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Analytic smearing of SU(3) link variables in lattice QCD
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An analytic method of smearing link variables in lattice QCD is proposed and tested. The differentiability of
the smearing scheme with respect to the link variables permits the use of modern Monte Carlo updating
methods based on molecular dynamics evolution for gauge-field actions constructed using such smeared links.
In examining the smeared mean plaquette and the static quark-antiquark potential, no degradation in effective-
ness is observed as compared to link smearing methods currently in use, although an increased sensitivity to
the smearing parameter is found.
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[. INTRODUCTION ables. Empirically, one finds that the projection ir80J(3)
is a crucial ingredient of the smearing. Link smearings which
The extraction of hadron masses and matrix elementdo not apply such a projection are found to be much less
from Monte Carlo estimates of Euclidean-space correlatioreffective. The projection int&U(3) is not unique and must
functions in lattice QCD can be done more reliably and acbe carefully defined so that all symmetry properties of the
curately when operators which couple more strongly to thdink variables are preserved. Various ways of implementing
states of interest and less strongly to the higher-lying conthis projection have appeared in the literature. Given a
taminating states are used. For states containing gluons, 3x 3 matrix V, its projectionU into SU(3) is often taken to
crucial ingredient in constructing such operators in latticebe the matrixJ e SU(3) which maximizes Re TiJV"). An
QCD is link variable smearing. Operators constructed out ofterative procedure is required to perform such a maximiza-
smeared or fuzzed links have dramatically reduced mixingsion. Alternatively[15], the projected matriXJ can be de-
with the high frequency modes of the theory. The use of suclined by U=V(VTV) ~Ydet(v1vT) 6,
operators has been shown to especially benefit determina- Although the above smearing procedure works well in
tions of the glueball spectrurfil], hybrid meson masses practice, the projection is somewhat unpalatable since it may
[2,3], the torelon spectrurfd], and excitations of the static be viewed as an arbitrary and abrupt way to remain within
quark-antiquark potentidb]. the group. More importantly, the branch cuts and lack of
Link variable smoothing is also playing an increasingly differentiability inherent in the projection can hinder or even
important role in the construction of improved lattice actions.make impossible the application of modern Monte Carlo up-
In Ref.[6], the use of so-called fat links in a staggered gquarkdating techniques, such as the hybrid Monte C&HMC)
action was shown to significantly decrease flavor symmetry16] algorithm, which require knowing the response of the
breaking. Smeared links were subsequently Ugédo con-  action to a small change in one of the link variables.
struct hypercubic fermion actions having improved rotational A link smearing method which circumvents these prob-
invariance. A staggered fermion action using a link smearindems is proposed and tested in this paper. The link smearing
transformatior{8] known as hypercubiHYP) fat links was  method is analytic everywhere in the finite complex plane
shown to improve flavor symmetry by an order of magnitudeand utilizes the exponential function in such a manner to
relative to the standard action. The so-called Asqgtad imyemain withinSU(3), eliminating the need for any projec-
proved staggered quark actif®—11] also makes use of link tion back into the group. Because of this construction, the
fattening to reduce flavor symmetry breaking. Another vari-algorithm is useful for any Lie group. The method is de-
ant of fermion actions which exploit smeared link variablesscribed in Sec. Il and its practical implementations when
is the fat link irrelevant clove(FLIC) action[12]. FLIC constructing operators and when computing the response of
fermions are Wilson-like and described by an action whichthe action to a change in a link variable are detailed in Secs.
includes an irrelevant clover improvement term constructedil and 1V, respectively. Numerical tests of the smearing are
using smeared links. Fat links have also been used to compresented in Sec. V. Using the smeared plaquette and the
struct a gauge actiofil3] with reduced discretization errors effective massaE.4(t) associated with the static quark-
using approximate renormalization group transformations. antiquark potential, no degradation in effectiveness is ob-
The link fuzzing algorithm most often used in gluonic served as compared to the standard link smearing method,
operator construction is that described in R&#] in which  although an increased sensitivity to the smearing parameter
every spatial linkU;(x) on the lattice is replaced by itself is found. The results also suggest that lattice actions and
plus a real weighp times the sum of its four neighboring operators constructed out of smeared link variables may be
(spatia) staples, projected back in®U(3). Such a fuzzing much less afflicted by radiative corrections since the usually-
step is iteratedh,, times to obtain the final fuzzed link vari- dominant large tadpole contributions are drastically reduced.
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IIl. ANALYTIC LINK SMEARING m Q
1 3 { _ 5

A method of smearing link variables which is analytic, == = *>=* *5 4 [, +{ I m
and hence differentiable, everywhere in the finite complex VL
plane can be defined as follows. L&, (x) denote the v E} E} }
weighted sum of the perpendicular staples which begin at T_) T e e>oe + et er—e
lattice sitex and terminate at neighboring site+ u B

A A FIG. 1. The expansion up to first order in tphg, of the new
C.(x)= > P (U, (U, (x+ ) Ul (x+ 1) link variable U® in terms of paths of the original links. Each
v p closed loop includes a trace with a factoNlih SU(N). In the
third and fourth terms inside the brace brackets above, the crossed

+ - - ~ -
+U,(Xx=»U,(x=»U,(x=v+u)), (1) jines indicate a traversal of the same link in opposite directions.
where,&,; are vectors in directiong, v, respectively, hav- Q#(X)HG(X)Q#(X)G*(x), (6)
ing the length of one lattice spacing in that directitunda- . ‘
mental lattice translation vectgrsThe weightsp,,, are tun- e UM G(x)e W™ GT(x), (7
able real parameters. Then the mat(X (x), defined in
SU(N) by UP(x)—G(x)eMGT(x)G(X)U ,(x)GT(x+ )
i i _ (1) t -
Qu(¥) =510~ Q,00)~ 55 THQLX) ~Q,(0), COIULT0G Xt ), ®
as required. One can also easily show that if the weights
Q,U-(X):CM(X)UIL(X) (no summation oveg) (2)  respect the rotation and reflection symmetries of the lattice,

the stout links obey the required transformation properties
under all rotations and all reflections in a plane containing

is Hermitian and traceless, and hene+® is an element , : lons
the link. Lastly, consider a reflection in a plane normal to a

of SU(N). We use this fact to define an iterative, analytic

link smearing algorithm in which the links {(x) at stepn  link U ,(x) and passing through its midpoikt- 3. Under
are mapped into link&) " (x) using such an operation, the link ,(x) transforms according to

g UM(X)HU,#(XT;L)ZUL(X) and for the caser#p,

U D00 =expliQ{V(x)) U (x). 3 U, (x)—U,(x+n) and Ul(x+p)—UT(x), yielding

' C#(x)—>CL(x) assuming the,,, are real, so that
The fact thaie'®«™ is an element o8 U(N) guarantees that

U D(x) is also an element U(N), eliminating the need Q,()—=CLxX)U,()=ULx)Q(x)U,(x), (9
for a projection back onto the gauge group. This fuzzing step .
can be iteratech, times to finally produce link variables Qu(X)—=—=U,(x)Q,(X)U ,(x), (10

which we callstout links[17], denoted byJ , (x): A
[17] W) UPx)—Ul(x)e u=uD(x), (1)

(1) @_. .. ()= . .
U—-U—=UR s = UT=U. @ as required. Given thallﬁ)(x) transforms under all symme-
try operations in the same mannerldg(x), it follows that

the stout linksU «(X) have symmetry transformation proper-
o —, =0 5) ties identical to those of the original link variables.
Pik=Pr Pau=Pua="% Since the exponential function has a power series expan-

sion with an infinite radius of convergence, each stout link

Whic.h y!elds a three-dimensional scheme in Wh.iCh .only t.hemay be viewed as an incredibly large and complicated sum
spatial links are smeared. Another common choice is an iso-

tropic four-di ional sch in which all weight h of paths. For smalp,,,, the paths which make up the link
mp'? o;r-trllmensmna _SC eI{lnet mtr\:v tlc ah Welghs are Cnos 4 riable UM to first order in thep,, are shown in Fig. 1.
sén fo be he samp,,,=p. Nole thal such a SCheme Was e that the standard smearing method, defined by
used in Ref.[18] as a field transformation to eliminate a
in ; 2

certal_n interaction term from the most gene@(a“®) on- UELl)(X):,PSU(S){Up.(X)_"C/.L(X)}a (12)
shell improved gauge action.

It is not difficult to show that, given an appropriate ChOicewherePSU(g) denotes the projection intBU(3), yields the
of weightsp,,,, the stout links have symmetry transforma- same sum of paths at first order n, .
tion properties identical to those of the original link A few further remarks are worthy of note. First, an alter-
variables. Under any local gauge transformat®(x), the  native smearing scheme in which the weighys are chosen
link variables transform asJM(x)HG(x)UM(x)GT(x+ M), to be imaginary does not reduce the couplings to the high-
where theG(x) are SU(N) matrices. Thus, under such a frequency modes of the theory. Secondly, it is not possible to
gauge transformation, remove the leadin@(a?) discretization errors in the Wilson

One common choice of the staple weights is
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gauge action by expressing the action in terms of stout links; Qz3=—01—0p=—U—W, (22)
diminishing theO(«a¢a?) errors by reducing their tadpole

contributions is the best which can be achieved. Thirdly, thevhere

use of stout links in Symanzik-improved actions may elimi-

nate the need to use tadpole-improvement in determining the 1 1
couplings in the action. Lastly, the definition f,(x) given U="\/3C1c08 36, (23
in Eq. (1) is not unique. Analytic smearing schemes can be
constructed as outlined above using sums of other paths from (1
sitex to x+ 4, such as those used in fat lifi&] and HYP[8] W= \/c—lsm<§ ‘9) ’ (24)
smearings.
C
ll. IMPLEMENTATION OF THE SMEARING 0=arcco< mix) . (25
c
To implement this analytic link smearing scheme, the ef- °
ficient evaluation of expQ), whereQ is a traceless Hermit-  Given these eigenvalues, the mat@xcan be written
ian 3X 3 matrix, is required. The Cayley-Hamilton theorem
states that every matrix is a zero of its characteristic polyno- go 0 O
mial, so that Q=MAM™%, Ag=| 0 g O], 26)
Q3—c¢;Q—cyl =0, (13 0 0 gz
where whereM is a unitary matrix. Then it easily follows that
co=detQ= 1 Tr(Q%), (14 eho=fol +fiAq+ oA (27)
¢,= L Tr(Q?)=0. (15) Exphcnly, we have the following linear system of equations
to solve:
The Hermiticity of Q requires 2@3—4c§s0 and the defini- 1 q, ¢[f it
tion of Q given in Eq.(2) restricts the possible values of. ! ; 0 i
Thus, the coefficients, andc; satisfy 1 dz q3|| f1|=|¢€"2]. (28)
1 2 f elds
—C?a%CO$COmaX, 0$01$CTaX, (16) s O3 2
h If all three eigenvalues are distinct, this system of equations
where has a unique solution, but when two of the eigenvalues are
.\ 32 exactly the same, the solution to E8) is not unique and
cmax_ o 21 1 one of thef.’s can be freely set to any value. The case of
degenerate eigenvalues occurs wisgh> = c{'™™*.
1 ) In practice, it is extremely unlikely that an exact degen-
cMX_ — (694 1133 , 18 eracy will bg encpuntered d_up_ng a numenlcal simulation.
1 32( \/—)( V;ﬂ p’”) (18 Much more likely is the possibility that two eigenvalues are

nearly, but not quite, equal. Encounters with both near and

for eachu. Equation(13) implies thatQ" for integern=3 exact degeneracies can be handled by expressing; tire

can be expressed in terms @f, Q, and the identity matrix terms ofu andw in order to isolate and tame the numerically

I. Hence, we can write sensitive part. One finds that tfie factors can be written
eQ=fol +f,Q+f,Q% (19 h.
fi=—— (29)
where the three scalar coefficierfts=f;(cy,c;) are basis (9u—w?)

independent, depending only @g andc;. Equation(19) is
valid for any 3 3 Hermitian, traceless matriQ.

Let g4,9,,03 denote the three eigenvalues@f SinceQ
is Hermitian and traceless, we know that these are real num-

where theh; are well-behaved functions given by

ho=(u?—w?)e?!+ e~ ""{8u%cogw)

bers satisfyingq,+q,+q;=0. These eigenvalues are the +2iu(3u?+w?) & (w)}, (30)
three roots of a cubic polynomial which can be easily deter-
mined: h,=2ue?“—e U{2u cogw)
q:=2u, (20) —i(3u”=w?)&(wW)}, (3D
Qo= —U+w, (21) h,=e?"'—e “{cogw) + 3iu&y(w)}, (32
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defining the stout links causes small changes to the action of the
) theory, the force term on the underlying links is always well-

_ sinw defined. The importance of defining a link smearing scheme

&o(W)= w (33 which permits the computation of the molecular dynamics

force term has been emphasized recently in R2].
The w—0 problem asco—cg™* has been completely con-  TheX ,(x) force field describes how the acti@changes
tained in&,. To numerically evaluate this factor, one uses,when the gauge-field link variablas, (x) change, holding

for example, the momentd ,(x) and the pseudofermion fieléi(x) fixed.
For this reason, we shall write the acti®=S[U] in this

£ w) 1- iw?(1— Hw?(1— 5w?), |w|<0.05, section, ignoring its dependence on the pseudofermion field.

0 sin(w)/w, w|>0.05. The transpose of the force field is defined by the derivative

of the action with respect to the link variables in a

However, thew— 3u— 3/2 limit as co— —c™ has not COmPoOnent-wise manner:
been tamed. Fortunately, this problem can be circumvented
using the following symmetry relations undeg— —cg: ab/yy I U]
200 = (40)

) &Uba '
fj(_COacl):(_)Jfr(COvcl)- (34) w )

Thus, the determination of thig coefficients forc,<<O can
be achieved by computing the coefficients fog| and uti-
lizing Eq. (34). This means that a situation in which the
denominator in Eq(29) becomes nearly zero will never be _ ~
encountered. It should be emphasized thatftheoefficients SUJ=Sul Ul +S{U]. (4D)
are smooth, nonsingular functions@f andc,. There are no
actual singularities asy— = c¢{'®*. The numerical evaluation
of the f; coefficients to machine precision in these limits S () =3SMx)+30)x), (42)
simply requires additional care. a a "

As an aside, if one writeQ = %Egz 1QaA%interms of the  where
eight Gell-Mann matricex?, then

8 h
) 1 E(t )(X)=(
eQ=u,+ > > U\, (35) #

a=1

Assume that the action can be written as a sum of a term
Si[ U] constructed entirely of the original thin link variables

and a termS¢{ U] constructed completely out of stout links:

Then the force field may be written

ISy UT\T IS U]
h_) ELO)(X)=(

-
U ,(x) aUM(x)) - (43

The computation OEM (x) is usually straightforward, and

e ot EC f (36) nothing more about its determination needs discussion here.
0— 0T g2 We now focus on the evaluation &f”)(x).
Recall that the stout links are constructed iteratively start-
B L. oe ing with the original links U—U®M—-U@— ...y
Ua=T11Qa+ 5 120" QuQc, @) _T. The computation of the force field proceeds similarly

1 in an iterative fashion, except that the order is reversed
=3M) 3~ 3@ 50 The sequence starts
= —dabe ’ 38 E/—>.p — - . q
0 12 QaQbQC ( ) by Computlng

1
C1= ZQaQaa (39 EM(X)=

(44)

a0 ,(x)

abc abc ; ;
whered™*" and > are the real _syrlnmetnc and antisymmet- tiq step depends on the form of the gauge and fermion
Fic structure constants, respectively. action in terms of the stout links and is usually just as
straightforward as the computation &f"(x). In subse-
IV. MOLECULAR DYNAMICS EVOLUTION quent steps3 ® and UKD are used to computs 1),

The analyticity of the stout-link scheme permits the use ofVhere the effective force at levilis defined by
modern Monte Carlo updating methods for gauge-field ac-

ass{U])T

~ o\ T
tions constructed using stout links. Molecular dynamics evo- s ()= dS{ U] (45)
lution forms the core of many of the Markov processes used # U (x|
to generate ensembles of field configurations needed for un- .
quenched QCD simulation$16,19-21. Since a small The recursive mapping
change to the underlying gauge fields always leads to a small
change in the stout links, then provided the small change to {300 yk-y 3 k-1 (46)
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is repeated untik (¥ is finally evaluated.
In Monte Carlo methods based on molecular dynamics,

such as HMC[16] and theR-algorithm [21], the flow of
lattice configurations through phase space via Hamilton’s

Ju 1 Jou u

aco 2(9u—w?)’ acy (9uZ2—w?)’

equations is parametrized by a fictitious simulation time co- oW —-3u oW 3u?—w?
ordinater. To determine the mapping in E6), it is con- 9 w2 w2y 90 v O — w2y
venient to express the force field in terms of the rate of 0 2w(9uT-w?) 1 2w(ui-w?) (55)
change of the action with respect to this time coordinate
d B d Now define
—S{0]=22 ReTH 20000 —UPX) |, (47
dr X H dr # ) )
2 (1) ah; @) 1 dh;
rj = rj = (56)
for k=0,1,...n, and definingdU/d in a component-wise u W ow
manner. One then proceeds using the chain rule of differen-
tiation: and
du®(x) _ 0t duH(x) _ 2ur+ (3u?—w?)r{?—2(15u%+ w?)f; -
dr dr 1j 2(9U2_W2)2 !
d(eiQl e
Jder ) )U(k’l)(x), (48) r(Y—3ur(®—24uf;
2(9u?—w?)?
To simplify matters Q™ (x), UG (x), (TP (x) shall
simply be written a®),U,3, respectively, in the calculations Then
which follow, and= {?(x) andU{9(x) shall be written a&’
4 i - ' i df; d
andU’, respectively. The Cayley-Hamilton theorem gives us —’=b1-Tr Q b, Tr QQ_Q , (59)
, d ) d ) dr
de®)_ d fot+f1Q+f,Q2
dr dr ot 1Q+TQ0, where
_ %Jr dfy N %Q“—fld—Q riM=2(u+i(u?—w?))e?V+2e "{4u(2—iu)cosw
dr dr = dr dr +i(QuZ+ w2 —iu(3u?+w2)) (W)}, (60)
dQ dQ _ _
g Q+ Q- (49) r{V=2(1+2iu)e?"+e {~2(1—iu)cosw
Since thef; coefficients are function§;=f;(u,w) of u and +i(Bu+i(w?=3u?))&o(w)}, (61)
w only, one has , )
riY=2ie?+ie U{cosw—3(1—iu)&(w)}, (62
dr \ou/dr \ow)dr’ (50 r{?=—2e?"+ 2iue "{cosw+ (1+4iu)&y(w)
and sinceu andw are functions o, andc; only, then +3u%éy (W)}, (63
du_[ou)de | ou)dey sy "E=—ie M cosw(1+2iu)&(w) — Ui (W)l
dr \dcy) dr  \dcqy/ dr’ (64)
dw_(ow)dey  (aw)dey s U TS (65)
dr \dcg/dr \dcq) dr -’
with
Next, one finds that
sinw
do_14d 08— 029 53 Eo(w)=— (66)
dr 3dr MQ%)=TrQ dr /)’
de, 1d , dQ £a(w)= cosw sinw 67
= = i 1 .
ar 2dr Q) Tr(Q df)' 64 w2 Wl

and

Given the above results,

054501-5



C. MORNINGSTAR AND M. PEARDON PHYSICAL REVIEW D69, 054501 (2004

d(e'Q) dQ ,dQ and hence,
T—Tr QE Bl+Tr Q E 82
dQ  dQ dQ ,( du) 10099 _metia 32
+f1¥+fZEQ+f2QE, (68) ReTq 3 ar =ReTi X'e ar ReT |Ad7_ ,
(72)
where
Bi=bjo+b;1Q+b;,Q°. (69  defining

The numerically sensitivev—0 limit has been totally ab-
sorbed into¢, and &;, and numerical problems as— 1 1
—cg'™ can be circumvented by exploiting the following sym- A=5(T+ rh- Sy T+ rh, (73
metry relation:

bi: (—Cg,c1)=(—)""1"1b*(co,Cq). 70
17 G0 = (2B (Cor) 7o =Tr(S'B,U)Q+Tr(3'BoU) Q3+ f,US’
Once again, we emphasize that these coefficients are well- , )
behaved, nonsingular functions cf andc;. +,QUE"+f,UX'Q. (74)
The rate of change of the stout links with respect to the

simulation time is then given by (k—1) (k—1) .
One sees thdf,” ~/(x), and henceA ;" ~(x), are defined

,dQ dQ on each lattice link in terms of the link variablegy™)(x)
Q"4 /BTG, and={9(x). At this point, the details of the staple construc-
tion in C,(x) must be included. Given E@l1) and utilizing
f d_QQ+f Qd_Q U (71) trace cyclicity and translational invariance, one eventually
2dr 2<dr| obtains the following recursion relation:

dV'_gedY

dr dr T

B+ Tr

dQ
dr

S,(0)=37 (%) (fol +11Q,(x) + Q% (X)) +HiICT(X)A ,(x) —i ; {p,u U, (x+w)UL(x+ 1)U A,(x)
VE R
+p,, UL (X= v+ ) UL (Xx= D) A (x= 1)U ,(X= 1) +p, UL (X= v+ @) A ,(x= v+ 2)U | (x= 1)U ,(x— »)
= ULx= v+ UL (X= D) A (X= 1)U ,(Xx= 1) = p,, A ,(x+ ) U, (x+ m)U L (x+ 1)U (%)

+p,, U (x+ UL X+ )AL (x+ 1) U0}, (75)

in which unprimed quantities refer to stelp{ 1) and primed antiquark pair separated by a distancean be extracted
guantities refer to stek. from r Xt Wilson loopsW(r,t) as the temporal extetitbe-
Although the force field is related to the underlying link comes large. The Wilson loop can be viewed as the correla-
variables in a complicated manner, each step in the recursiwgn function of a gauge-invariant operator consisting of a
computation of the force field outlined above is straightfor-static quark-antiquark pair connected by a product of link
Ward, faCIIItatIng a natural and efficient implementation in variables fo”owing a Straight_"ne path between the quark
software. Analyticity in the entliréfinite) complex plane is  ang the antiquark. Extraction of the lowest energy can be
an important property here; £{’(x) is well behaved, then gone much more reliably if the couplings of the quark-
3O (x) must be also. Note that the above formalism can beyntiquark-gluon operator with higher-lying states are small.
easily adapted for other definitions 6f,(x). This can be achieved by utilizing a product of smeared links
connecting the quark and the antiquark, instead of the origi-
nal link variables. In other words, the ground state energy of
gluons in the presence of a static quark-antiquark pair can be
The efficacy of stout links both as a gluonic-operatormore reliably determined from Wilson loop&/(r,t) con-
smearing algorithm and for reducing the effects of ultravioletstructed using smeared spatial links in thiink paths on the
gluon modes in short-distance quantities was tested in sevnitial and final time slices. A measure of how well the cou-
eral Monte Carlo simulations. plings to the higher levels are reduced is the effective energy
The energy of gluons in the presence of a static quarkfor a single time step, defined by

V. NUMERICAL TESTS
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aEeff

FIG. 2. The effective energaEq4(r) defined in Eq(76) for a . . ‘
static quark-antiquark pair separated by a distareba for several FIG. 3. The effective energgEcq(r) defined in Eq(76) for a
levels of smearing,= 1, 5, and 20 against the smearing parameterstatic quark-antiquark pair separated by a distarieéCa for sev-
p. These results were obtained on & 1&ttice using the Wilson eral levels of smearing,=1, 5, and 20 against the smearing pa-
gauge action with couplingg=5.7. Curves labeled\, indicate  rameterp. Results were obtained on a“2lattice using the Wilson
results using the spatially-isotropic three-dimensional version of thauge action with couplingg=6.2. Curves labeled, indicate
analytic stout link smearing scheme with=1, 5, and 20 levels, results using the spatially-isotropic three-dimensional version of the
while the curves labele®, show the results for links smeared analytic stout link smearing scheme with=1, 5, and 20 levels,
using Eq.(12) with the projéction method of Ref15]. while the curves Iabele@np show the results for links smeared

using Eq.(12) with the projection method of Ref15].

(76) optimal p value is substantial. Further increasipgoeyond
its optimal value then results in a sharply increasing effective
energy. The rapidity of both the fall and rise of the effective

Under unexceptional circumstances for a lattice gauge actioenergy about its minimum is more pronounced for larggr
with a positive-definite transfer matrix, such as the WilsonAlso, the minimum value decreases @s increases until
action, reducing the excited-state contamination tends teventually a saturation point is reached beyond which no
lower the effective energy given above. additional reduction occurs.

The effective energy defined in E(/6) was used to test The results obtained with links smeared using ELR)
the ability of the stout link smearing scheme to reduceand the projection method of R¢f.5] display essentially the
excited-state contamination in gluonic operators. Results fosame trends, except that each minimum in the effective en-
r=5a on a 12 lattice using the Wilson gauge action with ergy is much broader. The increased sensitivity of the stout
coupling 8=5.7 are shown in Fig. 2, and results for link smearing scheme to the parameteis not surprising
=10a on a larger 24 lattice with 3=6.2 are shown in Fig. 3. sincep occurs inside an exponential function. However, it is
The results are compared to those obtained with link$mportant to note that both smearing methods produce nearly
smeared using Eq12) and the projection method of Ref. the same minimum values of the effective energy. The stout
[15]. link smearing scheme is just as effective at reducing excited-

Both figures show that link smearing can dramatically re-state contamination in gluonic operators as the standard link
duce contamination from the high-lying modes of the theoryfuzzing scheme in current use, although more careful tuning
Consider first the results obtained using the spatiallydis necessary due to the increased sensitivity to the smearing
isotropic three-dimensional version of the stout link smearparameterp. Note that this analytic link smearing method
ing scheme gjx=p, ps,=pLa=0). For a given number of has already been successfully applied in computing the spec-
smearing iterations,, the effective energy decreases ini- trum of torelon excitation$4].
tially as the smearing parametgris increased from zero. The main purpose of using smeared links in lattice gauge
Eventually an optimal value for the smearing parameter isand fermion actions is to reduce discretization effects caused
reached at which the effective energy is minimized. Thisby the ultraviolet modes in the lattice theory. Often such
optimal value decreases as the number of smearing leyels effects are dominated by large contributions from tadpole
is increased, and the reduction in the effective energy at thidiagrams. A simple measure of how well a link smearing

W(r,a))

aEeﬁ(r)=—In( )
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Mean plaquette
Mean plaquette

FIG. 4. The mean smeared plaquette against the smearing pa- FIG. 5. The mean smeared plaquette against the smearing pa-
rameterp. These results were obtained using the Wilson gaugeameterp. These results were obtained using the Wilson gauge
action on a 12 lattice with coupling3=5.7. Curves labeled, action on a 24 lattice with coupling8=6.2. Curves labeled,
indicate results obtained using the isotropic four-dimensional verindicate results obtained using the isotropic four-dimensional ver-
sion of the analytic stout link smearing scheme with=1 and 5  sion of the analytic stout link smearing scheme witj+=1 and 5
levels, while the curves IabeIeEnp show the results with links levels, while the curves IabeIeEnp show the results with links
smeared using Eq12) and the projection method of R¢fL5]. smeared using Eq12) and the projection method of RéfL5].

scheme can reduce artifacts_from tadpole diagrams is themearing scheme in reducing discretization effects from the
mean smeared plaquette, defined by ultraviolet gluon modes, but with an increased sensitivity to
the smearing parameter

a2 ReTK0,000,(x+ )0 (x+»Ti0),
S X, u>v (77) VI. CONCLUSION

Link-variable smoothing is a crucial ingredient in con-

h is th ber of si he latti | fth structing gluonic operators which have dramatically reduced
whereN; is t ednulm ert(t) sites on t_te _agc!ceiAva uet()) tt et_glzxings with the high frequency modes of the theory. Link
233&@?%?& Pagqgfe iogttar?t:u?igps/ Indicates a substanty earing is also playing an increasingly important role in the

P ' construction of improved lattice actions. The lack of differ-

Results for the mean smeared plaquette are shown for &ntiability with respect to the underlying link variables of

12* lattice using the Wilson gauge action with coupligy Y °sh ying -
standard smearing schemes prevents the use of efficient

=5.7 in Fig. 4 and for a Z4lattice with coupling8=6.2 in - :
Fig. 5. For isotropic four-dimensional versions,(,= p) of %/AV%TETic)Cr]arlo updating methods based on molecular dynamics

both smearing methods, the mean smeared plaquette initial X , ) ,
A link smearing method which circumvents these prob-

increases towards unity gs increases from zero until a - i i
maximum is reached. The two smearing methods produc@ms was proposed and tested in this paper. The link smear-

nearly the same maximum value. fsis increased further, N9 method is analytic everywhere in the finite complex
the mean smeared plaquette in the stout link scheme quickl@'a”e and utilizes the exponential function in such a manner
begins to fall, whereas the standard smearing schemi® remain withinSU(3), eliminating the need for any pro-
changes little. A, initially increases from zero, the maxi- jection back into the group. Because of this construction, the
mum value of the mean plaquette also increases, but eventalgorithm is also useful for any Lie group. An efficient
ally a saturation point is reached. Note that the maximunimplementation of this smearing scheme, as well as the re-
values forn,=5 are very near to unity, suggesting a dra-cursive computation of the force term describing the change
matic reduction of tadpole contributions. A comparison ofof the action in response to a variation of the link variables,
Figs. 4 and 5 shows a small sensitivity of the results with thevas described. Although the force field is related to the un-
coupling B. In summary, the analytic stout link smearing derlying link variables in a very complicated manner, each
scheme is observed to be just as efficacious as the standastép in the recursive computation of the force field is actually
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