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	is paper presents a modi
ed harmonic balance solution method incorporated with Vieta’s substitution technique for nonlinear
multimode damped beam vibration.	e aim of the modi
cation in the solution procedures is to develop the analytic formulations,
which are used to calculate the vibration amplitudes of a nonlinearmultimode dampedbeamwithout the need of nonlinear equation
solver for the nonlinear algebraic equations generated in the harmonic balance processes. 	e result obtained from the proposed
method shows reasonable agreement with that from a previous numerical integration method. In general, the results can show the
convergence and prove the accuracy of the proposed method.

1. Introduction

Over the past decades, many solution methods were devel-
oped for various engineering modelling problems (e.g., [1–
4]). 	e two well-known solution methods, the perturbation
method and multiple scale method (e.g., [5–7]), are widely
adopted. In these two methods, coupled nonlinear algebraic
equations are generated and required to be solved by nonlin-
ear equation solver.	ere are two harmonic balancemethods
also widely employed (i.e., total harmonic balance method
and incremental harmonic balance method, e.g., [8, 9]).	ey
also generate coupled nonlinear algebraic equations in the
harmonic balance processes. In the previous works [10, 11],
the multilevel residue harmonic balance method was modi-

ed from the total harmonic balance method and developed
for nonlinear vibrations. Although the accuracies of these
solutionswere good and veri
ed by other solutionmethods, it
was quite time consuming to develop the nonlinear equation
solver for those nonlinear algebraic equations generated in
the solution procedures. On the other hand, there have
been numerous beam/plate related research problems solved
using various numerical and classical methods (e.g., [12–
15]). 	at is the motivation in this study to develop the
analytic formulations to calculate the vibration responses of

a nonlinearmultimode beamwithout using a nonlinear equa-
tion solver for the nonlinear algebraic equations generated in
the harmonic balance procedures. 	e proposed method is
modi
ed from the previous harmonic balance method and
incorporated with Vieta’s substitution technique. Using the
analytic calculation formulations, the results can be obtained
without the need of nonlinear equation solver.

2. Governing Equation

	e governing equation of motion of nonlinear vibration of
the Euler-Bernoulli theory is as follows [16]:

������� + ���̈ − (��2	 ∫�
0
(��)2 �)��� = � (�, �) , (1)

where � is longitudinal coordinate and � is transverse
displacement. ��, ���, and ����� are 1st, 2nd, and 4th
derivatives with respect to �, respectively; �̇ and �̈ are 1st
and 2nd derivatives with respect to time, �. 	 is length, ℎ is
thickness, �� is Young’s modulus × cross-sectional area, ��
is material density per unit length, and �(�, �) is external
harmonic excitation. For uniformly distributed excitation,�(�, �) = �� sin(��), �� = ���� = excitation magnitude,
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2 Shock and Vibration

� is a dimensionless excitation parameter, � =9.81ms−2., and � is excitation frequency.
	en the governing equation is discretized using the

modal reduction approach,

�(�, �) = �∑
�=1
�� (�) �� (�) , (2)

where �� is the modal amplitude of the �th mode, �� is the �th
structural mode shape, and � is number of modes used.

Consider substituting (2) into (1) andmultiplying �� to it
and taking integration over the beam length

�� �∑
�=1

̈���0,0�,� + �� �∑
�=1
���4,0�,� − ��2	

�∑
�=1

�∑
	=1

�∑

=1

���	�
�2,0�,��1,1	,

− �� sin (��) = 0,

(3)

where �0,0�,� = ∫�0 �����, �4,0�,� = ∫�0 ������ ���, �2,0�,� = ∫�0 �������, �1,1	,
 = ∫�0 ��	��
�, and �� sin(��) is modal force. For

uniformly distributed excitation, �� = ∫�0 �����/ ∫�0 �����.
If the beam is simply supported, then ��(�) = sin((��/	)�) and �0,0�,� = �4,0�,� = �2,0�,� = �1,1�,� = 0 for � ̸= �. 	en, (3) can

be reduced into the following form:

�� ̈�� + ���2��� + �∑
	=1

!�,	���2	 − �� sin (��) = 0, (4)

where !�,	 = −(��/2	)(�2,0��/�0,0�,�)�1,1	,	 and�� is the natural
frequency of the�th mode.

3. Modified Solution Procedure Using
Vieta’s Substitution

	e solution form of themodal amplitudes is given by [10, 17]

�� (�) ≅ #0��,0 (�) + #1��,1 (�) + #2��,2 (�) + ⋅ ⋅ ⋅ , (5)

where # is an embedding parameter; ��,0(�), ��,1(�), and��,2(�) are the zero, 1st, and 2nd level modal amplitude
solutions.

By inputting (5) into (4), consider those terms associated

with #0 and set up the zero level governing equations

�� ̈��,0 + ���2���,0 + !�,��3�,0 − �� sin (��)
+ �∑
	=1,� ̸=	

!�,	��,0�2	,0 = Δ�,0 (�) , (6)

where ��,0 = ��,0,1 sin(��) and the 
rst, second, and third
subscripts in ��,0,1 are the mode number, zero level, and 1st
harmonic number; Δ�,0 is the zero level residual.

For simplicity, let

&�,0 (�) = �� ̈��,0 + ���2���,0 + !�,��3�,0
− �� sin (��) , (7a)

'�,0 (�) = �∑
	=1

!�,	��,0�2	,0. (7b)

	en, put (7a)-(7b) into (6)

&�,0 (�) + '�,0 (�) = Δ�,0 (�) . (8)

Consider the harmonic balance of sin(��) in (7a):

�3�,0,1 + 43!�,� �� (�2� − �2)��,0,1 + 43!�,��� = 0. (9)

When the damped vibration is considered, the zero level
modal vibration amplitude is rewritten from (9) and its
complex form is given by****��,0,1****

= **********
��∏� (�) + (3/4) !�,� ****��,0,1****2 + 5 (27���)

********** .
(10a)

	en, (10a) can be rewritten as

(34!�,�)
2 ****��,0,1****6 + 32!�,�∏� (�) ****��,0,1****4

+ ((∏
�

(�))2 + (27���)2) ****��,0,1****2
− (��)2 = 0.

(10b)

Consider a polynomial form

CD3 + ED2 + FD +  = 0, (10c)

where, for simplicity, let ∏�(�) = ��(−�2 + �2�) +5(27�����), 5 = √−1; 7 is damping ratio, and �� is nonlin-
ear peak frequency (note that, in case of linear vibration,�� =��); D = |��,0,1|2; C = ((3/4)!�,�)2; E = (3/2)!�,�∏�(�);F = (∏�(�))2 + (27���)2;  = −(��)2.

Using the substitution ofD = H−E/3C, (10c) can be further
simpli
ed as

H3 + IH + V = 0, (11)

where I = (3CF − E2)/3C2; V = (2E3 − 9CEF + 27C2)/27C3;H = K − I/3K (i.e., Vieta’s substitution [18]). Equation (10c)
can be rewritten as

K6 + VK3 − I327 = 0. (12)

If K3 is considered as an independent unknown, (12) is a
“modi
ed” quadratic equation. Hence, the analytic formula
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for the solutions can be obtained without the need of nonlin-
ear equation solver.	en, the 1st level governing equation can
be set up by inputting (5) into (4) and picking up those terms

associated with #1:
�� ̈��,1 + 27���� ̇��,1 + ���2���,1

+ �∑
	=1

!�,	 [(�	,0)2 ��,1 + 2��,0�	,0�	,1]
+ Δ�,0 (�) = Δ�,1 (�) ,

(13)

where ��,1(�) =��,1,1 sin(��) + ��,1,3 sin(3��).
Note that ��,0,1 has been found from the zero level

solution procedure. 	us, �	,0 and Δ�,0(�) in (13), which are
in terms of ��,0,1, are known. 	erefore, (13) is a linear
equation.

Consider the harmonic balances of sin(��) and sin(3��)
in (13) to set up two algebraic linear equations

∫2�
0

Δ�,1 (�) sin (��) � = 0, (14a)

∫2�
0

Δ�,1 (�) sin (3��) � = 0. (14b)

As (14a)-(14b) are linear, the unknown modal amplitudes��,1,1 and ��,1,3 can be found analytically.
Again, the 2nd level governing equation can be set up by

inputting (5) into (4) and picking up those terms associated

with #2:
�� ̈��,2 + 27���� ̇��,2 + ���2���,2

+ �∑
	=1

!�,	 [��,0 (�	,1)2 + 2��,0�	,0�	,2 + ��,2 (�	,0)2
+ 2��,1�	,0�	,1] + Δ�,1 (�) = Δ�,2 (�) ,

(15)

where ��,2(�) = ��,2,1 sin(��) + ��,2,3 sin(3��) +��,2,5 sin(5��).
Note that ��,1,1 and ��,1,3 have been found from the 1st

level solution procedure.	us, �	,1 and Δ�,1(�) in (15), which
are in terms of ��,1,1 and ��,1,3, are known. 	erefore, (15)
is a linear di�erential equation.

Consider the harmonic balances of sin(��), sin(3��), and
sin(5��) in (15) to set up three algebraic linear equations:

∫2�
0

Δ�,2 (�) sin (��) � = 0; (16a)

∫2�
0

Δ�,2 (�) sin (3��) � = 0; (16b)

∫2�
0

Δ�,2 (�) sin (5��) � = 0. (16c)

As (16a)–(16c) are linear, the unknown modal amplitudes��,2,1, ��,2,3, and ��,2,5 can be found analytically. Similarly,
the Pth level governing equations can be set up by inputting

Table 1: (a) Convergence study for various excitation magnitudes,� = 1.5�1. (b) Convergence study for various excitation frequencies,� = 7.5.

(a)

Normalized overall
amplitude

� = 1 7.5 15 25

Zero level solution 99.92 101.00 101.93 102.69

1st level solution 100.00 100.03 100.13 100.32

2nd level solution 100.00 100.00 100.00 100.00

(b)

Normalized overall
amplitude

� = 0.5�1 �1 3�1 6�1
Zero level solution 99.79 100.44 96.43 79.43

1st level solution 100.03 100.03 100.00 100.00

2nd level solution 100.00 100.00 100.00 100.00

(5) into (4) and picking up those terms associated with#3, #4, #5, . . . and consider the higher level solution form

��, (�) = ��,,1 sin (��) + ��,,3 sin (3��)+ ��,,5 sin (5��) + ⋅ ⋅ ⋅ . (17)

	en, consider the harmonic balances of sin(��),
sin(3��), sin(5��), . . . to set up the linear algebraic equa-
tions and solve for the unknown modal amplitudes ��,,1,��,,3, ��,,5, . . ..

Finally, the overall amplitude and overall modal ampli-
tude are de
ned as

�over = √∑
�
∑


*********∑� ��,,�
*********
2, (18a)

�over,� = √∑


*********∑� ��,,�
*********
2, (18b)

where � is mode number (i.e., 1, 2, 3, . . .), P is solution level
(i.e., 0, 1, 2, . . .), and S is harmonic number (i.e., 1, 3, 5, . . .).
4. Results and Discussions

In this section, the material properties of the simply sup-
ported beams in the numerical cases are considered as
follows: Young’s modulus � = 71 × 109N/m2, mass density� = 2700 kg/m3, beam dimensions = 0.5m × 0.2m ×
5mm, Poisson’s ratio = 0.3, and damping ratio 7 = 0.02.
Tables 1(a)-1(b) show the convergence studies of normalized
beam vibration amplitude for various excitation magnitudes
and frequencies. 	e two-mode approach is adopted. 	e
harmonic excitation is uniformly distributed. 	e 2nd level
solutions are normalized as one hundred. It is shown that
the 1st level solutions are accurate enough for the excitation
frequency range from 0.5�1 to 6�1 and excitation parameter
from � = 1 to 25. 	e di�erences between the zero
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Figure 1: (a) Comparison between the results from the proposed and numerical integration methods, � = 7.5��� sin(��). (b) Comparison
between the results from the proposed and numerical integration methods, � = 75(0.1 sin((�/	)�) + 0.9 sin((3�/	)�)) ��� sin(��).
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Figure 2: Frequency-amplitude curve for various excitation levels.

Table 2: (a) Modal contributions for various excitation frequencies,� = 1.5�1. (b) Modal contributions for various excitation frequen-
cies, � = 7.5.

(a)

Normalized modal
contribution

� = 1 7.5 15 25

1st mode 99.94 99.88 99.67 99.54

2nd mode 0.05 0.10 0.29 0.40

3rd mode 0.01 0.01 0.04 0.06

(b)

Normalized modal
contribution

� = 0.5�1 �1 3�1 6�1
1st mode 99.59 99.78 96.03 78.20

2nd mode 0.36 0.19 3.56 20.25

3rd mode 0.05 0.03 0.42 1.55

level and 2nd level solutions are bigger when the excitation
level or excitation frequency is higher. It is implied that
the higher harmonic components in the vibration responses

are more important when the excitation level or excitation
frequency is higher. Tables 2(a)-2(b) show the contributions
of the 
rst three symmetric modes for various excitation
magnitudes and frequencies. It can be seen that the 2 mode
solutions are accurate enough for the excitation frequency
range from 0.5�1 to 6�1 and excitation parameter from �
= 1 to 25. For the excitation frequency near or less than the
1st resonant frequency, the 1st mode response is dominant. It
is implied that the single mode solution is accurate enough.
When the excitation frequency is set higher and closer to
the 2nd resonant frequency, the 2nd mode contribution
is more signi
cant. Figures 1(a)-1(b) show the frequency-
amplitude curves for two excitation cases (one is uniformly
distributed, �(�) = 7.5��� sin(��); the other is �(�, �) =(0.1 sin((�/	)�) + 0.9 sin((3�/	)�))75��� sin(��)). It can be
seen that the modi
ed harmonic balance solutions well agree
with those obtained from the numerical integration method
used in [11]. 	e well-known jump phenomenon can be seen
at the 1st peak. 	ere are only small deviations observations
around � = 0.5�1 and 2�1. In Figure 1(a), the 2nd resonant
peak looks like more linear (no jump phenomenon) because
the 2nd modal force is quite small. 	us, it can be considered
as linear vibration. In Figure 1(b), the 2nd modal force is set
higher to induce the jump phenomenon. Figure 2 shows the
overall vibration amplitude plotted against the excitation fre-
quency for various excitation levels. 	e excitation function
is �(�, �) = (0.1 sin((�/	)�) + 0.9 sin((3�/	)�))���� sin(��).
	e jump phenomenon is seen at each peak of the three
excitation cases, except the 2nd peak of � = 25. Besides, there
is a very small damped nonlinear peak observed around � =0.4�1 due to the high excitation level or high nonlinearity.
Figures 3(a)–3(c) show the 1st level residues remained at
the 1st and 2nd modal equations for various excitation
frequencies. It can be seen that the residues aremonotonically
increasing with the excitation parameter; the residues in the
1st modal equation are bigger than those in the 2nd modal
equation, and the residues of � = �1 are the highest among
the three cases while the residues of � = 6�1 (the excitation
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Figure 3: (a) 	e 1st level residues remained at the 1st and 2nd modal equations, � = �1. (b) 	e 1st level residues remained at the 1st and
2nd modal equations, � = 6�1. (c) 	e 1st level residues remained at the 1st and 2nd modal equations, � = 9�1.

frequency is in between the two resonant frequencies) are the
smallest. In general, the results have shown the converged
solutions and proven the accuracy of the proposed method.

5. Conclusions

In this study, the analytic solution steps for nonlinear mul-
timode beam vibration using a modi
ed harmonic balance
approach andVieta’s substitution have been developed. Using
the proposed method, the nonlinear multimode beam vibra-
tion results can be generated without the need of nonlinear
equation solver. 	e standard simply supported beam case
has been considered in the simulation. 	e solution con-
vergences and modal contributions have been checked. 	e
theoretical result obtained from the proposed method shows
reasonable agreement with that from the previous numerical
integration method.
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