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ABSTRACT. We prove weighted anisotropic analytic estimates for solutions of model el-
liptic boundary value problems in polyhedra. The weighted analytic classes which we use
are the same as those introduced by B. Guo in 1993 in view of establishing exponential
convergence for hp methods in polyhedra. We first give a simple proof of the weighted
analytic regularity in a polygon, relying on new elliptic a priori estimates with analytic
control of derivatives in smooth domains. The technique is based on dyadic partitions near
the corners. This technique can be successfully extended to polyhedra, but only isotropic
analytic regularity can be proved in this way. We therefore combine it with a nested open
set technique to obtain the three-dimensional anisotropic analytic result. Our proofs are
global and do not rely on the analysis of singularities.
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INTRODUCTION

Elliptic boundary value problems in domains with corners and edges have been investi-
gated by many authors. Let us quote the pioneering papers of V. A. Kondrat’ev [21] and
of V. Maz’ya and B. Plamenevskii [24, 25, 26, 27]. In these works, the regularity of the
solution and its singular behavior near edges and corners is described in terms of weighted
Sobolev spaces. Besides their own theoretical interest, these results are the basis for the
convergence analysis of finite element approximations of the boundary value problems.
But whereas these classical results allow to prove optimal convergence estimates for the
h version or the p version of the finite element method, they are not sufficient for proving
the (numerically observed) exponential convergence rate of the hp-version of the finite el-
ement method. Indeed, as has been shown for two-dimensional problems by I. Babuška
and B. Guo in [2, 3], the convergence analysis of the hp-FEM requires the introduction of
weighted spaces with analytic-type control of all derivatives, so-called “countably normed
spaces”. Babuška and Guo proved corresponding regularity results for several model prob-
lems [2, 3, 14, 17].

In three-dimensional domains, as soon as edges are present, the hp-version introduces
anisotropic refinement, performed only in the direction transverse to the edge. Thus the cor-
responding weighted spaces have to take this anisotropy into account. In [15, 16] Babuška
and Guo have started proving such estimates in a model situation.

For three-dimensional polyhedra (containing edges and corners) Guo has introduced the
corresponding relevant spaces in 1993 [13]: The anisotropy along edges has to combine
with the distance to corners. Since that time, the proof that the regularity of solutions
of elliptic boundary value problems with analytic right hand sides is described by these
spaces has been an open problem, even for the simplest cases of the Laplace equation
with Dirichlet or Neumann boundary conditions. In the error analysis of hp-FEM, such
regularity estimates have been taken as an assumption [13, 18, 32].

In this paper, we first give a simple proof of the 2D result on polygons, for Dirichlet and
Neumann conditions, using a dyadic partition technique. Then, relying on a nested open set
technique, we prove anisotropic regularity along edges in the framework of the anisotropic
weighted spaces introduced and used in [6, 7], but now with analytic-type estimates for
all derivatives. Combining the previous two steps with a 3D dyadic partition technique at
polyhedral corners, we obtain the desired analytic weighted regularity in a 3D polyhedron.

We use two types of weighted spaces of analytic functions. The first type is con-
structed from weighted Sobolev spaces of Kondrat’ev type. These spaces with “homoge-
neous norms” are suitable for the description of the regularity in the presence of Dirichlet
boundary conditions. For Neumann conditions, a new class of weighted analytic function
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spaces, constructed from Maz’ya-Plamenevskii-type weighted Sobolev spaces with “non-
homogeneous norms”, has to be used.

It is important to notice that the above spaces naturally contain the singular parts of
solutions, and give an accurate account of their generic regularity. Thus, in contrast with
investigations such as [19], we do not need to address separately vertex, edge and edge-
vertex singularities. Our estimates cover regular and singular parts at the same time.

Our proof of analytic regularity estimates is modular in the sense that it starts from low-
regularity a-priori estimates on smooth domains and proceeds to singular points, edges,
and finally polyhedral corners by employing the two techniques of dyadic partitions and
nested open sets. In order to avoid drowning this clear structure in too many technical
difficulties, we mainly restrict ourselves to the situation of homogeneous elliptic equations
with constant coefficients. Generalizations to operators with lower order terms and vari-
able coefficients will be briefly indicated. They will be discussed in more detail in our
forthcoming book [9].

PLAN OF THE PAPER

In section 1 we quote from [10] an elliptic a priori estimate with analytic control of
derivatives. This estimate improves the readability and efficiency of classical proofs of
analytic regularity in smooth domains as can be found in [31, 30, 23]. We refine this
estimate in view of tackling problems of Neumann type. In section 2, we make use of a
dyadic partition technique to construct weighted analytic estimates in plane sectors. This
technique is a powerful tool to prove what we call natural regularity shift results near
corners. This expression means that from two ingredients, namely basic regularity, i.e. a
certain weighted Sobolev regularity of low order, of the solution, and improved regularity,
i.e. high order weighted Sobolev regularity or weighted analytic regularity of the right hand
side, one deduces improved regularity of the solution. The technique of dyadic partitions
has been used in a similar framework in [4] for weighted Gevrey regularity. It has been
employed earlier for domains with edges [26] and for the Laplace operator on a polygon
with non-linear boundary conditions [20]. In section 3, we combine the local estimates to
obtain the analytical regularity shift in polygons.

In section 4 we start the three-dimensional investigation with estimates along an edge.
We introduce anisotropic weighted spaces in which derivatives along the direction of the
edge are less singular towards the edge. Under the assumption of a certain local a pri-
ori estimate of low order at the neighborhood of an edge point, we prove local analytic
anisotropic regularity shift along this edge, by combining dyadic partition technique and
the classical (and delicate) tool of nested open sets. In section 5, we treat polyhedral cor-
ners. Relying on suitable definitions of various families of weighted spaces with anisotropy
along edges (as in [29]) we are able to prove the analytic regularity shift for polyhedra by
dyadic partitions around each corner of a polyhedron.

In section 6, we combine our analytic regularity shift results with known estimates giv-
ing basic regularity of the solution for the case of problems in variational form. On poly-
gons, we use for this purpose Kondrat’ev’s classical regularity results in weighted Sobolev
spaces, and on polyhedra, we use recent regularity results by Maz’ya and Rossmann [29].
In this way, we finally obtain the weighted analytic regularity of variational solutions in the
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right functional classes of [13]. For polygons, we thus prove again in a different and sim-
pler way results which were first established by Babuška and Guo [2, 14]. For polyhedra,
the results are new.

We conclude our paper in sections 7 and 8 by discussing various generalizations of our
results. For our proofs, we choose in this paper the simplest possible framework of second
order homogeneous systems with constant coefficients and zero boundary data on domains
with piecewise straight or plane boundaries. In dimension 2, it is a mere technicality to gen-
eralize these proofs to the case of second order elliptic systems with analytic coefficients
and non-zero boundary data. In dimension 3, the possible variation of coefficients along
edges introduces more serious complications and would require to estimate commutators
in a systematic way as in [10, Lemmas 1.6.2 & 2.6.2]. In comparison, the generalization to
homogeneous transmission problems with constant coefficients on a polyhedral partition
would be much less difficult. Whereas the Stokes system could be considered similarly,
things are different for regularized harmonic Maxwell equations, for which it is necessary
to detach the first singularity if one wants to obtain a valuable result, see [11] in dimension
two.

We denote by Hm(Ω) the usual Hilbert Sobolev space of exponent m, by ‖ · ‖m; Ω and
| · |m; Ω its norm and semi-norm. The L2(Ω)-norm is denoted by ‖ · ‖0;Ω or simply by ‖ · ‖Ω .
Boldface letters like Hm(Ω) indicate spaces of vector functions.

1. LOCAL ANALYTIC ESTIMATES IN SMOOTH DOMAINS

The starting and key point is a local analytic estimate in smooth domains that is proved
by using nested open sets on model problems and a Faà di Bruno formula for local maps,
see [10, Theorem 2.7.1] for details.

Theorem 1.1. Let Ω be a bounded domain in Rn, n ≥ 2. Let Γ be an analytic part of
the boundary of Ω. Let L be a N × N elliptic system of second order operators with
analytic coefficients over Ω∪Γ. Let {T, D} be a set of boundary operators on Γ of order 1
and 0, respectively, with analytic coefficients, satisfying the Shapiro-Lopatinskii covering
condition with respect to L on Γ. Let two bounded subdomains Ω̂ = U∩Ω and Ω̂′ = U ′∩Ω

be given with U and U ′ open in Rn and U ⊂ U ′. We assume that Γ̂′ := ∂Ω̂′∩∂Ω is contained
in Γ. Then there exists a constant A such that any u ∈ H2(Ω̂) satisfies for all k ∈ N, k ≥ 2,
the improved a priori estimates (“finite analytic estimates”)

(1.1)
1

k!
|u|

k; bΩ ≤ Ak+1
{ k−2∑

`=0

1

`!

(
|Lu|

`; bΩ′+ ‖Tu‖
`+ 1

2
; bΓ′+ ‖Du‖

`+ 3
2
; bΓ′

)
+ ‖u‖

1; bΩ′

}
.

For boundary value problems of Neumann type, it will be convenient to replace in the
right-hand side of (1.1) the H1-norm by the H1-semi-norm. When L, T and D are ho-
mogeneous with constant coefficients, this version is a consequence of the previous result,
obtained by a simple argument based on the Bramble-Hilbert lemma. In the following
statement, we present a general version of such estimates using semi-norms in the right-
hand side.
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Corollary 1.2. We assume that the operators L, T and D are homogeneous with constant
coefficients. Let m ≥ 1. There exists a constant A independent of k such that there hold
the following estimates for all k ≥ m and all u satisfying the zero boundary conditions
Tu = 0 and Du = 0 on Γ̂:

(1.2)
1

k!
|u|

k; bΩ ≤ Ak+1
{ k−2∑

`=m−1

1

`!
|Lu|

`; bΩ′ + |u|
m; bΩ′

}
.

Proof. We start with any u ∈ Hk(Ω̂′) and use estimate (1.1). We split the right hand side
of the inequality into two pieces according to:

k−2∑
`=0

1

`!

(
|Lu|

`; bΩ′+ ‖Tu‖
`+ 1

2
; bΓ′+ ‖Du‖

`+ 3
2
; bΓ′

)
+ ‖u‖

1; bΩ′ = B∗(u) + B∗(u)

with

B∗(u) =
k−2∑

`=m−1

1

`!

(
|Lu|

`; bΩ′ + |Tu|
`+ 1

2
; bΓ′ +

∑̀
j=m−1

|Tu|
j; bΓ′ + |Du|

`+ 3
2
; bΓ′ +

`+1∑
j=m

|Du|
j; bΓ′

)
B∗(u) =

m−2∑
`=0

1

`!

(
|Lu|

`; bΩ′ + |Tu|
`+ 1

2
; bΓ′ + |Du|

`+ 3
2
; bΓ′

)

+
k−2∑
`=0

1

`!

( min{`,m−2}∑
j=0

|Tu|
j; bΓ′ +

min{`+1,m−1}∑
j=0

|Du|
j; bΓ′

)
+ ‖u‖

1; bΩ′

Since the orders of L, T and D are 2, 1 and 0 respectively, we obtain

B∗(u) ≤ Cm‖u‖m; bΩ′

Since, moreover, the operators L, T and D are homogeneous, we have the invariance of
B∗(u) by subtraction of polynomials of degree less than m− 1

B∗(u−ϕ) = B∗(u), ∀ϕ ∈ Pm−1(Ω̂′).

Altogether, using (1.1) for u−ϕ we obtain for all k ≥ m

1

k!
|u|

k; bΩ ≤ Ak+1
{
B∗(u) + Cm‖u−ϕ‖

m; bΩ′

}
, ∀ϕ ∈ Pm−1(Ω̂′).

With the Bramble-Hilbert lemma [5], this gves
1

k!
|u|

k; bΩ ≤ Ak+1
{
B∗(u) + C ′

m|u|m; bΩ′

}
.

Applying this to functions u satisfying zero boundary conditions, we obtain (1.2). �

2. LOCAL ANALYTIC ESTIMATES IN PLANE SECTORS

The model singular domains in two dimensions are the infinite plane sectors. Let K be
an infinite sector with vertex at the coordinate origin 0 = (0, 0). In polar coordinates (r, θ)
such a sector can be described as

(2.1) K = {x ∈ R2 : ω1 < θ < ω2},
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where ω2 = ω1 + ω with ω1 ∈ (−π, π) and ω ∈ (0, 2π] is the opening of the sector K. For
i = 1, 2, let Γi be the side θ = ωi of K.

We consider an elliptic system of order 2, homogeneous with constant coefficients, cov-
ered on each side Γi by a set {Ti, Di} of boundary conditions. For any subdomain W ′ of
K, we consider the system of local interior and boundary equations

(2.2)


Lu = f in K ∩W ′,

Ti u = 0 on Γi ∩W ′, i = 1, 2,

Di u = 0 on Γi ∩W ′, i = 1, 2,

which is the localization to W ′ of the elliptic boundary value problem Lu = f in K, with
zero boundary conditions on Γ1 and Γ2.

2.1. Weighted spaces with homogeneous norms. These spaces coincide with those in-
troduced by KONDRAT’EV in his pioneering study of corner problems [21]. The weight
depends on the order of the derivatives. We adopt a different convention than [21] in our
notation in order to make the definition of corresponding analytic classes more natural (see
(3.6) below).

Definition 2.1. Let β be a real number called the weight exponent, and let m ≥ 0 be an
integer called the Sobolev exponent. Let W be a subdomain of K.

The weighted space with homogeneous norm Km
β (W) is defined, with the distance

r = |x| to the vertex 0, by

(2.3) Km
β (W) =

{
u ∈ L2

loc(W) : rβ+|α|∂α
x u ∈ L2(W), ∀α, |α| ≤ m

}
and endowed with semi-norm and norm respectively defined as

(2.4) |u|2
m,β ;W =

∑
|α|=m

‖rβ+|α|∂α
x u‖2

0;W and ‖u‖2

Km
β (W)

=
m∑

k=0

|u|2
k,β ;W .

Theorem 2.2. LetW andW ′ be the intersections of K with the balls centered at 0 of radii
1 and 1 + δ, respectively. Let β ∈ R and n ∈ N. Let u ∈ H2

loc(W ′ \ {0}) be a solution of
problem (2.2). Then the following implication holds

(2.5) u ∈ K1
β(W ′) and f ∈ Kn

β+2(W ′) =⇒ u ∈ Kn+2
β (W)

and there exists a constant C ≥ 1 independent of u and n such that for any integer k,
0 ≤ k ≤ n + 2, we have

(2.6)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;W ′

) 1
2

+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

0;W ′

}
.

Proof. Let us assume that u ∈ K1
β(W ′) and Lu = f ∈ Kn

β+2(W ′). Let us prove estimate
(2.6). By definition of the weighted spaces, the right-hand side of (2.6) is bounded. The
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•
0

K

x = 2−µx̂

V̂

V̂ ′
Vµ

V ′µ

FIGURE 1. Reference and scaled annuli for a sector K of opening 3π/2

proof of the estimate is based on a locally finite dyadic covering of W and W ′. Let us
introduce the reference annuli, see Fig. 1

(2.7) V̂ = {x ∈ K : 1
4

< r(x) < 1} and V̂ ′ = {x ∈ K : 1
4
− δ < r(x) < 1 + δ}.

and for µ ∈ N the scaled annuli:

Vµ = 2−µV̂ and V ′µ = 2−µV̂ ′.

We check immediately that

W =
⋃
µ∈N

Vµ and W ′ =
⋃
µ∈N

V ′µ .

STEP 1. We are going to apply Theorem 1.1 in two regions which separate the two sides
Γ1 and Γ2 of K where the boundary conditions can be distinct. We recall that the sector K
is defined by the angular inequalities ω1 < θ < ω2. Let ω3 := 1

2
(ω1 + ω2). We define the

sectors K1 and K2 by

K1 = {x ∈ R2 : ω1 < θ < ω3} and K2 = {x ∈ R2 : ω3 < θ < ω2}.

Let δ < 1
2
(ω2 − ω1). We define the larger sectors K′

1 and K′
2 by

K′
1 = {x ∈ R2 : ω1 < θ < ω3 + δ} and K′

2 = {x ∈ R2 : ω3 − δ < θ < ω2}.

Let i ∈ {1, 2}. Since the system L is elliptic and covered by its boundary conditions
{Ti, Di} on Γi, the reference domains V̂ ∩ Ki and V̂ ′ ∩ K′

i satisfy the assumptions of
Theorem 1.1, and there exists a positive constant Ai such that for all k ∈ N, k ≥ 2, we
have:

(2.8)
1

k!
|û|

k; bV∩Ki
≤ Ak+1

i

{ k−2∑
`=0

1

`!
|̂f|

`; bV ′∩K′
i

+
1∑

`=0

|û|
`; bV ′∩K′

i

}
,
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for any function û satisfying the boundary conditions of (2.2) and f̂ := Lû. From these
estimates for i = 1, 2 we deduce immediately, with A = max{A1, A2}

(2.9)
1

k!
|û|

k; bV ≤ 2Ak+1
{ k−2∑

`=0

1

`!
|̂f|

`; bV ′ +
1∑

`=0

|û|
`; bV ′

}
,

STEP 2. Since r(x̂) ' 1 on V̂ ′, we can insert weights in the reference estimate (2.9):
There exists a positive constant B such that for all k ∈ N, k ≥ 2

1

k!

( ∑
|α|=k

‖r(x̂)β+|α|∂α
x̂ û‖2

0; bV
) 1

2 ≤ Bk+1
{ k−2∑

`=0

1

`!

( ∑
|α|=`

‖r(x̂)β+2+|α|∂α
x̂ f̂‖2

0; bV ′

) 1
2

(2.10)

+
∑
|α|≤1

‖r(x̂)β+|α|∂α
x̂ û‖

0; bV ′

}
.

By the change of variables x̂ → x = 2−µx̂ that maps V̂ onto Vµ (resp. V̂ ′ onto V ′µ) coupled
with the change of functions

û(x̂) := u(x) and f̂(x̂) := Lû which implies f̂(x̂) = 2−2µf(x),

we deduce from estimate (2.10) that

1

k!
2µβ−µ

( ∑
|α|=k

‖r(x)β+|α|∂α
x u‖2

0;Vµ

) 1
2 ≤ Bk+1

{
k−2∑
`=0

1

`!
2µ(β+2)−µ

( ∑
|α|=`

2−2µ‖r(x)β+2+|α|∂α
x f‖2

0;V ′
µ

) 1
2
+ 2µβ−µ

∑
|α≤1

‖r(x)β+|α|∂α
x u‖

0;V ′
µ

}
.

Multiplying this identity by 2−µβ+µ, the above estimate is equivalent to

1

k!

( ∑
|α|=k

‖r(x)β+|α|∂α
x u‖2

0;Vµ

) 1
2 ≤ Bk+1

( k−2∑
`=0

1

`!

( ∑
|α|=`

‖r(x)β+2+|α|∂α
x f‖2

0;V ′
µ

) 1
2

+
∑
|α|≤1

‖r(x)β+|α|∂α
x u‖

0;V ′
µ

)
.

Summing up the square of this estimate over all µ and considering that only a finite number
of the V ′µ overlap, we get the desired estimate (2.6). �

2.2. Weighted spaces with non-homogeneous norms. In these spaces the weight expo-
nent does not depend on the order of derivatives. Standard unweighted Sobolev spaces
are a special case. The weighted Sobolev spaces with nonhomogeneous norms allow an
accurate description of the regularity of functions with non-trivial Taylor expansion at the
corners. In particular, they are useful for studying variational problems of Neumann type,
because the variational space H1 does not fit properly into the scale K1

β .

Definition 2.3. Let β be a real number and m ≥ 0 an integer.
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Let W be a subdomain of K. The weighted space with non-homogeneous norm
Jm

β (W) is defined by

(2.11) Jm
β (W) =

{
u ∈ L2

loc(W) : rβ+m∂α
x u ∈ L2(W), ∀α, |α| ≤ m

}
with its norm

‖u‖2

Jm
β (W)

=
∑
|α|≤m

‖rβ+m∂α
x u‖2

0;W .

Note that the semi-norm of Jm
β (W) coincides with the semi-norm of Km

β (W). They are
both denoted by | · |

m,β ;W . With this notation, we have

(2.12) ‖u‖2

Jm
β (W)

=
m∑

k=0

|u|2
k,β+m−k ;W .

We recall from [8] the “step-weighted” characterization of Jm
β in the case of two space

dimensions:

Proposition 2.4. Let β ∈ R and m ∈ N such that β + m > −1. Let σ be any real number
in the interval (−1, β + m]. Then the norm in the space Jm

β (W) is equivalent to

(2.13)
( ∑
|α|≤m

‖rmax{β+|α|, σ}∂α
x u‖2

0;W

) 1
2
.

Corollary 2.5. Let β ∈ R. Let m be a natural number such that β + m > −1. Then
Jm+1

β (W) ⊂ Jm
β (W).

Theorem 2.6. LetW andW ′ be the intersections of K with the balls centered at 0 of radii
1 and 1 + δ, respectively. Let β be a real number and let m ≥ 1 be an integer. We assume
that β +m > −1. Let n ≥ m−1 be another integer. Let u ∈ H2

loc(W ′ \{0}) be a solution
of problem (2.2). Then the following implication holds

(2.14) u ∈ Jm
β (W ′) and f ∈ Jn

β+2(W ′) =⇒ u ∈ Jn+2
β (W)

and there exists a constant C ≥ 1 independent of u and n such that for all integer k,
m ≤ k ≤ n + 2, we have

(2.15)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=m−1

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;W ′

) 1
2

+
∑
|α|=m

‖rβ+|α|∂α
x u‖

0;W ′

}
.

Proof. Let us assume that u ∈ Jm
β (W ′) is such that f ∈ Jn

β+2(W ′). Let k, m < k ≤ n + 2.
Let us prove estimate (2.15). Since β + m > −1, we have β + 2 + |α| > −1 for all α
with length ≥ m − 1. Therefore, as a consequence of Proposition 2.4, the right-hand side
of (2.15) is bounded.

Then, in a similar way as in the proof of Theorem 2.2, we start from estimate (1.2) writ-
ten for the reference domains V̂ and V̂ ′ and we apply the same dyadic covering technique.
We arrive directly at the estimate (2.15).
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It remains to prove that u ∈ Jn+2
β (W). SinceW is bounded, estimate (2.15) implies that

rβ+n+2∂α
x u belongs to L2(W) for all α, m ≤ |α| ≤ n + 2. Since u ∈ Jm

β (W ′), we deduce
that rβ+n+2∂α

x u also belongs to L2(W) when |α| < m, which ends the proof. �

3. ANALYTIC WEIGHTED REGULARITY SHIFT IN POLYGONS

Let Ω be a polygonal domain. This means that the boundary of Ω is the union of a finite
number of line segments (the sides Γs, for indices s ∈ S ). We do not assume that Ω is a
Lipschitz domain, that is we include the presence of cracks in our analysis. The vertices c
are the ends of the edges. Let us denote by C the set of vertices and

(3.1) rc(x) = dist(x, c).

There exists ε > 0 such that, setting

(3.2a) Ωc = {x ∈ Ω : rc < ε},

we have

(3.2b) Ωc ∩ Ωc′ = ∅, ∀c 6= c′.

Choosing ε′′ < ε and setting Ω′′
c = {x ∈ Ω : rc < ε′′}, we define

(3.2c) Ω0 = Ω \
⋃
c∈C

Ω′′
c .

We also define larger neighborhoods choosing ε′ > ε such that

(3.2d) Ω′
c = {x ∈ Ω : rc < ε′}, Ω′

c ∩ Ω′
c′ = ∅, ∀c 6= c′ ,

and we finally set

(3.2e) Ω′
0 = Ω \

⋃
c∈C

Ωc .

For each corner there is a plane sector Kc with vertex 0 such that the translation x 7→ x− c
sends Ωc onto Kc ∩ B(0, ε).

Let β = (βc)c∈C ∈ R#C be a weight multi-exponent and m ∈ N a Sobolev exponent.
By localization we define the weighted semi-norm on any domain V ⊂ Ω:

(3.3) |u|2
m,β ;V =

∑
|α|=m

(
‖∂α

x u‖2

0;V∩Ω0
+

∑
c∈C

‖rβc+|α|
c ∂α

x u‖2

0;V∩Ωc

)
,

and the norms, cf. (2.4) and (2.12)

(3.4) ‖u‖2

Km
β (V)

=
m∑

k=0

|u|2
k,β ;V and ‖u‖2

Jm
β (Ω)

=
m∑

k=0

|u|2
k,β+m−k ;V ,

defining the spaces Km
β (V) and Jm

β (V), respectively. If all weight exponents βc coincide
with the same number β, these spaces are simply denoted by Km

β (V) and Jm
β (V), respec-

tively. Boldface notations Km
β (V) and Jm

β (V) indicate vector-valued functions.
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Remark 3.1. The semi-norm |u|
m,β ; Ω

is equivalent to the globally defined semi-norm

(3.5)
{ ∑
|α|=m

∥∥∥( ∏
c∈C

rβc+|α|
c

)
∂α

x u
∥∥∥2

0;Ω

} 1
2
.

We define on any domain V ⊂ Ω the corresponding weighted analytic classes.
(i) With homogeneous norm:

(3.6) Aβ(V) =
{

u ∈
⋂
m≥0

Km
β (V) : ∃C > 0,∀m ∈ N, |u|

m,β ;V ≤ Cm+1m!
}

.

(ii) With non-homogeneous norm: For a multi-exponent β let

(3.7) η := max
c∈C

−βc − 1.

As a consequence of Proposition 2.4, for all m > η we have the continuous embedding of
Jm+1
β (V) into Jm

β (V). We introduce

(3.8) Bβ(V) =
{

u ∈
⋂

m>η

Jm
β (V) : ∃C > 0,∀m > η |u|

m,β ;V ≤ Cm+1m!
}

.

Remark 3.2. (i) The classes Aβ(Ω) and Bβ(Ω) can be equivalently defined replacing semi-
norms |u|

m,β ; Ω
by the global semi-norms (3.5).

(ii) The classes Aβ(Ω) can also be equivalently defined locally i.e.

Aβ(Ω) = {u ∈ L2
loc(Ω) : u

∣∣
Ω0
∈ A(Ω0) and u

∣∣
Ωc
∈ Aβc(Ωc) ∀c ∈ C }.

Here A(Ω0) is the unweighted class of analytic functions on Ω0. The spaces Bβ(Ω) allow
analogous local descriptions.

Remark 3.3. (i) Our spaces Bβ(Ω) coincide with the family of countably normed spaces
B`

β(Ω), introduced by Babuška and Guo [2]: The spaces B`
β(Ω) are defined for ` ∈ N and

0 < β < 1, and there holds

(3.9) B`
β(Ω) = Bβ−`(Ω) .

(ii) The relation between the classes Aβ(Ω) and Bβ(Ω) follows from the relation between
the weighted spaces with homogeneous and nonhomogeneous norms Km

β (Ω) and Jm
β (Ω).

On the finite sector Ωc there holds [27, 22] (more details are given in [8] and [9, Ch. 11]):
If β > −1, then Jm

β (Ωc) = Km
β (Ωc) for all m ∈ N.

If β ≤ −1 and m ≤ −β − 1, then, again, Jm
β (Ωc) = Km

β (Ωc).
If β ≤ −1 and m > −β − 1, then one has to distinguish two cases:
• the generic case −β 6∈ N, in which one has

Jm
β (Ωc) = Km

β (Ωc)⊕ P[−β−1]

where P[−β−1] is the space of polynomials of degree not exceeding −β − 1;
• the critical case −β ∈ N, in which Jm

β (Ωc) contains Km
β (Ωc) ⊕ P−β−1 as a strict

subspace.
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As a consequence it follows that for β > −1 there holds Bβ(Ωc) = Aβ(Ωc), whereas for
β ≤ −1 one has in the non-critical case −β 6∈ N:

(3.10) Bβ(Ωc) = Aβ(Ωc)⊕ P[−β−1]

and in the critical case −β ∈ N: Bβ(Ωc) contains Aβ(Ωc)⊕ P−β−1 as a strict subspace.

We consider a “mixed” boundary value problem on the polygonal domain Ω: We sup-
pose that we are given an homogeneous second order elliptic system L with constant coef-
ficients and for each side s a covering set of boundary operators {Ts, Ds} of order 1 and 0,
homogeneous with constant coefficients. The boundary value problem under consideration
is:

(3.11)


Lu = f in Ω,

Ts u = 0 on Γs, s ∈ S ,

Ds u = 0 on Γs, s ∈ S .

Note that one of Ts or Ds may be the zero operator, in which case the corresponding
boundary condition is empty.

We can now prove the following statement of natural regularity shift in weighted analytic
spaces with homogeneous or non-homogeneous semi-norms:

Theorem 3.4. Let β = (βc)c∈C be a weight multi-exponent. Let u ∈ H2
loc(Ω \ C ) be a

solution of problem (3.11).
(i) The following implications hold

(3.12a) u ∈ K1
β(Ω) and f ∈ Kn

β+2(Ω) =⇒ u ∈ Kn+2
β (Ω) (n ∈ N).

and

(3.12b) u ∈ K1
β(Ω) and f ∈ Aβ+2(Ω) =⇒ u ∈ Aβ(Ω).

(ii) Let m ≥ 1 be an integer such that βc + m > −1 for all c ∈ C . Then the following
implications hold

(3.13a) u ∈ Jm
β (Ω) and f ∈ Jn

β+2(Ω) =⇒ u ∈ Jn+2
β (Ω) (n ∈ N).

and

(3.13b) u ∈ Jm
β (Ω) and f ∈ Bβ+2(Ω) =⇒ u ∈ Bβ(Ω).

Proof. The finite regularity shift results in (3.12a) and (3.13a) are obvious consequences of
Theorems 2.2 and 2.6. Let us prove (3.12b). The uniform estimate (2.6) is valid between
Ωc and Ω′

c for all c ∈ C . The uniform estimate (1.1) of the smooth case is valid between Ω0

and Ω′
0. Combining these estimates we obtain the global uniform estimate for all integer

k ≥ 2

1

k!
|u|

k,β ; Ω
≤ Ck+1

( k−2∑
`=0

1

`!
|f|

`,β+2 ;Ω
+ ‖u‖

K1
β(Ω)

)
.
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If f ∈ Aβ+2(Ω), it satisfies |f|
`,β ; Ω

≤ F `+1`! for some constant F > 1. Thus the previous
estimate yields

|u|
k,β ; Ω

≤ k! Ck+1
( k−2∑

`=0

F `+1 + ‖u‖
K1

β(Ω)

)
= k! Ck+1

(F k − F

F − 1
+ ‖u‖

K1
β(Ω)

)
.

Hence u ∈ Aβ(Ω). The proof of (3.13b) is similar, based on estimate (2.15). �

4. LOCAL ANISOTROPIC ANALYTIC ESTIMATES IN DIHEDRAL DOMAINS

Infinite dihedral domains (or wedges) are the model domains for polyhedra which have
the lowest level of complexity. In this section, we consider dihedral domains D in a model
configuration, that is there exists a plane sector K with vertex 0 so that

(4.1) D = K × R and x = (x1, x2, x3) = (x⊥, x3) ∈ D ⇔ x⊥ ∈ K, x3 ∈ R.

The edge e of the dihedral domain D is the line x1 = x2 = 0.
Let V be any subdomain of D. We consider the system of local interior and boundary

equations

(4.2)


Lu = f in D ∩ V ,

Ti u = 0 on (Γi × R) ∩ V , i = 1, 2,

Di u = 0 on (Γi × R) ∩ V , i = 1, 2,

where the operators L, Ti and Di are homogeneous with constant coefficients and form
an elliptic system. The system (4.2) is the localization to V of the elliptic boundary value
problem Lu = f in D, with zero boundary conditions on Γ1 × R and Γ2 × R.

4.1. Isotropic estimates: natural regularity shift. The weighted spaces for the dihedron
are defined by the same formulas as in the case of a plane sector:

Definition 4.1. Let β be a real number and let m ≥ 0 be an integer. Let W ⊂ D.
The isotropic weighted spaces Km

β (W) and Jm
β (W) are defined, with the distance

r := |x⊥| =
√

x2
1 + x2

2 to the edge e, by

Km
β (W) =

{
u ∈ L2

loc(W) : rβ+|α|∂α
x u ∈ L2(W), ∀α, |α| ≤ m

}
Jm

β (W) =
{
u ∈ L2

loc(W) : rβ+m∂α
x u ∈ L2(W), ∀α, |α| ≤ m

}
endowed with their natural semi-norms and norms. Recall that ∂α

x denotes the
derivative with respect to the three variables x1, x2, x3.

We call these spaces isotropic, in opposition with the anisotropic spaces Mm
β (W) and

Nn
β(W) which will be introduced in the next subsection.
We gather in one statement the results concerning the K and the J spaces. Here we set

(4.3)
W =

(
K ∩ B(0, 1)

)
× (−1, 1)

Wε =
(
K ∩ B(0, 1 + ε)

)
× (−1− ε, 1 + ε), ε > 0.
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Theorem 4.2. Let β ∈ R and n ∈ N. Let u ∈ H2
loc(Wε \ e) be a solution of problem (4.2)

with V = Wε.
(i) If u ∈ K1

β(Wε) and f ∈ Kn
β+2(Wε) then u ∈ Kn+2

β (W) and there exists a constant
C ≥ 1 independent of u and n such that for any integer k, 0 ≤ k ≤ n + 2, we have

(4.4)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;Wε

) 1
2

+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

0;Wε

}
.

(ii) Let m ≥ 1 be an integer. We assume that β + m > −1. Let n ≥ m − 1 be another
integer. If u ∈ Jm

β (Wε) and f ∈ Jn
β+2(Wε), then u ∈ Jn+2

β (W) and there exists a constant
C ≥ 1 independent of u and n such that for any integer k, m ≤ k ≤ n + 2, we have

(4.5)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=m−1

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;Wε

) 1
2

+
∑
|α|=m

‖rβ+|α|∂α
x u‖

0;Wε

}
.

Proof. Like in the case of Theorems 2.2 and 2.6, the proof relies on a locally finite dyadic
covering of W and Wε. The reference domains are now

V̂ = {x⊥ ∈ K : 1
4

< |x⊥| < 1} × (−1
2
, 1

2
)

V̂ ′ = {x⊥ ∈ K : 1
4
− ε < |x⊥| < 1 + ε} × (−1

2
− ε, 1

2
+ ε)

and for µ ∈ N and ν ∈ Z:

Vµ,ν = 2−µ
(
V̂ + (0, 0, ν

2
)
)

and V ′µ = 2−µ
(
V̂ ′ + (0, 0, ν

2
)
)
.

We check immediately that

W =
⋃
µ∈N

⋃
|ν|<2µ+1

Vµ,ν and Wε ⊃
⋃
µ∈N

⋃
|ν|<2µ+1

V ′µ,ν .

and that these coverings are locally finite. An a priori estimate between Vµ,ν and V ′µ,ν is
deduced from a reference a priori estimate between V̂ and V̂ ′ by the change of variables
x̂ → x = 2−µ(x̂ + (0, 0, ν

2
)) that maps V̂ onto Vµ,ν and V ′ onto V̂ ′µ,ν . Here we use the fact

that the operators L, T and D are homogeneous with constant coefficients. Then the rest
of the proof goes exactly as in the case of the plane sectors. �

4.2. Tangential regularity along the edge (homogeneous norms). The result in the pre-
vious sections only rely on the ellipticity of the boundary value problem under consid-
eration. Now we will require a stronger condition, which is a local Peetre-type a priori
estimate in an edge neighborhood. From this condition we will derive analytic type esti-
mates for all derivatives ∂j

x3
in the direction of the edge.
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Assumption 4.3. Let β ∈ R. Let W and W ′ = Wε be the domains defined in (4.3) for
some ε > 0. We assume that the following a priori estimate holds for problem (4.2) on
V = W ′: There is a constant C such that any

u ∈ K2
β(W) ,

solution of problem (4.2) with f ∈ K0
β+2(W ′), satisfies:

(4.6) ‖u‖
K2

β(W)
≤ C

(
‖f‖

K0
β+2(W ′)

+ ‖u‖
K1

β+1(W ′)

)
.

Remark 4.4. (i) Assumption 4.3 is independent of ε (although the constant C depends on
it), and more generally independent of the choice of the domainsW andW ′, if they satisfy
the following conditions: There exists a ball with center on the edge e contained inW , and
W ′ contains W ∩D.
(ii) The inequality (4.6) is a Peetre-type estimate, since K2

β(W) is compactly embedded in
K1

β+1(W).
(iii) As a consequence of Theorem 4.2, it is equivalent to postulate the estimate

‖u‖
K1

β(W)
≤ C

(
‖f‖

K0
β+2(W ′)

+ ‖u‖
K1

β+1(W ′)

)
.

for all u ∈ K1
β(W ′) ∩H2

loc(W ′ \ e)

The first step for higher order estimates is the ρ-estimate for which we control the de-
pendence of the constant C in (4.6) on the “distance” between W and W ′.

Lemma 4.5. Under Assumption 4.3, let R ∈ [0, ε) and ρ ∈ (0, ε − R]. Assume that
u ∈ K2

β(WR) is a solution of problem (4.2) with f ∈ K0
β+2(V) for V = WR+ρ . There exists

a constant C independent of u, R and ρ such that

(4.7) ‖u‖
K2

β(WR)
≤ C

(
‖f‖

K0
β+2(WR+ρ)

+ ρ−1‖u‖
K1

β+1(WR+ρ)
+ ρ−2‖u‖

K0
β+2(WR+ρ)

)
.

Proof. We introduce a special family of cut-off functions χρ. Let χ̂ ∈ C∞(R) be such that
χ̂ ≡ 1 on (−∞, 0] and χ̂ ≡ 0 on [1, +∞). Define χ̂ρ on R by:

(4.8) χ̂ρ(t) = χ̂

(
|t| − 1−R

ρ

)
.

Thus χ̂ρ equals 1 in [−1−R, 1 + R] and 0 outside (−1−R− ρ, 1 + R + ρ). Then we set

(4.9) χρ(x) = χ̂ρ(|x⊥|) χ̂ρ(x3).

Thus by construction, cf. (4.3)

χρ ≡ 1 on WR and χρ ≡ 0 outside WR+ρ.

We note the following important bound on the derivatives of χρ

(4.10) ∃D > 0, ∀ρ > 0, ∀α, |α| ≤ 2, |∂α
x χρ| ≤ Dρ−|α|.

Then in order to prove (4.7), it suffices to apply estimate (4.6) to χρu and to check that the
commutator [L, χρ] applied to u satisfies

(4.11) ‖[L, χρ]u‖K0
β+2(WR+ρ)

≤ C
(
ρ−1‖u‖

K1
β+1(WR+ρ)

+ ρ−2‖u‖
K0

β+2(WR+ρ)

)
.
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The latter estimate is an obvious consequence of (4.10) and the fact that

‖∂α
x u‖

K0
β+2(WR+ρ)

≤ ‖u‖
K

2−|α|
β+|α|(WR+ρ)

for all α, |α| ≤ 1. �

Corollary 4.6. Under the assumptions of Lemma 4.5, if ∂x3f ∈ K0
β+2(WR+ρ), then ∂x3u ∈

K2
β(WR) and there exists a constant C ≥ 1 independent of R, ρ and u such that

(4.12) ‖∂x3u‖K2
β(WR)

≤ C
(
‖∂x3f‖K0

β+2(WR+ρ)
+ ρ−1‖u‖

K2
β(WR+ρ)

+ ρ−2‖u‖
K1

β+1(WR+ρ)

)
.

Proof. For any h < ρ/2, we apply (4.7) in WR+ρ/2 to vh defined by

vh : x → h−1(u(x + he3)− u(x)),

where e3 = (0, 0, 1). This yields

(4.13)
‖vh‖K2

β(WR)
≤ 4C

(
‖Lvh‖K0

β+2(WR+ρ/2)

+ ρ−1‖vh‖K1
β+1(WR+ρ/2)

+ ρ−2‖vh‖K0
β+2(WR+ρ/2)

)
,

where C is the positive constant from Lemma 4.5. By noticing that

vh = h−1

∫ h

0

∂x3u(x + te3) dt,

we check that for all h < ρ/2

‖Lvh‖K0
β+2(WR+ρ/2)

≤ ‖∂x3Lu‖
K0

β+2(WR+ρ)
,

‖vh‖K1
β+1(WR+ρ/2)

≤ ‖∂x3u‖K1
β+1(WR+ρ)

≤ ‖u‖
K2

β(WR+ρ)
,

‖vh‖K0
β+2(WR+ρ/2)

≤ ‖∂x3u‖K0
β+2(WR+ρ)

≤ ‖u‖
K1

β+1(WR+ρ)
.

This shows that the right-hand side of (4.13) is bounded uniformly in h. Therefore passing
to the limit in (4.13), we find that ∂x3u belongs to K2

β(WR) and that (4.12) holds. �

Corollary 4.7. Under Assumption 4.3, let u ∈ K2
β(Wε) be a solution of (4.2). Let R ∈

[0, ε/2] and R′ ≥ ε/2 with R + R′ ≤ ε. Then there exists a constant C independent of R,
R′ and u such that for all ` ∈ N, we have

(4.14)
1

`!
‖∂`

x3
u‖

K2
β(WR)

≤ C`+1
{∑̀

j=0

1

j!
‖∂j

x3
Lu‖

K0
β+2(WR+R′ )

+ ‖u‖
K1

β+1(WR+R′ )

}
.

Proof. If ` = 0, this is a consequence of estimate (4.6). For ` ≥ 1 the proof is divided into
two steps. To keep notations simpler we take R = 0.
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(i) We first prove by induction on ` that if ρ ≤ ε/(2`− 1), then

(4.15) ‖∂`
x3

u‖
K2

β(W)
≤ (2C)`

{∑̀
j=1

ρ−(`−j)‖∂j
x3

Lu‖
K0

β+2(W(2`−j)ρ)

+ ρ−`‖u‖
K2

β(W(2`−1)ρ)
+ ρ−`−1‖u‖

K1
β+1(W(2`−1)ρ)

}
,

where C ≥ 1 is the constant from Corollary 4.6.
• If ` = 1, the estimate (4.15) is nothing else than (4.12). Hence it suffices to show that if
(4.15) holds for `, it holds for ` + 1.
• For that purpose, we first apply (4.15) to vh defined as before by

vh : x → h−1(u(x + he3)− u(x)),

and passing to the limit in h, we get

‖∂`+1
x3

u‖
K2

β(W)
≤ (2C)`

{∑̀
j=1

ρ−(`−j)‖∂j+1
x3

Lu‖
K0

β+2(W(2`+1−j)ρ)

+ ρ−`‖∂x3u‖K2
β(W2`ρ)

+ ρ−`−1‖∂x3u‖K1
β+1(W2`ρ)

}
.

For the second term of this right-hand side, we apply (4.12) to u but between W2`ρ and
W(2`+1)ρ, while for the third term we use the fact that ‖∂x3u‖K1

β+1(W2`ρ)
≤ ‖u‖

K2
β(W2`ρ)

.
This leads to

‖∂`+1
x3

u‖
K2

β(W)
≤ (2C)`

∑̀
j=1

ρ−(`−j)‖∂j+1
x3

Lu‖
K0

β+2(W(2`+1−j)ρ)

+ (2C)`Cρ−`
(
‖∂x3Lu‖

K0
β+2(W(2`+1)ρ)

+ ρ−1‖u‖
K2

β(W(2`+1)ρ)
+ ρ−2‖u‖

K1
β+1(W(2`+1)ρ)

)
+ (2C)`ρ−`−1‖u‖

K2
β(W2`ρ)

.

By the change of index j′ = j + 1 in the sum on j, we finally get (since (2C)` ≤ 2`C`+1)

‖∂`+1
x3

u‖
K2

β(W)
≤ 2`C`+1

`+1∑
j=1

ρ−(`+1−j)‖∂j
x3

Lu‖
K0

β+2(W(2(`+1)−j)ρ)

+ (2C)`(C + 1)ρ−`−1‖u‖
K2

β(W(2`+1)ρ)
+ (2C)`Cρ−`−2‖u‖

K1
β+1(W(2`+1)ρ)

.

Since C ≥ 1, C + 1 ≤ 2C, and this proves that (4.15) holds for ` + 1.

(ii) Now we choose ρ such that

W(2`−1)ρ ⊂ Wε′ with ε′ = ε/2.

This holds if we take
ρ =

γ

`
with γ = min{ε

4
, 1} .
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Hence applying (4.15) with this choice of ρ, we obtain for all ` ≥ 1

(4.16)
‖∂`

x3
u‖

K2
β(W)

≤(2C)`
{∑̀

j=1

(γ−1)(`−j)``−j‖∂j
x3

Lu‖
K0

β+2(Wε′ )

+ (γ−1)```‖u‖
K2

β(Wε′ )
+ (γ−1)`+1``+1‖u‖

K1
β+1(Wε′ )

}
.

Since γ ≤ 1, (γ−1)(`−j) ≤ (γ−1)`. Moreover by Stirling’s formula, one has

`` ≤ S`` !

for some S > 1. We find
``−jj!

`!
=

``j!

`!`j
≤ S`j!

`j
≤ S` ,

since j! ≤ jj ≤ `j . Inserting this into (4.16) gives, with C1 = 2Cγ−1S,

‖∂`
x3

u‖
K2

β(W)
≤ C`

1

{∑̀
j=1

`!

j!
‖∂j

x3
Lu‖

K0
β+2(Wε′ )

+ `! ‖u‖
K2

β(Wε′ )
+ γ−1` `! ‖u‖

K1
β+1(Wε′ )

}
.

Using the trivial inequality ` ≤ 2`, we arrive at

‖∂`
x3

u‖
K2

β(W)
≤ C`

2

{∑̀
j=1

`!

j!
‖∂j

x3
Lu‖

K0
β+2(Wε′ )

+ `! ‖u‖
K2

β(Wε′ )
+ `! ‖u‖

K1
β+1(Wε′ )

}
,

which, combined with (4.7) between Wε′ and Wε , yields the requested estimate. �

4.3. Anisotropic estimates in dihedral domains (homogeneous norms). We are now
ready to prove the main results of this section, namely the weighted anisotropic regularity
of solutions of our local boundary value problem (4.2). For this we introduce the following
new class of weighted spaces:

Definition 4.8. Let β be a real number and let m ≥ 0 be an integer.

Let W be a subdomain of the dihedral domain D. We recall that r = |x⊥| denotes
the distance to the edge e ≡ {x⊥ = 0}. The anisotropic weighted space with
homogeneous norm Mm

β (W) is defined by

(4.17) Mm
β (W) =

{
u ∈ L2

loc(W) : rβ+|α⊥|∂α
x u ∈ L2(W), ∀α, |α| ≤ m

}
where for α = (α1, α2, α3), α⊥ = (α1, α2) is the component of α in the direction
perpendicular to the edge e. The norm of this space is defined as

(4.18) ‖u‖2

Mm
β (W)

=
m∑

k=0

∑
|α|=k

‖rβ+|α⊥|∂α
x u‖2

0;W .
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Theorem 4.9. Under Assumption 4.3, let u ∈ K1
β(Wε) be a solution of problem (4.2). If

f ∈ Mn
β+2(Wε), then u ∈ Mn

β(W), and there exists a positive constant C independent of u
and m such that for all integer k, 0 ≤ k ≤ n we have

(4.19)
1

k!

( ∑
|α|=k

‖rβ+|α⊥|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂α
x f‖2

0;Wε

) 1
2

+ ‖u‖
K1

β+1(Wε)

}
.

Proof. (i) We first apply the isotropic estimate (4.4) between W and Wε/4, and combine
with (4.6) between Wε/4 and Wε/2 (cf. Remark 4.4 (i)). This yields the estimate for all k,
0 ≤ k ≤ n, and with ε′ = ε/2

1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;Wε′

) 1
2

+ ‖rβ+2f‖
0;Wε′

+ ‖u‖
K1

β+1(Wε′ )

}
.

In order to absorb the term ‖rβ+2f‖
0;Wε′

in the sum on the right-hand side (including when
k = 0 or 1), we write the previous inequality in the slightly weaker form

1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

1

{ k∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x f‖2

0;Wε′

) 1
2

+ ‖u‖
K1

β+1(Wε′ )

}
.

We reduce the left-hand side to any α = (α⊥, 0) of length q ≥ 0, and bound rβ+2+|α|

by rβ+2+|α⊥| in the right-hand side (recall that r is bounded in Wε) to obtain for all q,
0 ≤ q ≤ n

(4.20)

1

q!

( ∑
|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

u‖2

0;W

) 1
2 ≤ Cq+1

2

{
q∑

`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂α
x f‖2

0;Wε′

) 1
2

+ ‖u‖
K1

β+1(Wε′ )

}
.

(ii) We now prove that for all µ = 0, . . . , n and for all q = 0, . . . , n − µ one has the
following estimates with k := q + µ and a constant C3 independent of u, q and µ

(4.21)

1

k!

( ∑
|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Ck+1

3

{
k∑

`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂α
x f‖2

0;Wε

) 1
2

+ ‖u‖
K1

β+1(Wε)

}
.

1. If µ = 0, this estimate is a consequence of (4.20) since Wε′ ⊂ Wε.
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2. If µ > 0 (or equivalently q < k), we apply (4.20) to ∂µ
x3

u to obtain

(4.22)

1

q!

( ∑
|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Cq+1

2

{
q∑

`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂α
x ∂µ

x3
f‖2

0;Wε′

) 1
2

+ ‖∂µ
x3

u‖
K1

β+1(Wε′ )

}
.

The last term of this right-hand side is now estimated with the help of Corollary 4.7. Using
that

‖∂µ
x3

u‖
K1

β+1(Wε′ )
≤ ‖∂µ−1

x3
u‖

K2
β(Wε′ )

,

and applying (4.14) between Wε′ and Wε with ` = µ− 1, we obtain

‖∂µ
x3

u‖
K1

β+1(Wε′ )
≤ Cµ

4 (µ− 1)!
( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

Using this estimate in (4.22) we obtain that

1

q!

( ∑
|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Cq+1

2

q∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂µ
x3

∂α
x f‖2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4 (µ− 1)!
( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

Multiplying this estimate by q!(k!)−1, we find (since q!(µ− 1)!(k!)−1 ≤ 1)

1

k!

( ∑
|α⊥|=q

‖rβ+|α⊥|∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Cq+1

2

q∑
`=0

q!

`!k!

( ∑
|α|=`

‖rβ+2+|α⊥|∂µ
x3

∂α
x f‖2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4

( µ−1∑
j=0

1

j!
‖∂j

x3
f‖

K0
β+2(Wε)

+ ‖u‖
K1

β+1(Wε)

)
.

For the first term of this right-hand side we finally notice that ∂µ
x3

∂α = ∂α+(0,0,µ) and that
|α + (0, 0, µ)| = ` + µ. Hence we have to check that

q!

`!k!
≤ 1

(` + µ)!
,

which is equivalent to
(` + µ)!q!

`!k!
≤ 1,

and holds since ` + µ ≤ k and q ≤ k.
Altogether we have proved that (4.21) holds for all µ ∈ N such that q + µ = k.
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(iii) Summing the square of this estimate (4.21) on q = 0, . . . , k and µ = 0, . . . , k − q, we
arrive at

1

k!

( ∑
|α|=k

‖rβ+|α⊥|∂αu‖2

0;W

) 1
2 ≤ k2Ck+1

3

( k∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α⊥|∂αf‖2

0;Wε

) 1
2

+‖u‖
K1

β+1(Wε)

)
.

This proves the theorem. �

4.4. Anisotropic estimates in dihedral domains (non-homogeneous norms). In this last
part of section 4 devoted to local estimates in dihedral domains, we investigate the situation
where the a priori estimate holds in the J-weighted scale instead the K scale. We set:

Assumption 4.10. Let m ≥ 1 be an integer. Let β ∈ R such that β +m > −1. We assume
that the following a priori estimate holds for problem (4.2): There is a constant C such that
any

u ∈ Jm+1
β (W) ,

solution of problem (4.2) in V = W ′ with f ∈ Jm−1
β+2 (W ′), satisfies:

(4.23) ‖u‖
Jm+1

β (W)
≤ C

(
‖f‖

Jm−1
β+2 (W ′)

+ ‖u‖
Jm

β+1(W ′)

)
.

Remark 4.11. Using the analogue of Proposition 2.4 for dihedral domains, i.e., that the
norm in the space Jm

β (W) is equivalent to
(∑

|α|≤m ‖rmax{β+|α|, σ}∂α
x u‖2

0;W

) 1
2 for all σ ∈

(−1, β +m], we can take σ = 0 for Jm+1
β (W) when β +m > −1, i.e., β +m+1 > 0: We

obtain that in the situation of Assumption 4.10 the norm in the space Jm+1
β (W) is equivalent

to

(4.24)
( ∑
|α|≤m+1

‖rmax{β+|α|, 0}∂α
x u‖2

0;W

) 1
2
.

The non-homogeneous anisotropic weighted spaces are defined as follows on the model
of the homogeneous ones (Definition 4.8):

Definition 4.12. Let m ≥ 1 be an integer. Let β ∈ R such that β + m > −1.
Let W be a subdomain of the dihedral domain D and n > m be an integer. The
anisotropic weighted space with non-homogeneous norm Nn

β(W) is defined by

(4.25) Nn
β(W) =

{
u ∈ L2

loc(W) : rmax{β+|α⊥|, 0}∂α
x u ∈ L2(W), ∀α, |α| ≤ n

}
endowed with its natural norm.

Our aim is to prove the “non-homogeneous” analogue of Theorem 4.9:

Theorem 4.13. Under Assumption 4.10, let u ∈ Jm
β (Wε) be a solution of problem (4.2). If

f ∈ Nn
β+2(Wε) for an integer n > m, then u ∈ Nn

β(W), and there exists a positive constant
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C independent of u and n such that for all integer k, 0 ≤ k ≤ n we have

(4.26)
1

k!

( ∑
|α|=k

‖rmax{β+|α⊥|, 0}∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{
k∑

`=0

1

`!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x f‖2

0;Wε

) 1
2

+ ‖u‖
Jm

β+1(Wε)

}
.

Proof. We review the sequence of steps leading to Theorem 4.9 and adapt them to non-
homogeneous norms.
(i) Applying (4.23) to χρu with the function χρ introduced in (4.9), we obtain, – compare
with (4.7),

‖u‖
Jm+1

β (WR)
≤ C

(
‖f‖

Jm−1
β+2 (WR+ρ)

+
m∑

λ=0

ρ−1−λ‖u‖
Jm−λ

β+1+λ(WR+ρ)

)
.

(ii) By the differential quotients technique we deduce, – compare with (4.12),

‖∂x3u‖Jm+1
β (WR)

≤ C
(
‖∂x3f‖Jm−1

β+2 (WR+ρ)
+

m∑
λ=0

ρ−1−λ‖u‖
Jm+1−λ

β+λ (WR+ρ)

)
,

since ‖∂x3u‖Jm−λ
β+1+λ(WR+ρ)

is bounded by ‖u‖
Jm+1−λ

β+λ (WR+ρ)
.

(iii) Iterating this on the model of (4.15) we find for ` ≥ 1

‖∂`
x3

u‖
Jm+1

β (W)
≤ (2C)`

{∑̀
j=1

ρ−(`−j)‖∂j
x3

Lu‖
Jm−1

β+2 (W(2`−j)ρ)

+
m∑

λ=0

ρ−`−λ‖u‖
Jm+1−λ

β+λ (W(2`−1)ρ)

}
,

leading to the analytic type estimate, – compare with (4.14),

(4.27)
1

`!
‖∂`

x3
u‖

Jm+1
β (WR)

≤ C`+1
{∑̀

j=0

1

j!
‖∂j

x3
Lu‖

Jm−1
β+2 (WR+R′ )

+ ‖u‖
Jm

β+1(WR+R′ )

}
.

(iv) To prove (4.26), we start with the proof of, – compare with (4.20),

(4.28)

1

q!

( ∑
|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

u‖2

0;W

) 1
2 ≤ Cq+1

2

{
q∑

`=0

1

`!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x f‖2

0;Wε′

) 1
2

+ ‖u‖
Jm

β+1(Wε′ )

}
.

• For q = 0, . . . ,m, we rely on the estimate (4.23) combined with the use of the norm
(4.24) for Jm+1

β (W): If we restrict the left-hand side to the derivatives of the form ∂α⊥
x⊥

and replace the weight rmax{β+2+|α|, 0} by rmax{β+2+|α⊥|, 0} in the right-hand side, we obtain
(4.28).
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• For q ≥ m + 1, we combine the estimate (4.23) with the isotropic non-homogeneous
estimate (4.5) and making the same restriction to ∂α⊥

x⊥
in the left-hand side and the same

change of weights in the right-hand side.

(v) We continue with the proof that for all µ = 0, . . . , n and for all q = 0, . . . , n − µ one
has the following estimates with k := q + µ and a constant C3 independent of u, q and µ

(4.29)

1

k!

( ∑
|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Ck+1

3

{
k∑

`=0

1

`!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x f‖2

0;Wε

) 1
2

+ ‖u‖
Jm

β+1(Wε)

}
.

1. If µ = 0, this estimate is a consequence of (4.28) since Wε′ ⊂ Wε.
2. If µ > 0 (or equivalently q < k), we apply (4.28) to ∂µ

x3
u to obtain

(4.30)

1

q!

( ∑
|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤ Cq+1

2

{
q∑

`=0

1

`!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x ∂µ

x3
f‖2

0;Wε′

) 1
2

+ ‖∂µ
x3

u‖
Jm

β+1(Wε′ )

}
.

The last term of this right-hand side is now estimated with the help of (4.27) with ` = µ−1

‖∂µ
x3

u‖
Jm

β+1(Wε′ )
≤ ‖∂µ−1

x3
u‖

Jm+1
β (Wε′ )

≤ Cµ
4 (µ−1)!

( µ−1∑
j=0

1

j!
‖∂j

x3
f‖

Jm−1
β+2 (Wε)

+‖u‖
Jm

β+1(Wε)

)
.

Using this estimate in (4.30) we obtain that

1

q!

( ∑
|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤

Cq+1
2

q∑
`=0

1

`!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x ∂µ

x3
f‖2

0;Wε

) 1
2

+ Cq+1
2 Cµ

4 (µ− 1)!
( µ−1∑

j=0

1

j!
‖∂j

x3
f‖

Jm−1
β+2 (Wε)

+ ‖u‖
Jm

β+1(Wε)

)
.

We note that the norm in the space Jm−1
β+2 (Wε) is equivalent to (cf. (4.24))

( ∑
|α|≤m−1

‖rmax{β+2+|α|, 0}∂α
x u‖2

0;W

) 1
2
.
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Thus dividing the latter estimate by µ! and recalling that k = q + µ we deduce

1

k!

( ∑
|α⊥|=q

‖rmax{β+|α⊥|, 0}∂α⊥
x⊥

∂µ
x3

u‖2

0;W

) 1
2 ≤

Ck+1
5

q∑
`=0

1

`!µ!

( ∑
|α|=`

‖rmax{β+2+|α⊥|, 0}∂α
x ∂µ

x3
f‖2

0;Wε

) 1
2

+ Ck+1
5

( µ−1∑
j=0

1

j!

∑
|α|≤m−1

‖rmax{β+2+|α|, 0}∂α
x ∂j

x3
f‖

0;Wε
+ ‖u‖

Jm
β+1(Wε)

)
.

From this we deduce (4.29). The final way to (4.26) is very similar to the conclusion of the
proof of Theorem 4.9. This ends the proof of Theorem 4.13. �

Remark 4.14. We note some similarities between our estimates and those obtained in [16]
for the Laplace operator. Our argument based on the dyadic partition technique clearly
improves the structure of the whole proof.

5. ANALYTIC ANISOTROPIC WEIGHTED REGULARITY SHIFT IN POLYHEDRA

5.1. Edge and corner neighborhoods. Let Ω be a polyhedron in R3, that is a domain
whose boundary is a finite union of plane domains (the faces Γs, s ∈ S ). The faces are
polygonal, the segments forming their boundaries are the edges e of Ω, and the ends of the
edges are the corners c of Ω. We denote the set of edges by E and the set of corners by C .
Edge openings may be equal to 2π, allowing domains with crack surfaces.

In order to prove global regularity results in suitable weighted Sobolev spaces, we in-
troduce corner, edge and edge-vertex neighborhoods of Ω. For a fixed corner c ∈ C ,
we denote by Ec the set of edges that have c as extremities. Similarly for a fixed edge
e ∈ E , we denote by Ce the set of corners that are extremities of e. Now we introduce the
following distances:

(5.1) rc(x) = dist(x, c), re(x) = dist(x, e), ρce(x) =
re(x)

rc(x)
.

There exists ε > 0 small enough such that if we set

Ωe = {x ∈ Ω : re(x) < ε and rc(x) > ε/2 ∀c ∈ Ce},
Ωc = {x ∈ Ω : rc(x) < ε and ρce(x) > ε/2 ∀e ∈ Ec},(5.2a)

Ωce = {x ∈ Ω : rc(x) < ε and ρce(x) < ε},

we have the following properties:

(5.2b)


Ωe ∩ Ωe′ = ∅, ∀e′ 6= e,

B(c, ε) ∩ B(c′, ε) = ∅, ∀c′ 6= c,

Ωce ∩ Ωce′ = ∅, ∀e′ 6= e.
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We also define the larger neighborhoods with ε′′ < ε < ε′

Ω′
e = {x ∈ Ω : re(x) < ε′ and rc(x) > ε′′/2 ∀c ∈ Ce},

Ω′
c = {x ∈ Ω : rc(x) < ε′ and ρce(x) > ε′′/2 ∀e ∈ Ec},(5.2c)

Ω′
ce = {x ∈ Ω : rc(x) < ε′ and ρce(x) < ε′},

assuming the ε′ and ε′′ are sufficiently close to ε for the above properties (5.2b) to hold
for Ω′

e, Ω′
c, and Ω′

ce. We finally introduce the smaller neighborhoods Ω′′
e , Ω′′

c , and Ω′′
ce by

inverting the roles of ε′ and ε′′ and set,

(5.2d) ΩC =
⋃
c∈C

Ω′′
c , ΩE =

⋃
e∈E

Ω′′
e , ΩC E =

⋃
c∈C

⋃
e∈Ec

Ω′′
ce.

We finally define Ω0 as the remainder:

(5.2e) Ω0 = Ω \ ΩC ∩ ΩE ∩ ΩC E .

Note that Ω0 is far from the singular points of Ω. Replacing Ω′′
c , Ω′′

e and Ω′′
ce by Ωc, Ωe

and Ωce, respectively, in the definitions (5.2d) and (5.2e), we define the larger “smooth”
neighborhood Ω′

0.
Let V be any subdomain of Ω. We consider the system of local interior and boundary

equations

(5.3)


Lu = f in Ω ∩ V ,

Ts u = 0 on Γs ∩ V , s ∈ S ,

Ds u = 0 on Γs ∩ V , s ∈ S ,

where the operators L, Ts and Ds are homogeneous with constant coefficients and form an
elliptic system. The choice V = Ω gives back the global boundary value problem on the
polyhedron Ω.

Definition 5.1. On V ⊂ Ω, for m ∈ N and β = {βc}c∈C ∪ {βe}e∈E , the weighted space
with homogeneous norm Km

β (V) is defined as follows, cf. [28, 29, 6, 7]

Km
β (V) =

{
u ∈ L2

loc(V) : ∀α, |α| ≤ m, ∂α
x u ∈ L2(V ∩ Ω0) and(5.4)

rc(x)βc+|α| ∂α
x u ∈ L2(V ∩ Ωc) ∀c ∈ C ,

re(x)βe+|α| ∂α
x u ∈ L2(V ∩ Ωe) ∀e ∈ E ,

rc(x)βc+|α| ρce(x)βe+|α| ∂α
x u ∈ L2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

and endowed with its natural semi-norms and norm.

Note that the condition in the edge-vertex neighborhood Ωce can be equivalently written
as

rc(x)βc−βe re(x)βe+|α| ∂α
x u ∈ L2(V ∩ Ωce).

Remark 5.2. The semi-norms issued from (5.4) are equivalent to the globally defined semi-
norms

(5.5)
{ ∑
|α|=k

∥∥∥{ ∏
c∈C

rβc+|α|
c

}{ ∏
e∈E

( re

rC

)βe+|α|}
∂α

x u
∥∥∥2

0;V

} 1
2
, k = 0, . . . ,m.
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Here rC denotes the distance function to the set C of corners. With this expression, the
relations between our spaces Km

β (Ω) and the spaces V m,p
~β,~δ

(Ω) defined in [28, §1.2] or [29,
§7.3] become obvious:

(5.6) Km
β (Ω) = V m,p

~β,~δ
(Ω) if p = 2, ~β =

{
βc + m

}
c∈C

, ~δ =
{
βe + m

}
e∈E

.

5.2. Anisotropic weighted spaces with homogeneous norms. Unlike in the conical case,
the weighted spaces Km

β are in a certain sense too large to describe accurately the regularity
of solutions of the elliptic problem (5.3) along the directions of edges. Mimicking the
definition of the spaces Mm

β in the pure edge case, cf. (4.17), we particularize for each edge
e ∈ E , the derivatives in the directions transverse or parallel to that edge by the notations

(5.7) ∂α⊥
x (transverse) and ∂α‖

x
(parallel), (e ∈ E ),

so that
∂α

x = ∂α⊥
x ∂α‖

x
.

Of course these directions are edge dependent. They are well-defined in each of the do-
mains Ωe and Ωce determined by the edge e.

The following spaces were introduced in [6, 7] for similar purposes:

Definition 5.3. On V ⊂ Ω, for m ∈ N and β = {βc}c∈C ∪ {βe}e∈E , we define

Mm
β (V) =

{
u ∈ L2

loc(V) : ∀α, |α| ≤ m, ∂α
x u ∈ L2(V ∩ Ω0) and(5.8)

rc(x)βc+|α| ∂α
x u ∈ L2(V ∩ Ωc) ∀c ∈ C ,

re(x)βe+|α⊥| ∂α
x u ∈ L2(V ∩ Ωe) ∀e ∈ E ,

rc(x)βc+|α| ρce(x)βe+|α⊥| ∂α
x u ∈ L2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

We denote by ‖ · ‖
M; m,β;V and | · |

M; m,β;V its norm and semi-norm, namely

‖ · ‖2

M; m,β;V =
m∑

`=0

| · |2
M; `,β;V

with

|u|2
M; `,β;V =

∑
|α|=`

(
‖∂α

x u‖2

0;V∩Ω0
+

∑
c∈C

‖rβc+|α|
c ∂α

x u‖2

0;V∩Ωc
(5.9)

+
∑
e∈E

‖rβe+|α⊥|
e ∂α

x u‖2

0;V∩Ωe
+

∑
c∈C

∑
e∈Ec

‖rβc+|α|
c ρβe+|α⊥|

ce ∂α
x u‖2

0;V∩Ωce

)
.

Note that the condition in the edge-vertex neighborhood Ωce can be written equivalently as

rc(x)βc−βe+α‖ re(x)βe+|α| ∂α
x u ∈ L2(V ∩ Ωce).

We can then define the corresponding analytic class as follows:
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Definition 5.4. We say that u ∈ Aβ(Ω) if u ∈ Mk
β(Ω) for all k ≥ 0 and there exists a

positive constant C such that

|u|
M; k,β; Ω

≤ Ck+1k! ∀k ≥ 0.

We rephrase Assumption 4.3 for the dihedral neighborhood Ωe:

Assumption 5.5. Let e ∈ E and βe ∈ R. We assume the following a priori estimate: There
is a constant C such that any

u ∈ K2
βe

(Ωe) ,

solution of problem (5.3) in V = Ω′
e with f ∈ K0

βe+2(Ω
′
e), satisfies:

(5.10) ‖u‖
K2

βe
(Ωe)

≤ C
(
‖f‖

K0
βe+2(Ω′

e)
+ ‖u‖

K1
βe+1(Ω′

e)

)
.

We can apply Theorem 4.9 to the edge neighborhood Ωe. We obtain that under Assump-
tion 5.5, any solution u ∈ K1

βe
(Ω′

e) of problem (5.3) with f ∈ Mn
βe+2(Ω

′
e) satisfies the

uniform estimates for 0 ≤ k ≤ n

(5.11)
1

k!

( ∑
|α|=k

‖rβe+|α⊥|
e ∂α

x u‖2

0;Ωe

) 1
2 ≤ Ck+1

{ k∑
`=0

1

`!

( ∑
|α|=`

‖rβe+2+|α⊥|
e ∂α

x f‖2

0;Ω′
e

) 1
2

+ ‖u‖
K1

βe+1(Ω′
e)

}
.

Now we consider the edge-vertex domain Ωce.

Proposition 5.6. Let c ∈ C and e ∈ Ec. Let β = {βc, βe}. Under Assumption 5.5,
any solution u ∈ K1

β(Ω′
ce) of problem (5.3) with f ∈ Mn

β+2(Ω
′
ce) belongs to Mn

β (Ωce) and
satisfies the uniform estimates for 0 ≤ k ≤ n

(5.12)
1

k!

( ∑
|α|=k

‖rβc+|α|
c ρβe+|α⊥|

ce ∂α
x u‖2

0;Ωce

) 1
2 ≤ Ck+1

{
k∑

`=0

1

`!

( ∑
|α|=`

‖rβc+2+|α|
c ρβe+2+|α⊥|

ce ∂α
x f‖2

0;Ω′
ce

) 1
2

+ ‖u‖
K1

β+1(Ω′
ce)

}
.

Proof. We mimic the proof of Theorem 2.2. The proof of estimate (5.12) is based on a
locally finite dyadic covering of Ωce and Ω′

ce. Define, compare with (5.2a)-(5.2c),

V̂ = {x ∈ Ω : ε
4

< rc(x) < ε and ρce < ε}

V̂ ′ = {x ∈ Ω : ε2

4ε′
< rc(x) < ε′ and ρce < ε′},

and for µ ∈ N:
Vµ = 2−µV̂ and V ′µ = 2−µV̂ ′.

We check:
Ωce =

⋃
µ∈N

Vµ and Ω′
ce =

⋃
µ∈N

V ′µ .
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•
c

•
c

e e

Ωe

Ω′
e

V̂
V̂ ′

FIGURE 2. Nested edge neighborhoods (section determined by azimuthal
angle θe = constant)

The estimate (5.11) between Ωe and Ω′
e also holds in the configuration of V̂ and V̂ ′ which

is similar: V̂ and V̂ ′ are nested edge neighborhoods which do not touch any corner, see
Fig. 2.

Since rc is bounded from above and from below by strictly positive constants, the dis-
tance re is equivalent to ρce on the reference domains: We have

1

k!

( ∑
|α|=k

‖ρce(x̂)βe+|α⊥|∂α
x û‖2

0; bV
) 1

2 ≤ Ck+1
{ k∑

`=0

1

`!

( ∑
|α|=`

‖ρce(x̂)βe+2+|α⊥|∂α
x f̂‖2

0; bV ′

) 1
2

+
∑
|α|≤1

‖ρce(x̂)βe+|α|∂α
x û‖

0; bV ′

}
.

for any reference function û satisfying the boundary conditions of (5.3) and f̂ := Lû.
For the same reason, we can insert powers of rc in the above estimate, to obtain our new

reference estimate
1

k!

( ∑
|α|=k

‖rc(x̂)βc+|α|ρce(x̂)βe+|α⊥|∂α
x û‖2

0; bV
) 1

2 ≤ Ck+1
{

(5.13)

k∑
`=0

1

`!

( ∑
|α|=`

‖rc(x̂)βc+2+|α|ρce(x̂)βe+2+|α⊥|∂α
x f̂‖2

0; bV ′

) 1
2

+
∑
|α|≤1

‖rc(x̂)βc+|α|ρce(x̂)βe+|α|∂α
x û‖

0; bV ′

}
.

The change of variables x̂ → x = 2−µx̂ maps V̂ to Vµ (resp. V̂ ′ to V ′µ). We note that

ρce(x̂) = ρce(x) and rc(x̂) = 2µrc(x).
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With the change of functions

û(x̂) := u(x) and f̂(x̂) := Lû , which implies f̂(x̂) = 2−2µf(x),

we deduce from estimate (5.13) that

1

k!
2µβc

( ∑
|α|=k

‖rc(x)β+|α|ρce(x)βe+|α⊥|∂α
x u‖2

0;V

) 1
2 ≤ Ck+1

{
k∑

`=0

1

`!
2µ(βc+2)

( ∑
|α|=`

2−2µ‖rc(x)β+2+|α|ρce(x)βe+2+|α⊥|∂α
x f‖2

0;V ′

) 1
2

+
(
2µβc

∑
|α|≤1

‖rc(x)βc+|α|ρce(x)βe+|α|∂α
x u‖2

0;V ′

) 1
2
}

.

Multiplying this identity by 2−µβ , taking squares, and summing up over all µ, we get the
requested estimate (5.12). �

The estimates in pure vertex domains Ωc (i.e., close to corners but “relatively far” from
the edges) are similar to those in obtained in Theorem 2.2 for plane sectors:

Proposition 5.7. Let c ∈ C and β = {βc}. Any solution u ∈ K1
β(Ω′

c) of problem (5.3) with
f ∈ Mn−2

β+2(Ω
′
c) belongs to Mn

β (Ωc) and satisfies the uniform estimates for 0 ≤ k ≤ n

(5.14)
1

k!

( ∑
|α|=k

‖rβc+|α|
c ∂α

x u‖2

0;Ωc

) 1
2 ≤ Ck+1

{
k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβc+2+|α|
c ∂α

x f‖2

0;Ω′
c

) 1
2

+ ‖u‖
K1

β+1(Ω′
c)

}
.

Proof. The proof is again based on the argument of dyadic partitions with reference do-
mains defined as

V̂ = {x ∈ Ωc,
ε
4

< rc(x) < ε} and V̂ ′ = {x ∈ Ω′
c,

ε2

4ε′
< rc(x) < ε′}.

and for µ ∈ N:

Vµ = 2−µV̂ and V ′µ = 2−µV̂ ′.

We check:
Ωc =

⋃
µ∈N

Vµ and Ω′
c =

⋃
µ∈N

V ′µ .

We can apply the a priori estimates of the smooth case between V̂ and V̂ ′, cf. (2.9) and
deduce (5.14) in the same way. �

We obtain now the anisotropic regularity shift in homogeneous weighted spaces on poly-
hedra :
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Theorem 5.8. Let Ω be a polyhedron and β = {βc, βe} be a weight multi-exponent. Let
Assumption 5.5 be satisfied for all edges e ∈ E . Let u ∈ H2

loc(Ω \ E ) be a solution of
problem (5.3). Then the following implications hold

u ∈ K1
β(Ω) and f ∈ Mm

β+2(Ω) =⇒ u ∈ Mm
β (Ω) (m ∈ N),(5.15a)

u ∈ K1
β(Ω) and f ∈ Aβ+2(Ω) =⇒ u ∈ Aβ(Ω).(5.15b)

Proof. The proof is a consequence of

(i) elliptic estimates in the smooth case applied between Ω0 and Ω′
0,

(ii) pure corner estimates (5.14),
(iii) edge estimates (5.11) between the pure edge domains Ωe and Ω′

e,
(iv) edge-vertex estimates (5.12).

�

5.3. Anisotropic weighted spaces with non-homogeneous norms. For the same reason
as in the two-dimensional case, it is valuable to have alternative statements to (5.15a) and
(5.15b) in which the a priori condition u ∈ K1

β(Ω) can be replaced by the weaker condition
u ∈ J1

β(Ω).

Definition 5.9. For β = {βc, βe} and n ∈ N, let us introduce the isotropic weighted space

Jn
β (V) =

{
u ∈ L2

loc(V) : ∀α, |α| ≤ n, ∂α
x u ∈ L2(V ∩ Ω0) and(5.16)

rc(x)βc+n ∂α
x u ∈ L2(V ∩ Ωc) ∀c ∈ C ,

re(x)βe+n ∂α
x u ∈ L2(V ∩ Ωe) ∀e ∈ E ,

rc(x)βc+n ρce(x)βe+n ∂α
x u ∈ L2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
,

and its anisotropic companion, for n > −min{minc∈C βc, mine∈E βe}, cf. (4.25)

Nn
β (V) =

{
u ∈ L2

loc(V) : ∀α, |α| ≤ n, ∂α
x u ∈ L2(V ∩ Ω0) and(5.17)

rc(x)max{βc+|α|,0} ∂α
x u ∈ L2(V ∩ Ωc) ∀c ∈ C ,

re(x)max{βe+|α⊥|,0} ∂α
x u ∈ L2(V ∩ Ωe) ∀e ∈ E ,

rc(x)max{βc+|α|,0} ρce(x)max{βe+|α⊥|,0} ∂α
x u ∈ L2(V ∩ Ωce) ∀c ∈ C , ∀e ∈ Ec

}
.

We note that, like in the case of K-weighted spaces, the semi-norms issued from (5.16)
are equivalent to the globally defined semi-norms, compare with (5.5)

(5.18)
{ ∑
|α|=k

∥∥∥{ ∏
c∈C

rβc+n
c

}{ ∏
e∈E

( re

rC

)βe+n}
∂α

x u
∥∥∥2

0;V

} 1
2
, k = 0, . . . , n.

It is useful to introduce, in the same spirit as in [29], a full range of intermediate spaces
between Kn

β (Ω) and Jn
β (Ω).
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Definition 5.10. Let us flag a subset C0 of corners and a subset E0 of edges, and define
Jn
β (V ; C0, E0) as the space of functions such that all semi-norms

(5.19)
∥∥∥{ ∏

c∈C0

rβc+|α|
c

}{ ∏
c∈C \C0

rβc+n
c

}{ ∏
e∈E0

( re

rC

)βe+|α|}{ ∏
e∈E \E0

( re

rC

)βe+n}
∂α

x u
∥∥∥

0;V

are finite for |α| ≤ n. Anisotropic spaces Nn
β (V ; C0, E0) are defined similarly, replacing

in (5.17) the weight r
max{βc+|α|,0}
c by r

βc+|α|
c when c ∈ C0, and {re, ρce}max{βe+|α|,0} by

{re, ρce}βe+|α| when e ∈ E0. The sum of the squares of these contributions for |α| = n
defines the squared semi-norm

|u|2
Nn

β (V;C0,E0)
.

Note that with C0 = E0 = ∅, we obtain the maximal spaces already introduced in (5.16)
and (5.17):

(5.20) Jn
β (V) = Jn

β (V ; ∅, ∅) ; Nn
β (V) = Nn

β (V ; ∅, ∅) .

The corresponding analytic class is defined as usual:

Definition 5.11. We say that u ∈ Bβ(Ω; C0, E0) if u ∈ Nk
β(Ω; C0, E0) for all k > kβ :=

−min{minc∈C βc, mine∈E βe} and there exists a positive constant C such that

|u|
Nk

β (Ω;C0,E0)
≤ Ck+1k! ∀k > kβ.

In accordance with (5.20), we write Bβ(Ω) for Bβ(Ω; ∅, ∅).

Remark 5.12. (i) Choosing C0 = C and E0 = E , we find that the spaces Jn
β (Ω; C , E ),

Nn
β (Ω; C , E ) and Bβ(Ω; C , E ) coincide with the homogeneous spaces Kn

β (Ω), Mn
β (Ω) and

Aβ(Ω), respectively.

(ii) The following relations hold between our spaces Jm
β (Ω; C0, E0) and the spaces Wm,p

~β,~δ
(Ω)

of Maz’ya and Rossmann [29]:

(5.21) Jm
β (Ω; C , ∅) = Wm,p

~β,~δ
(Ω) if p = 2, ~β =

{
βc + m

}
c∈C

, ~δ =
{
βe + m

}
e∈E

.

In these spaces, the non-homogeneity is only related to edges. Under the same condition
as in (5.21), the intermediate spaces Wm,p

~β,~δ
(Ω; J̃) of [29, § 7.3] coincide with our spaces

Jm
β (Ω; C , E0) if E0 is chosen as the same set of edges as J̃ .

(iii) Our analytic class Bβ(Ω) coincides with the so-called countably normed spaces B`
β(Ω)

introduced by Guo in [13]: If Guo’s edge and corner exponents βij ∈ (0, 1) and βm ∈ (0, 1
2
)

satisfy βij = βe + ` and βm = βc + `, respectively, then B`
β(Ω) = Bβ(Ω).

We state the assumption for J-weighted spaces corresponding to Assumption 4.10 for
the dihedral neighborhood Ωe:

Assumption 5.13. Let e ∈ E . Let m ≥ 1 be an integer. Let βe ∈ R such that βe+m > −1.
We assume the following a priori estimate: There is a constant C such that any

u ∈ Jm+1
βe

(Ωe) ,
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solution of problem (5.3) in V = Ω′
e with f ∈ Jm−1

βe+2(Ω
′
e), satisfies:

(5.22) ‖u‖
Jm+1

βe
(Ωe)

≤ C
(
‖f‖

Jm−1
βe+2(Ω′

e)
+ ‖u‖

Jm
βe+1(Ω′

e)

)
.

We then have the following anisotropic regularity shift result in the non-homogeneous
weighted spaces Nn

β (Ω; C , ∅) and Bβ(Ω; C , ∅):

Theorem 5.14. Let Ω be a polyhedron and β = {βc, βe} be a weight multi-exponent. Let
m ≥ 1 be an integer such that βe +m > −1 for all edges. Let Assumption 5.13 be satisfied
for all e ∈ E . Let u ∈ H2

loc(Ω \ E ) be a solution of problem (5.3) in V = Ω. Then the
following implications hold

(5.23)
u ∈ Jm

β (Ω; C , ∅) and f ∈ Nn
β+2(Ω; C , ∅) =⇒ u ∈ Nn

β (Ω; C , ∅) (n > m),

u ∈ Jm
β (Ω; C , ∅) and f ∈ Bβ+2(Ω; C , ∅) =⇒ u ∈ Bβ(Ω; C , ∅).

Proof. The proof is a consequence of suitable a priori estimates with analytic control in the
four types of regions in the polyhedron:
(i) Elliptic estimates in the smooth case can be applied between Ω0 and Ω′

0.

(ii) Pure corner estimates (5.14) are valid here: We note that in the pure corner region Ωc

the norms in K and J spaces, or in M and N spaces, are the same.

(iii) The edge estimates (4.26) are valid between the pure edge domains Ωe and Ω′
e.

(iv) Finally, edge-vertex estimates are proved by the dyadic partition argument starting
from the same reference domains V̂ and V̂ ′ as in the proof of Proposition 5.6. The reference
estimate can be written as

(5.24)
1

k!

( ∑
|α|=k

‖rmax{βe+|α⊥|, 0}
e ∂α

x û‖2

0; bV
) 1

2 ≤ Ck+1
{

k∑
`=0

1

`!

( ∑
|α|=`

‖rmax{βe+2+|α⊥|, 0}
e ∂α

x f̂‖2

0; bV ′

) 1
2

+
( ∑
|α|≤m

‖rmax{βe+|α|, 0}
e ∂α

x û‖2

0; bV ′

) 1
2
}

.

Since rc and (rc)
−1 are bounded on the reference domains, we can

• replace re by ρce

• insert powers of rc

in the previous estimate, thus obtaining

1

k!

( ∑
|α|=k

‖rβc+|α|
c ρmax{βe+|α⊥|, 0}

ce ∂α
x û‖2

0; bV
) 1

2 ≤ Ck+1
{

k∑
`=0

1

`!

( ∑
|α|=`

‖rβc+2+|α|
c ρmax{βe+2+|α⊥|, 0}

ce ∂α
x f̂‖2

0; bV ′

) 1
2

+
( ∑
|α|≤m

‖rβc+|α|
c ρmax{βe+|α|, 0}

ce ∂α
x û‖2

0; bV ′

) 1
2
}

.
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Owing to the homogeneity of the weights with respect to rc, the dyadic partition argument
yields the desired edge-vertex estimate, which allows to conclude the proof of the theorem.

�

Remark 5.15. (i) If we replace Assumption 5.13 by Assumption 5.5 for edges e in the
flagged subset E0, we can prove, instead of (5.23), the implications

(5.25)
u ∈ Jm

β (Ω; C , E0) and f ∈ Nn
β+2(Ω; C , E0) =⇒ u ∈ Nn

β (Ω; C , E0),

u ∈ Jm
β (Ω; C , E0) and f ∈ Bβ+2(Ω; C , E0) =⇒ u ∈ Bβ(Ω; C , E0).

(ii) Under Assumption 5.13, the implications in the maximal non-homogeneous spaces,
i.e., with C0 = E0 = ∅, are also true:

(5.26)
u ∈ Jm

β (Ω) and f ∈ Nn
β+2(Ω) =⇒ u ∈ Nn

β (Ω),

u ∈ Jm
β (Ω) and f ∈ Bβ+2(Ω) =⇒ u ∈ Bβ(Ω).

If βc > −3
2

for any corner c, the statements (5.23) and (5.26) coincide, since in this case
the spaces Jm

β (Ω; C , ∅) and Jm
β (Ω) are the same (consequence of Hardy’s inequality). In

the general case (5.26) can be proved by two different methods:

• Deduced from (5.23) by an argument of corner asymptotics (at each corner, the
asymptotics modulo Jm

β (Ω; C , ∅) contains only polynomials): For instance when
m = 1, if βc ∈ (−5

2
,−3

2
) for all corners c, any element of u ∈ Jm

β (Ω) splits as

u = uc + wc in Ωc, with uc ∈ Jm
β (Ω; C ; ∅), wc ∈ CN ,

and we can apply (5.23) locally near each corner, to each function uc.
• Directly proved by the same method as for Theorem 5.14, starting with the refer-

ence estimate for k ≥ m

1

k!

( ∑
|α|=k

‖rmax{βe+|α⊥|, 0}
e ∂α

x û‖2

0; bV
) 1

2 ≤ Ck+1
{

k∑
`=m−1

1

`!

( ∑
|α|=`

‖rmax{βe+2+|α⊥|, 0}
e ∂α

x f̂‖2

0; bV ′

) 1
2

+
( ∑
|α|=m

‖rmax{βe+|α|, 0}
e ∂α

x û‖2

0; bV ′

) 1
2
}

,

instead of (5.24): The Jm
βe

norm present in (5.24) is replaced here by the corre-
sponding semi-norm, cf. Corollary 1.2.

6. ANALYTIC WEIGHTED REGULARITY OF VARIATIONAL SOLUTIONS

In this section, we investigate how Theorem 3.4 in the polygonal case, or Theorems 5.8
and 5.14 in the polyhedral case, apply to solutions of variational problems.

Let Ω be a polygon or a polyhedron. In coherence with the previous sections, we con-
sider a sesquilinear form a, homogeneous of order 1 and with constant coefficients acting



34

on vector-valued functions with N components

(6.1) a(u, v) =
N∑

i=1

N∑
j=1

∑
|α|=1

∑
|γ|=1

∫
Ω

aαγ
ij ∂α

x uj(x) ∂γ
x vi(x) dx,

and a subspace V of H1(Ω)N =: H1(Ω) defined by essential boundary conditions on the
sides Γs of Ω

(6.2) V = {u ∈ H1(Ω) : Dsu = 0 on Γs, s ∈ S }.

We assume that the form a is coercive on V:

∃c, C > 0, ∀u ∈ V, Re a(u,u) ≥ c‖u‖2

1;Ω
− C‖u‖2

0;Ω
.

Standard examples of such sesquilinear forms are the gradient form for scalar functions

a∇(u, v) =

∫
Ω

∇u(x) · ∇v(x) dx

and the stress-strain sesquilinear forms in linear elasticity:

aela =

∫
Ω

σ(u)(x) : ε(v)(x) dx,

where ε is the symmetrized gradient tensor and σ = Aε, where A is a material tensor with
the usual symmetry and positivity properties. Variational spaces V on which a∇ is coercive
can be defined by any subset SD of the set of sides S :

V = {u ∈ H1(Ω) : u
∣∣
Γs

= 0 ∀s ∈ SD}.

As for aela we can take for V any space of the type

V = {u ∈ H1(Ω) : u
∣∣
Γs

= 0 ∀s ∈ SD, u · n
∣∣
Γs

= 0 ∀s ∈ ST

and u× n
∣∣
Γs

= 0 ∀s ∈ SN},

where n is the outward unit normal vector to Γs, and SD, ST , and SN are disjoint subsets
of S . As a consequence of Korn’s inequality, aela is coercive on such spaces V.

We consider the variational problem

(6.3) Find u ∈ V such that ∀v ∈ V, a(u, v) =

∫
Ω

f v dx .

Having the analytic shift results of Theorems 3.4, 5.8 and 5.14 at hand, the issue is to
find suitable exponents β so that

(1) Aβ(Ω) or Bβ(Ω) are compactly embedded in H1(Ω), — in order to be useful in
error analysis for example.

(2) Variational solutions u with sufficiently smooth right hand sides belong to K1
β(Ω)

or J1
β(Ω).

Condition (1) of compact embedding is satisfied on two- and three-dimensional domains
for all β < −1 (this means that all components βc and βe are < −1). This is the reason
why we exhibit weights of the form β = −b− 1 with b > 0 in the statements below.
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6.1. Regularity of variational solutions in polygons. Let Ω be a polygon with vertices
c ∈ C . The standard Sobolev space H1(Ω) coincides with J1

−1(Ω), see (3.4). From Remark
3.3 (ii), we know that for the comparison of J1

−1(Ω) with K1
−1(Ω) we are in a critical case,

namely a function u ∈ H1(Ω) neither has point values at corners nor satisfies r−1u ∈ L2(Ω)
in general (see [22]). There holds K1

−1(Ω) ⊂ J1
−1(Ω) ⊂ K1

−1+ε(Ω) for all ε > 0.
Taking the essential boundary conditions into account that define the variational space

V ⊂ H1(Ω), one will sometimes find that V is embedded in K1
−1(Ω). This happens in

particular if each corner lies on at least one side on which Dirichlet conditions are imposed.
In the general case, one will just have V ⊂ K1

−1+ε(Ω) for all ε > 0. Necessary and
sufficient conditions for the embedding V ⊂ K1

−1(Ω) are discussed in [9, Ch. 14].
The analytic regularity shift (3.12b) in classes Aβ(Ω) can be applied to variational so-

lutions with well chosen weight exponents β < −1 in case V ⊂ K1
−1(Ω), whereas in the

general case, (3.13b) can be applied: For convenience, we write the weight exponent in the
form

β = −1− b, with b =
(
bc

)
c∈C

.

Theorem 6.1. Let Ω be a polygon. We assume that the form a is coercive on V, and that
V ⊂ K1

−1(Ω). There exists a positive number b(Ω, a,V) such that the following implication
holds for any solution u of the variational problem (6.3):

(6.4) If ∀c ∈ C , 0 ≤ bc < b(Ω, a,V) then f ∈ A−b+1(Ω) =⇒ u ∈ A−b−1(Ω).

Proof. Invoking the general theory of corner problems in the variational setting, we know
that there exists a maximal positive number b(Ω, a,V) such that

(6.5) If ∀c ∈ C , 0 ≤ bc < b(Ω, a,V) then f ∈ K0
−b+1(Ω) =⇒ u ∈ K2

−b−1(Ω).

The proof of this essentially goes back to Kondrat’ev [21], see also [9, Ch. 10] for more
details on the application of Kondrat’ev’s technique to variational problems. Then (6.4) is
a consequence of (3.12b) applied for β = −b− 1, and (6.5). �

Remark 6.2. Let σ(Ac) denote the spectrum of the “Mellin symbol” Ac of the system
(L, Ts, Ds)

1 at the corner c (see [21, 22]): In short, the complex number λ belongs to σ(Ac)
if there exists a non-zero function u of the form rλ

c ϕ(θc) solution of the homogeneous
problem (2.2) (i.e., with f = 0) on the finite cone Ωc. Then b(Ω, a,V) is the supremum of
the numbers b > 0 such that

{λ ∈ C : 0 ≤ Re λ ≤ b} ∩ σ(Ac) = ∅ ∀c ∈ C .

In (6.4) and (6.5), we have for the sake of simplicity chosen to write a common estimate for
all corner weight exponents. The regularity question being local, it is clear that we could
have defined a bound b(c, a,V) separately for each corner and then replaced the conditions
in (6.4) and (6.5) by the inequalities 0 ≤ bc < b(c, a,V) for all corners c ∈ C . In this case,
we can take for b(c, a,V) the smallest positive real part of the elements of σ(Ac).

Example 6.3. Let us consider the gradient form a = a∇ on scalar functions. The associated
operator is the Laplacian ∆. Let ωc be the opening of Ω near the vertex c and denote by
Γi

c, i = 1, 2, the two sides of Ω containing c.

1Ac is also called “operator pencil” generated by the system (L, Ts, Ds).
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(i) For the Dirichlet problem, we have V ⊂ K1
−1(Ω) and

b(Ω, a∇, H1
0) = min

c∈C

{ π

ωc

}
.

(ii) In the mixed Neumann-Dirichlet case, if at all corners Dirichlet conditions are imposed
on at least one side containing c, we still have V ⊂ K1

−1(Ω) and

b(Ω, a∇, V) = min
{

min
c∈CD

{ π

ωc

}
, min

c∈CM

{ π

2ωc

}}
,

where CD is the set of Dirichlet corners c (Dirichlet conditions on both sides Γi
c) and CM

the set of “Mixed” corners c (Dirichlet conditions on only one side Γi
c).

If we do not have V ⊂ K1
−1(Ω) or for more general data, it is convenient to start from a

regularity result in J-weighted spaces.

Theorem 6.4. We assume that the form a is coercive on V. There exists a positive number
b∗(Ω, a,V) such that the following implication holds for any solution u of the variational
problem (6.3):

(6.6) If ∀c ∈ C , 0 ≤ bc < b∗(Ω, a,V) then f ∈ B−b+1(Ω) =⇒ u ∈ B−b−1(Ω).

Proof. The proof relies on regularity results in spaces with non-homogeneous norms: By
a modification of Kondrat’ev’s method, see [27, 22] and [12], one can prove that for any
m ≥ 2, there exists a maximal number bm ∈ (0, m] such that we have the implication

(6.7) If ∀c ∈ C , 0 ≤ bc < bm , then f ∈ Jm−2
−b+1(Ω) =⇒ u ∈ Jm

−b−1(Ω)

for variational solutions. The sequence (bm) is stationary for m ≥ m0 large enough, and
b∗(Ω, a,V) is given by bm0 . A complete proof in this framework is presented in [9, Ch. 13].
Then (6.6) is a consequence of (3.13b), and (6.7). �

Remark 6.5. For b ∈ (k, k + 1) (with a natural number k), formula (3.10) yields

B−b−1(Ωc) = A−b−1(Ωc)⊕ (Pk)N (c ∈ C ).

Remark 6.6. The number b∗(Ω, a,V) can be characterized in a similar way as b(Ω, a,V)
(cf. Remark 6.2). For each corner c, the spectrum σ(Ac) has to be modified concerning
its possible integer elements (condition of injectivity modulo polynomials [12, 9]). This
defines a possibly slightly different set, denoted by σ∗(Ac) and b∗(Ω, a,V) is the supremum
of the numbers b > 0 such that

{λ ∈ C : 0 < Re λ ≤ b} ∩ σ∗(Ac) = ∅ ∀c ∈ C .

Example 6.7. Let us come back to the gradient form a = a∇ on scalar functions. For any
mixed Neumann-Dirichlet problem, including the pure Neumann problem, Theorem 6.4 is
valid and we find

b∗(Ω, a∇, V) = min
{

min
c∈CD∪CN

{ π

ωc

}
, min

c∈CM

{ π

2ωc

}}
,

where CD is the set of Dirichlet corners, CN is the set of Neumann corners, and CM the
set of “Mixed” corners c. Thus b∗(Ω, a∇, V) will always be greater than 1

4
. For the pure

Dirichlet or pure Neumann problem on a convex polygon, it will be greater than 1, and for
some triangles even greater than 2, but never greater than 3.
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Remark 6.8. Theorem 6.4 has to be compared with earlier results by Babuška and Guo2:
The Laplace operator with non-homogeneous mixed boundary conditions is considered
in [2, 3]; more general scalar second order operators with analytic coefficients are ad-
dressed in [1] and finally the Lamé system of linear elasticity with non-homogeneous
mixed Dirichlet-Neumann boundary conditions is investigated in [14]. These results are
at the same time more general than Theorem 6.4 since they address non-homogeneous
boundary conditions and variable coefficients, but more restrictive since they do not in-
clude a full class of coercive second order systems with a unified approach. In section 7 we
explain how our technique of proof generalizes to non-homogeneous boundary conditions
and variable coefficients. Since the results so obtained are not entirely new, we try to be as
concise as possible, and we will only sketch the proofs. Detailed proofs and more general
results will be published in [9, Part II].

6.2. Regularity of variational solutions in polyhedra. Let Ω be a polyhedron with edges
e ∈ E and corners c ∈ C . The comparison between the variational space V and weighted
spaces K1

β(Ω) and J1
β(Ω), cf. (5.4) and (5.16), is still related with the multi-exponent βc =

βe = −1 and essential boundary conditions: We have

J1
−1(Ω) = H1(Ω)

and, in the Dirichlet case
H1

0(Ω) ⊂ K1
−1(Ω).

Moreover, the intermediate space

J1
−1(Ω; C , ∅) =

{
u ∈ H1(Ω) : r−1

c u ∈ L2(Ω) ∀c ∈ C
}
,

also coincides with H1(Ω) by virtue of Hardy’s inequality.
The analogues of Theorems 6.1 and 6.4 hold for polyhedra. For convenience, we con-

sider multi-exponents of the form

β = −1− b, with b =
(
bc

)
c∈C

∪
(
be

)
e∈E

.

The issue is twofold:
(1) Verify Assumptions 5.5 or 5.13, which are closed range properties
(2) Give conditions for variational solutions to belong to spaces K1

β(Ω) or J1
β(Ω).

Let e ∈ E . Denote by We the wedge which coincides with Ω in a neighborhood of
the edge e and by Ke the plane sector such that We

∼= Ke × R. A minimal condition for
Assumptions 5.5 or 5.13 to hold is an injectivity condition for the Fourier symbol of the
system (L, Ts, Ds) on the plane sector Ke. As a side remark, we mention that it can be
shown that in the variational case, such a condition is satisfied for all βe < −1 with the
exception of a discrete set, see [9, Part III].

As a matter of fact, the condition which ensures the regularity of variational solutions
implies Assumptions 5.5 or 5.13. Hence we focus on conditions for the regularity. There
are not so many results on regularity for elliptic boundary value problems in polyhedra. Let
us quote [24, 25] for early results in general n-dimensional polyhedral domains in spaces
of K type, [12] in n-dimensional polyhedral domains in standard Sobolev spaces, and more

2When b ∈ (0, 1), our space B−b−1(Ω) coincides with their space B2
β(Ω) for β = 1− b.
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recently [29] in 3-dimensional polyhedral domains in spaces Jn
β (C , E0), cf. Remark 5.12

(ii).
The latter results, especially [29, Thms. 7.1 & 7.2], fit exactly to complement our results,

namely in the form (5.25). For this reason we formulate the following theorem with the
assumptions of [29], that is mixed Dirichlet-Neumann boundary conditions for second
order systems:

V = {u ∈ H1(Ω) : u
∣∣
Γs

= 0, s ∈ SD}.
Let E0 be the set of edges e which are the sides of faces Γs with s ∈ SD. We still consider
sesquilinear forms (6.1).

Theorem 6.9. We assume that the form a is coercive on V. There exist two positive numbers
bC (Ω, a,V) and bE (Ω, a,V) such that the following implication holds for any solution u of
the variational problem (6.3):

(6.8) If ∀c ∈ C , 0 ≤ bc < bC (Ω, a,V) and ∀e ∈ E , 0 ≤ be < bE (Ω, a,V)

then f ∈ B−b+1(Ω; C , E0) =⇒ u ∈ B−b−1(Ω; C , E0).

Proof. First Theorem 7.2 of [29] guarantees that the Assumption 5.5 is satisfied with βe =
−be + 1, with be satisfying (6.8). Second Theorem 7.1 of [29] show the regularity u ∈
J1
−b−1(Ω; C , E0) with b satisfying (6.8). Hence the conclusion follows from Theorem 5.14

(see Remark 5.15). �

Remark 6.10. Let σ(Ac) and σ(Ae) denote the spectrum of the Mellin symbol Ac and Ae

of the system (L, Ts, Ds) at the corner c and the edge e, respectively. Then bE (Ω, a,V) is
the supremum of the numbers b > 0 such that

{λ ∈ C : 0 ≤ Re λ ≤ b} ∩ σ(Ae) = ∅ ∀e ∈ E ,

and bC (Ω, a,V) is the supremum of the numbers b > 0 such that

{λ ∈ C : −1
2
≤ Re λ ≤ b− 1

2
} ∩ σ(Ac) = ∅ ∀c ∈ C .

Remark 6.11. Let us define b∗C (Ω, a,V) as the supremum of positive b such that for all
λ, −1

2
≤ Re λ ≤ b − 1

2
, the condition of injectivity modulo polynomials is satisfied at the

corner c. Then replacing bC (Ω, a,V) by b∗C (Ω, a,V), we obtain the condition which ensures
the analytic regularity in the maximal classes B−b−1(Ω) = B−b−1(Ω; ∅, ∅) cf. Definition
5.11.

7. GENERALIZATION TO NON-HOMOGENEOUS BOUNDARY DATA AND VARIABLE
COEFFICIENTS

The fundamental estimate (1.1) in the smooth case allows non-homogeneous boundary
data and variable coefficients, and the analytic regularity results can therefore be extended
to cover this more general situation. But the difficulty to do so is of a quite different level
for two-dimensional and for three-dimensional domains (due to the anisotropy in the latter
case). Here we mainly address two-dimensional domains and give only some orientations
for the treatment of three-dimensional domains at the end of this section.
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So, let us consider the general boundary value problem, set on the polygon Ω:

(7.1)


Lu = f in Ω,

Ts u = gs on Γs, s ∈ S ,

Ds u = hs on Γs, s ∈ S ,

where the operators L = L(x; ∂x), Ts = Ts(x; ∂x) and Ds = Ds(x) may have variable
coefficients and lower order terms.

7.1. Trace spaces. First, we have to introduce the trace spaces of Km
β (Ω) and Aβ(Ω) on

each side Γs of Ω. Let us choose a side s and denote by c and c′ its two ends. We consider
a covering of Γs by two open segments Γ and Γ′ so that

c ∈ Γ, c′ 6∈ Γ and c′ ∈ Γ′, c 6∈ Γ′.

We note that we can take r := rc as the tangential variable along Γ. For k ∈ N, σ ∈ (0, 1)
and γ ∈ R we define the weighted space Kk+σ

γ (Γ) by

Kk+σ
γ (Γ) = {g ∈ Kk

γ(Γ) : |rγ+k+σ∂k
r g|

σ,Γ
< ∞},

where the Sobolev-Slobodeckii semi-norm | · |
σ,Γ

is defined by

|v|2
σ,Γ

=

∫
Γ

∫
Γ

|v(r)− v(r̃)|2

|r − r̃|1+2σ
dr dr̃ .

For γ′ ∈ R, we define similarly Kk+σ
γ′ (Γ′) using now the powers of rc′ as weight. For

γ = (γ, γ′) we define the following global weighted space on the side Γs

Kk+σ
γ (Γs) = {g ∈ L2

loc(Γs) : g
∣∣
Γ
∈ Kk+σ

γ (Γ), g
∣∣
Γ′
∈ Kk+σ

γ′ (Γ′)}.

Then (see e.g. [22, § 6.1.1]), for any multi-exponent β = (βc)c∈C ,

K
m−1/2
β+1/2 (Γs) is the trace space of Km

β (Ω) on Γs .

Here, of course, we understand that we take the weight exponents βc + 1
2

and βc′ +
1
2

at the
two ends c and c′ of Γs.

The analytic classes Aγ(Γ), Aγ′(Γ), and Aγ(Γs) are defined accordingly:

Aγ(Γ) =
{

g ∈
⋂
m≥0

Km
γ (Γ) : ∃C > 0,∀m ∈ N, ‖rγ+m∂m

r g‖
Γ
≤ Cm+1m!

}
,

– we recall that ‖ · ‖
Γ

is the L2(Γ)-norm, and

Aγ(Γs) = {g ∈ L2
loc(Γs) : g

∣∣
Γ
∈ Aγ(Γ), g

∣∣
Γ′
∈ Aγ′(Γ

′)}.

The trace spaces of J-weighted spaces can be defined similarly, see the discussion in [8,
Rem. 3.20] and [9, Ch. 11]. Let us just give the definition of the corresponding analytic
class, locally

Bγ(Γ) =
{

g ∈
⋂

m>−γ− 1
2

Jm
γ (Γ) : ∃C > 0,∀m > −γ − 1

2
, ‖rγ+m∂m

r g‖
Γ
≤ Cm+1m!

}
,
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where Jm
γ (Γ) = {g ∈ L2

loc(Γ) : rγ+m∂j
rg ∈ L2(Γ), j = 0, . . . ,m}. Globally we set

Bγ(Γs) = {g ∈ L2
loc(Γs) : g

∣∣
Γ
∈ Bγ(Γ), g

∣∣
Γ′
∈ Bγ′(Γ

′)}.

7.2. Weighted spaces with homogeneous norms. We give now the generalization of the
first part of Theorem 3.4 to non-homogeneous boundary conditions and variable coeffi-
cients.

Theorem 7.1. We assume that L, Ts and Ds have analytic coefficients over Ω and Γs

(L and Ts may have lower order terms), and that {Ts, Ds} cover L at each point in Γs

(denote by Ns the number of Dirichlet conditions). Let β be a weight multi-exponent. Let
u ∈ H2

loc(Ω \ C ) be a solution of problem (7.1) with

(7.2a) f ∈ Kn
β+2(Ω), gs ∈ K

n+1/2
β+3/2(Γs)

N−Ns , and hs ∈ K
n+3/2
β+1/2(Γs)

Ns (n ∈ N).

Then the following implication holds

(7.2b) u ∈ K1
β(Ω) =⇒ u ∈ Kn+2

β (Ω).

Likewise, if

(7.3a) f ∈ Aβ+2(Ω), gs ∈ Aβ+3/2(Γs)
N−Ns , and hs ∈ Aβ+1/2(Γs)

Ns

then the following implication holds

(7.3b) u ∈ K1
β(Ω) =⇒ u ∈ Aβ(Ω).

Proof. (Sketch) We will prove local estimates with analytic control of derivatives near each
corner. Pick up a corner c. We set β := βc. We can assume without restriction that c = 0
and Ωc = Ω ∩ B(0, 1).
(i) Case of homogeneous operators with constant coefficients. The idea of the proof is
the same as in the “simple case” when g = 0 and h = 0 (Theorem 2.2): We start from
reference estimate (1.1) on the domains V̂ and V̂ ′ defined in (2.7):

(7.4)
1

k!
|û|

k; bV ≤ Ak+1

{ k−2∑
`=0

1

`!

(
|̂f|

`; bV ′+
2∑

s=1

(
‖ĝs‖`+ 1

2
; bΓ′s + ‖ĥs‖`+ 3

2
; bΓ′s

))
+ ‖û‖

1; bV ′

}
.

with

(7.5) f̂ := Lû, ĝs := Tsû, and ĥs := Dsû.

Here Γs, s = 1, 2 are the two sides of Ω near the vertex c = 0, and

Γ̂′s = ∂V̂ ′ ∩ Γs .

Then we split ‖ĝs‖`+ 1
2
; bΓ′s and ‖ĥs‖`+ 3

2
; bΓ′s into homogeneous components and insert weights

like in (2.10). We then perform the change of variables x̂ 7→ x = 2−µx̂ for any µ ∈ N.
Defining û(x̂) := u(x) we have

(7.6) f̂(x̂) = 2−2µf(x), ĝs(x̂) = 2−µgs(x), and ĥs(x̂) = hs(x).
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Like in the proof of Theorem 2.2, we find the common factor 2µ(β−1) on every term. We
multiply the resulting inequalities by 2−µ(β−1), take squares and sum over µ ∈ N to find
finally

(7.7)
1

k!
‖rβ+|α|∂α

x u‖
Ωc
≤ Ak+1

{
k−2∑
`=0

1

`!

(
‖rβ+2+|α|∂α

x f‖
Ω′

c
+

2∑
s=1

(
‖gs‖K

`+1/2
β+3/2

(Γ′s)
+ ‖hs‖K

`+3/2
β+1/2

(Γ′s)

))
+ ‖u‖

K1
β(Ω′

c)

}
with Γ′s = ∂Ωc ∩ Γs.
(ii) Case of non-homogeneous operators with variable coefficients: Now

L = L(x; ∂x), Ts = Ts(x; ∂x) and Ds = Ds(x).

We perform the same dyadic partition and for each µ ∈ N, the same changes of variables
x̂ 7→ x = 2−µx̂. Defining û(x̂) := u(x) we still have (7.6) with, instead of (7.5):

f̂ := Lµ û, ĝs := T µ
s û, and ĥs := Dµ

s û with

Lµ := 2−2µL(2−µx̂, 2µ∂bx), T µ
s := 2−µTs(2

−µx̂, 2µ∂bx), and Dµ
s := Ds(2

−µx̂).

We note that when µ → ∞, the operators Lµ and T µ
s tend to the principal parts L and T s

of L and Ts frozen at 0 respectively, and Dµ
s tends to Ds(0) =: Ds. As a consequence

of the ellipticity and covering properties of the boundary value system (L, T s, Ds) and the
analyticity of coefficients, estimates (7.4) holds with one and the same constant A when
µ is large enough. For the finitely many remaining values of µ, we use the ellipticity of
(Lµ, T µ

s , Dµ
s ) and the analyticity of its coefficients. As a result, we find a possibly larger

constant A for which (7.4) holds for every µ ∈ N. Then we insert the weights, scale and
sum with respect to µ as in the proof of Theorem 2.2, and we deduce that (7.7) still holds
in the case of variable coefficients and lower order terms.
(iii) With the local estimates (7.7) at hands in all cases, we finish the proof of the analytic
shift result as before for Theorem 3.4. �

More details about the arguments of this proof can be found in [9]: In [10, Ch. 2] for
the local estimate (7.4) in smooth domains with general data on the boundary and variable
coefficients, in [9, Ch. 6] for model problems in cones with general data on the boundary,
and in [9, Ch. 7] for variable coefficients in general corner domains.

Since Kondrat’ev’s results [21] apply to general operators with variable coefficients,
Theorem 6.1 can be generalized to coercive problems with analytic coefficients.

7.3. Weighted spaces with non-homogeneous norms. The generalization to non-zero
boundary conditions goes through similarly with weighted spaces J and analytic classes
B. However, the consideration of lower order terms and variable coefficients requires the
modification of some of the estimates. For the sake of simplicity, let us consider a local



42

model problem as in (2.2)

(7.8)


Lu = f in K ∩W ′,

Ti u = 0 on Γi ∩W ′, i = 1, 2,

Di u = 0 on Γi ∩W ′, i = 1, 2,

where L = L(x; ∂x) is a second order elliptic system with analytic coefficients on W ′.
We assume for simplicity that the boundary operators Ti and Di are homogeneous with
constant coefficients. We assume that for i = 1, 2 and for each point x0 ∈ Γi ∩ W ′

the system L(x0; ∂x) frozen at x0 is covered by the boundary operators (Ti, Di). As a
consequence of the proof above, Theorem 2.2 generalizes: We have the estimate

(7.9)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x Lu‖2

0;W ′

) 1
2

+
∑
|α|≤1

‖rβ+|α|∂α
x u‖

0;W ′

}
.

Now the question is wether it is possible to generalize in the same way Theorem 2.6 on
non-homogeneous weighted norms in this new framework of variable analytic coefficients.
The correct answer is that we have to modify estimate (2.15):

Proposition 7.2. With the above assumptions on L, any solution of the boundary value
problem (7.8) Let β > −2 be a real number. Let u ∈ J1

β(W ′) be a solution of problem
(7.8). Then there exists a constant C ≥ 1 independent of u such that for all integer k ≥ 2,

(7.10)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x Lu‖2

0;W ′

) 1
2

∑
|α|≤1

‖rβ+1∂α
x u‖

0;W ′

}
.

Remark 7.3. The last term in the right hand side is nothing but ‖u‖J1
β(W ′). Estimates (7.9),

(7.10) and (2.15) (for m = 1) are very close to each other. The main groups of terms with
factorial coefficients are identical. The difference is born by the L2 weighted norm of u
in the right-hand side: In (7.9), this term is ‖rβu‖0;W ′ , in (2.15) for m = 1, it is absent,
and in (7.10), it is equal to ‖rβ+1u‖0;W ′ . In applications to variational problems in H1,
this makes an important difference, since for β = −1 − b with b ∈ (0, 1), any function
u ∈ H1(W ′) satisfies ‖rβ+1u‖0;W ′ < ∞, but not ‖rβu‖0;W ′ < ∞ in general.

Proof. Let us introduce an intermediate domain W ′′

W ⊂W ′′ ⊂ W ′.
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We first note that J1
β(W ′) ⊂ K1

β+1(W ′) and that we can use the estimate in homogeneous
norms (7.9) with β + 1:

(7.11)
1

k!

( ∑
|α|=k

‖rβ+1+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{
k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+1+2+|α|∂α
x Lu‖2

0;W ′′

) 1
2

+
∑
|α|≤1

‖rβ+1+|α|∂α
x u‖

0;W ′′

}
.

Let us recall that L denotes the principal part of L frozen at 0. Using the analyticity of the
coefficients of L we can prove that there holds

(7.12)
1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x (Lu− Lu)‖2

0;W ′′

) 1
2 ≤

B`+1

`+2∑
k=0

1

k!

( ∑
|α|=k

‖rβ+1+|α|∂α
x u‖2

0;W ′′

) 1
2
.

Then we use estimate (2.15) in non-homogeneous norm for the operator L with m = 1

(7.13)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W ′′

) 1
2 ≤ Ck+1

{
k−2∑
`=0

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x Lu‖2

0;W ′

) 1
2

+
∑
|α|=1

‖rβ+|α|∂α
x u‖

0;W ′

}
.

Using the straightforward inequality∑
|α|≤1

‖rβ+1+|α|∂α
x u‖

0;W ′′ +
∑
|α|=1

‖rβ+|α|∂α
x u‖

0;W ′ ≤ c
∑
|α|≤1

‖rβ+1∂α
x u‖

0;W ′

together with a triangular inequality on Lu = Lu + (Lu − Lu), we deduce (7.10) from
(7.11)–(7.13), with a new constant C independent of k. This ends the proof. �

Remark 7.4. Proposition 7.2 admits a natural generalization, which can proved in a similar
way: If m ≥ 1 is an integer and β is a real number such that β + m > −1, any solution
u ∈ Jm

β (W ′) of problem (7.8) satisfies the estimates for all integer k ≥ m + 1,

(7.14)
1

k!

( ∑
|α|=k

‖rβ+|α|∂α
x u‖2

0;W

) 1
2 ≤ Ck+1

{ k−2∑
`=m−1

1

`!

( ∑
|α|=`

‖rβ+2+|α|∂α
x Lu‖2

0;W ′

) 1
2

+ ‖Lu‖
Jm−2

β+2 (W ′)
+ ‖u‖

Jm
β (W ′)

}
.
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To end this subsection, let us briefly indicate how things work for variational solutions.
Theorem 6.4 can be extended to more general variational problems with variable coeffi-
cients and non-zero boundary data

(7.15) Find u ∈ V such that ∀v ∈ V, a(u, v) =

∫
Ω

f v dx +
∑
s∈S

∫
Γs

gs v dτ.

Theorem 7.5. Let a be a sesquilinear form of degree 1 with analytic coefficients on Ω,
coercive on the space V defined by the Dirichlet conditions Dsu = 0 on Γs, for all s ∈ S .
There exists a positive number b1(Ω, a,V) ≤ 1 such that the following implication holds
for any solution u ∈ V of the variational problem (7.15) and any b, 0 < b < b1(Ω, a,V):

(7.16) f ∈ B−b+1(Ω) and gs ∈ B−b+1/2(Γs)
N−Ns =⇒ u ∈ B−b−1(Ω).

We refer to [9, Ch. 13 & 14] for more results and proofs.

7.4. Three-dimensional problems. Whereas the consideration of non-zero boundary data
can be performed in three-dimensional polyhedral domains using similar tools as for zero
boundary data, the consideration of variable coefficients is more delicate. There are two
situations:

(1) If coefficients are constant in the direction of each edge (but possibly variable in the
transverse direction) the estimates (7.9) and (7.10) can be extended to edge neigh-
borhoods, and anisotropic estimates can be proved, based on the same assumptions
as in section 4. This implies in particular the generalization of the results of sec-
tions 4 and 5 to problems with constant coefficients (not necessarily homogeneous)
in polyhedra. This also implies the generalization to axisymmetric problems.

(2) If coefficients are not constant in the direction of edges, the level of difficulty in-
creases. One would need to go back to the primitive technique of estimating com-
mutators, cf. [9, Lemmas 1.6.2 & 2.6.2], which leads to the introduction of norms
of Sobolev-Morrey type.

8. GENERALIZATION TO OTHER OPERATORS AND SYSTEMS

First we may easily extend the results of this paper to transmission problems, namely
problem like (5.3) where L has piecewise constant coefficients (hence some transmission
conditions have to be imposed at the common boundary of the sub-domains). Indeed an
estimate like (1.1) holds for such problems and is proved in [9, Theorem 5.2.2]. Second
higher order differential operators like ∆2 may be treated in a similar manner. Finally our
method may be used for the Stokes system (see [17] for two-dimensional results). Note
that the Maxwell system is more delicate: Whereas in convex polygons or polyhedra the
natural variational space is contained in H1 and all our results apply, the presence of non-
convex corners or edges induces the appearance of non-H1 fields which require a specific
treatment, see [11] in dimension two.
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maines à singularités coniques. Comm. Partial Differential Equations 10 (2) (1985) 391–432.

[5] J. H. BRAMBLE, S. R. HILBERT. Estimation of linear functionals on Sobolev spaces with application
to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7 (1970) 112–124.

[6] A. BUFFA, M. COSTABEL, M. DAUGE. Anisotropic regularity results for Laplace and Maxwell oper-
ators in a polyhedron. C. R. Acad. Sc. Paris, Série I 336 (2003) 565–570.

[7] A. BUFFA, M. COSTABEL, M. DAUGE. Algebraic convergence for anisotropic edge elements in poly-
hedral domains. Numer. Math. 101 (2005) 29–65.

[8] M. COSTABEL, M. DAUGE, S. NICAISE. Mellin analysis of weighted Sobolev spaces with nonhomo-
geneous norms on cones. In Around the Research of Vladimir Maz’ya, I, volume 11 of International
Mathematical Series, pages 105–136. Springer and “Tamara Rozhkovskaya Publisher”, Novosibirsk
2010.

[9] M. COSTABEL, M. DAUGE, S. NICAISE. Corner Singularities and Analytic Regularity for Linear
Elliptic Systems. Book in preparation.

[10] M. COSTABEL, M. DAUGE, S. NICAISE. Corner Singularities and Analytic Regularity for Linear El-
liptic Systems. Part I: Smooth domains. http://hal.archives-ouvertes.fr/hal-00453934/en/ Online version
of Chapters 1 to 5. (2010).

[11] M. COSTABEL, M. DAUGE, C. SCHWAB. Exponential convergence of hp-FEM for Maxwell’s equa-
tions with weighted regularization in polygonal domains. Math. Models Methods Appl. Sci. 15(4) (2005)
575–622.

[12] M. DAUGE. Elliptic Boundary Value Problems in Corner Domains – Smoothness and Asymptotics of
Solutions. Lecture Notes in Mathematics, Vol. 1341. Springer-Verlag, Berlin 1988.

[13] B. GUO. The h-p version of the finite element method for solving boundary value problems in poly-
hedral domains. In M. COSTABEL, M. DAUGE, S. NICAISE, editors, Boundary value problems and
integral equations in nonsmooth domains (Luminy, 1993), pages 101–120. Dekker, New York 1995.
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