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Abstract. The eigenvalue problem for a certain tridiagonal matrix with complex coefficients is
considered. The eigenvalues and eigenvectors are shown to be expressible in terms of solutions of
a certain scalar trigonometric equation. Explicit solutions of this equation are obtained for several
special cases, and further analysis of this equation in several other cases provides information about
the distribution of eigenvalues.
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1. Introduction. Recently Yueh [9], Kouachi [6], and da Fonseca [4] have stud-
ied the eigenvalues of certain tridiagonal matrices, developing a trigonometric equa-
tion whose solution yields the eigenvalues. In several special cases this equation has
explicit solutions, and exact expressions for the eigenvalues and eigenvectors were ob-
tained. In this paper, we extend their work by more completely describing one further
special case where an explicit solution is possible and by analyzing this equation in a
number of further cases where information about the distribution of eigenvalues can
be obtained.

Consider the tridiagonal matrix

(1) A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−α + b c1
a1 b c2

a2
. . .

. . .

. . . b cn−1

an−1 −β + b

⎤
⎥⎥⎥⎥⎥⎥⎦

with the restriction

(2)
√
aici = d �= 0, 1 ≤ i < n.

All variables are, in general, complex. Without loss of generality we may assume that
d is the principal square root of aici so that its argument is in the range (−π/2, π/2].
The matrix A has n+3 (complex) degrees of freedom: ai, 1 ≤ i < n, b, d, α, and β (ci
being determined by ai and d). However, since the eigenvalues of the matrix M + bI
are equal to λi + b, where λi are the eigenvalues of the matrix M , it follows that the
eigenvalues of A will be of the form λ = b+f(ai, ci, α, β). It is also not difficult to see
that the quantities ai and ci always occur as a product in the characteristic polynomial
for A, so that the eigenvalues are in fact of the form λ = b + f(d, α, β). Thus the
eigenvalues of A have four complex degrees of freedom. Since b simply appears in an

∗Received by the editors June 25, 2007; accepted for publication (in revised form) by M. Chu
February 5, 2008; published electronically June 13, 2008.

http://www.siam.org/journals/simax/30-2/69541.html
†Department of Mathematics and Statistics, University of Guelph, Guelph, ON N1G 2W1, Canada

(AWillms@uoguelph.ca).

639



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

640 ALLAN R. WILLMS

additive way, we will concentrate on C
3, the space of parameters (d, α, β). We identify

the complex plane with R
2, and thus the matrix parameter space is six-dimensional.

Most of the special cases yielding explicit solutions for the eigenvalues of A are two-
dimensional manifolds in this space, although one case is four-dimensional. In addition
we will obtain information about the distribution of eigenvalues in various other three-
and four-dimensional manifolds in this space.

Yueh [9] considered matrices of the form A but with constant subdiagonal and
superdiagonal entries, that is, ai = a and ci = c, 1 ≤ i < n. He established that
the eigenvalues of the n × n matrix A are of the form λ = b + 2

√
ac cos θ, and the

eigenvectors can also be given in terms of θ, where θ is a solution of

(3) ac sin
(
(n+1)θ

)
+(α+β)

√
ac sin(nθ)+αβ sin

(
(n−1)θ

)
= 0, θ �= kπ, k ∈ Z.

He solved this equation explicitly in several special cases:
1. α = β = 0. In this case the matrix A is Toeplitz, and the analytic expressions

for the eigenvalues and eigenvectors are well known [8, p. 514] to be

λm = b + 2
√
ac cos

(
mπ

n + 1

)
, v

(m)
j =

(a
c

)j−1

sin

(
jmπ

n + 1

)
, 1 ≤ m ≤ n,

2. α = 0, β = ±
√
ac (or switch α and β),

3. α = β = ±
√
ac,

4. α = −β = ±
√
ac.

The resulting expressions for the eigenvalues and eigenvectors in the last three cases
are similar in flavor to the first case [9]. He did not explicitly solve for the special case
α = −c, β = −a. But, by using (3), since sin((n+1)θ)+sin((n−1)θ) = 2 sin(nθ) cos θ,
for this case we get

sin(nθ) = 0, or 2
√
ac cos θ − (a + c) = 0,

which results in eigenvalues

λm = b + 2
√
ac cos

(mπ

n

)
, 1 ≤ m < n, and λn = b + a + c.

For b = −(a + c) this result was known at least as far back as 1954 [7, pp. 365–366].
Kouachi [6] used a different method to study eigenvalues and eigenvectors of the

matrix A and generalized to the case where the off-diagonal entries satisfy

aici =

{
d2
1 if i is odd,

d2
2 if i is even.

As in Yueh’s work, the eigenvalues are given in terms of cos θ and a nonlinear equa-
tion involving θ is specified. In addition to the special cases considered by Yueh,
Kouachi also found explicit expressions for the eigenvalues and eigenvectors in the
case αβ = d2

2, n even. This amounts to a generalization of Ledermann and Reuter’s [7]
result, although only for even n, and, unfortunately, there are a number of substantial
typographical errors in Kouachi’s paper particularly in the exposition of this case.

The eigenvalues of certain perturbed tridiagonal k-Toeplitz matrices were recently
studied by da Fonseca [4]. In particular, da Fonesca gives a trigonometric relation
satisfied by the eigenvalues of a 2-Toeplitz matrix with perturbed entries in the top
left and bottom right corners. This result is more general than those of Yueh and
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Kouachi, and those presented here, since the matrix A and those studied by Yueh
and Kouachi are special types of 2-Toeplitz matrices. However, da Fonseca gives
an explicit formula for the eigenvalues in just one special case of the perturbation
parameters (α and β) but no others. (Incidentally, there is a typographical error in
his paper for this formula also: b21 + b22 on page 65 should be b1 + b2.)

We also note another recent result by da Fonseca [5] which relates the eigenvalues
of the matrix

C = [μmin{i, j} − ν]i,j=1,...,n , μ > 0, μ �= ν,

to those of a matrix of the form A (1) with ai = ci = −1, i = 1, . . . , n − 1, b = 2,
α = 1 − μ/(μ− ν), and β = 1. However, he obtains explicit results only for a couple
of special values for μ and ν, which turn out to be two of the special cases that we
consider here.

In this paper we provide a general expression for the eigenvalues and eigenvectors
of the matrix A, which generalizes Yueh’s result and is contained within Kouachi’s
and da Fonseca’s. We enumerate all of the special cases where this general expression
yields explicit results for the eigenvalues and eigenvectors; particularly, we describe
the case αβ = d2 fully, extending the work of Yueh and Kouachi. In addition, we
provide analysis in several other special cases not considered by any of the above three
authors where explicit solutions are not possible but information on the distribution
of eigenvalues can be obtained.

2. General results. Similar to Yueh [9], we utilize the methods of symbolic
calculus of semi-infinite sequences [3]. The pertinent facts are as follows. The convo-
lution of two sequences x = {xj}∞j=0 and y = {yj}∞j=0 is the sequence z = {zn}∞n=0

whose nth component is

zn =

n∑
j=0

xjyn−j .

Convolution is a symmetric operation xy = yx, distributes over addition x(y + z) =
xy+xz, and is associative with respect to scalar multiplication x(cy) = c(xy) for any
scalar c. We define I = {1, 0, . . . } and S = {0, 1, 0, . . . }. Thus

Ix = x and Sx = {0, x0, x1, . . . },

and, in particular,

S {xj+1}∞j=0 = {0, x1, x2, . . . } = x− x0I

and

S2 {xj+2}∞j=0 = {0, 0, x2, x3, . . . } = x− x0I − x1S.

Each sequence x with x0 �= 0 has a unique inverse y such that xy = I, where y0 = 1/x0

and yn, n > 0, is defined recursively by yn = −(
∑n

j=1 xjyn−j)/x0. In particular, the
inverse of (S − γI), for scalar γ, is

(4) (S − γI)−1 =

{
−1

γj+1

}∞

j=0

.
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Consider now the eigenproblem for the matrix A, Av = λv, which can be written
as follows:

(b− λ)v1 + c1v2 = αv1,

a1v1 + (b− λ)v2 + c2v3 = 0,

...

an−2vn−2 + (b− λ)vn−1 + cn−1vn = 0,

an−1vn−1 + (b− λ)vn = βvn.

(5)

Since d2 = ajcj , for all j = 1, . . . , n − 1, it follows that d/cj = aj/d. Define q1 = 1
and qj , 1 < j ≤ n, by the recursion

(6) qj =
d

cj−1
qj−1 =

aj−1

d
qj−1, 1 < j ≤ n.

Formally, the qj are given by

(7) qj =

(
1a1a2 · · · aj−1

1c1c2 · · · cj−1

)1/2

;

however, the specific branch of the square root function that needs to be used for
each subsequent j is not always the principal branch but rather is determined by the
requirement that qj = dqj−1/cj−1. Note that, by (2), aj and cj , and hence qj , are all
nonzero so that the vector u given by

(8) vj = qjuj , 1 ≤ j ≤ n,

is well defined. Substitute (8) into system (5), dividing the jth equation by qj . By
using (6) this process yields the system

(b− λ)u1 + du2 = αu1,

du1 + (b− λ)u2 + du3 = 0,

...

dun−2 + (b− λ)un−1 + dun = 0,

dun−1 + (b− λ)un = βun.

(9)

We now extend the vector u to a semi-infinite sequence {uj}∞j=0 and impose u0 = 0

and un+1 = 0. System (9) can then be written as

(10) d {uj+2}∞j=0 + (b− λ) {uj+1}∞j=0 + d {uj}∞j=0 = {fj+1}∞j=0 ,

where f is the sequence defined by

(11) fj =

⎧⎪⎨
⎪⎩
αu1 if j = 1,

βun if j = n,

0 otherwise.

Taking the convolution of (10) with S2 gives

d (u− u0I − u1S) + (b− λ)S (u− u0I) + dS2u = S (f − f0I) ,
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and by using the facts that u0 = 0 and f0 = 0 we have

(12)
(
dS2 + (b− λ)S + dI

)
u = (f + du1I)S.

Let

(13) γ± =
1

2d

[
−(b− λ) ±

√
ω
]
,

where ω = (b−λ)2−4d2, be the two roots of dx2+(b−λ)x+d = 0. Note that γ+γ− = 1,
and thus we may write γ± = e±iθ, where θ ∈ C by taking θ = arg γ+ − i ln |γ+|. Since
−(b− λ)/d = γ+ + γ− = eiθ + e−iθ = 2 cos θ, the eigenvalues are given by

(14) λ = b + 2d cos θ.

Further, since cos(x+ iy) = cosh(y) cos(a)− i sinh(b) sin(a), it follows that the eigen-
value is real either if θ is real or if Re(θ) = kπ, k ∈ Z. With this notation, (12)
becomes

d(S − γ+I)(S − γ−I)u = (f + du1I)S,

and from (4) we obtain

u =

{
−1

γj+1
+

}∞

j=0

{
−1

γj+1
−

}∞

j=0

(
1

d
f + u1I

)
S

=

⎧⎨
⎩

m∑
j=0

1

γj+1
+ γm−j+1

−

⎫⎬
⎭

∞

m=0

(
1

d
f + u1I

)
S

=

⎧⎨
⎩

m∑
j=0

γj
−γ

m−j
+

⎫⎬
⎭

∞

m=0

(
1

d
f + u1I

)
S

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
γm+1
+ − γm+1

−
γ+ − γ−

}∞

m=0

(
1

d
f + u1I

)
S if γ+ �= γ−,

{
(m + 1)γm

+

}∞
m=0

(
1

d
f + u1I

)
S if γ+ = γ−,

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
sin((m + 1)θ)

sin θ

}∞

m=0

(
1

d
f + u1I

)
S if γ+ �= γ−,

{
(m + 1)eimθ

}∞

m=0

(
1

d
f + u1I

)
S if γ+ = γ−.

(15)

If we define the function g : Z × C → C as

(16) g(n, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

sin(nθ)

sin θ
if θ �= kπ, k ∈ Z,

n if θ = 2kπ, k ∈ Z,

(−1)n−1n if θ = (2k + 1)π, k ∈ Z,
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then g is continuous in θ, and, since γ+ = γ− is equivalent to θ = kπ, k ∈ Z, both of
the cases in (15) collapse to

(17) u =
{
g(m + 1, θ)

}∞

m=0

(
1

d
f + u1I

)
S.

Computing the convolutions in this last expression and noting from (11) that the only
nonzero entries of the sequence f are f1 = αu1 and fn = βun yields u0 = 0 and

(18) uj = u1

[
g(j, θ) +

α

d
g(j − 1, θ)

]
+ H(j − n− 1)

β

d
ung(j − n, θ), j ≥ 1,

where H(x) is the unit step function: H(x) = 1 if x ≥ 0, and H(x) = 0 if x < 0. By
using (18) with j = n + 1, the condition un+1 = 0 becomes

(19)
[
g(n + 1, θ) +

α

d
g(n, θ)

]
u1 +

β

d
un = 0,

where we have used the fact that g(1, θ) = 1. Finally, by using (18) at j = n and
noting that u1 cannot be zero (otherwise, the vector v must be zero) we obtain the
necessary and sufficient condition for λ = b+2d cos θ to be an eigenvalue of A, namely,

(20) g(n + 1, θ) +
α + β

d
g(n, θ) +

αβ

d2
g(n− 1, θ) = 0.

Equations (20) and (14) correspond to those derived by Yueh; however, he mul-
tiplied (20) by d2 sin θ to clear the denominator and dealt with the case θ = kπ
separately.

We now show that there are exactly n solutions (counting multiplicity) of (20) in
the region

(21) R = {θ = (x + iy) | 0 ≤ x ≤ π, x, y ∈ R} ,

where roots on the boundary of R are counted with half weight. The continuous
function g is 2π-periodic in θ and is an even function of θ. Consequently once the
roots of (20) in R are found, all roots of (20) can be determined. Setting ξ = eiθ and
multiplying (20) by the nonzero quantity d2ξn+1/ξ gives

(22)
d2(ξ2n+2 − 1) + d(α + β)ξ(ξ2n − 1) + αβξ2(ξ2n−2 − 1)

ξ2 − 1
= 0.

Clearly ξ = ±1 are roots of the numerator; hence, ξ2 − 1 divides the numerator, and
we are left with a 2nth order polynomial in ξ which necessarily has 2n roots, some
possibly repeated. Since eiθ is 2π-periodic, it follows that there are 2n roots of (20)
in the region R ∪ R̂, where R̂ = {θ | −π < Re(θ) < 0}. By the even property of g,
every root in int(R) (the interior of R) has a corresponding root in R̂. Since R and
R̂ are disjoint, it follows that twice the number or roots in int(R) plus the number
of roots on the boundary of R is 2n. Further, roots on the left boundary of R of
the form θ = iy, y > 0, have corresponding roots θ = −iy also on the left boundary,
and similarly roots on the right boundary of R of the form θ = π + iy, y > 0, have
corresponding roots θ = −π− iy+ 2π = π− iy, also on the right boundary. Since the
cosine is also even and 2π-periodic, each of these corresponding pairs of roots of (20)
yield identical eigenvalues of A through (14). We may thus focus entirely on finding
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roots of (20) in the region R and may also exclude the portions of the boundary of R
with Im(θ) < 0. Each such distinct root θ corresponds to a distinct eigenvalue λ.

From (18) and (8), the components of the eigenvectors are given by

(23) vj = v1qj

[
g(j, θ) +

α

d
g(j − 1, θ)

]
, 1 < j ≤ n.

But, since q1 = 1, g(0, θ) = 0, and g(1, θ) = 1, we may express the eigenvectors as

(24) vj =

⎧⎪⎨
⎪⎩
qj
[
sin(jθ) + α

d sin
(
(j − 1)θ

)]
if θ �∈ {0, π},

qj
[
j + α

d (j − 1)
]

if θ = 0,

qj(−1)j−1
[
j − α

d (j − 1)
]

if θ = π,

1 ≤ j ≤ n.

3. Special cases. In this section we examine various relationships between the
matrix parameters d, α, and β which, when enforced, allow (20) to be solved explicitly
or to be simplified to the form F (θ) = p(d, α, β). These simplifications are the result
of standard trigonometric identities. We list here several simplifications that we use
for our function g:

g(j + 1, θ) + g(j − 1, θ) = 2g(j, θ) cos θ,(25)

g(j + 1, θ) − g(j − 1, θ) = 2 cos(jθ),(26)

g(j, θ) + g(j − 1, θ) = g(2j − 1, θ/2),(27)

g(j, θ) − g(j − 1, θ) =

⎧⎪⎨
⎪⎩

cos
(
(2j − 1)θ/2

)
/ cos(θ/2) if 0 < θ < π,

1 if θ = 0,

(−1)j−1(2j − 1) if θ = π.

(28)

Note that all of the above are identities for g and are valid for all θ ∈ C, including
θ = kπ, k ∈ Z.

3.1. Explicit solutions.

3.1.1. α = β = 0. If α = β = 0, then the matrix A, although not Toeplitz, has
the same eigenvalues as the corresponding Toeplitz matrix (ai = a and ci = c for all
i), since (20) collapses to g(n + 1, θ) = 0, whose solutions are θm = mπ

n+1 , 1 ≤ m ≤ n,
giving eigenvalues

(29) λm = b + 2d cos

(
mπ

n + 1

)
, 1 ≤ m ≤ n,

with corresponding eigenvectors

(30) v
(m)
j = qj sin

(
jmπ

n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.2. α = 0, β = d. If α = 0, β = d, then by using (27), (20) becomes

g(2n + 1, θ/2) = 0,

whose solutions are θm = 2mπ
2n+1 , giving eigenvalues

(31) λm = b + 2d cos

(
2mπ

2n + 1

)
, 1 ≤ m ≤ n,

and corresponding eigenvectors

(32) v
(m)
j = qj sin

(
2mjπ

2n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.
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3.1.3. α = d, β = 0. If α = d, β = 0, the eigenvalues are the same as the
above case (31), and the eigenvectors are

(33) v
(m)
j = qj cos

(
(2j − 1)2mπ

2(2n + 1)

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.4. α = 0, β = −d. If α = 0, β = −d, we may use (28) to reduce (20) to

cos
(
(2n + 1)θ/2

)
= 0,

whose solutions are θm = (2m− 1)π/(2n + 1), 1 ≤ m ≤ n, giving eigenvalues

(34) λm = b + 2d cos

(
(2m− 1)π

2n + 1

)
, 1 ≤ m ≤ n,

and corresponding eigenvectors

(35) v
(m)
j = qj sin

(
j(2m− 1)π

2n + 1

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.5. α = −d, β = 0. If α = −d, β = 0, the eigenvalues are the same as the
previous case (34), and the corresponding eigenvectors are

(36) v
(m)
j = qj cos

(
(2j − 1)(2m− 1)π

2(2n + 1)

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.6. α = d, β = −d. If α = −β = d, (20) simplifies by using (26) to become

cos(nθ) = 0. Hence θm = (2m−1)π
2n , 1 ≤ m ≤ n, and the eigenvalues are

(37) λm = b + 2d cos

(
(2m− 1)π

2n

)
, 1 ≤ m ≤ n,

with corresponding eigenvectors

(38) v
(m)
j = qj sin

(
(2j − 1)(2m− 1)π

4n

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.7. α = −d, β = d. If α = −β = −d, the eigenvalues are the same as the
previous case (37), and the corresponding eigenvectors are

(39) v
(m)
j = qj cos

(
(2j − 1)(2m− 1)π

4n

)
, 1 ≤ j ≤ n, 1 ≤ m ≤ n.

3.1.8. αβ = d2. Now consider the case αβ = d2. Whereas the previous spe-
cial cases were two-dimensional real manifolds in (d, α, β)-space, this case is a four-
dimensional manifold in R

6. By using (25), (20) becomes

g(n, θ)

(
2 cos θ +

α + β

d

)
= 0.

From this we immediately obtain

θm =
mπ

n
, 1 ≤ m < n, or 2d cos θn = −(α + β),
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giving eigenvalues

(40) λm = b + 2d cos
(mπ

n

)
, 1 ≤ m < n, and λn = b− (α + β).

The more specialized cases with α = β = d or α = β = −d were the only ones with
αβ = d2 that were considered by Yueh. In the case α = β = d, by using (24) and (27),
the eigenvectors are

(41) v
(m)
j = qj sin

(
(2j − 1)mπ

2n

)
, 1 ≤ j ≤ n, 1 ≤ m < n,

and, for the nth eigenpair, θn = π, λn = b− 2d, and

(42) v
(n)
j = qj(−1)j−1, 1 ≤ j ≤ n,

which we note is the same form as (41) with m = n. The case α = β = −d gives
eigenvectors

(43) v
(m)
j = qj cos

(
(2j − 1)mπ

2n

)
, 1 ≤ j ≤ n, 1 ≤ m < n,

and θn = 0, λn = b + 2d, and, by using (28),

(44) v
(n)
j = qj , 1 ≤ j ≤ n.

Outside these more specialized cases, it is impossible for θn to be zero or π, and so,
from (24), we may write the eigenvectors as

(45) v
(m)
j = qj

[
sin

(
jmπ

n

)
+

α

d
sin

(
(j − 1)mπ

n

)]
, 1 ≤ j ≤ n, 1 ≤ m < n,

and

(46) v
(n)
j = qj

[
sin (jθn) +

α

d
sin
(
(j − 1)θn

)]
, 1 ≤ j ≤ n,

where θn = arccos(−(α + β)/2d).

3.2. Eigenvalue distribution results. Here we examine various three- and
four-dimensional real manifolds in (d, α, β)-space, where information on the distribu-
tion of the eigenvalues can be inferred. For this analysis it is convenient to partition
the interval [0, π] into subintervals in one of several ways. In the first way, [0, π] is
partitioned into n+1 subintervals, the first and last of which have width 1/(2n) while
the remaining have width 1/n:

I0 =
[
0,

π

2n

)
,

Ik =

[
(2k − 1)π

2n
,
(2k + 1)π

2n

)
, 1 ≤ k < n− 1,

In =

[
(2n− 1)π

2n
, π

]
.

(47)
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b
d

0

I0
I1

I2

I3

I4
I5

Re(λ)

Im
(λ

)

Fig. 1. The location of eigenvalues λ = b + 2d cos(θ) in the complex plane for various θ. If
θ ∈ [0, π], then λ lies on the thick solid line segment. For illustration, this segment is divided into
the images of the intervals Ik, 0 ≤ k ≤ n, n = 5. Other partitionings of [0, π] would divide the
line segment differently. The dashed line extending beyond this line segment shows the location of
λ when θ = iy or θ = π + iy, y ∈ R. The dotted-dashed line orthogonal to the thick line segment is
the image of the line θ = π/2 ± iy, y ∈ R.

A second useful partitioning of [0, π] is one where the subintervals have width 2/(2n+
1) except for the first, which has half that width:

J0 =

[
0,

π

2n + 1

)
,

Jk =

[
(2k − 1)π

2n + 1
,
(2k + 1)π

2n + 1

)
, 1 ≤ k < n− 1,

Jn =

[
(2n− 1)π

2n + 1
, π

]
.

(48)

Finally, consider partitioning [0, π] into n equal length intervals:

Kk =

[
(k − 1)π

n
,
kπ

n

)
, 1 ≤ k < n,

Kn =

[
(n− 1)π

n
, π

]
.

(49)

Typically, the following results make statements such as “Under the stated assump-
tions, there is one real solution of (20) lying in each of the intervals I0 to In−1.” The
eigenvalues of A are given by λ = b+ 2d cos(θ). Real values of θ on the interval [0, π]
thus correspond to eigenvalues on a line segment of length 4|d| parallel to the ray from
the origin to d and centered at b, as depicted in Figure 1. The various subintervals de-
fined above correspond to portions of this line segment. Sometimes complex solutions
for θ of the form θ = iy, θ = π+ iy, or θ = π/2± iy, y ∈ R, are also shown to exist. In
the first two cases, the corresponding eigenvalues are λ = b± 2d cosh(y), respectively,
which lie on the same line as the intervals shown in Figure 1 but further away from
b. In the case θ = π/2 ± iy, the corresponding eigenvalues are λ = b ± i2d sinh(y),
which lie an equal distance from b on a line through b orthogonal to the ray through
d. Of course, if b and d are real, then each of these distinct real solutions for θ and
the complex solutions with Re(θ) ∈ {0, π} yield distinct real eigenvalues for A.
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Fig. 2. The function θ �→ tan(nθ)/ sin(θ), θ ∈ [0, π], for the case n = 6. The intervals Ik,
0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

For some of this analysis it is convenient to express the necessary and sufficient
condition for θ, (20), in an equivalent form. By expanding sin((n ± 1)θ) and simpli-
fying, (20) becomes

(50)
sin(nθ)

sin(θ)

[(
1 +

αβ

d2

)
cos(θ) +

α + β

d

]
+ cos(nθ)

(
1 − αβ

d2

)
= 0.

3.2.1. αβ = −d2. Consider the four-dimensional manifold αβ = −d2, but
exclude the cases α = −β = ±d as these have already been considered. In this case,
(50) simplifies to

(51)
sin(nθ)

sin(θ)

[
α + β

d

]
+ 2 cos(nθ) = 0.

Since we have excluded the possibility that α+β = 0, for (51) to hold cos(nθ) cannot
be zero, and hence we may write this equation as

(52)
tan(nθ)

sin(θ)
=

−2d

α + β
.

Let F (θ) = tan(nθ)/ sin(θ) and p(d, α, β) = −2d/(α + β), and assume that the value
of p is real. (We are now restricted to a three-dimensional manifold.) The function F
on [0, π] is an odd function with respect to π/2. It monotonically increases from −∞
to +∞ on each interval Ik, 1 ≤ k < n. On the interval I0 it monotonically increases
from n to +∞, and on the interval In it monotonically increases from −∞ to −n; see
Figure 2. Consequently, if |p| ≥ n, there are exactly n distinct real solutions of (52)
for θ in [0, π], one in each of the intervals I1, . . . , In−1 and the last one in either I0
(if p > 0) or in In (if p < 0). These n distinct values for θ correspond to n distinct
real eigenvalues λ. If |p| < n, then there are only n− 1 real solutions of (52), one in
each of the intervals I1, . . . , In−1, corresponding to n − 1 real eigenvalues for A. In
the event that all variables in A are real, the last eigenvalue must also be real, since
they must occur in complex conjugate pairs. (It turns out that, even if just b, d, and
p are real, the last eigenvalue is also real.) But for θ = x + iy, x, y ∈ R,

cos(θ) = cos(x + iy) = cosh(y) cos(x) − i sinh(y) sin(x),

thus λ = b + 2d cos(θ) will be real if b and d are real, and θ is real or Re(θ) = kπ.
We are thus led to look for the nth solution of (52) on the boundary of R by taking
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Fig. 3. The function y �→ tanh(ny)/ sinh(y).

θ = iy or θ = π+ iy, y > 0. (Recall that on the boundary of R we need only consider
y ≥ 0.) If 0 < p < n, substituting θ = iy, y ∈ R, into (52) gives

(53)
tanh(ny)

sinh(y)
= p.

A plot of this function is shown in Figure 3. Since it monotonically decreases from n
to zero as y increases from zero, there is exactly one solution y∗ of (53), with y∗ > 0.
If −n < p < 0, substituting θ = π + iy, y ∈ R, into (52) gives

(54)
tanh(ny)

sinh(y)
= −p,

again yielding exactly one more root y∗, with y∗ > 0. If |p| is large (|α+ β| is small),
then the solutions for θ asymptotically approach θm = (2m − 1)π/(2n), 1 ≤ m ≤ n,
as expected since these are the solutions for α = −β = ±d. But in any event the real
solutions of (52) are approximately spaced by a distance of π/n as is readily apparent
in Figure 2.

3.2.2. αβ = 0. If the product αβ is zero (but α and β are not both zero and
one is not ±d, as these cases have been previously considered), then (20) becomes

(55) g(n + 1, θ) +
α + β

d
g(n, θ) = 0.

This can be written as

sin
(
(n + 1/2)θ + θ/2

)
sin(2θ/2)

+

(
α + β

d

)
sin
(
(n + 1/2)θ − θ/2

)
sin(2θ/2)

= 0,

which upon expanding and simplifying yields

(
1 +

α + β

d

)[
sin
(
(2n + 1)θ/2

)
sin(θ/2)

]
+

(
1 − α + β

d

)[
cos

(
(2n + 1)θ/2

)
cos(θ/2)

]
= 0.

Now, since we are assuming that α+β �= ±d, both factors in parentheses in the above
expression are nonzero. This means that if one of the factors in square brackets is zero,
both must be zero for the equation to hold. However, this is impossible since the first
factor in square brackets is g(2n+ 1, θ/2), which is zero only when (2n+ 1)θ/2 = kπ,
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Fig. 4. The function θ �→ tan((2n + 1)θ/2)/ tan(θ/2), θ ∈ [0, π], for the case n = 6. The
intervals Jk, 0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

1 ≤ k ≤ n, which implies that cos((2n + 1)θ/2) = cos(kπ) �= 0. We may thus validly
rearrange the above expression to obtain

(56)
tan

(
(2n + 1)θ/2

)
tan(θ/2)

=
α + β − d

α + β + d
.

Let F (θ) and p(d, α, β) be the left and right sides of the above equation, respectively,
and assume that the value of p is real. (Again, we are now restricted to a three-
dimensional manifold.) The function F on [0, π] is plotted in Figure 4 for the case
n = 6. F is monotonically increasing from −∞ to +∞ on the intervals Jk, 1 ≤ k < n,
monotonically increasing from 2n + 1 to +∞ on J0, and monotonically increasing
from −∞ to 1/(2n+1) on Jn. Thus if p is real and at least as big as 2n+1, there are
exactly n real solutions, one in each of the intervals Jk, 0 ≤ k ≤ n−1. If p is real and
equal to or smaller than 1/(2n + 1), there is one real solution in each of the intervals
Jk, 1 ≤ k ≤ n. All of these real roots are approximately separated by a distance of
2π/(2n + 1). Substituting θ = iy, y ∈ R, into (56) gives

(57)
tanh

(
(2n + 1)y/2

)
tanh(y/2)

= p,

while substituting θ = π + iy, y ∈ R, into (56) gives

(58)
coth

(
(2n + 1)y/2

)
coth(y/2)

= p.

The functions on the left sides of the above expressions are shown in Figure 5. The first
decreases monotonically from 2n+ 1 to 1, while the second increases from 1/(2n+ 1)
to 1 as y increases from zero. Thus if 1/(2n+1) < p < 1, there is one solution of (56)
of the form θ = π + iy∗, y∗ > 0, and if 1 < p < (2n + 1), there is one solution of the
form θ = iy∗, y∗ > 0. (Note that since d �= 0 it is impossible for p = 1.)

3.2.3. α + β = 0. If α + β = 0, then (50) may be written as

(59)

(
1 +

αβ

d2

)[
sin(nθ) cos(θ)

sin(θ)

]
+

(
1 − αβ

d2

)
cos(nθ) = 0.

The cases αβ = 0 and αβ = ±d2 have already been considered, so here we may
assume that neither factor in parentheses is zero and these two factors are not equal.
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Fig. 5. Top: The function y �→ tanh((2n + 1)y/2)/ tanh(y/2). Bottom: The function y �→
coth((2n + 1)y/2)/ coth(y/2).

If cos(nθ) = 0, then θm = (2m−1)π
2n , 1 ≤ m ≤ n, are all of the possible values of θ in

[0, π]. The factor sin(nθ) clearly cannot be zero for these θm; hence, for the equation
to hold, cos θm must be zero, that is, θm = π/2, which means that n must be odd and
m = (n + 1)/2. Thus the condition on θ may be written

(60)
tan(nθ)

tan(θ)
=

αβ − d2

αβ + d2
, θ �= π/2,

where θ = π/2 is an additional solution in the case n is odd. (Thus one eigenvalue of
A is always b when n is odd and α+β = 0.) Again, let F (θ) and p(d, α, β) be the left
and right sides of (60), respectively, and suppose that the value of p is real. Figure 6
displays a graph of F on [0, π] for both an even and an odd n case. F is even around
π/2 and is equal to n at both θ = 0 and θ = π. The subintervals of interest are the
Ik given by (47). On I0 the function F increases monotonically from n to +∞, and
on intervals Ik, 1 ≤ k ≤ n/2− 1, it increases monotonically from −∞ to +∞. On the
center interval(s) (In/2 if n is even, I(n−1)/2 ∪ I(n+1)/2 if n is odd), F increases from
−∞ to a maximum value of zero at π/2 and then decreases back to −∞. The behavior
on the other intervals is dictated by the fact that F is even around π/2. Thus if p ≥ n,
there is one real solution of (60) on each of the intervals Ik, 0 ≤ k ≤ n/2 − 1, and
n/2 + 1 ≤ k ≤ n. If p is smaller than zero, there is one real solution of (60) on each
of the intervals Ik, 1 ≤ k ≤ n/2 − 1, and n/2 + 1 ≤ k ≤ n− 1 and two in the center
interval(s) (In/2 if n is even, I(n−1)/2 ∪ I(n+1)/2 if n is odd). This accounts for all n
solutions for θ (provided we add in the additional solution θ = π/2 if n is odd). As |p|
gets large (αβ → −d2), these solutions approach θm = (2m− 1)π/(2n), as expected.

Now suppose that 0 ≤ p < n. First, if 1 < p < n, there is one real solution of (60)
on each of the intervals Ik, 1 ≤ k < n/2 − 1, and n/2 + 1 ≤ k ≤ n− 1. By adding in
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Fig. 6. The function θ �→ tan(nθ)/ tan(θ), θ ∈ [0, π], for an even case, n = 6 (top), and an odd
case, n = 7 (bottom). The intervals Ik, 0 ≤ k ≤ n, are demarcated by the dotted vertical lines.

the solution θ = π/2 if n is odd, this accounts for n− 2 real solutions for θ. However,
a pair of complex solutions θ = iy and θ = π + iy exist, since both of these values for
θ, when substituted into (60), yield

(61)
tanh(ny)

tanh(y)
= p,

which has a unique solution y∗, with y∗ > 0, when 1 < p < n. (The plot of
tanh(ny)/ tanh(y) is similar to that depicted in the top panel of Figure 5 but with
maximum value n rather than 2n+ 1.) It is impossible to have d �= 0 and p = 1, and,
since we have dealt with αβ = d2 previously, we have assumed that p �= 0; however, we
have not yet dealt with the case 0 < p < 1. As p increases through zero, two real roots
annihilate each other at π/2, and we therefore substitute θ = π/2+iy into (60) yielding

(62)
tanh(ny)

coth(y)
= p.

The function on the left side of (62) is plotted in Figure 7, where we note that there
are two solutions ±y∗ for each value of p ∈ (0, 1). These two solutions for y correspond
to two distinct values θ in R and a pair of eigenvalues λ given by

λ = b± i2d sinh(y∗).

If b and d are real, these are a complex conjugate pair.

3.2.4. (α + β)/d and αβ/d2 are real. If the matrix parameters d, α, and
β are such that the quantities (α + β)/d and αβ/d2 are real, then we can conclude
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Fig. 7. The function y �→ tanh(ny)/ coth(y).

that there are at least n − 2 real solutions to (20) and provide sufficient conditions
under which n real solutions exist. We shall assume that αβ �= d2 since that case was
previously discussed.

The quantities (α + β)/d and αβ/d2 are both real if and only if either both α/d
and β/d are real or they are complex conjugates, which we may express as one of the
following two options:

1. α = sd, β = td, s, t ∈ R,
2. α = (s + it)d, β = (s− it)d, s, t ∈ R.

Thus the manifold of points that we are considering is four-dimensional. Note that
we have not restricted ourselves to the situation where the matrix is real, although
that case is included as part of option 1 above.

Denote the left side of (20) (or equivalently the left side of (50)) as T (θ), so that
the necessary and sufficient condition for θ is T (θ) = 0. From (20) and (16) we have

T (0) = (n + 1) +
α + β

d
n +

αβ

d2
(n− 1)

=

(
1 +

α + β

d
+

αβ

d2

)
n +

(
1 − αβ

d2

)

and

T (π) = (1−)n(n + 1) + (−1)n−1α + β

d
n + (−1)n−2αβ

d2
(n− 1)

= (−1)n
[(

1 − α + β

d
+

αβ

d2

)
n +

(
1 − αβ

d2

)]
.

Evaluating T at θ = mπ/n, 1 ≤ m < n, via (50) immediately gives

T
(mπ

n

)
= (−1)m

(
1 − αβ

d2

)
.

Since we are assuming that αβ �= d2, the continuous function T alternates sign at the
points mπ/n, 1 ≤ m < n. This immediately implies that there are n − 2 real roots
of T , one in each of the intervals K2,K3, . . . ,Kn−1. The interval K1 will contain
an additional root provided T (0) is zero or has opposite sign from T (π/n), that is,
T (0)/T (π/n) ≤ 0. This can be expressed as

(63)
1 + α+β

d + αβ
d2

1 − αβ
d2

≥ − 1

n
.
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Analogously, the interval Kn will contain an additional root provided

(64)
1 − α+β

d + αβ
d2

1 − αβ
d2

≥ − 1

n
.

The inequalities (63) and (64) are sufficient conditions for a root to exist in K1 or
Kn, respectively. However, it is possible that two roots exist in one of these intervals
if both inequalities fail to hold.

Substituting θ = iy or θ = π+ iy, y ∈ R, into (50) yields the equivalent condition

(65)
tanh(ny)

sinh(y)

[
1 + αβ

d2

1 − αβ
d2

cosh(y) ±
α+β
d

1 − αβ
d2

]
= −1,

where the + sign is for θ = iy and the − sign for θ = π + iy. The function y →
tanh(ny)(X cosh(y)+Z)/ sinh(y) has limiting values of n(X+Z) and X as y tends to
0 and ∞, respectively. However, it is not necessarily monotonic on y > 0. Nonetheless,
since it is continuous, we can conclude the following. If −1 lies between the values

n

(
1 + α+β

d + αβ
d2

1 − αβ
d2

)
and

1 + αβ
d2

1 − αβ
d2

,

there will be at least one solution of (65) in the form θ = iy, y ∈ R. If −1 lies between
the values

n

(
1 − α+β

d + αβ
d2

1 − αβ
d2

)
and

1 + αβ
d2

1 − αβ
d2

,

there will be at least one solution of (65) in the form θ = π + iy, y ∈ R. (Note that
either of the two values in each of the above pairs may be the smaller one, depending
on d, α, and β.)

4. Conclusion. The eigenvalues of the tridiagonal matrix A given by (1) are of
the form λm = b+2d cos(θm), where θm are the solutions to the nonlinear equation (20)
in the region R defined by (21). The corresponding eigenvectors are given by (24).

The space of matrix parameters d, α, and β is C
3, which can be identified with R

6.
Restriction to a number of two-dimensional manifolds in this space permits explicit
solutions of (20), and these cases were itemized. In addition, the four-dimensional
manifold of points αβ = d2 also yields explicit solutions, and these were given. In-
formation about the distribution of eigenvalues was also described for several other
three- and four-dimensional manifolds. Many of these were cases where (20) could be
separated into the form F (θ) = p(d, α, β), where F is a certain ratio of trigonometric
functions of multiples of θ and p is real-valued. In most of these cases, this equation
has either n real roots or n−1 real roots and one complex root, but the corresponding
eigenvalues are all real (assuming that b and d are also real). In one case, α+β = 0, a
single complex conjugate pair of eigenvalues is possible if 0 < (αβ−d2)/(αβ+d2) < 1.
The four-dimensional manifold of points specified by the requirement that both the
quantities (α+β)/d and αβ/d2 be real was shown to yield at least n−2 real eigenval-
ues for A. Sufficient conditions for when the remaining two eigenvalues are also real
were provided. This case includes the case where the matrix A is real to begin with.

Efficient numerical algorithms exist, based on the QR factorization, for the com-
putation of the eigenvalues of general tridiagonal matrices [2]. The nonlinear equa-
tion (20) we have presented here would generally need to be solved with a root-finding
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algorithm to find the θm in the region R, which may or may not be as efficient as
the QR-based algorithms. However, the various special cases that we have enumer-
ated provide additional information on the distribution of the solutions θm, specifying
various subintervals of [0, π] wherein exactly one solution must lie. Within these subin-
tervals, more refined estimates of the locations of solutions are often easily obtained
by plotting the appropriate function F described herein and noting where it crosses
the value of p.

Tridiagonal matrices frequently occur in applications where it is desirable to know
their eigenvalues. As just one example, consider a simple Markov process with n states
arranged in a chain formation where xi(t) is the probability of being in state i at time
t, i = 1, . . . , n. Let a be the rate at which a particle moves to the right (from state i
to state i+ 1) and c the rate at which a particle moves to the left through the states:

(66) x1

a−−→←−−
c

x1

a−−→←−−
c

x2 · · · xn−1

a−−→←−−
c

xn.

Such systems are commonly employed as models or parts of models for ion channel
gating [1]. The governing system is

(67) x′ = Ax,

where A is given by (1) with b = −a− c, d =
√
ac, α = −c, and β = −a. From (40)

we immediately conclude that the eigenvalues are

λm = −(a + c) + 2
√
ac cos

(mπ

n

)
, 1 ≤ m < n, λn = 0.

From (7), (45), and (46), the corresponding eigenvectors are

v
(m)
j =

(a
c

)(j−1)/2
[
sin

(
jmπ

n

)
−
√

c

a
sin

(
(j − 1)mπ

n

)]
, 1 ≤ j ≤ n, 1 ≤ m < n,

and

v
(n)
j =

(a
c

)(j−1)/2
[
sin (jθn) −

√
c

a
sin
(
(j − 1)θn

)]
, 1 ≤ j ≤ n,

where θn = arccos ((a + c)/2
√
ac).
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