first represent the input stream SA by the combi-

nation of three staircase functions αu
1 , αu

2 and αl . Using the equations of Sect. 4.2.5 we get

the parameters Nu
1 := 1, δu

1 := 1, Nu
2 := 5, δu

2 := 7, N l := −4 and δl := 7 for the staircase

functions. The corresponding event curve αSA
is shown in Fig. 12(A). Given these para-

meters we automatically create the input generator as described in Sect. 4.2.2. In order to

increase the efficiency of the analysis, we merge the input generating network of TA into a

single automaton and simplify it slightly by considering that Nu
1 = 1, that is, for αu

1 we do

actually not need a counter variable b, but just a clock to enforce a minimum distance δu
1

Fig. 10 System architecture

Analytic real-time analysis and timed automata: a hybrid methodology 217

Fig. 11 TA model for CPU1

Table 1 Results of performance

analysis Max delay [ms] Max buffer [events]

T1 T2 T3 EEA T1 T2 T3

RTC 29 8 28.6 31.9 5 3 5

Hybrid 25 5.5 17.2 30.5 5 2 3

TA 25 4.6 14.3 27.9 5 2 3

between consecutive events. This input generator is then coupled with the automaton shown

in Fig. 11 which models the load-dependent behavior of CPU1. In this automaton we use

the signals inEvent and outEvent to distinguish between ingoing events coming from the

Event Source A and outgoing events sent to T2. Buffer1 of CPU1 is modelled by means of

a local counter variable e. The two locations Freq1 and Freq2 represent the processing of

events at low and high frequency, respectively, with corresponding processing times ETslow

and ETfast. The signal hurry belongs to an urgent channel which is always ready for syn-

chronization. This construct enforces greedy event processing. At this point we apply the

heuristic of Sect. 4.3 to get arrival curves that bound the output of the TA subsystem, where

we choose to represent the upper bound as the minimum of three staircase functions and the

lower bound with just one staircase function. The resulting pair of arrival curves is then used

as input for the RTC analysis of CPU2. For the analysis of the maximum delay on CPU1 in

the hybrid setting, we customize the automaton of Fig. 11 following the ideas of [10].

Table 1 summarizes the results of the performance analysis. The worst-case end-to-end

delay of stream SA is denoted as EEA. Note that in general for a sequence of components

the worst-case end-to-end delay can be smaller than the sum of the individual worst-case

delays. While in the abstractions of RTC and TA this phenomenon can be captured for EEA,

this is not possible in the hybrid approach.

As can be seen in the table, in terms of accuracy the hybrid approach is clearly better than

the pure RTC analysis. In particular, the conservativeness of the results is highly reduced,

with a maximum delay and backlog at T2 that are 31% and 33% lower with respect to the

RTC analysis, respectively. For the delay and the backlog at T3, the hybrid approach achieves

values that are 40% lower compared to the pure RTC analysis.

The reason for the better results can be understood by looking at Fig. 12, where we

employed the RTC-related labeling, i.e. the α-curves refer to input streams of events, the

α′-curves to their outgoing counterparts and the β- and β ′-curves to the ingoing and out-

going streams of available resources, respectively. A pure RTC-based analysis of the above

scenario cannot capture the load-dependent behavior of CPU1. Hence, one has to assume

that the processor always operates at 500 MHz in the best case and at 166 MHz in the

worst case. This assumption corresponds to using the service curves βuCPU1
RTC and β lCPU1

RTC (cf.

Fig. 12(A)) for the analysis of CPU1. This yields conservative worst-case processing load

218 K. Lampka et al.

Fig. 12 Curves associated with the case study

predictions captured by α′u
1,RTC for T2. However, a TA-based analysis of CPU1 produces

tighter input bounds captured by α′u
1,Hybrid for the RTC analysis of T2. This leads to smaller

worst case delay guarantees, as shown in Fig. 12(B) and 12(C).

The last line of Table 1 contains the exact values for the worst-case performance of the

system. These values are determined by means of the dedicated TA model for the entire

system. As can be seen in the table, the results for the hybrid analysis approach are slightly

more conservative. The reason is that the concave (convex) hull determined as bound for the

Analytic real-time analysis and timed automata: a hybrid methodology 219

Table 2 Run-times for performance analysis (All run-times in this paper are referred to a commodity com-

puter with a dual core CPU and 2 GB of RAM)

RTC Hybrid TA

Total run-time < 1 s 11 min 1 h

output event stream of T1 does slightly over- (under)-approximate the real behavior of the

system. The graphs of Fig. 12 do not show arrival and service curves for the exact internal

behavior of the system, as these interfaces are not intrinsic to the dedicated TA model.

The higher degree of accuracy of the hybrid analysis method in comparison to the pure

analytic RTC approach has its price, namely a substantially longer run-time, as can be seen

in Table 2. This becomes worse if one keeps in mind that we already decided to bound the

output curves by a convex (concave) pattern of three staircase functions only. In case of

requiring a higher degree of accuracy one needs to adapt the proposed scheme in order to

detect non-convex and non-concave patterns and its additional staircase functions. But this

once again comes along with clearly higher computation times. Nevertheless, the run-times

achieved for the hybrid approach are still significantly better compared to the verification of

the pure TA model.

Furthermore, we have observed that for the hybrid approach the run-times for deriving

an output curve from a TA component can be considerably reduced if for the representation

of the input stream we omit the lower bound, that is, in the event generator we use only

UTAs and leave out the LTAs. In the considered case study this corresponds to representing

the event stream SA by the upper bound αu
SA

of Fig. 12(A) only, without specifying the

lower bound αl
SA

. Note that such a relaxation of the stream specification does not harm the

correctness of the analysis. In particular, by omitting the lower bound we specify a superset

of timed input event streams with respect to the case with both, upper and lower bounds.

That is, all behaviors of the original model are contained in the relaxed model and hence

the analysis is safe. However, depending on the behavior of the modeled system component,

considering more input streams then in the original model might lead to more conservative

analysis results. In the system of Fig. 10 this is not the case, meaning that the same analysis

results are achieved when representing the stream SA without LTA compared to the case with

LTA. In terms of verification effort the difference is, however, substantial; by leaving out the

LTA the run-time of the hybrid approach is reduced from 11 min to 18 s, which shows that

the synchronization of UTAs and LTAs in the input generators is one of the major sources

of complexity in the discussed analysis methodology.

5.2 Scalability of the approach

In this subsection we report the results of two different experiments that investigate the

scalability of the proposed analysis method. The first experiment demonstrates the clear

superiority of the presented compositional methodology in terms of scalability of the ver-

ification effort with respect to holistic TA models. The second experiment points out the

main limitation of TA-based performance analysis in general, namely poor scalability with

respect to non-determinism in the specification of event streams.

5.2.1 Modular vs. holistic TA analysis

In this experiment we consider a larger distributed system consisting of several state-based

components. We compare two different TA-based methods for the analysis of the system.

220 K. Lampka et al.

Fig. 13 System instance with five components

Table 3 Parameters for the CPU

chain CPU1 CPU2 CPU3 CPU4 CPU5

flow [MHz] 166 166 166 166 166

fhigh [MHz] 1000 500 333 1000 500

threshold [events] 1 1 1 1 1

The first approach performs holistic analysis based on a single TA model of the entire sys-

tem. In the second approach the analysis is strictly modular. More precisely, in the second

case each component of the system is analyzed separately by an individual TA model, where

we use the staircase-curve based interfaces introduced in this paper to represent the input

and output event streams of the components. Obviously, characterizing the input/output in-

terfaces of each component explicitly by appropriate staircase curves will comport some ver-

ification overhead. However, we expect better scalability for the modular analysis approach,

as in contrast to the holistic method the analysis of each component is totally decoupled

from other components. In order to highlight how well the two different approaches scale

with the size of systems, we gradually increase the number of components in a predefined

system architecture and compare the results and run-times of the analysis methods.

The considered system template is a chain of n tasks, where each task executes on a

dedicated processor. We assume that the execution of each task takes 106 processor cycles.

The tasks successively process the events of an input event stream S. Figure 13 shows an

instance of the system for n = 5.

Each CPU in the chain implements a load-dependent frequency adaptation (see details

below). For the experiments we consider five different system instances, from n = 1 to

n = 5. That is, the first instance consists of T1/CPU1 only, the second instance of T1/CPU1

and T2/CPU2, etc. In order to allow for event bursts also at the last components of the chain,

we choose different maximum frequencies for the five processors. The parameters for the

processors are summed up in Table 3. The load-dependent frequency adaptation works as

follows: if there are not more than threshold events in the input buffer of a CPU, it will

execute at frequency flow, otherwise at fhigh, where again we exclude frequency changes

during the processing of an event.

The aim of the performance analysis is to determine, for each system instance, the worst-

case backlogs at the single event buffers. Note that since we consider a purely feed-forward

system architecture, when we increase the size of a system instance by adding one compo-

nent at the end of the chain, we need to verify only the backlog of the new component, as

the previous components are not affected by the extension of the system.

For the input event stream S we assume the same upper bound as for SA in the previous

case study, that is αu
S = αu

SA
. In order to speed up the run-times for both the holistic and the

modular analysis approach, we do, however, omit the specification of the lower bound αl
S as

described at the end of Sect. 5.1. The resulting TA model for the input generator consists of

two UTAs with parameters Nu
1 = 1, δu

1 = 1, and Nu
2 = 5, δu

2 = 7.

The results of the performance analysis are reported in Table 4. The first row in the table

contains the exact values for the worst-case backlogs. These values are determined by means

Analytic real-time analysis and timed automata: a hybrid methodology 221

Table 4 Worst-case backlogs as

derived with the different

approaches

Buf1 Buf2 Buf3 Buf4 Buf5

TA holistic 5 5 4 4 3

TA modular 5 5 5 4 5

RTC 5 6 6 6 7

Fig. 14 Computational effort of the modular and the holistic approaches

of holistic TA models for the different system instances. The second row shows the worst-

case backlogs as predicted by the modular analysis approach based on TA. The reason for the

slightly more conservative results is the same as in the case study of Sect. 5.1: The concave

hulls derived as upper bounds for the event streams transmitted between components are an

over-approximation of the real streams. In particular, for the sake of efficiency, we decided

to represent each input/output stream with a concave pattern of two linear staircase curves

only, which is not sufficient to capture the exact behavior of the system. For comparison

only, in the last row of Table 4 we report the analysis results achieved by a RTC analysis

of the system instances, which is obviously penalized, as the state-based behavior of the

components cannot be captured in the RTC models.

Let us now focus on the computational effort required by the considered analysis ap-

proaches. Figure 14 displays the run-times of the different methods for the analysis of the

five system instances. These run-times are cumulative, meaning that for a system instance

with n components they express the total time needed to determine the worst-case backlog

values for all n buffers. For the holistic TA analysis we consider two different alternatives

for the modeling of the input generator. The first variant uses the staircase-based TA pattern

for event generation described in this paper, which in this case corresponds to the combina-

tion of two UTAs. The second variant uses an optimized input generator for periodic event

streams with jitter/bursts as described in [10]. The chart of Fig. 14 shows a clear trend for the

holistic analysis approaches: The run-times increase exponentially with the size of the con-

sidered system instance (note the logarithmic scale on the y-axis). This holds for both types

of input event generators, the general one based on UTAs and the optimized one designed

for periodic streams with jitter/bursts. When we use the general input generator to trigger

222 K. Lampka et al.

the holistic TA model, we report a run-time of more than two hours to analyze the first three

components. For system instances with more than three components the model checker runs

out of memory after several hours of verification. For the optimized input generator the

run-times are slightly better with a maximum bearable system size of five components.

Also for the modular TA-based analysis approach the chart of Fig. 14 shows a trend: The

run-times increase nearly linearly with the number of considered components. In particular,

for each additional component in the chain the run-time increases by roughly 4–30 s. Given

the concave hull that describes the input stream of a component, this is the time needed

to determine the worst-case backlog of the component and to derive the concave hull that

bounds the output stream. The deviations from an exact linear increase pattern can most

likely be explained by the varying amount of non-determinism present in the specification

of the input streams at the different stages.

The above experiment highlights one of the main advantages of the proposed analysis

framework. By adopting appropriate patterns that permit to abstract the input/output inter-

faces of components, it enables a fully compositional system analysis. In particular, the

state-space explosion is limited to the level of isolated components. Consequently, the pro-

posed analysis technique scales to systems of almost arbitrary size, provided that the TA

abstractions of the single components are reasonably simple and the representation of the

input/output event streams is reasonably coarse.

5.2.2 Non-determinism in event stream specifications

In this second experiment we investigate how sensitive the run-times of the proposed compo-

sitional analysis method are with respect to increasing non-determinism in the specification

of the input event streams. More precisely, for a simple component modeled as TA, we grad-

ually increase the burstiness of the triggering input event stream, and measure the run-time

needed to characterize the output stream of the component.

We consider the component T1/CPU1 from Fig. 10 that implements the load-dependent

frequency adaptation described in Sect. 5.1. As input to the component we consider event

streams upper bounded by a simple linear staircase curve with step-width δu = 7 and seven

different levels of burstiness varying from Nu = 5 to Nu = 150. As for the previous ex-

periment, in order to speed up the verification times, we consider only an upper bound for

the input event stream and omit the lower bound. For all seven different input bounds we

record the run-time needed by the heuristic described in Sect. 4.3 to characterize the output

event stream, where we choose to represent the output bounds as the minimum of two linear

staircase functions. In order to ensure that in all seven cases the same number of verification

steps is needed to characterize the system output, we set k := Nu in the heuristic.

The results of the experiment are shown in Fig. 15. As can be seen in the chart, the

total run-time needed to characterize the output stream increases exponentially with the

jitter/burstiness of the input stream. While for the input stream with Nu = 5 the derivation

of an upper bound for the output event stream is performed in roughly one second, for the

input stream with Nu = 125 we record a run-time that is three orders of magnitude larger,

and for the input stream with Nu = 150 the model checker runs out of memory.

The described experiment clearly shows a limitation of TA-based performance analysis:

Only event streams with mediocre degree of non-determinism for the timing of event ar-

rivals can be handled with reasonable verification effort. This result is, however, not very

surprising, as in general with increasing non-determinism in a TA model the model checker

has to explore a larger number of system states.

Analytic real-time analysis and timed automata: a hybrid methodology 223

Fig. 15 Total run-time needed to characterize α

Fig. 16 Fixed priority

scheduling of two tasks

5.3 Approximation errors

In this final part of the experimental evaluation of the proposed analysis methodology

we briefly elaborate on possible approximation errors introduced by bounding the output

streams of system components with a convex/concave hull of staircase curves as described

in Sect. 4.3. In order to characterize these approximation errors in isolation from other ef-

fects, we apply the described TA-based analysis approach to two systems consisting of state-

less components only. We compare the obtained bounds with the results of an RTC analysis,

which for the considered systems ensures tight results.

Consider first the simple system architecture shown in Fig. 16. The depicted system con-

sists of a CPU that executes two tasks T1 and T2. The two tasks are triggered by two strictly

periodic streams S1 and S2 with periods p1 = 60 ms and p2 = 5 ms, respectively. The CPU

schedules the two tasks according to a preemptive fixed priority scheduling policy, where

T1 has higher priority than T2. We assume that the CPU executes at a constant frequency of

1 GHz and that the execution of T1 and T2 takes 60 ·106 and 5 ·106 cycles, respectively. The

goal of the analysis is to characterize the output event stream S′
2. For the TA-based analysis

of the system we employ a holistic TA model for the preemptive fixed priority scheduling

of two tasks, as described in [18].

Figure 17 shows the result for both the RTC analysis and the TA heuristic of Sect. 4.3.

The curves [α′l
2,RTC, α′u

2,RTC] (depicted with a solid line in the plot) represent the exact lower

and upper arrival curves for the stream S′
2 computed by the RTC analysis. The dashed lines in

the plot represent the bounds for the output event stream derived by the heuristic, where we

decided to represent the upper bound α′u
2TA as the minimum of two linear staircase functions

and the lower bound α′l
2TA by one single linear staircase function. As can be seen in the

plot, the heuristic clearly over-approximates the real upper bound for S′
2. The reason for

224 K. Lampka et al.

Fig. 17 Bounds for S′
2

determined by RTC (exact) and the TA-heuristic

this approximation error (represented by grey shaded areas in the figure) is that the heuristic

constructs only a concave hull of linear staircase functions to upper bound the output stream,

whereas the real upper bound of the stream does not have a strictly concave shape. Extending

the heuristic of Sect. 4.3 such that it handles such mixed convex/concave output patterns

without approximation errors is not trivial and would obviously also considerably slow down

the analysis process.

As second experiment for the illustration of approximation errors we consider a simpli-

fied version of the component T1/CPU1 from Fig. 10. Assume that instead of the described

load-dependent frequency adaptation, CPU1 can arbitrarily change its execution frequency

between 166 MHz and 500 MHz. Such a stateless best-case/worst-case component descrip-

tion is ideally suited for an exact RTC analysis of the component. As input for the compo-

nent we consider the stream SA as given in Sect. 5.1, that is, a periodic event stream with

jitter specified by the parameter triple p = 7 ms, j = 28 ms, d = 1 ms. The goal of the

analysis is again to characterize the output event stream of the component. Figure 18 shows

the results of both approaches, the RTC analysis and the heuristic of Sect. 4.3. The curves

[α′l
RTC, α′u

RTC] represent the exact lower and upper arrival curves for the component output

computed by RTC. These curves correspond to a periodic event stream with jitter specified

by the parameter triple p′ = 7 ms, j ′ = 32 ms, d ′ = 2 ms. For the heuristic approach, we

decide to represent the upper bound α′u
TA as the minimum of two linear staircase functions

and the lower bound α′l
TA by one linear staircase function. The plot shows that the heuristic

slightly over-approximates the real upper bound, although the maximum component output

follows a concave pattern. Similarly, the lower bound is slightly under-approximated. The

reason for this kind of approximation error is that the heuristic described in Sect. 4.3 does

not consider horizontal translations of linear staircase functions. In particular, looking at

Fig. 18 we see that the offset ηu, after which the real upper output bound of the component

follows the long-term rate δu
2 , is not a multiple of the long-term rate itself. That is, no linear

staircase function α′u without horizontal offset will precisely capture the long-term behavior

of the component. The reason for the under-approximation of the lower bound is analogous.

Note that in the first part of Sect. 4.2.4 we have described how this kind of approximation

error can be avoided when converting known input event streams described with PJD para-

meters to TA input generators. The case of bounding the output stream of a TA component

Analytic real-time analysis and timed automata: a hybrid methodology 225

Fig. 18 Output bounds determined by RTC (exact) and the TA-heuristic

is, however, more difficult, as the stream that needs to be bounded is obviously not known a

priori. In particular, permitting arbitrary horizontal shifts for the single linear staircase func-

tions would mean adding another degree of freedom for the heuristic and hence considerably

slow down the analysis process.

6 Conclusion

In this paper we developed a hybrid analysis methodology that couples analytic (stateless)

RTC- and state-based TA analysis. The presented technique is based on the observation that

stream abstractions in the form of arrival curves can be obtained by composing individual

linear staircase functions by means of minimum and maximum operations. The method-

ology relies on two different interfaces that were extensively discussed. The input interface

converts an arrival curve to a network of TA that triggers a TA component model. The output

interface performs the inverse transformation by constructing a tuple of arrival curves for the

output of a TA subsystem. In the realization of the input interface each staircase function is

guarded by its own TA, where the building of minimum and maximum is implemented by

synchronizing groups of TA. In the output interface, the parameters of staircase functions

are found by employing observer TA in a binary search based heuristic. For both interfaces

correctness is proven, which assures hard performance guarantees.

The proposed methodology limits state space explosion as intrinsic to formal verification

to the level of isolated (sub)-components, since loosely coupled TA-based component de-

scriptions can be verified in isolation. For maintaining scalability, we suggest to apply the

state-based analysis only to those components, for which an RTC analysis provides overly

pessimistic results. As demonstrated by the case study, such cases are found when dealing

with components showing state-dependent behavior. Overall, such a strategy will thereby

avoid overly conservative performance predictions, but still maintain the scalability of the

approach.

As arrival curves represent a more general abstraction for event streams than the widely

used PJD (periodic with jitter) event models, the proposed methodology can also directly be

applied to couple TA-based timing verification with other analysis tools relying on classical

real-time analysis, such as MAST [9] or Symta/S [11].

226 K. Lampka et al.

Lastly, we name some issues that this work leaves open. The heuristic devised for the

output interface does not explore shifted staircase curves or non convex/concave patterns.

In more general terms, the present work does not assure tightness for the output interface.

It does also not consider cycles in the event flow or dependencies among components that

require fixed-point iterations in the analysis process. These matters are left for future work.

Acknowledgements This work is funded by the European Union project COMBEST under grant number

215543 and by the Swiss National Science Foundation under grant number 200020-116594.

References

1. Altisen K, Moy M (2010) Arrival curves for real-time calculus: the causality problem and its solutions.

In: Esparza J, Majumdar R. (eds) TACAS, pp 358–372

2. Alur R, Dill DL (1990) Automata for modeling real-time systems. In: Paterson M (ed) Proceedings of

the 17th international colloquium on automata, languages and programming (ICALP’90). Lecture notes

in computer science, vol 443. Springer, Berlin, pp 322–335

3. Behrmann G, David A, Larsen KG (2004) A tutorial on UPPAAL. In: Bernardo M, Corradini F (eds)

Formal methods for the design of real-time systems: 4th international school on formal methods for the

design of computer, communication, and software systems, SFM-RT 2004. Lecture notes in computer

science, vol 3185. Springer, Berlin, pp 200–236

4. Bengtsson J, Yi W (2004) Timed automata: semantics, algorithms and tools. In: Lectures on concurrency

and Petri nets. Lecture notes in computer science, vol 3098. Springer, Berlin, pp 87–124

5. Boudec JYL, Thiran P (2001) Network calculus: a theory of deterministic queuing systems for the Inter-

net. Lecture notes in computer science, vol 2050. Springer, Berlin

6. Chakraborty S, Künzli S, Thiele L (2003) A general framework for analyzing system properties in

platform-based embedded system designs. Design, automation and test in Europe conference and ex-

hibition, vol 1

7. Chakraborty S, Phan LTX, Thiagarajan PS (2005) Event count automata: a state-based model for

stream processing systems. In: Proceedings of the 26th IEEE international real-time systems sympo-

sium (RTSS’05), pp 87–98

8. Dierks H, Metzner A, Stierand I (2009) Efficient model-checking for real-time task networks. In: 2nd

International conference on embedded software and systems. IEEE Computer Society, Los Alamitos, pp

11–18

9. González Harbour M, Gutiérrez García JJ, Palencia Gutiérrez JC, Drake Moyano JM (2001) Mast: Mod-

eling and analysis suite for real time applications. In: Proceedings of 13th Euromicro conference on

real-time systems. IEEE Computer Society, Los Alamitos, pp 125–134

10. Hendriks M, Verhoef M (2006) Timed automata based analysis of embedded system architectures. In:

Proceedings of the 20th international parallel and distributed processing symposium (IPDPS 2006). IEEE

Press, New York

11. Henia R, Hamann A, Jersak M, Racu R, Richter K, Ernst R (2005) System level performance analysis-the

SymTA/S approach. IEEE Proc Comput Digital Tech 152(2):148–166

12. Jonsson B, Perathoner S, Thiele L, Yi W (2008) Cyclic dependencies in modular performance analysis.

In: EMSOFT ’08: Proceedings of the 8th ACM international conference on embedded software. ACM,

New York, pp 179–188. doi:10.1145/1450058.1450083

13. Krcal P, Mokrushin L, Yi W (2007) A tool for compositional analysis of timed systems by abstraction

(extended abstract). In: Proceedings of 19th Nordic workshop on programming theory (NWPT07)

14. Künzli S, Hamann A, Ernst R, Thiele L (2007) Combined approach to system level performance analysis

of embedded systems. In: Proceedings of the 5th international conference on hardware/software codesign

and system synthesis 2007. ACM, New York, pp 63–68

15. Lampka K, Perathoner S, Thiele L (2009) Analytic real-time analysis and timed automata: a hybrid

method for analyzing embedded real-time systems. In: EMSOFT ’09: Proceedings of the seventh

ACM international conference on embedded software. ACM, New York, pp 107–116. doi:10.1145/

1629335.1629351

16. Modular Performance Analysis Framework and Matlab Toolbox. www.mpa.ethz.ch

17. Norström C, Wall A, Yi W (1999) Timed automata as task models for event-driven systems. In: Pro-

ceedings of the 6th international conference on real-time computing systems and applications. IEEE

Computer Society, Los Alamitos, p 182

http://dx.doi.org/10.1145/1450058.1450083
http://dx.doi.org/10.1145/1629335.1629351
http://dx.doi.org/10.1145/1629335.1629351
http://www.mpa.ethz.ch

Analytic real-time analysis and timed automata: a hybrid methodology 227

18. Perathoner S, Wandeler E, Thiele L, Hamann A, Schliecker S, Henia R, Racu R, Ernst R, Harbour MG

(2007) Influence of different system abstractions on the performance analysis of distributed real-time

systems. In: EMSOFT ’07: Proceedings of the 7th ACM & IEEE international conference on embedded

software. ACM, New York, pp 193–202. doi:10.1145/1289927.1289959

19. Phan L, Chakraborty S, Thiagarajan P (2008) A multi-mode real-time calculus. In: Proceedings of the

28th IEEE real-time systems symposium (RTSS 2008). IEEE Computer Society, Los Alamitos, pp 59–

69

20. Phan LTX, Chakraborty S, Thiagarajan PS, Thiele L (2007) Composing functional and state-based per-

formance models for analyzing heterogeneous real-time systems. In: Proceedings of the 28th IEEE real-

time systems symposium (RTSS 2007). IEEE Computer Society, Los Alamitos, pp 343–352

21. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems.

In: Proceedings of international symposium on circuits and systems, vol 4, pp 101–104

22. The Uppaal timed model checker. www.uppaal.com

23. Wandeler E, Thiele L, Verhoef M, Lieverse P (2006) System architecture evaluation using modular

performance analysis: a case study. Int J Soft Tools Technol Transf 8(6):649–667

http://dx.doi.org/10.1145/1289927.1289959
http://www.uppaal.com

	Analytic real-time analysis and timed automata: a hybrid methodology for the performance analysis of embedded real-time systems
	Abstract
	Introduction
	Related work
	Background theory
	Terminology
	Real-time calculus
	Timed automata

	The approach
	Requirements
	Input interface
	Linear input pattern
	(A) Implementation
	(B) Correctness and tightness of interface

	Convex and concave input pattern
	(A) Basic idea of the approach
	(B) Implementation

	Tightness and correctness of the interface
	(A) Tightness (Ralpha RTA)
	(B) Correctness (Ralpha RTA)
	(C) Identity (Ralpha = RTA)

	Extended input generators
	Shifted staircase curves
	Non-convex/concave patterns

	Complexity issues related to input modelling

	Output interface

	Experimental evaluation
	Case study
	Scalability of the approach
	Modular vs. holistic TA analysis
	Non-determinism in event stream specifications

	Approximation errors

	Conclusion
	Acknowledgements
	References

