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Analytic solutions in non-linear massive gravity
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We study spherically symmetric solutions in a covariant massive gravity model, which is a can-
didate for a ghost-free non-linear completion of the Fierz-Pauli massive gravity. We find a solution
that exhibits the Vainshtein mechanism, recovering general relativity below a Vainshtein radius
given by (rgm

2)1/3, where m is the graviton mass and rg is the Schwarzschild radius of a matter
source. We also found another exact solution corresponding to Schwarzschild-de Sitter spacetime,
where the curvature scale of de Sitter space is proportional to the mass squared of the graviton.
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Introduction: It is a fundamental question whether
there exists a consistent covariant theory for massive
gravity models where the graviton acquires a mass and
leads to a large distance modification of General Relativ-
ity (GR). The quest for massive gravity dates back to the
work by Fierz and Pauli (FP) in 1939 [1]. They consid-
ered a mass term for linear gravitational perturbations,
which explicitly breaks the gauge invariance of GR. As
a result, there exist five degrees of freedom in the gravi-
ton, instead of the two found in GR. There have been
intensive studies on what happens going beyond the lin-
earised theory. In 1972, Boulware and Deser (BD) found
that, at the non-linear level, there appears a sixth mode
in the graviton that becomes a ghost in the FP model [2].
This problem was reexamined using the effective theory
approach [3], where Stückelberg fields were introduced to
restore the gauge invariance, and whose scalar part rep-
resents the helicity-0 mode of the graviton. In the FP
model, the scalar acquires non-linear interaction terms
that contain more than two time derivatives, signaling
the existence of the ghost.
This approach also sheds light on the other puzzle in

the FP gravity: if one linearises the system, the solutions
in the FP theory do not go back to GR solutions even in
the small mass limit. This is known as the van Dam, Velt-
man, Zakharov (vDVZ) discontinuity [4, 5]. On the other
hand, in this limit the scalar mode becomes strongly cou-
pled and one cannot linearise the system. Due to strong
coupling, the scalar interaction is shielded and GR can
be recovered. This is known as the Vainshtein mecha-
nism [6]. The strong coupling scale in the FP model is
identified as Λ5 = (m4Mpl)

1/5 where Mpl is the Planck
scale and m is the graviton mass. This scale is tightly
connected with the non-linear interactions of the scalar
mode that contain more than two derivatives. In the de-
coupling limit, where m → 0,Mpl → ∞ while the strong
coupling scale Λ5 is kept fixed, one obtains an effective
theory for the scalar mode, where it is possible to study
the consistency of the theory in more detail.
Until recently, it was believed that there is no consis-

tent way to extend the FP model [7, 8] to get a ghost
free model at all orders. A breakthrough came with a

5D braneworld model known as Dvali-Gabadadze-Porrati
(DGP) model [9]. In this model there appears a contin-
uous tower of massive gravitons from a four dimensional
perspective. The non-linear interactions of the helicity-
0 mode of massive gravitons contain no more than two
derivatives, which is crucial to avoid the BD ghost. Due
to this fact, the strong coupling scale in this theory is
given by Λ3 = (m2Mpl)

1/3 instead of Λ5, where m = r−1
c

and rc is a cross-over scale between 5D and 4D gravity
[10, 11]. Further studies have considered more general
non-linear interactions which contain no more than two
derivatives. In 4D, only a finite number of terms satisfy
this condition; these are dubbed Galileon terms because
of a symmetry under field transformations of the form
∂µπ → ∂µπ + cµ [12]. Ref. [13] constructed the exten-
sion of the FP theory that gives the Galileon terms in
the decoupling limit, by choosing the correct parameters
in the lagrangian up to quintic order in perturbations.
Ref. [14] proposed a covariant non-linear action that au-
tomatically ensures this property to all orders, which we
will discuss below.
A remaining crucial question is whether this property,

holding in the decoupling limit, is sufficient to ensure the
absence of the BD ghost or not. In Ref. [14], it was shown
that there is no BD ghost in the decoupling limit to all
orders in perturbation theory, but only up to and includ-
ing quartic order away from this limit. However, it is
very hard to show the absence of the BD ghost at all or-
ders if one starts from Minkowski and studies non-linear
interactions perturbatively. Therefore, it is important
to obtain non-perturbative background solutions in this
theory, and study fluctuations around them. Moreover,
it is interesting to find solutions in this covariant non-
linear theory, that can describe features of the observed
universe. These are the topics of the present work.
Covariant non-linear massive gravity: We first

construct the action for generalised FP model based on
Ref. [13, 14]. We define the tensor Hµν as covariantiza-
tion of metric perturbations:

gµν = ηµν + hµν ≡ Hµν + ηαβ∂µφ
α∂νφ

β . (1)

The Stückelberg fields φα = (xα − πα) transform as
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scalars, while ηαβ corresponds to a non-dynamical back-
ground metric that is needed to define the potential,
which is assumed to be the Minkowski metric. The co-
variant tensor Hµν can be rewritten as

Hµν = hµν + ηβν∂µπ
β + ηαµ∂νπ

α − ηαβ∂µπ
α∂νπ

β ,

≡ hµν −Qµν . (2)

From now on, indices are raised/lowered with the dynam-
ical metric gµν ; for example Hµ

ν = gµρHρν . Under the
coordinate transformation xµ → xµ + ξµ, πµ transforms
as πµ → πµ + ξµ.
We define a new tensor Kν

µ as

Kν
µ ≡ δνµ −

√

δνµ −Hµ
ν = δνµ −

√

gνρ [ηρµ +Qρµ], (3)

where we used Hµν = gµν − (ηµν +Qµν). This allows us
to define the complete potential for gravitational inter-
actions as

L =
M2

Pl

2

√−g
(

R −m2U
)

, U =
[

tr (K2)− (trK)2
]

.

(4)
Expanding the potential in Hµν , we get a sum of inter-
action terms for Hµν , with the FP term at lowest order.
In order to study exact solutions associated with the

previous Lagrangian, it is convenient to express K in
terms of matrices as

K = I−
√

g−1 [η +Q], (5)

where I denotes the identity matrix. The potential in
four dimension then reads

U = tr g−1 [η +Q]− 12

+ tr
√

g−1 [η +Q]
(

6− tr
√

g−1 [η +Q]
)

. (6)

In general, the task is to calculate the trace of
√

g−1 [η +Q]. If this matrix has non-vanishing deter-
minant, it is diagonalizable, and can be expressed as
g−1 [η +Q] = U D U−1, for some invertible matrix U ,
and D is a diagonal matrix containing the eigenvalues of
g−1 [η +Q]. We call the eigenvalues λ1, . . . , λ4. Then,

since
√

g−1 [η +Q] = U
√
D U−1, one can easily express

the traces in the formulae above in terms of eigenvalues

tr g−1 [η +Q] =
∑

i

λi, tr
√

g−1 [η +Q] =
∑

i

√

λi.

Plugging these expressions into the potential, Eq. (6), we
find an expression for U as a function of the eigenvalues:

U =
∑

i

λi +
(

∑

j

√

λj

)(

6−
∑

i

√

λi

)

− 12. (7)

Asymptotically flat solutions: We first study
asymptotically flat, spherically symmetric solutions in
the unitary gauge πµ = 0. See Ref. [15] for spherical sym-
metric solutions in the FP theory. The non-dynamical

Minkowski metric is ds2 = −dt2 + dr2 + r2dΩ2, where
dΩ2 = dθ2 + sin2 θdφ2. First, we consider the following
Ansatz for the metric

ds2 = −N(r)2dt2 + F (r)−1dr2 + r2H(r)−2dΩ2. (8)

Notice that in GR one can set H(r) = 1 by a coordinate
transformation, but this is not possible in this theory,
since we have already chosen the unitary gauge. The
potential term is given by

√−g U = − 2r2√
FH2

(−3 +
√
F + 2H + 6N

−3
√
FN − 6HN + 2

√
FHN +H2N). (9)

The field equations are obtained by varying the action
with respect to N,F and H . Let us study solutions in
the weak field limit by expanding N,F and H as

N = 1 + n, F = 1 + f, H = 1 + h, (10)

and truncating the field equations to first order in these
perturbations. It is more convenient to introduce a new
radial coordinate ρ = r/H , so that the linearised metric
is expressed as

ds2 = −(1 + 2n)dt2 + (1− f̃)dρ2 + ρ2dΩ2, (11)

where f̃ = f−2h−2ρh′ and a prime denotes a derivative
with respect to ρ. The solutions for n and f̃ are then
given by

2n = −8GM

3ρ
e−mρ,

f̃ = −4GM

3ρ
(1 +mρ)e−mρ, (12)

where we fix the integration constant so that M is the
mass of a point particle at the origin and 8πG = M−2

pl .
These solutions exhibit the vDVZ discontinuity, i.e. they
do not agree with GR solutions in the limit m → 0.
However, in order to understand what really happens in
this limit, one should also include the behaviour of h as
m → 0. For this, let us consider scales below the Comp-
ton wavelength mρ ≪ 1, and at the same time ignore
higher order terms in GM . Under these approximations,
the equations of motion can still be truncated to linear
order in f and n, but since h is not necessarily small, we
will keep all non-linear terms in h. Therefore, we obtain
the following equations

2ρn′ =
2GM

ρ
− (mρ)2h,

f̃ = −2
GM

ρ
− (mρ)2(h− h2),

GM

ρ
= −(mρ)2

(

3

2
h− 3h2 + h3

)

. (13)

We should stress that these are exact equations in the
limit mρ ≪ 1, GM/ρ ≪ 1, i.e. there are no higher order
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corrections in h. If we linearise the equations for h, we
recover the solution Eqs. (12). On the other hand, the
Vainshtein mechanism applies, and below the so-called
Vainshtein radius, ρV = (GMm−2)1/3, h becomes larger
than one, as expected. Actually, for ρ ≪ ρV the solution
for h is simply given by |h| = ρV /ρ ≫ 1. The latter
solution for h and Eq. (13) imply

2ρn′ =
2GM

ρ

(

1 +
1

2

(

ρ

ρV

)2
)

,

f̃ = −2GM

ρ

(

1− 1

2

(

ρ

ρV

))

. (14)

Therefore, the corrections to GR solutions are indeed
small for ρ < ρV .
The Vainshtein mechanism is more transparent in the

non-unitary gauge. Indeed by doing a coordinate trans-
formation, ρ = r/H , we excite the ρ component of the
Stückelberg field, πρ = −ρh. Thus the strong coupling
nature of h is encoded in πρ in this coordinate. It is pos-
sible to construct an effective theory for this Stückelberg
field in the so-called decoupling limit [13]. First we intro-
duce a scalar so that πµ = ∂µπ/Λ

3
3, where Λ3

3 = m2Mpl.
Then the covariantization of metric perturbations Hµν is
written as

Hµν = hµν +
2

M2

plm
2
Πµν − 1

M2

plm
4
Π2

µν , (15)

where Πµν = ∂µ∂νπ and Π2
µν = ΠµαΠ

α
ν . Formally,

the decoupling limit is achieved by taking m → 0 and
Mpl → ∞, but keeping Λ3 fixed. By substituting Eq. (15)
into the action, one can show that the kinetic terms of π
become total derivatives and a mixing appears between
hµν and π, which can be diagonalised using the definition

hµν = ĥµν +
π

Mpl
ηµν − 1

Λ3
3
Mpl

∂µπ∂νπ. (16)

The Lagrangian then writes

L = LGR(ĥµν) +
3

2
π�π − 3

2Λ3
3

(∂π)2�π

+
1

2Λ6
3

(∂π)2([Π2]− [Π]2)

+
5

2Λ9
3

(∂π)2([Π]3 − 3[Π][Π2] + 2[Π3]), (17)

where [Π] = Πµ
µ, [Π2] = ΠµνΠµν , [Π3] = ΠµνΠναΠ

α
µ

and LGR is the linearised Einstein-Hilbert action for ĥµν .
These terms are known as Galileon terms, which give rise
to the second order differential equations for π. For the
spherically symmetric case, the equation of motion for π
is given by [12]

3

(

π′

ρ

)

+
6

Λ3
3

(

π′

ρ

)2

+
2

Λ6
3

(

π′

ρ

)3

=
M

4πMpl ρ3
, (18)

where the integration constant is again chosen so that M
is a mass of a particle at the origin. Using the relation
between π and h, h = −π′/

(

m2Mplρ
)

, we can show that

the solutions for f̃ , n and h given by Eq. (13) agree with
the solutions Eq. (16) and Eq. (18).
We have shown that the weak field solutions for the

metric Eq. (8) have three phases. On the largest scales,
m−1 ≪ ρ, beyond the compton wavelength, the gravita-
tional interactions decay exponentially due to the mass
of graviton: see Eq. (12). In the intermediate region
ρV < ρ < m−1, we obtain the 1/r gravitational potential
but the Newton constant is rescaled G → 4G/3. More-

over, the post-Newtonian parameter γ is γ = f̃ /(2n) =
(1/2)(1 + mρ), whic reduces to γ = 1/2 in the m → 0
limit, instead of γ = 1 of GR, showing the vDVZ dis-
continuity. Finally, below the Vainshtein radius ρ < ρV ,
the GR solution is recovered due to the strong coupling of
the π mode (see Eq. (14)). This background solution pro-
vides us a testing ground for the BD ghost. Instead of ex-
panding the action in Hµν around the Minkowski space-
time perturbatively, we can study linear perturbations
around this non-perturbative solution using the complete
potential Eq. (6). In order to obtain the fully non-linear
solution, a numerical approach is necessary. In the next
section, we consider a different kind of solution of this
theory which can be obtained analytically.
Schwarzschild de Sitter solution: Unlike in GR,

where the Birkhoff theorem holds, there is no uniqueness
theorem for spherically symmetric solutions in this the-
ory. Again in the unitary gauge, we consider the following
metric Ansatz for the dynamical metric gµν

ds2 = −C(r) dt2 +A(r) dr2 + 2D(r) dtdr +B(r)dΩ2.
(19)

Even though this is the Ansatz adopted in [16] to ob-
tain an exact solution for Fierz-Pauli massive gravity that
asymptotes de Sitter spacetime, one should not expect a
priori the same form of solution when non-linear terms
are included. However, we find a solution similar to that
in [16], up to numerical factors. By plugging the Ansatz
into the field equations derived from the Lagrangian (4),
it is straightforward to check that the following configu-
ration is a solution

A(r) =
9∆0

4
(p(r) + α+ 1), B(r) =

4

9
r2, (20)

C(r) =
9∆0

4
(1− p(r)), D(r) =

9

4
∆0

√

p(r)(p(r) + α),

where

p(r) =
2µ

r
+

m2r2

9
, α =

16

81∆0

− 1, (21)

with arbitrary µ and ∆0. Consequently, this configura-
tion depends on two integration constants. A sufficient
condition to ensure that D(r) is real, is to choose µ > 0
and 0 <

√
∆0 < 4/9.

The previous form of the metric, Eq.(19), does not
allow a manifest comparison with de Sitter spacetime:
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a coordinate transformation of the time coordinate is
not permitted since we have already adopted the uni-
tary gauge. Therefore, if we allow for a vector πµ, of the
form πµ = (π0(r), 0, 0, 0), the metric can be rewritten in
a diagonal form as

ds2 = −C(r) dt2 + Ã(r) dr2 +B(r)dΩ2. (22)

Then we can write down the action in terms of C, Ã, B
and π0, considering them as fields. It is possible to show
that the following configuration solves the corresponding
equations of motion

Ã(r) =
4

9

1

1− p(r)
, π′

0(r) = −
√

p(r)(p(r) + α)

1− p(r)
, (23)

while C(r) and B(r) are the same as in Eq. (20).
The resulting metric has then a manifestly de Sitter-
Schwarzschild form by making a time rescaling t →
(4/9∆

1/2
0

)t. However, we should note that this time
rescaling cannot be done without introducing an ad-
ditional time dependent contribution to π0. As ex-
pected, the metric in Eq. (22) can be obtained by mak-
ing the following transformation of the time coordinate
dt̃ ≡ dt + π′

0dr to metric (19); this produces a non-zero
time component of πµ, that does not vanish even in the
m → 0 limit for any allowed value of ∆0. There are two
integration constants, µ and ∆0, in this solution. In GR,
µ corresponds to the mass of a source at the origin but a
careful analysis including a matter source is necessary to
fully understand the role of these integration constants.
Note that there is an apparent singularity at the horizon
p(r) = 1 both for the metric and π0.
We can further make a coordinate transformation at

the expense of exciting further components of πµ. For
example, by setting µ = 0 and making the following co-
ordinate transformations t = Ft(τ, ρ), r = Fr(τ, ρ) with

Ft(τ, ρ) =
4

3∆
1/2
0

m
arctanh

(

sinh
(

mτ
2

)

+ m2ρ2

8
emτ/2

cosh
(

mτ
2

)

− m2ρ2

8
emτ/2

)

,

Fr(τ, ρ) =
3

2
ρemτ/2, (24)

the metric becomes that of flat slicing of de Sitter,

ds2 = −dτ2 + emτ (dρ2 + ρ2dΩ2), (25)

where the Hubble parameter is given by m/2. The
Stückelberg fields πµ are now given by πµ =
(πτ (τ, ρ), πρ(τ, ρ), 0, 0), πτ = π0 + Ft(τ, ρ) − τ, πρ =
Fρ(τ, ρ)− ρ . This is an interesting solution in which the
acceleration of the universe is determined by the graviton
mass and the Hubble parameter is given by m/2. Note
that this “self-accelerating” solution was obtained in the
decoupling limit in Ref. [17]. We find that this is an exact
solution in this model.

Conclusions: The solutions obtained in the non-
linear covariant massive gravity are remarkably similar
to those in the DGP braneworld model including the ex-
istence of the “self-accelerating” de Sitter solution with-
out cosmological constant [18] although there are differ-
ences in detail. There are a number of important issues.
Firstly, we should confirm that there is no BD ghost in
this theory by studying perturbations around the non-
perturbative solution obtained in this letter. In the DGP
model, the self-accelerating solution suffers from a ghost
instability [10, 11, 19], which is related to the ghost in
the FP theory on a de Sitter background. It is cru-
cial to study the stability of the de Sitter solution in
this model. In fact Ref. [17] showed that there exists a
ghost in this self-accelerating background in the decou-
pling limit. They argue that this ghost can be cured by
adding higher order corrections in K to the potential.
Our formalism is ready to apply for this extended model.
Once these issues are clarified, this massive gravity model
provides us with an interesting playground to study large
distance modifications of general relativity.
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