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1949 

Equilibrium states of rotating axisymmetric isothermal gas clouds are studied and it is 
found that, if the linear rotation velocity is constant throughout a cloud, there exists a one· 
parameter family of conformal solutions which describe the equilibrium exactly. The pa· 
rameter depends only on the ratio of the rotation velocity to the sound velocity and represents 
the flatness of equi·density contours in the direction of the rotation axis. Two extreme values 
of the parameter correspond to a non· rotating spherical configuration and a rapidly-rotating 
thin disk. Specific angular momentum on a cylindrical surface around the rotation axis is 
found to be proportional to the amount of mass contained inside the cylinder considered. 

The stability of the equilibrium configurations is examined analytically as well as numer
ically and it is found that nearly spherical configurations' are unstable to contraction and 
expansion as a whole, very flat configurations are unstable to ring formation and intermediate 
configurations are likely to be stable. Finally, these equilibrium configurations are compared 
with the results of numerical computations which have so far been performed by many people 
on the collapse of rotating isothermal clouds. 

§ 1. Introduction 

In connection with the problem of star formation, a great number of numer· 
ical computations have so far been performed on the gravitational collapse of 
rotating isothermal gas clouds (see, for example, a review article by 
Bodenheimer l ». However, there still remain many questions as to the ultimate 
fate of the collapse, i.e., as to whether the collapse of the central part of a cloud 
continues unlimitedly or not and, furthermore, for what initial condition and at 
what stage a cloud fragments or reaches an .equilibrium state. Here, the equili
brium means a balance of the three kinds of forces, gravity, gas pressure and 
centrifugal force. 

In the present paper, we show that there exists a certain class of equilibrium 
states which is described by analytic solutions of a relatively simple form, as will 
be shown in § 2, and that these solutions throw some light on the questions 
mentioned above. In § 3, basic properties of these equilibrium configurations 
such as the distributions of gravity, mass and angular momentum will be de· 
scribed .. In § 4, the stability of the configurations will be examined and, finally, 
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1950 C. Hayashi, S. Narita and S. M. Miyama 

in § 5, discussion will be made of the ultimate fate of the collapse of rotating 
isothermal clouds. 

In the remainder of this section, we describe a process of our discovery of the 
analytic solutions. Let us first consider the distribution of angular momentum in 
the initial state of a rotating isothermal cloud. Most of numerical computations 
of collapse, which have so far been made, start from a rigidly rotating sphere with 
uniform density, which satisfy Jeans' instability condition. For this initial state, 
let us consider a cylindrical surface with W = constant (we adopt the cylindrical 
coordinates (w, <p, z) where z denotes the rotation axis). The specific angular 
momentum j( w) on this surface is related to the mass m( w) contained inside the 
cylinder, according to 

j=R2 Qo{l- (1- m/ M)2/3} 

= R2 Qo(2m/ 3M HI + m/ 6M + (2/ 27)(m/ M Y+0(m3 /M3)}, (1-1) 

where R, M and tJo are the total radius, the total mass and the rotational angular 
velocity of the initial cloud, respectively. It is seen from Eq. (1-1) that the ratio 
jim is nearly constant if m/ M is smaller than, say, 2/3. 

Now, the ratio jim is conserved in the course of collapse as long as the gas 
is inviscid and the axisymmetry is retained. The analytic solutions discovered 
by us correspond to a case where j/ m is strictly constant throughout a cloud, as 
will be shown in § 3, 

Recently, we have computed numerically the collapse of rotating clouds for 
the case of the sphere initial condition mentioned above as well as for the case of 
a disk initial condition proposed by Hayashi. 2

) Our computations have been 
made with two different methods, i.e., a two-dimensional hydrodynamics code 
developed by N arita et al. 3

) and a smoothed particle method which is similar to 
that used by Wood4

) but modified in some respects. The results of these computa
tions will be published elsewhere. Now, the above disk initial condition is such 
that an isothermal disk, where gravity balances with gas pressure in the z
direction, is rotating with a constant angular velocity Q o and a constant surface 
density pso. In this case, instead of Eq. (1-1), we have 

(1- 2) 

and j/ m is strictly constant. 
In the course of our hydrodynamic computations performed for the disk 

initial condition with a small value of Qo, we found that gas density in the central 
part of a cloud increases unlimitedly with time and the cloud as a whole tends to 
have a density distribution which is nearly proportional to w-2

• The same 
tendency was previously noticed by Norman et al. 5) in their computations for the 
case of the sphere initial condition. Furthermore, we found that equi-density 
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Analytic Solutions for Equilibrium of Rotating Clouds 1951 

contours in the cloud become more and more flattened with time and the rotation 
velocity V<p tends to be uniform throughout the cloud. These features together 
with the above j-m relation gave a clue for us to find the analytic solutions. 

Now, we first consider a simple case of zero temperature, i.e., a case of an 
infinitely thin disk with an infinite extension in the W -direction. We assume a 
surface density distribution of the power-law form 

(1· 3) 

where p and n are some constants. Then, it is found that the mass m( W ) and the 
w-component of gravity F w( w) are given by 

with 

m( W )=21fp w 2- n/ (2- n), 

F w( w)= -21fCpk(n)w-n 

(1·4) 

(1· 5) 

(1· 6) 

where r denotes the gamma function. Then, from a condition that the disk 
under consideration is in equilibrium, i.e., the gravity is equal to the centrifugal 
force P(w)/w 3, we obtain a relation between j(w) and m(W), i.e., 

j = (21fCpk( n) )112{m(2- n)/ 21fP }(3-n)12(2-n) . (1·7) 

Furthermore, if we put a condition that the ratio j/ m is constant throughout the 
disk, we find that n = 1 and in this case the rotation velocity V<p (= j/ w) is 
constant. This is nothing but an equilibrium disk solution found by Meste1.6

) 

The generalization of this solution to the cases of finite temperatures, where the 
constancy of both Jj m and V<p is preserved, will be described in the next section. 

§ 2. Derivation of equilibrium solutions 

We use mainly the cylindrical coordinates (w, rp, z) but also sometimes use 
the corresponding spherical coordinates (r, B, rp) and the rectangular coordinates 
(x, y, z ). We consider an equilibrium state of an isothermal cloud which is 
axially as well as equatorially symmetric and rotating with a constant velocity 
V<p. The balance of gravity, gas pressure and centrifugal force in the W- and z
direction is written as 

F w=c2alnp/aw-v<p2/ w , (2·1) 

Fz= c2a In p/az , (2·2) 

where c=(P/p)112 is the sound velocity and p is the gas density. Furthermore, 
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1952 C. Hayashi, S. Narita and S. M. Miyama 

we have the Poisson equation for F 7J), Fz and p. Putting 

p(W,z)=g(W,z)/W2 (2·3) 

and using Eqs. (2·1) and (2·2), we can write the Poisson equation in the form 

W_o_(W 0 In g)+ w~(w 0 In g)= -4JrC /e2. 
oW oW oz oz 9 (2·4) 

Since Eq. (2·4) is invariant to the scale changes of both wand z, it has a 
conformal solution such that 9 is a function of z/ W alone. Then, putting 

z/ W = sinh S =cot e (2·5) 

or 

s = In {( r + z ) / w} = In {( 1 + cos e) / sin e}' (2·6) 

we obtain a simple equation for g( s), i.e., 

(2·7) 

All the solutions of this equation which satisfy the boundary condition that 9 is 
finite and dg/ ds = 0 at s = 0 are given by 

(2·8) 

where r is an arbitrary constant which will be determined in the following. 
From Eqs. (2·1), (2·2), (2·3) and (2·8), the gravity in the immediate neigh

borhood of the z-axis is given by 

(wF 7J) )7J)~o= -2e2(1 + Vq>2/ 2e2- r), 

(Fz)7J)~o= -2re2/z . 

(2·9) 

(2·10) 

Now, applying Gauss' divergence theorem to a narrow tube enclosing the z-~xis, 
we find that, in general cases, a mass string exists on the z-axis with the line 
density 

(2·11) 

This line density is uniform and gives, in general, an infinite mass if integrated all 
over the z-axis. Then, from a condition that this mass should vanish, we obtain 
a relation between r and the Mach number vq>/e, i.e., 

(2·12) 

Equi-density surfaces in the z-z plane, which are given by Eqs. (2·3) and 
(2·8), are shown in Figs. 1 and 2 for several values of r. The constant r denotes 
the flatness of the equi-density surfaces, as shown in Fig. 2, and will be called the 
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Analytic Solutions for Equilibrium of Rotating Clouds 1953 

Fig. 1. Equi-density contours in the x-z plane in the 
equilibrium configuration with 1'=3. 

0.5 w/o 1.0 

Fig. 2. Shapes of equi-density 
contours in the w -z plane for 

different values of y. The dotted 
curve with 1'=0.9 denotes a 
fictitious case where a negative 
mass exists on the z-axis. 

flatness parameter hereafter. We have two limiting cases, r = 1 and r = CD. The 
former is a non-rotating spherical configuration with the density distribution, 
p = c 2

/ 27rCr2
, which is very similar to that found by Larson7

) and many others in 
numerical computations of the collapsing spherical isothermal clouds_ The 
latter is the Mestel solution mentioned at the end of § 1. Properties of the 
equilibrium solutions, other than the density distribution, will be described in the 
next section_ 

§ 3. Properties of equilibrium solutions 

The equilibrium solutions found in § 2 have a very simple expression for the 
density, i.e., 

(3· 1) 

but this is not always the case for the other quantities such as the distributions of 
gravity, mass and angular momentum. Then, it will be worth while to summa
rize the results of our calculations in this section. 

(1 ) Distributions of gravity, surface density and mass 

With Eq. (2 ·12) we find for the components of gravity 
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1954 C. Hayashi, S. Narita and S. M. Miyama 

F (jj= -(2yc2
/ w)(l-tanh s tanh yS), } 

Fz = - (2yc 2 
/ w)tanh ys/ cosh s , 

Fr= -2rc2 /r , } 
F8 = (2rc 2 

/ r )sinh( r-1) s/ cosh rs . 

From these equations, the gravity potential ¢ is found to be given by 

(3·2) 

(3·3) 

¢ = 2c2 In( w 7 cosh Ys) = 2c2 In{ ~ (r + z )7 + ~ (r - z )7}, (3' 4) 

except for an additional constant. We can confirm Eq. (3'4) by direct integra
tion of the Poisson equation using Eq. (3'1) and the Green function as given by 
Eq. (4·9) but the proof is omitted here. The lines of gravity force which are 
perpendicular to the equi-potential surfaces are given by 

W 7-1/ sinh( y-1)s =constant . (3'5) 

For example, in a special case r=2, the equi-potential surfaces and the gravity 
lines are expressed simply as, w2+2z2=const and w2/z=const, respectively. In 
the case r==, the equi-potential surfaces are expressed in the simple form, r+z 
=const, which indicates that the equi-potential surfaces are not flat although the 
disk itself is infinitely thin. 

Now, carrying out the integration of density over z (where it is convenient 
to use the variable, 7J =exp(2rS), instead of S), we find that the surface density is 
given by 

(3·6) 

with 

(3'7) 

Next, we consider four different axisymmetric surfaces, (1) the cylindrical sur
face, (2) the spherical surface, (3) the equi -potential surface and (4) the equi
density surface as shown in Fig. 3, all of which contact each other on the same 
equator with the radius w. Let the amounts of mass contained in regions inside 
the four surfaces be denoted by mi( w) with i = 1, 2, 3 and 4, respectively. Then, 
we find that these masses are all expressed in the same form 

U=1,2,3,4) 

where /1 is given by Eq. (3' 7) and the other f;'s are given by 

/2=1, /3=2 1/7/(1+1/r) 

and 

(3·8) 
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Analytic Solutions for Equilibrium of Rotating Clouds 1955 

2 

3 

4 

-------w--------- <---------{jj---------

Fig. 3. Cross sections of four different axisym· 
metric surfaces for the case y=3. 

1.4 

0.6 '---'---'---'--_'--_'-------.J 
1 9 If II 13 

Fig. 4. The values of /1, /2, /3 and /. as functions 
of Y. 

f4= r(3/ 2+ 1/ 21' )r(3/ 2-1/ 21')= (7[/ 4 )(I-ljy2)/ cos(7[/ 21'). (3'9) 

It is to be noticed that the above masses mi( w) are all proportional to wand 
vanish as W ~O although the density is infinite at the origin. The values of fi as 
functions of I' are plotted in Fig. 4, which indicates that /1- /4~0.2/4, i.e., the illass 
contained outside the equi-density surface is small as compared with that 
contained inside this surface. Now, in the case of isothermal clouds a way to 
obtain equilibrium configurations of finite size is to introduce a small but finite 
external pressure. Then, in order to see the degree of variation of the 
configuration caused by the introduction of a constant external pressure, we have 
computed numerically how much the gravity changes in regions inside the equi
density surface when the mass outside this surface is all removed. We have 
found that in the case 1'=6 the increase of gravity is, at most, 10 percent and, thus, 
we can expect that the equilibrium configurations found by us are not much 
affected by the introduction of a constant external pressure. 

If this is the case, we can obtain from Eqs. (3.1) and (3. 8) a relation between 
the external pressure PE and the total mass M ( = m4) of an isothermal cloud 
which is in equilibrium. The result is given by 

(3·10) 

where PE=PE/C2 is the density at the outer boundary of the cloud and /4(1') is 
given by Eq. (3'9). This mass is to be compared with the critical maximum mass 
of the Emden solution of a spherical cloud (see, for example, a book of Spitzer8»), 
i.e., 

(3·11) 
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1956 C. Hayashi, S. Narita and S. M. Miyama 

It is likely that our equilibrium configurations with / lying between 2.4 and about 
7 are stable, as will be shown in § 4. Then, we find for the case / = 7 that 
Eq. (3·10) gives a mass about 26 times greater than Eq. (3·11). Namely, when 
the cloud is rotating, such a large mass can be supported by centrifugal force. 
Thus, the stability of our equilibrium configurations is very important not only 
for the problem of star formation but also for the study of the structure and 
lifetime of molecular clouds in our galaxy. 

(2) Column densities and optical depths 

We consider the optical depth of the point P as shown in Fig. 3. Column 
densities along straight lines which start from the same point P and extend to 
plus infinites in the X-, y- and z-direction are given by 

(3·12) 

respectively, where (Jz is, of course, equal to a half of Ps('(jj) as given by Eq. (3·6). 
It will be found from Eq. (3·12) that, for any value of /, the optical depth of the 
point P is practically given by X(Jz where x is the opacity which is assumed to be 
constant. Then, the condition that the point P is optically thin, i.e., X(Jz S; 1, is 
written in the form 

(3·13) 

(3·14) 

where we have used Eqs. (3·1) and (3·8), put c 2 =kT/fJ.mH with fJ.=2.35 and 
expressed all the quantities in c.g.s. units. 

For example, if we consider a case ml=lM"" we have from Eq. (3·14) 

(3·15) 

and the opacity x, which is due mainly to dust grains, is about 0.01 and 0.1 cm2g- 1 

for T = 10 and 20 K, respectively. Then, / is to be smaller than about 150 and 24 
(see the dashed line in Fig. 5), respectively, in order that a cloud of 1M", be 
optically thin and, thus, the isothermal assumption be valid. 

(3) Angular momentum distribution and its relation to the initial condition 

The ratio of the specific angular momentum j( w ) ( = w v<p) to the mass ml ( W ) 
is given by 

(3 ·16) 

This ratio depends only on the flatness parameter / and is constant throughout an 
equilibrium configuration. 

Now, we consider a relation of this angular momentum distribution to that of 
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Analytic Solutions for Equilibrium of Rotating Clouds 1957 

the initial state of a collapsing cloud as described in § 1. In general, the collaps
ing cloud has finite velocity components in the w- and z-direction and in the 
course of collapse these velocities will decay, soon or later, owing to shock wave 
generation. Then, we assume that the cloud finally reach an equilibrium state 
with the conservation of angular momentum. This conservation will be com
plete if the gas is inviscid and also the axisymmetry is preserved during the 
collapse. 

First, we consider the disk initial condition, as described in § 1, where both 
the surface density PSG and the rotational angular velocity SJo are constant. In 
this case, the initial value of jim is given by Eq. (1· 2) and comparing this with Eq. 
(3 ·16) we find that the angular momentum is strictly conserved if 

(3·17) 

This relation is plotted in Fig. 5, which indicates that the curve takes a peak value 
1.019 at r= 2.411 and two equilibrium configurations exist for the same value of 
SJolPsG. Especially, in the case of very small SJo, we have a spherical 
configuration (r ~ 1) as well as a very flat configuration (r ~ 1). 

1.0 

: 
:~ Cloud beinq opcque 

! ( I MG),20K) 

0.5 I 

o .eog T Z 

Fig. 5. Relation between the disk initial condi-
tion and the corresponding equilibrium solu-
tion. Here, Q o and Pso denote the angular 
velocity and the surface density of the initial 
disk. 

As will be shown in § 4, equili-
brium configurations with r< 2.41 are 
unstable to a nearly homologous 
contraction while very flat con
figurations with r < 7 are unstable 
to ring formation and, probably, also 
to fragmentation. Then, there arises 
a question as to whether the frag-
mentation occurs after or before the 
cloud reaches an equilibrium state. 
This question is to be answered by 
numerical computations in the near 
future. 

Second, we consider a relation to 
the sphere initial condition where both 
the density and the rotational angular 
velocity SJo are constant. In this case, 

the initial condition is specified by the 
two parameters, 

(3·18) 

where Et, Eg and Er are the thermal, gravitational and rotational energies of a 
whole cloud, respectively. The initial value of jim is given by Eq. (1·1). 
Comparing the dominant term in this equation, i.e., the term proportional to m, 
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1958 C. Hayashi, S. Narita and S. M. Miyama 

1.0 r---,----,----,----,--------, 

Fig. 6. Relation between the initial condition parameters, a and 
S, and the flatness parameter r of equilibrium solutions. 
The dashed line denotes the condition of zero binding 
energy. The initial conditions of Boss and Haber are 
denoted by the open squares (ring cases) and the closed 
squares (no ring cases). Those of Wood are denoted by the 
open circles (fragmentation cases) and the closed circle 
(fragmentation is not obvious). The cross denotes our 
calculation (no ring). 

with Eq. (3 ·16) and using Eq. (3 '18), we have for the conservation of angular 
momentum 

If(8a(3/ 15)1/2= {2( r-l)}l/2 sin(lf/ 21'). (3·19) 

This relation is shown in Fig. 6, where the curves of constant I' (~2.41) are drawn 
in the a-(3 plane. 

Now, the results of numerical computations, which have so far been made 
with the sphere initial condition, will be compared with the instability criteria for 
the equilibrium solutions as mentioned above. For example, the results of Boss 
and Haber9

) with two-dimensional hydrodynamic code show that a cloud col
lapses and forms a ring in several cases (denoted by the open squares in Fig. 6). 
However in their other cases (the closed squares in Fig. 6), a cloud reaches a 
disklike equilibrium and there is no ring formation. Recent computations by 
Wood10

) with a smoothed particle method indicate that, in six cases (denoted by 
the open circles in Fig. 6) where we have 1'>7, a cloud finally fragments into two 
or three pieces while, in one case (the closed circle in Fig. 6) corresponding to I' 

=6.5, the fragmentation is not obvious. Furthermore, we have confirmed with 
our own computation that ring formation does not occur for a case a = 0.46 and 
(3=0.32, i.e., 1'=4.9 (the cross in Fig. 6). Thus, the above examples indicate that 
the collapse of a cloud with the sphere initial condition leads to fragmentation or 
ring formation if a(3:S0.1l, i.e., if 1'<7 according to Eq. (3·19). This means that 
the fragmentation or the ring formation occurs at a stage where the cloud nearly 
reaches an equilibrium state. Anyhow, further numerical computations are 
necessary before we obtain a definite conclusion. 

§ 4. Stability of the equilibrium configurations 

The equilibrium configurations, described in §§ 2 and 3, are two-dimensional 
and have an infinite extension as well as a point singularity at the center. It is 
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Analytic Solutions for Equilibrium of Rotating Clouds 1959 

difficult to obtain a complete stability criterion for such configurations and, then, 
we have studied the stability for the following three cases. The first is a simple 
case of a spherical configuration with r = 1. The second is a test of instability 
with an energy principle for nearly spherical cases with r:S2 where the expansion 
of gravity potential in Legendre polynomials is effective. The third is a test for 
the growth of a ring-mode perturbation for cases of large r( >4) by means of 
numerical computations with our hydrodynamic code. 

(1) A spherical configuration 

We assume that a constant external pressure, PE, is acting on the outer 
boundary, r=R, and consider the growth of a spherically-symmetric perturba
tion, which is not necessarily small. From the equations of continuity and 
motion for an isothermal cloud, we have the integral 

K= l M

v//2 dm= l M

(Gm/r-c 2 In p)dm-4J[R3PE/3+const , (4·1) 

where m is the mass contained inside a sphere with radius rand Vr is the radial 
velocity. We adopt, in the following, the Lagrangian scheme and consider mas 
an independent variable. 

The .density at the outer boundary, PE=PE/C 2
, is to be kept constant and we 

consider the distribution of density in the inner regions, which is expressed in the 
power-law form 

(4·2) 

where I is a constant which measures the degree of density variation from the 
equilibrium configuration where 1=0. The radius r corresponding to the above 

0. --

Contraction 
----;. 

0.5 ( '-0. 

Fig. 7_ The variation of the kinetic energy K (l) 

as a function of the deformation parameter t. 

density distribution is given by 

r = {M/ .fJ[PE(1 + I) P13( m/ M )1+1 , 

(4·3) 

and we can calculate the kinetic 
energy K, given by Eq. (4·2), as a 
function of I. The result is 

(1/ c 2 M )(K( 1)- K(O)) 

= 2{ (1 + 1)1/3 -I} -3/-l(_I_-I) 
1-1 3 1+/ ' 

=19/2 /9+235[3/81 + 0([4) 

for 1/1~1 . (4·4) 
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As shown in Fig. 7, the kinetic energy increases with the progress of contrac
tion (l >0) and also expansion (l < 0), but in the case of expansion a cloud has to 
turn to contraction at 1 = - 0.75. Thus, the equilibrium configuration is found to 
be unstable for the contraction and expansion of a cloud as a whole. 

(2) Nearly spherical configurations with y-::;2 

We use the spherical coordinates with x = (r, f-L), where f-L = cos e, and con
sider small axisymmetric displacements of material elements from their equili
brium positions. The displac.ement is denoted by ~= C~r, ~p) and the perturbed 
velocity is given by u= o~/ot. Then, linearized equations of continuity and 
motion in the Eulerian scheme are written as 

with 

PI = -div(po~)= - (1/ r2 )o(por2 ~r)/ or - o(Po~p)/ of-L , 

c/>1(X)= f H(x, x')PI(x')dr', dr=2Jfr2drdf-L, 

00 

H(x, x')= - G L: Pn(f-L)Pn(f-L')Hn(r, r'), 
n=O 

(4·5) 

(4·6) 

(4·7) 

(4·8) 

(4·9) 

Hn(r, r')=I/r(r'/r)n (for r>r'), l/r'(r/r,)n (for r< r'), (4·10) 

where Vo and Po are unperturbed rotational velocity and density, respectively, c/>l 
is the perturbed potential and Pn(f-L) denotes Legendre polynomials. 

If we put ~(X e iwt
, the above equations take a form of the eigenvalue equation, 

i.e., 

(Z, k=l, 2) (4·11) 

where Aik is a self-adjoint integro-differential operator and it is well-known that 
the eigenvalue (02 is real. Furthermore, the minimum eigenvalue is given by 

(02=min(A/B) (4·12) 

with 

(4·13) 
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This is the well-known energy principle utilized for the estimation of (02 of the 
most dangerous mode of perturbations. Namely, if we expand the sum of 
rotational, thermal and gravitational energies of a system under consideration 
into a power series of ~ as 

(4·14) 

the condition, oE = 0, gives the equations for equilibrium and E2 is equal to a half 
of A, which is given by Eq. (4·13). 

In the present case, from Eqs. (4· 5) to (4· 10) we have 

A=2vo2 f( ~T-l ~:2 ~p)2 p~1r +c2j(div PO~)2 ~~ 

+ f div(Po~)H(x, x')(div Po~)' drdr' , (4·15) 

B= f(~/+I:':2~p2)podr, (4·16) 

where the dash denotes taking a value at x'. Now, we consider a special mode 
such that 

(4·17) 

Then, we have 

(G/ 2yc2)A= f{2vo2(e /r2)+ c2(d~/ dr )2}dr 

- 2yc2 J~ofgn 2( y )Hn( r, r')( d~/ dr)( d~/ dr)' drdr' 

(4·18) 

with 

(4·19) 

where y is the flatness parameter and we have a relation, f1=tanh S, according to 
Eq. (2'5). 

The integral in Eq. (4 ·19) takes simple values in special cases, i.e., 

{
I, (n=O) 

go(y)=1 and gn(1)= 0 (h .) 
. ot erWlse 

(4·20) 

In a case y = 2, we have for the series in Eq. (4 ·18) 

00 

~ gn 2( y=2)Hn=Ho+0.0827 H 2+O.0040H4 + ... , 
n=O 

(4· 21) 
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and it is seen that, for r~2, the first term Ho has a major contribution. Further
more, from Eq. (4 -10) we find for Ho 

(4-22) 

where 0 denotes Dirac's delta function. 
Now, considering the cases with r~2 and retaining only the term Ho, we 

have 

(4-23) 

This indicates that, for r< 2, A can be negative for large-wavelength perturba
tions such that Id~/drI2~1~/rl. Namely, equilibrium configurations with r<2are 
unstable for the growth of such nearly-spherical long-wave perturbations but 
stable against small-wavelength perturbations such as to form spherical shells. 
Furthermore, it is expected that, if the higher terms H2, H4, etc. are included, the 
critical value of r for instability will increase from 2 to a slightly larger value, 
say, 2.4. The exact value is expected to be 2.411, in view of the fact that there 
exist two different equilibrium configurations for the same value of j/ m, as shown 
in Fig. 5. On the other hand, in the cases of flattened configurations with r larger 
than, say, 4, the convergence of the series, "'2,gn 2Hn, is not good. Then, we have 

n 
tested the stability by means of direct numerical computations, as will be de-
scribed in the following. 

(3) Test of ring-mode stability with numerical computations 

In this section, ring-mode stability of a family of the equilibrium solutions is 
investigated using our two-dimensional hydrodynamics code. The 
computational method of the code has been revised in some respects but nearly 
similar to that described by Narita et al.,3) which is based on the Fluid-in-Cell 
method with the spherical-polar coordinates. The adopted mesh number for this 
test is 100 (in the r-direction) times 13 (in the a-direction) and the mesh par
ameter, ri+l/ri, is 1.05. 

The initial mode of perturbation is given by a function of r alone for 
simplicity. This restriction of the mode does not seem to be too serious because 
it is found below that ring-mode instability occurs only in rather thin disk 
configurations. 

For the first test, the displacement of material from the unperturbed position, 
ro, to r is given by 

C . k r-ro=-/isln r, (4-24) 

where c is a small numerical coefficient. Since the unperturbed values of the 
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density, Po, and the angular velocity, Wo, are proportional to ro2 and ro\ re
spectively, their perturbed values are represented by 

p(r, f)=po(r, f)(l+Ecoskr) (4·25) 

and 

(4·26) 

using the conservation laws of mass and angular momentum. 
Now, we compare the differences of the magnitudes of the forces between the 

unperturbed and the perturbed state in the equatorial plane of the cloud. If the 
difference of the gravity overcomes the sum of those of the centrifugal force and 
the gas pressure, the perturbation is expected to be enhanced and vice versa. 
The unperturbed density distribution given by Eq. (3'1) is rewritten in the 
spherical-polar coordinates as 

_ 2C 2
/

2 (1-cos2f))7-1 
po(r, f)- lfGr 2 {(l+cos f))7+(l-cos f))7P (4· 27) 

This configuration is, unfortunately, not exactly in equilibrium because it has an 
outer boundary in the code. The boundary condition, however, may not cause 
any remarkable effect as far as the differences between the two states are 
concerned and also as far as the perturbation is small and lies in the deep interior 
of the cloud. The computation has been carried out when E=0.05 and /=40, 20, 
10 and 6. 

The computational results show that ring-mode instability seems to take 
place in the region where 

)./ 'OJ "<7 Ii , (4·28) 

where 'OJ denotes the distance from the rotation axis and ,1 the wavelength of the 
perturbation,2lf/k. Actually, the numerical factor in Eq. (4·28) changes slightly 
with respect to /. It is about 6.5 for / = 40 and 20, and 8 for / = 10. When / = 6, 
it has been found that this ring-mode perturbation will be diminished with any 
wavelength. We may expect from these results that a cloud is stable against 
ring-mode perturbations when /-::;7 because ,1 cannot be much larger than 'OJ. 

In reality, however, the displacement of material in the r-direction necessa
rily induces the motion in the f)-direction which may enhance the perturbation. 
The perturbed motion may also propagate in the inward as well as the outward 
direction and develop. Therefore, the second test has been performed in which 
time development of the perturbation was investigated. In this test, velocity 
perturbation instead of the displacement of material is given initially in the r
direction in the unperturbed configuration by 
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Fig. 8. The time variation of the density waves of perturbation in the equatorial 
plane where Po is the unperturbed density at each point. Parameter II a has been 
chosen to be 0.25. The number in the figure denotes the time sequence of the 
waves. It is found that gravitational instability occurs in the cases r <- 7 when 
the waves propagate inwards, and that the phase velocity of the waves is 
approximately equal to the sound speed. 

Fig. 9. The time variation of the 
kinetic energy of the meridional 
motion of the perturbed cloud in 
units of its initial value where ts ( = a 
Ie) is the time in which the sound 
wave propagates through distance 
a. The solid and the dashed curve 
represent the cases lla=0.25 and 0.5, 
respectively. The rapid increase of 
the energy in the later stages is 
caused mainly by the excited 
motions in the precursor of the wave 
front as seen in the case r = lOin 
Fig. 8. 

(4·29) 

We have examined the cases y=10, 8, 7, 6 and 4 and l/a=0.25 and 0.5. The 
calculation of motion has been carried out by use of the perturbed values of forces 
subtracted by the unperturbed ones in the same way as in the first test. The 
calculated results are shown in Figs. 8 and 9. The kinetic energy added into the 
equilibrium state by the form of Eq. (4·29) induces density waves up to the 
amount of a few percent of the unperturbed density. However, since A/ W does 
not satisfy Eq. (4·28) initially, the density waves cannot be enhanced further but 
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simply propagate both in the inward and in the outward direction. In the cases 
1';;;6, no noticeable feature has appeared after that. In the cases 1'"<-7, the 
density waves which propagated inwards have come to grow after 'OJ decreased 
below some values. The kinetic energy of the meridional motion also has begun 
to increase exhausting the gravitational energy as shown in Fig. 9. Therefore, 
we may conclude that when I' is larger than some critical value, a perturbation 
of any wavelength can induce ring-mode instability if it does not dissipate but 
propagates well into the central region. 

The critical value of I' probably exists between 6 and 7 and we fix it as 7 
tentatively. The cause of ring-mode instability belongs to the flatness of the 
disk-like configuration, for the loss of the gravitational energy due to ring 
formation exceeds the gains of the rotation and the thermal energies. Goldreich 
and Lynden-Be!F 1l have found that the criterion of fragmentation of isothermal, 
uniform surface density disk is A/ z = 6.7 where A is the wavelength and z is the 
thickness of the disk, which is consistent with our results because the thicknesses 
of our solutions are represented approximately by z ~ 'OJ fr. 

§ 5. Conclusion 

We have found a one-parameter family of exact solutions which describe the 
equilibrium of an axisymmetric isothermal cloud rotating with a constant linear 
velocity and also with a constant value of j/ m where j is the specific angular 
momentum on a cylindrical surface and m is the mass contained inside the 
cylinder. The parameter I' represents the flatness of equi-density contours as 
well as the Mach number of the rotational velocity. Spacial distributions of all 
the quantities are conformal and, if we denote the distance from the center by I, 
the density is proportional to 1-2

, the above mass m is to I and the gravity is to 
1-1. 

It has been found that nearly spherical configurations with 1'< 2.4 are unsta
ble for contraction and expansion as a whole while very flattened configurations 
with 1'"<-7 are unstable to ring formation and, probably, also to fragmentation 
into a few pieces. It is likely that intermediate configurations with I' lying 
between 2.4 and about 7 are stable. 

Most of numerical computations of the collapse of rotating isothermal 
clouds, which have so far been performed by many people, start with the initial 
condition such that the ratio j/ m is nearly constant. The results of many of these 
computations may be interpreted as that the collapse of a cloud proceeds in a 
direction that approaches one of the equilibrium configurations, which has the 
same value of j/ m and that, if the value of I' of this configuration is greater than 
about 7, the cloud fragments into pieces in a period of one rotation or two. On 
the other hand, if the value of I' lies between 2.4 and about 7, the cloud can stay 
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in a state of near equilibrium for a longer period of time and this is interesting in 
connection with a study of the structure of molecular clouds. Thus, it is very 
important to verify the above interpretation with further numerical computa
tions. 

The above considerations are restricted to the case of isothermal clouds. 
N ow, we consider a realistic process of star formation. After a collapsing cloud 
with a stellar mass becomes optically thick, the temperature rises and the gas 
pressure acts in a direction to decrease the flattening of equi-density contours. 
Then, it is . expected that, if the cloud reaches an unstable equilibrium 
configuration with r::G 7 before it becomes opaque, the cloud fragments to form a 
binary system. On the other hand, if the cloud becomes opaque before it reaches 
an equilibrium configuration with r::G7, a single star such as the sun with a 
surrounding pre-planetary nebula of small mass will be formed. 

In the above, we have ignored completely the effect of magnetic fields. The 
study of transport of angular momentum as discussed, for example, by HayashF) 
will be important before we obtain a final answer to the problems of star forma
tion and planetary formation. For this purpose, however, the physics of collapse 
without magnetic effects is to be clarified at first. 
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