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Analytic smearing of SU„3… link variables in lattice QCD
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An analytic method of smearing link variables in lattice QCD is proposed and tested. The differentiability of
the smearing scheme with respect to the link variables permits the use of modern Monte Carlo updating
methods based on molecular dynamics evolution for gauge-field actions constructed using such smeared links.
In examining the smeared mean plaquette and the static quark-antiquark potential, no degradation in effective-
ness is observed as compared to link smearing methods currently in use, although an increased sensitivity to
the smearing parameter is found.
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I. INTRODUCTION

The extraction of hadron masses and matrix eleme
from Monte Carlo estimates of Euclidean-space correla
functions in lattice QCD can be done more reliably and
curately when operators which couple more strongly to
states of interest and less strongly to the higher-lying c
taminating states are used. For states containing gluon
crucial ingredient in constructing such operators in latt
QCD is link variable smearing. Operators constructed ou
smeared or fuzzed links have dramatically reduced mixi
with the high frequency modes of the theory. The use of s
operators has been shown to especially benefit determ
tions of the glueball spectrum@1#, hybrid meson masse
@2,3#, the torelon spectrum@4#, and excitations of the stati
quark-antiquark potential@5#.

Link variable smoothing is also playing an increasing
important role in the construction of improved lattice action
In Ref. @6#, the use of so-called fat links in a staggered qu
action was shown to significantly decrease flavor symme
breaking. Smeared links were subsequently used@7# to con-
struct hypercubic fermion actions having improved rotatio
invariance. A staggered fermion action using a link smear
transformation@8# known as hypercubic~HYP! fat links was
shown to improve flavor symmetry by an order of magnitu
relative to the standard action. The so-called Asqtad
proved staggered quark action@9–11# also makes use of link
fattening to reduce flavor symmetry breaking. Another va
ant of fermion actions which exploit smeared link variab
is the fat link irrelevant clover~FLIC! action @12#. FLIC
fermions are Wilson-like and described by an action wh
includes an irrelevant clover improvement term construc
using smeared links. Fat links have also been used to
struct a gauge action@13# with reduced discretization error
using approximate renormalization group transformations

The link fuzzing algorithm most often used in gluon
operator construction is that described in Ref.@14# in which
every spatial linkU j (x) on the lattice is replaced by itse
plus a real weightr times the sum of its four neighborin
~spatial! staples, projected back intoSU(3). Such a fuzzing
step is iteratednr times to obtain the final fuzzed link vari
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ables. Empirically, one finds that the projection intoSU(3)
is a crucial ingredient of the smearing. Link smearings wh
do not apply such a projection are found to be much l
effective. The projection intoSU(3) is not unique and mus
be carefully defined so that all symmetry properties of
link variables are preserved. Various ways of implement
this projection have appeared in the literature. Given
333 matrixV, its projectionU into SU(3) is often taken to
be the matrixUPSU(3) which maximizes Re Tr(UV†). An
iterative procedure is required to perform such a maximi
tion. Alternatively @15#, the projected matrixU can be de-
fined byU5V(V†V)21/2det(V21V†)1/6.

Although the above smearing procedure works well
practice, the projection is somewhat unpalatable since it m
be viewed as an arbitrary and abrupt way to remain wit
the group. More importantly, the branch cuts and lack
differentiability inherent in the projection can hinder or ev
make impossible the application of modern Monte Carlo u
dating techniques, such as the hybrid Monte Carlo~HMC!
@16# algorithm, which require knowing the response of t
action to a small change in one of the link variables.

A link smearing method which circumvents these pro
lems is proposed and tested in this paper. The link smea
method is analytic everywhere in the finite complex pla
and utilizes the exponential function in such a manner
remain withinSU(3), eliminating the need for any projec
tion back into the group. Because of this construction,
algorithm is useful for any Lie group. The method is d
scribed in Sec. II and its practical implementations wh
constructing operators and when computing the respons
the action to a change in a link variable are detailed in Se
III and IV, respectively. Numerical tests of the smearing a
presented in Sec. V. Using the smeared plaquette and
effective massaEeff(t) associated with the static quark
antiquark potential, no degradation in effectiveness is
served as compared to the standard link smearing met
although an increased sensitivity to the smearing param
is found. The results also suggest that lattice actions
operators constructed out of smeared link variables may
much less afflicted by radiative corrections since the usua
dominant large tadpole contributions are drastically reduc
©2004 The American Physical Society01-1
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II. ANALYTIC LINK SMEARING

A method of smearing link variables which is analyti
and hence differentiable, everywhere in the finite comp
plane can be defined as follows. LetCm(x) denote the
weighted sum of the perpendicular staples which begin
lattice sitex and terminate at neighboring sitex1m̂:

Cm~x!5 (
nÞm

rmn~Un~x!Um~x1 n̂ !Un
†~x1m̂ !

1Un
†~x2 n̂ !Um~x2 n̂ !Un~x2 n̂1m̂ !!, ~1!

wherem̂,n̂ are vectors in directionsm,n, respectively, hav-
ing the length of one lattice spacing in that direction~funda-
mental lattice translation vectors!. The weightsrmn are tun-
able real parameters. Then the matrixQm(x), defined in
SU(N) by

Qm~x!5
i

2
„Vm

† ~x!2Vm~x!…2
i

2N
Tr„Vm

† ~x!2Vm~x!…,

Vm~x!5Cm~x!Um
† ~x! ~no summation overm! ~2!

is Hermitian and traceless, and hence,eiQm(x) is an element
of SU(N). We use this fact to define an iterative, analy
link smearing algorithm in which the linksUm

(n)(x) at stepn
are mapped into linksUm

(n11)(x) using

Um
(n11)~x!5exp„iQm

(n)~x!…Um
(n)~x!. ~3!

The fact thateiQm(x) is an element ofSU(N) guarantees tha
Um

(n11)(x) is also an element ofSU(N), eliminating the need
for a projection back onto the gauge group. This fuzzing s
can be iteratednr times to finally produce link variable
which we callstout links@17#, denoted byŨm(x):

U→U (1)→U (2)→•••→U (nr)[Ũ. ~4!

One common choice of the staple weights is

r jk5r, r4m5rm450, ~5!

which yields a three-dimensional scheme in which only
spatial links are smeared. Another common choice is an
tropic four-dimensional scheme in which all weights are ch
sen to be the samermn5r. Note that such a scheme wa
used in Ref.@18# as a field transformation to eliminate
certain interaction term from the most generalO(a2) on-
shell improved gauge action.

It is not difficult to show that, given an appropriate choi
of weightsrmn , the stout links have symmetry transform
tion properties identical to those of the original lin
variables. Under any local gauge transformationG(x), the
link variables transform asUm(x)→G(x)Um(x)G†(x1m̂),
where theG(x) are SU(N) matrices. Thus, under such
gauge transformation,
05450
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Qm~x!→G~x!Qm~x!G†~x!, ~6!

eiQm(x)→G~x!eiQm(x) G†~x!, ~7!

Um
(1)~x!→G~x!eiQm(x)G†~x!G~x!Um~x!G†~x1m̂ !

5G~x!Um
(1)~x!G†~x1m̂ !, ~8!

as required. One can also easily show that if the weightsrmn

respect the rotation and reflection symmetries of the latt
the stout links obey the required transformation proper
under all rotations and all reflections in a plane contain
the link. Lastly, consider a reflection in a plane normal to
link Um(x) and passing through its midpointx1 1

2 m̂. Under
such an operation, the linkUm(x) transforms according to
Um(x)→U2m(x1m̂)5Um

† (x) and for the casenÞm,

Un(x)↔Un(x1m̂) and Un
†(x1m̂)↔Un

†(x), yielding
Cm(x)→Cm

† (x) assuming thermn are real, so that

Vm~x!→Cm
† ~x!Um~x!5Um

† ~x!Vm
† ~x!Um~x!, ~9!

Qm~x!→2Um
† ~x!Qm~x!Um~x!, ~10!

Um
(1)~x!→Um

† ~x!e2 iQm(x)5Um
(1)†~x!, ~11!

as required. Given thatUm
(1)(x) transforms under all symme

try operations in the same manner asUm(x), it follows that
the stout linksŨm(x) have symmetry transformation prope
ties identical to those of the original link variables.

Since the exponential function has a power series exp
sion with an infinite radius of convergence, each stout l
may be viewed as an incredibly large and complicated s
of paths. For smallrmn , the paths which make up the lin
variableU (1) to first order in thermn are shown in Fig. 1.
Note that the standard smearing method, defined by

Um
(1)~x!5PSU(3)$Um~x!1Cm~x!%, ~12!

wherePSU(3) denotes the projection intoSU(3), yields the
same sum of paths at first order inrmn .

A few further remarks are worthy of note. First, an alte
native smearing scheme in which the weightsrmn are chosen
to be imaginary does not reduce the couplings to the hi
frequency modes of the theory. Secondly, it is not possible
remove the leadingO(a2) discretization errors in the Wilson

FIG. 1. The expansion up to first order in thermn of the new
link variable U (1) in terms of paths of the original links. Eac
closed loop includes a trace with a factor 1/N in SU(N). In the
third and fourth terms inside the brace brackets above, the cro
lines indicate a traversal of the same link in opposite directions
1-2
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gauge action by expressing the action in terms of stout lin
diminishing theO(asa

2) errors by reducing their tadpol
contributions is the best which can be achieved. Thirdly,
use of stout links in Symanzik-improved actions may elim
nate the need to use tadpole-improvement in determining
couplings in the action. Lastly, the definition ofCm(x) given
in Eq. ~1! is not unique. Analytic smearing schemes can
constructed as outlined above using sums of other paths
sitex to x1m̂, such as those used in fat link@6# and HYP@8#
smearings.

III. IMPLEMENTATION OF THE SMEARING

To implement this analytic link smearing scheme, the
ficient evaluation of exp(iQ), whereQ is a traceless Hermit
ian 333 matrix, is required. The Cayley-Hamilton theore
states that every matrix is a zero of its characteristic poly
mial, so that

Q32c1Q2c0I 50, ~13!

where

c05detQ5 1
3 Tr~Q3!, ~14!

c15 1
2 Tr~Q2!>0. ~15!

The Hermiticity ofQ requires 27c0
224c1

3<0 and the defini-
tion of Q given in Eq.~2! restricts the possible values ofc1.
Thus, the coefficientsc0 andc1 satisfy

2c0
max<c0<c0

max, 0<c1<c1
max, ~16!

where

c0
max52S c1

3 D 3/2

, ~17!

c1
max5

1

32
~69111A33!S (

nÞm
rmnD 2

, ~18!

for eachm. Equation~13! implies thatQn for integern>3
can be expressed in terms ofQ2, Q, and the identity matrix
I. Hence, we can write

eiQ5 f 0I 1 f 1Q1 f 2Q2, ~19!

where the three scalar coefficientsf j5 f j (c0 ,c1) are basis
independent, depending only onc0 andc1. Equation~19! is
valid for any 333 Hermitian, traceless matrixQ.

Let q1 ,q2 ,q3 denote the three eigenvalues ofQ. SinceQ
is Hermitian and traceless, we know that these are real n
bers satisfyingq11q21q350. These eigenvalues are th
three roots of a cubic polynomial which can be easily de
mined:

q152u, ~20!

q252u1w, ~21!
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q352q12q252u2w, ~22!

where

u5A1

3
c1 cosS 1

3
u D , ~23!

w5Ac1 sinS 1

3
u D , ~24!

u5arccosS c0

c0
maxD . ~25!

Given these eigenvalues, the matrixQ can be written

Q5MLQM 21, LQ5F q1 0 0

0 q2 0

0 0 q3

G , ~26!

whereM is a unitary matrix. Then it easily follows that

eiLQ5 f 0I 1 f 1LQ1 f 2LQ
2 . ~27!

Explicitly, we have the following linear system of equation
to solve:

F 1 q1 q1
2

1 q2 q2
2

1 q3 q3
2
G F f 0

f 1

f 2

G5F eiq1

eiq2

eiq3

G . ~28!

If all three eigenvalues are distinct, this system of equati
has a unique solution, but when two of the eigenvalues
exactly the same, the solution to Eq.~28! is not unique and
one of thef j ’s can be freely set to any value. The case
degenerate eigenvalues occurs whenc0→6c0

max.
In practice, it is extremely unlikely that an exact dege

eracy will be encountered during a numerical simulatio
Much more likely is the possibility that two eigenvalues a
nearly, but not quite, equal. Encounters with both near a
exact degeneracies can be handled by expressing thef j in
terms ofu andw in order to isolate and tame the numerica
sensitive part. One finds that thef j factors can be written

f j5
hj

~9u22w2!
, ~29!

where thehj are well-behaved functions given by

h05~u22w2!e2iu1e2 iu$8u2cos~w!

12iu~3u21w2!j0~w!%, ~30!

h152ue2iu2e2 iu$2u cos~w!

2 i ~3u22w2!j0~w!%, ~31!

h25e2iu2e2 iu$cos~w!13iuj0~w!%, ~32!
1-3
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defining

j0~w!5
sinw

w
. ~33!

The w→0 problem asc0→c0
max has been completely con

tained inj0. To numerically evaluate this factor, one use
for example,

j0~w!5H 12 1
6 w2

„12 1
20 w2~12 1

42 w2!…, uwu<0.05,

sin~w!/w, uwu.0.05.

However, thew→3u→A3/2 limit as c0→2c0
max has not

been tamed. Fortunately, this problem can be circumven
using the following symmetry relations underc0→2c0:

f j~2c0 ,c1!5~2 ! j f j* ~c0 ,c1!. ~34!

Thus, the determination of thef j coefficients forc0,0 can
be achieved by computing the coefficients foruc0u and uti-
lizing Eq. ~34!. This means that a situation in which th
denominator in Eq.~29! becomes nearly zero will never b
encountered. It should be emphasized that thef j coefficients
are smooth, nonsingular functions ofc0 andc1. There are no
actual singularities asc0→6c0

max. The numerical evaluation
of the f j coefficients to machine precision in these lim
simply requires additional care.

As an aside, if one writesQ5 1
2 (a51

8 Qala in terms of the
eight Gell-Mann matricesla, then

eiQ5u01
1

2 (
a51

8

uala, ~35!

u05 f 01
2

3
c1f 2 , ~36!

ua5 f 1Qa1
1

2
f 2dabcQbQc , ~37!

c05
1

12
dabcQaQbQc , ~38!

c15
1

4
QaQa , ~39!

wheredabc and f abc are the real symmetric and antisymme
ric structure constants, respectively.

IV. MOLECULAR DYNAMICS EVOLUTION

The analyticity of the stout-link scheme permits the use
modern Monte Carlo updating methods for gauge-field
tions constructed using stout links. Molecular dynamics e
lution forms the core of many of the Markov processes u
to generate ensembles of field configurations needed for
quenched QCD simulations@16,19–21#. Since a small
change to the underlying gauge fields always leads to a s
change in the stout links, then provided the small chang
05450
,
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f
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the stout links causes small changes to the action of
theory, the force term on the underlying links is always we
defined. The importance of defining a link smearing sche
which permits the computation of the molecular dynam
force term has been emphasized recently in Ref.@22#.

TheSm(x) force field describes how the actionSchanges
when the gauge-field link variablesUm(x) change, holding
the momentaPm(x) and the pseudofermion fieldf(x) fixed.
For this reason, we shall write the actionS5S@U# in this
section, ignoring its dependence on the pseudofermion fi
The transpose of the force field is defined by the derivat
of the action with respect to the link variables in
component-wise manner:

Sm
ab~x![

]S@U#

]Um
ba~x!

. ~40!

Assume that the action can be written as a sum of a t
Sth@U# constructed entirely of the original thin link variable
and a termSst@Ũ# constructed completely out of stout links

S@U#5Sth@U#1Sst@Ũ#. ~41!

Then the force field may be written

Sm~x!5Sm
(th)~x!1Sm

(0)~x!, ~42!

where

Sm
(th)~x!5S ]Sth@U#

]Um~x! D
T

, Sm
(0)~x!5S ]Sst@Ũ#

]Um~x!
D T

. ~43!

The computation ofSm
(th)(x) is usually straightforward, and

nothing more about its determination needs discussion h
We now focus on the evaluation ofSm

(0)(x).
Recall that the stout links are constructed iteratively sta

ing with the original links U→U (1)→U (2)→•••→U (nr)

5Ũ. The computation of the force field proceeds simila

in an iterative fashion, except that the order is reversedS̃
5S (nr)→S (nr21)→•••→S (1)→S (0). The sequence start
by computing

S̃m~x!5S ]Sst@Ũ#

]Ũm~x!
D T

. ~44!

This step depends on the form of the gauge and ferm
action in terms of the stout links and is usually just
straightforward as the computation ofSm

(th)(x). In subse-
quent steps,S (k) and U (k21) are used to computeS (k21),
where the effective force at levelk is defined by

Sm
(k)~x!5S ]Sst@Ũ#

]Um
(k)~x!

D T

. ~45!

The recursive mapping

$S (k),U (k21)%→S (k21) ~46!
1-4
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is repeated untilS (0) is finally evaluated.
In Monte Carlo methods based on molecular dynam

such as HMC@16# and theR-algorithm @21#, the flow of
lattice configurations through phase space via Hamilto
equations is parametrized by a fictitious simulation time
ordinatet. To determine the mapping in Eq.~46!, it is con-
venient to express the force field in terms of the rate
change of the action with respect to this time coordinatet:

d

dt
Sst@Ũ#52(

x,m
Re TrH Sm

(k)~x!
d

dt
Um

(k)~x!J , ~47!

for k50,1, . . . ,nr and definingdU/dt in a component-wise
manner. One then proceeds using the chain rule of diffe
tiation:

dUm
(k)~x!

dt
5eiQm

(k21)(x)
dUm

(k21)~x!

dt

1
d~eiQm

(k21)(x)!

dt
Um

(k21)~x!. ~48!

To simplify matters,Qm
(k21)(x), Um

(k21)(x), Sm
(k21)(x) shall

simply be written asQ,U,S, respectively, in the calculation
which follow, andSm

(k)(x) andUm
(k)(x) shall be written asS8

andU8, respectively. The Cayley-Hamilton theorem gives

d~eiQ!

dt
5

d

dt
~ f 01 f 1Q1 f 2Q2!,

5
d f0

dt
1

d f1

dt
Q1

d f2

dt
Q21 f 1

dQ

dt

1 f 2

dQ

dt
Q1 f 2Q

dQ

dt
. ~49!

Since thef j coefficients are functionsf j5 f j (u,w) of u and
w only, one has

d f j

dt
5S ] f j

]u Ddu

dt
1S ] f j

]wDdw

dt
, ~50!

and sinceu andw are functions ofc0 andc1 only, then

du

dt
5S ]u

]c0
Ddc0

dt
1S ]u

]c1
Ddc1

dt
, ~51!

dw

dt
5S ]w

]c0
Ddc0

dt
1S ]w

]c1
Ddc1

dt
. ~52!

Next, one finds that

dc0

dt
5

1

3

d

dt
Tr~Q3!5TrS Q2

dQ

dt D , ~53!

dc1

dt
5

1

2

d

dt
Tr~Q2!5TrS Q

dQ

dt D , ~54!

and
05450
s,
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]u

]c0
5

1

2~9u22w2!
,

]u

]c1
5

u

~9u22w2!
,

]w

]c0
5

23u

2w~9u22w2!
,

]w

]c1
5

3u22w2

2w~9u22w2!
.

~55!

Now define

r j
(1)5

]hj

]u
, r j

(2)5
1

w

]hj

]w
, ~56!

and

b1 j5
2ur j

(1)1~3u22w2!r j
(2)22~15u21w2! f j

2~9u22w2!2
, ~57!

b2 j5
r j

(1)23ur j
(2)224u f j

2~9u22w2!2
. ~58!

Then

d f j

dt
5b1 jTrS Q

dQ

dt D1b2 jTrS Q2
dQ

dt D , ~59!

where

r 0
(1)52~u1 i ~u22w2!!e2iu12e2 iu$4u~22 iu !cosw

1 i „9u21w22 iu~3u21w2!…j0~w!%, ~60!

r 1
(1)52~112iu !e2iu1e2 iu$22~12 iu !cosw

1 i „6u1 i ~w223u2!…j0~w!%, ~61!

r 2
(1)52ie2iu1 ie2 iu$cosw23~12 iu !j0~w!%, ~62!

r 0
(2)522e2iu12iue2 iu$cosw1~114iu !j0~w!

13u2j1~w!%, ~63!

r 1
(2)52 ie2 iu$cosw1~112iu !j0~w!23u2j1~w!%,

~64!

r 2
(2)5e2 iu$j0~w!23iuj1~w!%, ~65!

with

j0~w!5
sinw

w
, ~66!

j1~w!5
cosw

w2
2

sinw

w3
. ~67!

Given the above results,
1-5
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d~eiQ!

dt
5TrS Q

dQ

dt DB11TrS Q2
dQ

dt DB2

1 f 1

dQ

dt
1 f 2

dQ

dt
Q1 f 2Q

dQ

dt
, ~68!

where

Bi5bi01bi1Q1bi2Q2. ~69!

The numerically sensitivew→0 limit has been totally ab-
sorbed intoj0 and j1, and numerical problems asc0→
2c0

max can be circumvented by exploiting the following sym
metry relation:

bi j ~2c0 ,c1!5~2 ! i 1 j 11bi j* ~c0 ,c1!. ~70!

Once again, we emphasize that these coefficients are w
behaved, nonsingular functions ofc0 andc1.

The rate of change of the stout links with respect to
simulation time is then given by

dU8

dt
5eiQ

dU

dt
1H TrS Q

dQ

dt DB11TrS Q2
dQ

dt DB21 f 1

dQ

dt

1 f 2

dQ

dt
Q1 f 2Q

dQ

dt J U, ~71!
k
si
or
in

b

to
le
se

rk

05450
ll-

e

and hence,

Re TrS S8
dU8

dt D5Re TrS S8eiQ
dU

dt D2Re TrS iL
dV

dt D ,

~72!

defining

L5
1

2
~G1G†!2

1

2N
Tr~G1G†!, ~73!

G5Tr~S8B1U !Q1Tr~S8B2U !Q21 f 1US8

1 f 2QUS81 f 2US8Q. ~74!

One sees thatGm
(k21)(x), and hence,Lm

(k21)(x), are defined
on each lattice link in terms of the link variablesUm

(k21)(x)
andSm

(k)(x). At this point, the details of the staple constru
tion in Cm(x) must be included. Given Eq.~1! and utilizing
trace cyclicity and translational invariance, one eventua
obtains the following recursion relation:
Sm~x!5Sm8 ~x!„f 0I 1 f 1Qm~x!1 f 2Qm
2 ~x!…1 iCm

† ~x!Lm~x!2 i (
nÞm

$rnmUn~x1m̂ !Um
† ~x1 n̂ !Un

†~x!Ln~x!

1rmnUn
†~x2 n̂1m̂ !Um

† ~x2 n̂ !Lm~x2 n̂ !Un~x2 n̂ !1rnmUn
†~x2 n̂1m̂ !Ln~x2 n̂1m̂ !Um

† ~x2 n̂ !Un~x2 n̂ !

2rnmUn
†~x2 n̂1m̂ !Um

† ~x2 n̂ !Ln~x2 n̂ !Un~x2 n̂ !2rnmLn~x1m̂ !Un~x1m̂ !Um
† ~x1 n̂ !Un

†~x!

1rmnUn~x1m̂ !Um
† ~x1 n̂ !Lm~x1 n̂ !Un

†~x!%, ~75!
ela-
f a
ink
rk
be
k-
all.
ks
igi-
of
be

u-
rgy
in which unprimed quantities refer to step (k21) and primed
quantities refer to stepk.

Although the force field is related to the underlying lin
variables in a complicated manner, each step in the recur
computation of the force field outlined above is straightf
ward, facilitating a natural and efficient implementation
software. Analyticity in the entire~finite! complex plane is
an important property here; ifSm

(k)(x) is well behaved, then
Sm

(0)(x) must be also. Note that the above formalism can
easily adapted for other definitions ofCm(x).

V. NUMERICAL TESTS

The efficacy of stout links both as a gluonic-opera
smearing algorithm and for reducing the effects of ultravio
gluon modes in short-distance quantities was tested in
eral Monte Carlo simulations.

The energy of gluons in the presence of a static qua
ve
-

e

r
t
v-

-

antiquark pair separated by a distancer can be extracted
from r 3t Wilson loopsW(r ,t) as the temporal extentt be-
comes large. The Wilson loop can be viewed as the corr
tion function of a gauge-invariant operator consisting o
static quark-antiquark pair connected by a product of l
variables following a straight-line path between the qua
and the antiquark. Extraction of the lowest energy can
done much more reliably if the couplings of the quar
antiquark-gluon operator with higher-lying states are sm
This can be achieved by utilizing a product of smeared lin
connecting the quark and the antiquark, instead of the or
nal link variables. In other words, the ground state energy
gluons in the presence of a static quark-antiquark pair can
more reliably determined from Wilson loopsW̃(r ,t) con-
structed using smeared spatial links in ther-link paths on the
initial and final time slices. A measure of how well the co
plings to the higher levels are reduced is the effective ene
for a single time step, defined by
1-6
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aEeff~r !52 lnS W̃~r ,a!

W̃~r ,0!
D . ~76!

Under unexceptional circumstances for a lattice gauge ac
with a positive-definite transfer matrix, such as the Wils
action, reducing the excited-state contamination tends
lower the effective energy given above.

The effective energy defined in Eq.~76! was used to tes
the ability of the stout link smearing scheme to redu
excited-state contamination in gluonic operators. Results
r 55a on a 124 lattice using the Wilson gauge action wit
coupling b55.7 are shown in Fig. 2, and results forr
510a on a larger 244 lattice withb56.2 are shown in Fig. 3
The results are compared to those obtained with li
smeared using Eq.~12! and the projection method of Re
@15#.

Both figures show that link smearing can dramatically
duce contamination from the high-lying modes of the theo
Consider first the results obtained using the spatia
isotropic three-dimensional version of the stout link sme
ing scheme (r jk5r, r4m5rm450). For a given number o
smearing iterationsnr , the effective energy decreases in
tially as the smearing parameterr is increased from zero
Eventually an optimal value for the smearing paramete
reached at which the effective energy is minimized. T
optimal value decreases as the number of smearing levenr

is increased, and the reduction in the effective energy at

FIG. 2. The effective energyaEeff(r ) defined in Eq.~76! for a
static quark-antiquark pair separated by a distancer 55a for several
levels of smearingnr51, 5, and 20 against the smearing parame
r. These results were obtained on a 124 lattice using the Wilson
gauge action with couplingb55.7. Curves labeledAnr

indicate
results using the spatially-isotropic three-dimensional version of
analytic stout link smearing scheme withnr51, 5, and 20 levels,
while the curves labeledBnr

show the results for links smeare
using Eq.~12! with the projection method of Ref.@15#.
05450
n

to

e
or

s

-
.
-

r-

is
s

is

optimal r value is substantial. Further increasingr beyond
its optimal value then results in a sharply increasing effect
energy. The rapidity of both the fall and rise of the effecti
energy about its minimum is more pronounced for largernr .
Also, the minimum value decreases asnr increases until
eventually a saturation point is reached beyond which
additional reduction occurs.

The results obtained with links smeared using Eq.~12!
and the projection method of Ref.@15# display essentially the
same trends, except that each minimum in the effective
ergy is much broader. The increased sensitivity of the st
link smearing scheme to the parameterr is not surprising
sincer occurs inside an exponential function. However, it
important to note that both smearing methods produce ne
the same minimum values of the effective energy. The st
link smearing scheme is just as effective at reducing excit
state contamination in gluonic operators as the standard
fuzzing scheme in current use, although more careful tun
is necessary due to the increased sensitivity to the smea
parameterr. Note that this analytic link smearing metho
has already been successfully applied in computing the s
trum of torelon excitations@4#.

The main purpose of using smeared links in lattice gau
and fermion actions is to reduce discretization effects cau
by the ultraviolet modes in the lattice theory. Often su
effects are dominated by large contributions from tadp
diagrams. A simple measure of how well a link smeari

r

e

FIG. 3. The effective energyaEeff(r ) defined in Eq.~76! for a
static quark-antiquark pair separated by a distancer 510a for sev-
eral levels of smearingnr51, 5, and 20 against the smearing p
rameterr. Results were obtained on a 244 lattice using the Wilson
gauge action with couplingb56.2. Curves labeledAnr

indicate
results using the spatially-isotropic three-dimensional version of
analytic stout link smearing scheme withnr51, 5, and 20 levels,
while the curves labeledBnr

show the results for links smeare
using Eq.~12! with the projection method of Ref.@15#.
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scheme can reduce artifacts from tadpole diagrams is
mean smeared plaquette, defined by

P̃5
1

18Ns
(

x,m.n
Re Tr̂ Ũm~x!Ũn~x1m̂ !Ũm

† ~x1 n̂ !Ũn
†~x!&,

~77!

whereNs is the number of sites on the lattice. A value of t
mean smeared plaquette near unity indicates a substa
reduction of the tadpole contributions.

Results for the mean smeared plaquette are shown f
124 lattice using the Wilson gauge action with couplingb
55.7 in Fig. 4 and for a 244 lattice with couplingb56.2 in
Fig. 5. For isotropic four-dimensional versions (rmn5r) of
both smearing methods, the mean smeared plaquette init
increases towards unity asr increases from zero until a
maximum is reached. The two smearing methods prod
nearly the same maximum value. Asr is increased further
the mean smeared plaquette in the stout link scheme qui
begins to fall, whereas the standard smearing sch
changes little. Asnr initially increases from zero, the max
mum value of the mean plaquette also increases, but eve
ally a saturation point is reached. Note that the maxim
values fornr55 are very near to unity, suggesting a dr
matic reduction of tadpole contributions. A comparison
Figs. 4 and 5 shows a small sensitivity of the results with
coupling b. In summary, the analytic stout link smearin
scheme is observed to be just as efficacious as the stan

FIG. 4. The mean smeared plaquette against the smearing
rameterr. These results were obtained using the Wilson ga
action on a 124 lattice with couplingb55.7. Curves labeledAnr

indicate results obtained using the isotropic four-dimensional v
sion of the analytic stout link smearing scheme withnr51 and 5
levels, while the curves labeledBnr

show the results with links
smeared using Eq.~12! and the projection method of Ref.@15#.
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smearing scheme in reducing discretization effects from
ultraviolet gluon modes, but with an increased sensitivity
the smearing parameterr.

VI. CONCLUSION

Link-variable smoothing is a crucial ingredient in co
structing gluonic operators which have dramatically reduc
mixings with the high frequency modes of the theory. Lin
smearing is also playing an increasingly important role in
construction of improved lattice actions. The lack of diffe
entiability with respect to the underlying link variables
standard smearing schemes prevents the use of effic
Monte Carlo updating methods based on molecular dynam
evolution.

A link smearing method which circumvents these pro
lems was proposed and tested in this paper. The link sm
ing method is analytic everywhere in the finite compl
plane and utilizes the exponential function in such a man
to remain withinSU(3), eliminating the need for any pro
jection back into the group. Because of this construction,
algorithm is also useful for any Lie group. An efficien
implementation of this smearing scheme, as well as the
cursive computation of the force term describing the cha
of the action in response to a variation of the link variabl
was described. Although the force field is related to the
derlying link variables in a very complicated manner, ea
step in the recursive computation of the force field is actua

a-
e

r-

FIG. 5. The mean smeared plaquette against the smearing
rameterr. These results were obtained using the Wilson gau
action on a 244 lattice with couplingb56.2. Curves labeledAnr

indicate results obtained using the isotropic four-dimensional v
sion of the analytic stout link smearing scheme withnr51 and 5
levels, while the curves labeledBnr

show the results with links
smeared using Eq.~12! and the projection method of Ref.@15#.
1-8
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straightforward, allowing a natural and efficient design
software. The smeared mean plaquette and the effective
ergy associated with the static quark-antiquark potential w
used to show that no degradation in effectiveness is obse
as compared to link smearing methods currently in use,
though an increased sensitivity to the smearing param
was found.
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