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Using Laplace transformation and perturbation techniques, analytical solution is ob-

tained for unsteady Stokes’ second problem. Expressions for steady and transient solu-

tions are explicitly determined. These solutions depend strongly upon the material pa-

rameter of second-grade fluid. It is shown that phase velocity decreases by increasing

material parameter of second-grade fluid.

Copyright © 2006 S. Asghar et al. This is an open access article distributed under the Cre-

ative Commons Attribution License, which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

1. Basic equations

We consider a semi-infinite expanse of homogeneous incompressible second-grade fluid

which occupies the space above an infinitely extended plate in the xz-plane. Initially, the

fluid is at rest and at time t > 0 the plate starts oscillations in its own plane with velocity

U0eiωt, where ω is the frequency of oscillating plate and U0 is the constant velocity.

Viscoelastic fluids can be modeled by Rivlin-Ericksen constitutive equation

T=−pI +µA1 +α1A2 +α2A2
1, (1.1)

where p is the pressure, I is the unit tensor, T is the Cauchy stress tensor, and µ, α1, α2

are measurable material constants. They denote, respectively, the viscosity, elasticity, and

cross-viscosity. These material constants can be determined from viscometric flows for

any real fluid. A1 and A2 are Rivlin-Ericksen tensors and they denote, respectively, the

rate of strain and acceleration. A1 and A2 are defined by

A1 = (gradV) + (gradV)T ,

A2 =
dA1

dt
+ (gradV)TA1 + A1(gradV),

(1.2)

where d/dt is the material time derivative. The viscoelastic fluids when modeled by Rivlin-

Ericksen constitutive equation are termed as second-grade fluids. Second-grade fluids
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are dilute polymeric solutions (e.g., poly-iso-butylene, methyl-methacrylate in n-butyl

acetate, polyethylene oxide in water, etc.). The equation is frame invariant and applica-

ble for low shear rates. A detailed account on the characteristics of second-grade fluids

is well documented by Dunn and Rajagopal [2]. Rajagopal and Gupta [7] have studied

the thermodynamics in the form of dissipative inequality (Clausius-Duhem) and com-

monly accepted the idea that the specific Helmholtz free energy should be minimum in

equilibrium. From the thermodynamics consideration they assumed

µ≥ 0, α1 > 0, α1 +α2 = 0. (1.3)

We seek the velocity field of the form

(

u(y, t),0,0
)

. (1.4)

For this type of flow, equation of continuity is identically satisfied and the balance of

linear momentum reduces to the following differential equation [5]:

∂u

∂t
= ν

∂2u

∂y2
+α

∂3u

∂y2∂t
. (1.5)

In the above ν= µ/ρ is the kinematic viscosity, α= α1/ρ, and ρ is the density of the fluid.

The proposed boundary and initial conditions for the problem are

u(y, t)=U0e
iωt, at y = 0, t > 0,

u(y, t)−→ 0, as y −→∞, ∀t,
u(y,0)= 0, y > 0,

(1.6)

where ω is the imposed frequency of oscillation.

In general, in the case of fluids of differential type, the equations of motion are of order

higher than that of the Navier-Stokes equations, and thus the adherence boundary condi-

tion is insufficient to determine the solution completely (see [6–8] for detailed discussion

of the relevant issues).

2. Solution of the problem

We will use the Laplace transform to study solutions to (1.5); with this technique the

initial condition is automatically satisfied and the application of the boundary condi-

tions is easier. However, the inversion procedure for obtaining the solution is not always

straightforward and often requires care and ingenuity. The incompatibility between the

initial and boundary conditions causes difficulties in establishing a smooth solution to

the problem in the case of a fluid of grade two (see Bandelli et al. [1] for a detailed dis-

cussion of the relevant issue).

The Laplace transform pair is defined by

F(y,s)=
∫∞

0
u(y, t)e−stdt, (2.1)

u(y, t)= 1

2πi

∫ λ+i∞

λ−i∞
F(y,s)estds, λ > 0. (2.2)



S. Asghar et al. 3

The problem in the transformed plane is given by

αs
d2F

dy2
+ ν

d2F

dy2
− sF = 0, (2.3)

F(y,s)= U0

s− iω
, at y = 0,

F(y,s)= 0, as y −→∞.
(2.4)

To solve (2.3), we use the regular perturbation and expand the function in terms of

second-grade parameter α (α≪ 1). That is,

F = F0 +αF1 + o
(

α2
)

. (2.5)

Substituting (2.5) into (2.3) and (2.4) and collecting the coefficients of equal powers of α,

we obtain

ν

d2F0

dy2
− sF0 = 0,

ν

d2F1

dy2
− sF1=−sd

2F0

dy2
,

F0 =
U0

s− iω
, F1 = 0, at y = 0,

F0 = F1 = 0, as y −→∞.

(2.6)

The solution of the above differential systems can be easily written as

F = U0

s− iω
e−

y√s/ν
[

1 +
αy

2

(

s

ν

)3/2
]

. (2.7)

Using (2.7) in (2.2) and then taking the inverse Laplace transform, we arrive at

u(y, t)= U0

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

1 +
yα

2

(

i
ω

ν

)3/2
)

e−
y
√

i(w/ν)+iωt erf c

(

y

2
√

νt
−
√
iωt

)

+

(

1−
yα

2

(

i
ω

ν

)3/2
)

e
y
√

i(w/ν)+iωt erf c

(

y

2
√

νt
+
√
iωt

)

+αy

(

y2− 2νt+ 4iωνt2

4
√

π(νt)5

)

e−y
2/4νt

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.8)

where erf c(x+ iy) can be calculated in terms of tabulated functions [3]. The tables given

in [3] do not give erf c(x+ iy) directly; therefore we define an auxiliary function H(x+ iy)

as

erf c(x+ iy)= e−(x+iy)2

H(−y + ix), (2.9)
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where

H(−y + ix)=H(x+ iy),

H(x− iy)= 2e−(x+iy)2 −H(x+ iy),
(2.10)

and H(x+ iy) is the complex conjugate of H(x+ iy).

Introducing the nondimensional variables

η=
yU0

ν

, τ = U2
0 t

ν

, β = αU2
0

ν
2

, δ = ων

U2
0

, u∗ = u

U0
(2.11)

in (2.8), we obtain the velocity field as

u(η,τ)

U0
= 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

1 +ηβδ3/2(i)3/2
)

e−((1+i)/
√

2)η
√
δ+iδτ erf c

(

η

2
√
τ
−
√
iδτ

)

+
(

1−ηβδ3/2(i)3/2
)

e((1+i)/
√

2)η
√
δ+iδτ erf c

(

η

2
√
τ

+
√
iδτ

)

+βη

(

η2− 2τ + 4iδτ2

4
√
πτ5

)

e−η
2/4τ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (2.12)

The solution given in (2.12) is general. For large times we must recover the steady-state

solution. Indeed, when τ goes to infinity, we have

erf c

(

η

2
√
τ
−
√

iτ

)

−→ 2,

erf c

(

η

2
√
τ

+
√

iτ

)

−→ 0.

(2.13)

In view of the above results, (2.12) takes the following form:

us
U0
=
(

1 +ηβδ3/2(i)3/2
)

e−η
√
δ/
√

2+i(δτ−η
√
δ/
√

2), (2.14)

where us is the steady-state solution. For β = 0, we recover the large time solution of

Erdogan [4]. This confirms that for large times the starting solution tends to steady-

state solution. It is clearly seen that since the steady-state solution is valid for large values

of time only, it becomes independent of the initial condition. For some times after the

initiation of the motion, the velocity field contains a transient which gradually disappears

in time. The transient solution is obtained by subtracting (2.14) from (2.12); that is,

ut
U0
= 1

2

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

(

1 +ηδ3/2β(i)3/2
)

e−((1+i)/
√

2)η+iδτ

[

erf c

(

η

2
√
τ
−
√
iδτ

)

− 2

]

+
(

1−ηδ3/2β(i)3/2
)

e((1+i)/
√

2)η+iδτ erf c

(

η

2
√
τ

+
√
iδτ

)

+βη

(

η2− 2τ + 4iδτ2

4
√
πτ5

)

e−η
2/4τ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.15)

where ut shows the transient solution. It can be seen clearly from (2.15) that for large

times the transient solution disappears. From the steady-state solution equation (2.14)
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we can find the various physical quantities for the wave propagation in the second-grade

fluid. The amplitude of the waves is given by

R= e−η
√
δ/
√

2

√

√

√

(

1−
ηβδ3/2
√

2

)2

+

(

ηβδ3/2
√

2

)2

, (2.16)

and the phase angle is

θ = δτ −
η
√
δ√

2
− tan−1φ, φ =

(

ηβδ3/2

√
2 +ηβδ3/2

)

. (2.17)

The phase velocity is

v =
√

2δ
(

1 +η2β2δ3 +
√

2ηβδ3/2
)

(

1 +η2β2δ3 +
√

2ηβδ3/2
)

+βδ
. (2.18)

We can estimate the numerical value of the second-grade parameter β through ampli-

tude variation of the velocity. Let us define

A(η)=maxu(η,τ)−minu(η,τ). (2.19)

Using (2.14), we can write A(η) as

A(η)= 2e−η
√
δ/
√

2

√

√

√

(

1−
ηβδ3/2
√

2

)2

+

(

ηβδ3/2
√

2

)2

. (2.20)

From (2.20) we obtain

A(η)

A(0)
= e−η

√
δ/
√

2

√

√

√

(

1−
ηβδ3/2
√

2

)2

+

(

ηβδ3/2
√

2

)2

= 1

2
A(η). (2.21)

Now, let η1 be the depth for which (1/2)A(η) falls to the value 1/2. This gives

e−η
√
δ/
√

2

√

√

√

(

1−
ηβδ3/2
√

2

)2

+

(

ηβδ3/2
√

2

)2

= 1

2
. (2.22)

From (2.22), we get

β =

√

(√
2η1δ3/2

)2− 4η2
1δ3/2

(

1− (1/4)e2η1

√
δ/2
)

+
√

2η1δ3/2

2η2
1δ3

. (2.23)

3. Discussion

The effects of the second-grade parameter (β) are clearly manifested through the follow-

ing observations.

To discuss the nature of the velocity field, the real part of (2.12) and (2.14) are plot-

ted against the distance η from the plate. In Figure 3.1, the steady and total velocities are
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Figure 3.1. The variation in u with η for different values of τ at β = 0.1 and δ = 1.
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Figure 3.2. The variation in u with η for various values of β for δ = 1 and τ = 7.5.

shown by dotted and continuous lines, respectively. It is observed that the steady-state is

achieved at about τ = 3.1 for the second-grade parameter β = 0.1. when β is not equal

to zero, the development of the fluid is retarded. This means β will prolong the effects of

transient state. The transient effect of second-grade fluid is greater than that of Newto-

nian fluid [4]. This observation clearly indicates the influence of second-grade fluid on

the time taken to reach the steady-state. Figure 3.2 represents the effects of β on velocity

distribution and shows that the velocity decreases with the increase in β and hence the

boundary layer increases with the increase of β. The variation of the amplitude R with η

shows that increasing β decreases the amplitude (see Figure 3.3). The effects of small δ on

amplitude are shown in Figure 3.4. In Figure 3.5 phase angle (θ) is presented for different

values of β. The figure shows that θ increases with the increase of β. The dependence of

phase velocity (equation (2.18)) on the parameter β is shown in Table 3.1 from which it

is clearly seen that the phase velocity decreases with the increase of β.
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Figure 3.3. The variation in amplitude R with η for various values of β for δ = 1.
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Figure 3.4. The variation in amplitude R with η for various values of δ for β = 0.1.
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Figure 3.5. The variation in phase angle θ with η for various values of β for δ = 1 and τ = 3.1.
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Table 3.1

η\β 0 0.2 0.4 0.6 0.8 1

0 1.414213 1.178511 1.010152 0.883883 0.785674 0.707106

0.3 1.414213 1.194692 1.057112 0.964533 0.899254 0.851737

0.6 1.414213 1.209863 1.099421 1.035189 0.996613 0.973446

0.9 1.414213 1.223997 1.136742 1.094650 1.075138 1.067829
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