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In this paper we analytically solve the velocity of the lattice Boltzmann BGK 
equation [LBGK) Ibr several simple flows. The analysis provides a framework 
to theoretically analyze various boundary conditions. In particular, the analysis 
is used to derive the slip velocities generated by various schemes for the nonslip 
boundary condition. We find that the slip velocity is zero as long as Z=J~e~ =0 
at boundaries, no matter what combination of distributions is chosen. The 
schemes proposed by Noble et al. and by Inamuro et aL yield the correct zero- 
slip velocity, while some other schemes, such as the bounce-back scheme and 
the equilibrium distribution scheme, would inevitably generate a nonzero slip 
velocity. The bounce-back scheme with the wall located halfway between a flow 
node and a bounce-back node is also studied Ibr the simple flows considered 
and is shown to produce results of second-order accuracy. The momentum 
exchange at boundaries seems to be highly related to the slip velocity at bound- 
aries. To be specific, the slip velocity is zero only when the momentum 
dissipated by boundaries is equal to the stress provided by fluids. 
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1. I N T R O D U C T I O N  

In recent years, the lattice Boltzmann equation (LBE) c4-8~ has been success- 
fully applied to various hydrodynamic problems which are difficult for con- 
ventional numerical methods (e.g., finite-difference or fmite-element scheme). 
Among these problems are multiphase, multicomponent flows, tg' i0~ magneto- 
hydrodynamics, ~111 and reactive flows. 1121 From a computational viewpoint, 
the notable advantages of the LBE method are parallelism of algorithm, sim- 
plicity of programming, and ease of incorporating microscopic interactions. 

Although it has been proved ~6-7-13~ that the LBE recovers the Navier-  
Stokes equation with a second order of accuracy in space in the interior of 
flow domain, the real hydrodynamic boundary conditions have not been 
fully understood. For  a node near a boundary, some of its neighboring 
nodes may locate outside the flow domain. The distribution functions from 
these nonfluid nodes are therefore unknown after each streaming process. 
The boundary condition is responsible for determining these unknown 
distributions. 

In general, there are two ways to define a boundary: placing the 
boundary on grid nodes 11-3.141 or placing the boundary on links. I ~0. ~s. 16) No 
matter which method is used, to find out whether a boundary condition is 
appropriate, one would like to know the slip velocity introduced by the 
boundary condition. Many of the previous studies on the velocity bound- 
ary condition are based on numerical experiments. In ref. 14 the distribu- 
tion at a boundary node is set to the equilibrium distribution plus a 
modification term based the Chapman-Enskog expansion, and the velocity 
gradient in the modification is approximated by a finite difference. In ref. 1 
the unknown distributions and density at a boundary node are obtained 
from the known distributions and the known velocities at the boundary 
for the triangular lattice. In refs. 2 and 3 the unknown distributions and 
density at a boundary node are obtained from the known distributions and 
the known velocities at the boundary with some additional assumptions of 
the unknown distributions. With numerical experiments, one can only 
observe the order of the slip velocity. How this slip velocity is generated 
and what factors it depends on are not well known. Hence, an analytical 
study is necessary for a better understanding of the model and the non-slip 
boundary condition on stationary or moving walls. 

Some theoretical studies have been carried out on the LGA or the 
LBE model and the non-slip boundary condition on a stationary wall was 
studied. ~15-181 The discussion in refs. 15 and 17 is based on a linearized 
lattice Boltzmann equation with a global equilibrium with constant density 
and isotropic velocity (zero velocity). In ref. 16 the boundary condition 
of the 3D FCHC lattice Boltzmann model 119"2~ with a linear collision 



Lattice Boltzmann BGK Model 117 

operator represented by a collision matrix A was studied for the plane 
Poiseuille flow and the plane stagnation flow. In that study, the first-order 
and second-order deviations of the distribution function from equilibrium 
were assumed to take an a priori form in terms of flow quantities. In ref. 18 
analytical solutions of the distribution functions for Poiseuille flow and 
Couette flows were found for the FHP or the square LBGK models 
without any approximation. The study was restricted to situations that the 
velocity profile extends beyond the boundary in a smooth way and to the 
Poiseuille flow with square forcing given in ref. 21 for the FHP model. 
Nevertheless, all the previous theoretical studies only treated bounceback 
boundary conditions. The present study directly solves the LBGK equation 
without any approximations and hence it can handle various boundary 
conditions. 

The paper is organized as follows. Section 2 analytically solves the nine- 
bit lattice Boltzmann BGK equation for the two-dimensional Poiseuille 
flow and the Couette flow with possible vertical injection at the boundaries. 
The results are further used to analyze different schemes for the non-slip 
boundary condition. Section 3 discusses the results and concludes the 
paper. The Appendix briefly discusses some results of the seven-bit (FHP) 
LBGK model. 

2. ANALYTICAL SOLUTION AND NONSLIP 
BOUNDARY CONDITION 

In this section, we use the square nine-bit lattice LBGK model. The 
procedure can be easily applied to the FHP model and some results are 
given in the Appendix. The nine-bit lattice BGK model is on a square 
lattice space with three speeds: 0, c, and v/'2c, where c=6,. /6,  and 6,. 
and 6, are the lattice constant and the step size in time, respectively. 
Figure 1 shows all possible velocities of the model. With the presence of a 
body force F, the evolution equation of the system is 

f~(x + e~6,, t +  fi,)--f~(x, t ) =  1 [f~(x, t)--f~q)(p, u)] + 6'2 --~ <5.,.g~ (1) 

where r is the dimensionless relaxation time, and 

((o, o), 
e~= ~ ( c o s [ ( ~ -  1) n/2], s i n [ ( ~ -  1) n/2]) c 

{ (cos [ ( ~ - 5 ) re/2 + 7r/4 ], sin [ (~ - 5 ) 1r/2 + rr/4 ] ) x/'2c 

0c=0 

~ =  1 ,2 ,3 ,4  

0~=5,6, 7, 8 

(2) 
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Fig. 1. All possible velocities for the nine-bit lattice BGK model on a square lattice. This 
figure also shows the arrangement for the channel flow and the Couette flow in simulations. 

are the velocity vectors. The equilibrium distribution function f~cq~(p, u) is 
given by 

f'~qito u ) = w ~ p [ l + 3 / ' e ~ ' u ' x  9{/e~'u'~ 2 3 ( u )  2] 
" ' "  - 7  

(3) 

where Wo=4/9, wi.2.3.4 = 1/9, and w5.6.7.8 = 1/36. The local density of mass 
p and the local density of momentum pu in Eq. (3) are given by 

p = ~ f ~  (4a) 
ct  

pu = ~ e~f~ (4b) 

Finally, the forcing term g: is given by 

I 0~c or 

e~.F, cr 1,2, 3,4 
g: = (5) 

t 1-~c e," F, ct = 5, 6, 7, 8 

The evolution of the lattice BGK system consists of two steps: colli- 
sion and advection. First the distribution functions f :  at the site x undergo 
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the collision process, prescribed by the right of Eq. (I) or otherwise. After 
the collision, j~ moves to the next site, x + % 5 , ,  according to the 
velocity %. 

The Navier-Stoke equation can be derived from Eq. (1): 

911 
p ~ + pu" Vu = -V(c~p) + vpV2u + F (6) 

where the kinetic viscosity is 

and the speed of sound is 

(2~- l)6~ 
6 5, 

1 
Cs--~T C 

In the following analysis, we will only consider steady (time-independ- 
ent) flows satisfying 

Ou Ov 
~x=O, o x - O ,  p =const (7) 

The body force is assumed to be along the x direction, i.e., F =pGix. In 
this type of flow, both the velocity and the distribution functions are only 
functions of the y coordinate. Although being rather simple, they serve as 
examples for us to carry out some theoretical analyses which can be further 
used to study the nonslip boundary condition. 

By substituting Eqs. (3) and (7) into Eq. (1), we obtain the following 
equations: 

fJ~ - -L  1 -- 5 ~,722 + ~ ) ]  (8a) 

= - - + 3  -~ vj . (8b) 
c c- 2 75-" 3c-' 

-) 

f{, = P-- [ v-7~ ' - 9z[  l + 3 v j - t + 3 c  c- (8c) 

f { - P - [ 1 - 3 u J + 3  -s (8d) 
3- -9  L C c- 2 

23"-]c  
5,.rpG 

3c 2 
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pF ~;§ v~+t 3 u 2 + , ] ~ _ r - l . + ,  f~=GLI-3 +3 ~- c c- 2 c 5 J  - r "4  

p[ uj_, vj_, u~ v}_, uj_,vj_,] 
f~=3-6-~r 1 + 3  c + 3  c + 3  ~'+3c_ ~ + 9  c2 

(8e) 

r -  1 . OxpG 
+ r f ~ - ' +  ~ (8f) 

- 3" '+3u  ' c  c c, +3 V,c  

r -  1 3.,.pG 
+ f ~ - ' - - -  (8g) r 12c 2 

P l Uj+I Vj+I /'/7+1 / )7+ Uj+II')j+I] 
f~=3--~r 1 - 3  c - 3  c + 3  ,c_ + 3  ,c_ + 9  c2 

t - 1 fi7+, O.,.pG + - - -  (8h) 
r 12c 2 

2 . tg+lq/+t ] p uj+ I 1.)j+ I 1..Ij+ I O j+ 1 
f{=3-~r  1 + 3  - 3  + 3  , +3  - 9  

c c c -  c 2 c -~ l 

c~,.pG + r -  1 f{+ ~ + - -  (8i) 
r 1 2 c  2 

where f~  is the distribution function and (uj, uj) is the velocity vector at 
y=jr~,. .  Equations (8) are valid for 2<~j<~n- -2 .  The node j = 0  o r j = n  
corresponds to lower or upper boundaries, respectively, where the evolu- 
tion rule depends on the implementation of boundary conditions. 

In the interior of the flow domain (2 < ~ j < ~ n - 2 ) ,  the x component of 
the momentum density PUJ can be rewritten as 

puj = cr ( f ' ;  - G )  + (G - fO + (G-f4)]  

r + l  2r--1 
= 3r pUj+'"~--~ p ( t ' t j - I + u j + l )  

+2-~r (u:- t v : _ ,  - u j +  iv~+ ,) +6'pG (9) 
�9 T 



Lattice Boltzmann BGK Model 

which further gives us 

Uj+ll)j+l--Uj--IUj--I 
25,. 

121 

=v uj+l +uJ-I-2Ui +G (10) 52, 

The above equation is exactly the second-order finite-difference form of the 
simplified incompressible Navier-Stokes equation under the assumption 
(7) and constant pressure: 

a(uv) a2u 
Oy =v--~y,_+G (11) 

In the y direction, from pvj= c [ f { - f {  +f~ + f J 6 - f ~ - f { ] ,  it is easy to 
prove 

v~+, - v.~_, = (2r - 1)(v/+, + vj_, - 2vj) c (12) 

8 i On the other hand, from p =Y'.i=ofi and the definition of PVi above, we 
can prove 

v]+ i +v.7-1-2v~ = ( 2 r -  1)(vj+ i - vj_ i) c (13) 

Combination of Eqs. (12) and (13) yields 

vj = v,.-- const (14) 

It should be noted that this result is only valid in the interior of the flow 
domain. Whether v,. is equal to the vertical velocity at boundaries v~ 
depends on the implementation of the boundary condition. 

2.1. Poiseuille Flow 

For the Poiseuille flow, the vertical velocity is zero and Eq. (10) has 
a simple solution: 

4 U c 
uj=--Tj(n --j) + U.,., j =  1 ..... n -- 1 (15) 

n -  

where Uc = L2G/8v is the centerline velocity without slips at boundaries, 
with L = n5.,. being the width of the channel and U, is the slip velocity 
depending on the implementation of the boundary condition for walls in a 
particular scheme. The above velocity profile is a parabola with a shift 
on the boundaries. The slip velocity U.,. is the only term which makes the 
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solution of the LBGK possibly different from the exact solution of the 
Poiseuille flow. 

In order to find the slip velocity, we need to apply Eq. (9) at the grid 
line next to the bottom wall ( j =  1) (analysis for the top boundary is the 
same): 

pu, = c[ ( f l  - f ~ )  + (J~ -f~6) + (f~ - f { ) ]  

= 3 - - - ~ P U t + - - ~ r  p(u~ r p G +  1 -  p(Uo-Uo) 

which further yields 

(16) 

6-' 3(r-- 1) 
uo + uz + -  .,. G -t [ fro - uo] (17) 

u,  = 2 2v 2 r - -  1 

In the derivation, it is assumed that f (~ , f o , f o , f o  follow the rules in Eqs. 
(8), the equilibrium distribution at j = 0 is calculated using velocity (Uo, 0), 
and PUo = c[(f~ o o o o - f 3 )  + ( fo  - f 6 )  + ( f s  - f v ) ] ,  w h e r e f ~  ~ depend on the 
boundary condition implemented. Comparing Eqs. (15) and (17), we 
obtain the explicit expression for the slip velocity: 

U , . - 6 ( r -  l ! [~o-Uo]  (18) 
�9 2 r -  1 

With this result, we can easily analyze different schemes for the nonslip 
boundary condition (Uo is set to be zero in what follows for the sake of sim- 
plicity). 

1. Bounce-back scheme. For the bounce-back scheme, the particle 
colliding with the wall simply reverses the direction of its velocity, that is, 

f ' / - -  0 I 0 I "o - f 4 ,  ( f5 =f7, 19) f6 -=-iS 

Notice that the collision process does not occur at the boundary in this 
scheme, hence Eq. (18) does not apply. Using the bounce-back rule, we can 
derive 

2U, .  [ ( 2 r  - 1 ) ( 4 r  - 3)  - 3 n ]  ( 2 0 )  
U,~ = 3n-'---T 

Clearly, the bounce-back rule generally yields a nonzero slip velocity. 
Furthermore, the slip velocity is of the first order in space because it has 
a term of O(l/n). 
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2. Modified bounce-back scheme. By the modified bounce-back rule, 
we mean that collision and forcing still occur at boundary nodes. The 
precollision unknown distribution is set equal to the value of the distribu- 
tion along the opposite direction: 

0 0 f ,  = f  4, f ~  = f ~ ,  o o _ f 6 = f 8  (21) 

With the modified bounce-back rule, we can prove 

16 r ( r -  1) 
U , -  3n2 U,. (22) 

Clearly, the modified bounce-back boundary condition also generate a 
nonzero slip velocity as long as r :~ 1. However, compared to the bounce- 
back rule, the error is reduced and the slip velocity is of the second order 
in space. 

3. Nonslip schemes. In the nonslip scheme proposed by Noble 
et aU 2~ the unknown distributions and the boundary density are calculated 
from the constraints given in Eq. (4) and an additional constraint given by 

2pt=~,(e~-u)2f~ (23) 

where e is the internal energy, which equals the square of the sound speed 
in the limit of low Mach number and low Knudsen number. In the nonslip 
scheme proposed by Inamuro et al. ~3~ it is assumed that the distributions at 
a horizontal boundary can be written in the following equilibrium form: 

f o  _ _ f ( e q ) ( / } l  = - ~  , , . ,  u.,) (24) 

- -  *"(eq ) l wnere j~  is defined in Eq. (3) and u,. = (Uo + u', %). The two parameters 
p', u' and the density at the boundary are determined from the constraints 
(4). 

From their definitions, it is easy to see both schemes lead to 

Uo = c [ ( f  , - f  0 (f0.15 __fO)j6 + ( f ~ 1 7 6  = 0  (25) 

Therefore, the slip velocity is automatically zero and the nonslip boundary 
condition is implemented correctly. Notice that the distribution functions 
are different in these two schemes, and they are different from the analytical 
solution in ref. 18, but all three distribution functions give the correct 
velocity profile. In fact, any scheme which uses the knownf~~176 o o o 
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to generate fo,fo,fo according to E ~ f ~ e ~ = 0  and ensures the correct p 
will give the correct velocity profile for the Poiseuille flow. For example, we 
have obtained the boundary density from a consistency condition in Eq. (3) 
as in refs. 2 and 3 and have set fo=p/fl with fl being an adjustable 
parameter, and the numerical simulations yielded the correct density and 
velocity profile of the Poiseuille flow for fl varying from 0.01 to 108. 

To verify our theoretical analysis, we have further carried out numeri- 
cal simulations for the Poiseuille flow. Figure 2 shows the velocity profiles 
uj normalized by Uc for the Poiseuille flow. The system size is N,. x N,, = 
16 x4. The amplitude of the uniform forcing along the x axis is 0.1. The 
density of the system is set to be 1.0, The initial state of the system is 
u = 0 and v = 0. The uj are measured at a cross section of the channel after 
5000 times iteration. Shown in Fig. 2 are the velocity profiles with different 
values of r and with different implementations of the boundary condition 
for a stationary wall, i.e., the bounce-back rule, the modified bounce-back 
rule, and the nonslip boundary conditions in refs. 2 and 3. The result with 
the nonslip boundary condition is a perfect parabola without any slip 
velocity at the wails, while the results with the bounce-back or the modified 
bounce-back boundary condition have a nonzero slip velocity at the 
boundaries. Also, the numerical results are in excellent agreement with our 

1.5 

1.0 

0.5 

0.0 

- 0 . 5  

0 1 2 3 4 
j 

Fig. 2. The normalized velocity profile of the Poiseuille flow. Solid lines, our analytic results 
with various types of boundary conditions and values of r. ( + ) The numerical results of lat- 
tice BGK simulation with the scheme in refs. 2 and 3; ( II, [] ) the numerical results of lattice 
BGK simulation with the bounce-back boundary conditions; ( , t ,  A)  the results with the 
modified bounce-back boundary condition. The solid and open symbols represent the numeri- 
cal results with r = 2.0 and 0.75, respectively. 
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0 I 2 3 4 5 

~ 4  \ 

2 

Fig. 3. The normalized slip velocity of the Poiseuille flow as a function of r and the number 
of nodes across the channel, i1, with two types of boundary conditions. Solid lines, our 
analytic results. I I-I + ) The numerical results by the lattice BGK simulation with the bounce- 
back boundary condition and with n = 4 and 8, respectively; (,~, • the numerical results with 
the modified bounce-back boundary condition and with n = 4 and 8, respectively. 

theoretical analysis. The error  in the numerical results of  uJU,. is of  the 
order  o f  10 -  to, which is of  the order  of  the roundoff  error. 

Figure 3 shows the slip velocity Us, normalized by U,., as a function 
of  r and n for the Poiseuille flow with the bounce-back  boundary  condi- 
tion. The analytic results are given by Eq. (20). We chose n = 4 and 8 in the 
simulations. The results of  the simulations coincide perfectly with the 
analytic results. 

2.2. Plane C o u e t t e  F l o w  w i t h  Possible In ject ion at Boundar ies  

For  the Couet te  flow with possible vertical injection at the boundaries,  
the body  force G is zero. The lower and upper  walls move  along the 
horizontal  direction at different velocities Uo and u, ,  respectively. In the 
mean time, a vertical velocity is injected at a speed of  vb at both walls. 
Equat ion  (10) can be solved in the interior of  the flow domain.  Th rough  
some simple algebraic derivations we find 

M -  1 2" - 2 ./ 
uj - 2 " -  1 (u,, + U,~) + ~ (Uo + U ~ (26) 

We have 2 = (2 + R ) / ( 2 - - R ) ,  where R = vc3.,./v, with vc being the vertical 
velocity in the interior of  the flow channel. The U~ and U ~ stand for the 
slip velocities at the top  and bo t t om walls, respectively. Once the slip 
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velocities are set to zero, it is easy to prove that this solution is a second- 
order approximation of the analytical solution: 

eRe  ,y /L __ 1 eRe  _ e r e  . y /L  

u e R ' -  1 u,, + e R e -  1 u0 (27) 

where the Reynolds number Re = vbL/v, with L being the width of the flow 
region. Note that with Re in Eq. (27) replaced by Re* = n  In(2), Eq. (26) 
differs from the analytical solution only by the slip velocities at the 
boundaries. The difference between Re and Re* reflects the finite-difference 
errors and it vanishes when 6,. /L tends to zero. 

Again, the slip velocities depend on how the boundary condition is 
implemented. Following the same procedure in deriving Eq. (10), we have 
the following recurrence relationships for the velocity near the bottom wall: 

U2[2--1,101.) 0 u,~+uo--2u  I v - -  1 
26 v - fi2 +----~ [~o--Uo] (28) 

v { - - v o = ( 2 r - 1 ) ( v o - v t ) c + 2 ( r - - 1 ) ( O o - - V o ) C  (29) 

where 

~o = c[ ( f  ~ _ f o )  + ( f~  _ f o )  + ( f o  _fo)] 
0 0 '0  

~ o = c [ ( f ~ 1 7 6  + f s + f  ~ (f7 - +/~)] 

. co r follow the Recall that in the derivation, it is assumed that f r 1 7 6 1 7 6  s 
rules (8), the equilibrium distribution at j - - 0  is calculated using velocity 
(uo, %), and f o , f o f o  depend on the boundary condition implemented. 

Obviously, the vertical velocity in the interior of the flow domain may 
not equal the injection velocity if a boundary condition does not satisfy 
~o = Vo. The interior vertical velocity can be obtained by solving the quad- 
ratic equation (29). 

As to the slip velocity, by comparing Eq. (26) with Eq. (28), we have 

UO = 12(r -  1) Uo- Uo (30) 
2 r -  1 2 + Rh 

where RI, = vhfi,./v. The same result can be obtained at the top boundary: 

12(r -  1) ~ , , - u , ,  
U.',!= 2 r - I  2--Rh (31) 

With the above results, we can explicitly analyze the different schemes 
for hydrodynamic boundary condition. 
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1. Equilibrhtm scheme. For a boundary condition with nonzero 
velocity, the bounce-back scheme is obviously not valid. A common practice 
in the LBE simulation is to assign the corresponding equilibrium distribu- 
tion to the distribution functions at a boundary node. In our case, applying 
this scheme at the bottom boundary gives 

PI _3.oi 
f o = ~  1 + 3 v ~  c-; 2c2J 

f~ l + 3 U~ + 3 v~ + 3 c ~ -7+3--s+9c-v8 

3 -9 f o =  1 _ 3  u o + 3  Vo+3__~+ 
C C C- C- 

Notice that assigning the equilibrium distribution to r ~ c~ is consistent J l ~ J 3  

with Eqs. (8), and the values o 0 .o o f f4 , fT , J8  are irrelevant to the flow inside. 
0 0 '0 Here we use f4 , f v , J8  as given in Eqs. (8), so that Eqs. (28) and (29) are 

still valid for a simpler presentation. With this information, it is easy to 
derive 

1( 2) 
~o-Vo = Vo-v l+V~ + ( v l -  vo) (32) 

Substitution of this into Eq. (29) leads to vt = %, and thereafter, vj = vb, Vj. 
In the horizontal direction, it is easy to prove 

( U ~  I -  ~ ( u , - u o )  

and similarly at the top boundary 

u',!= 1 -  ~Z-ktu. ,_,- . , , )  

Substituting Eq. (26) with j =  1 and j =  n -  1 into above two equations, we 
can obtain, the final explicit expression for the slip velocities: 

UO = ( ~ -  1 ) ( 2 -  1 ) ( r 2 -  r - 2 )  (u,,-Uo) (33) 
" 2"(r2-- r + 1) + 2 ( r 2 -  r -  2) 

( 3 -  1)(2-- 1) 2"(T2-- r + 1) 
Utl s 2 , , ( r 2 _ r + l ) + 2 ( r 2 _ r _ 2 ) ( u , - u o )  (34) 

822/87/I-2-9 
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Obviously, the equilibrium scheme generally yields a nonzero slip velocity. 
Let ~,.--, 0; it is easy to prove 

1 u? ~ !  u: ~-  
/ /  n 

This states that the slip velocity is of first order in space. 

2. Nonslip schemes. With the nonslip schemes in refs. 2 and 3 we 
have 

uo = uo, vo = Vo, /~,, = u,,, ~,, = v,, (35) 

Obviously, this boundary condition yields a zero slip velocity and hence 
the boundary condition can be implemented correctly. 

We also carried out numerical simulations for the Couette flow with 
injection at boundaries. The system is exactly the same as the one used in 
simulations for the Poiseuille flow, i.e., N.,. • N, .= 16 • 4. The bot tom wall 
is fixed and the top wall moves at a speed of 0.1c. For consistency, we 
adjusted the value of the vertical injection velocity to yield the same 
Reynolds number Re = v~,L/v. 

Figure 4 shows the velocity profile for Re = 2.0 with different values of r. 
The theoretical solutions of the Navier-Stokes equation are also included 
for comparison. The results with the equilibrium scheme yield a nonzero 
slip velocity as long as r :~ 1, while the schemes in refs. 2 and 3 yield a zero 
slip velocity regardless of the value of r. All the numerical results coincide 
with our analytical solution. Figure 5 shows the slip velocity for Re = 1.0 
with the equilibrium scheme as a function of r. Again, the numerical results 
agree excellently with our analytic results. 

2.3. Slip Velocity and Momentum Exchange 

Another interesting phenomenon we found is that the slip velocity is 
highly related to the momentum exchange at boundaries. Let us introduce 
the quantity 

c V  A M = ~ [  " " .,, v 
o ,A 

(36) 

where V is the volume of the unit cell and A is the surface area between 
two adjacent cells through which the momentum is transferred. In the 2D 
nine-bit model, V=  ~.  and A = ~5.. The physical significance of A M  is very 
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1.5 ,  

1 .0  

0 .5  

0 . 0  

i i i i i 

0 1 2 3 4 

J 

Fig. 4. The normalized velocity profile of the Couette flow with Re=2.0 .  Dashed line, 
theoretical solution of the Navier-Stokes equation; solid lines, our analytic results with two 
types of boundary conditions and different values of r. I D)  The numerical results of lattice 
BGK simulation with the schernes in refs. 2 and 3; ( + ) the numerical results with the eqtfi- 
librium scheme and with r=0 .75 ;  ( A )  the results with the equilibrium scheme and with 
t- = 2.0. 
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Fig. 5. The normalized slip velocity IRe = 1.0) o f  the Couette f low as a function o f t  and the 
nunlber of  nodes across the channel, n,  with the equilibrium scheme. Solid lines, our analytic 
results, i D,  + ) The slip velocity in nunaerical simulations at the top wall and with n = 4  and 
8, respectively: ( O, x I the slip velocity in numerical simulations at the bot tom wall and with 
n = 4 and 8, respectively. 
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clear: 3M is the net tangential momentum exchange per time step and per 
unit area across the middle surface between the wall layer and the first flow 
layer. It can be shown that the slip velocity along the wall U., is a direct 
consequence of inadequate momentum dissipation. For the Poiseuille flow, 
we have 

AM = c2[(f~ --f~) o o - ( f s  - f 7 ) ]  

= - c [ f 5  - f , , ]  - c - ' [ f ~  - f ~ ]  + g puo +-6 6,pa 

- - c [ f s - f 7 ] - ~ p u , - - ~ 6 , p G  

Addition of the last two equations gives 

2zfM = (2--~) zfM--6 (2 - ~ )  p(u, --Uo) + (1--~)  pc( ~o-- Uo) (37) 

o r  

L I  I ~ /,l 0 AM= - p v ~ +  (3-  1) pc(~o-Uo) 
6 

. v  

Recall that the slip velocity 

(38) 

U~,.= 6 ( v -  1) (Uo--Uo) 
2 3 -  1 

Thus, keeping the slip velocity to be zero for an arbitrary r is equivalent 
to having 

2JM~- -Pll-5f~ j= l/2 

provided the derivative is second-order accurate in 6.,.. In other words, the 
momentum dissipation by the wall must be equal to the stress applied by 
the fluid at the middle of the wall layer and the first flow layer. 

A similar momentum exchange can be found for the Couette flow with 
vertical injection: 

U l - - U O  . P .  dM-- -pv %---7--- + ~ tuL + Uo) v + (r  - 1 ) p C ( a o  - Uo) (39) 
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Again, a zero slip velocity implies that the momentum dissipation by the 
wall is equal to the momentum transfer carried by the vertical velocity plus 
the stress applied by the fluid (evaluated at the middle of the wall layer and 
first flow layer). 

2.4. Bounce Back with Halfway Wall 

In the previous subsections, the bounce-back boundary condition has 
been shown to yield a nonzero, first-order slip velocity at the bounce-back 
row for the Poiseuille and Couette flows. On the other hand, the bounce- 
back boundary condition has its own merit: easy implementation, which 
has been considered as one of the advantages of LGA and LBE. Although 
being attractive, the new boundary conditions proposed in refs. 1-3 have 
difficulties in implementation for a complex geometry like that in porous 
media, in which boundaries usually do not orient in either x or y direction. 
Besides, some additional considerations are needed for corner nodes. If a 
"complete" bounce-back rule, with every distribution simply reversing its 
direction, can work with a halfway wall, it will be very useful in practice. 
By a "halfway wall" we mean a wall placed at halfway between the bounce- 
back row and the first flow row. 

For  a stationary wall, it has been proved that the bounce-back bound- 
ary condition with the halfway wall has a second-order accuracy for some 
simple flows in the cases of F H P  LGA ~ ~51 and LCHC LBE 1161 for a suitable 
choice of the second eigenvalue of the collision matrix. This linear analysis 
was of the first order in gradient in ref. 15 and second order in ref. 16. In 
ref. 18 the theoretical result of Poiseuille flow with the square forcing ~2~) 
(equivalent to bounce-back boundary condition with a halfway wall) for 
FH P  LBGK indicates a second order of accuracy. Using the results presented 
in previous subsections, we can prove that the bounce-back boundary con- 
dition with halfway wall is of second-order accuracy for the present LBGK 
models for the stationary walls of the simple flows considered. We will also 
give the explicit expression for the slip velocity. 

First let us consider the bounce-back with halfway wall for the 
Poiseuille flow. The setup of the system is a little different from previous 
subsections. Nodes with j = 1 ..... n -  1 are inside the flow and nodes j = 0, 
n are the "bounce-back rows. After a complete bounce back, we have 
f21 = f 4  o, f ~ = f 7  o, i o. f 6 = f s ,  the exchange o f f t  ~ with f o  has no effect on the 3 
flow. The walls are located at j = 1/2, j = n -  1/2. The evolution equation is 
the same as given in Eq. (1), but the width of the channel now becomes 
L=(n-1) fix instead of L=n~,.. It has been previously (in Section2.1) 
shown that with the bounce-back boundary condition at both bottom and 

822/87/I-2-10 
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top walls, the velocity profile of the LBGK model for the Poiseuille flow 
[Eqs. (15) and (20)] is 

3G6, j(n-j)-t G6, [ ( 2 z -  1 ) ( 4 r - 3 ) - 3 n ]  (40) 
ui = 9r - 1 2(2r - 1 ) 172 

For the setup of halfway wall, the forcing G is related to the exact central 
velocity 0,. by U,. = L2G/8v, where L = (n - 1 ) 6.,. is the width of the chan- 
nel in this setup. Using 0,., we find the velocity of the LBG K  model for 
Poiseuille flow: 

4 0 , .  + 2 U, . [  ( 2 r  - 1 ) ( 4 r  - 3 )  - -  3 1 , ) ]  
uj = (n - 1) 2 j(n-jJ 3 ( n -  1 )2 (41) 

The exact solution of Poiseuille flow is 

U,.(2j-  1 ) (2n -  2 j -  1) 
u: - )2 (42) 
' (17 - 1 

Thus, the error of the velocity from LBGK simulation is given by 

U,.[4r(4r - 5) + 3] 
Ui - u} = 3 ( n  - 1 )2 ( 4 3 )  

While the error of velocity at the bounce-back row j =  0 is O ( 1 / ( n - 1 ) ) ,  
indicating a first-order accuracy, the velocity inside the flow has a uniform 
error O(1/(17- 1 )2), indicating a second-order accuracy for a fixed r. There 
is no need to adjust parameters in the model. Notice that for a fixed lattice 
size, the error goes to infinity as r ~ oo. The conclusion is the same for the 
FH P  LBGK modelJ ~t For  practical purposes, there is no need to take a 
large value of r in a simulation. In fact, the factor 4 r ( 4 r - 5 ) +  3 in the 
error expression has a maximal absolute value of only 3.25 for 
0.5 < r ~< 1.25. Hence the bounceback with halfway wall is an acceptable 
boundary condition for the Poiseuille flow. It is also noted that in this 
bounce back, f~  and f~  can be interchanged (a complete bounce back) 
without having any effect on the flow. Thus, the boundary condition is 
implemented in a very simple way without distinguishing flow directions 
and other directions. 

Next let us consider the bounce back with halfway wall at the bottom 
for the Couette flow with zero injection velocity. We will not change the 
flow setup at the top wall and use a correct boundary condition like that 
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in refs. 2 and 3 there. After some algebraic manipulations we obtain the 
following x velocity: 

u j = U  2 ( n - j )  2 j - I  U (44) 
2 n ~  U = 2n---~ 

where U is the velocity at the top. While the velocity at the bounce-back 
row ( j = 0 )  is O(1/(n- 1 )), indicating a first-order accuracy, the velocity at 
the halfway wall ( j  = 1/2) is exactly zero, indicating that the result is the 
exact solution! These results also hold for the F H P  LBGK model as given 
in the Appendix. Hence the bounce back with halfway wall deserves more 
attention in further simulations. 

3. C O N C L U S I O N  A N D  D I S C U S S I O N  

In this paper, we have solved the lattice Boltzmann BGK equation for 
two simple flows under different boundary conditions. The solutions are 
verified by independent numerical simulations. Using these solutions, we 
further analyzed different schemes for implementation of the velocity 
boundary condition. We found that the schemes proposed in refs 1-3 give 
the zero slip velocity for the cases considered, and therefore are of second- 
order accuracy in space. Other schemes, such as bounce-back, equilibrium, 
etc., are only of first-order accuracy in general. The bounce-back scheme 
with halfway wall, however, is of second-order accuracy for the flows con- 
sidered. Another interesting phenomenon we found is that the slip velocity 
is highly related to the momentum exchange at boundaries. A boundary 
condition is correct only when the momentum dissipation by the boundary 
is equal to the stress of the fluid. We hope this work can provide some help 
for future studies of boundary conditions. Needless to say, our analysis is 
only carried out for the 2D Poiseuille flow and the 2D Couette flow with 
injection at the boundaries. The analytical solutions for these flows are still 
too simple to use as general guidance for the boundary condition analysis. 
Further studies on more complicated flows are necessary. 

A P P E N D I X .  R E S U L T S  FOR FHP LBGK M O D E L  

For the steady Poiseuille flow, the seven-bit BGK model on a tri- 
angular lattice ( F HP  LBGK model) with eo = 0 and e~ = [ c o s ( ( o ( -  1) 7r/3), 
sin((c~-1) ~z/3)] c, ~ =  1,..., 6, can be reduced as the following recursion 
forms: 
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f~ = -~rl [6(1--r)+UJc']+(1-!) f~- '+6" p 4c z pG 

b,. 
1 [ 6 ( I - , ' ) U J c ' ] + ( 1 - - ~ ) f ~ - '  4c,_PG (A1, A = ~ p  - 

fJ4=~ p ( 1 - - r ) - 2 U g + 3 c  ---~c'- rpG 

f'~=gp 6 { 1 - r ) - " J c '  + 1 -  -4c--~pa 

1 [ 6 ( 1 - , 9  U'c ' ]+( l -~ ) f J6+t+~pG fJ6=-~rp + 

( 2r  - 1 ) 6.~ 
v = - -  (A2) 

8 6, 

and the speed of sound 

1 - - r  c.,.=J-~-c (A3) 

Inside the flow domain, it is easy to derive the same solution for u as 
in the square-lattice case: 

4U,.j(n - j)  
us= n 2 + Us 

W ") " " here Uc=L-G/8v is the central velocity as before. L=n6,., with 
~,, = ~/3di,,/2 being the vertical distance between two adjacent lattice lines. 

where r is the fraction of rest particle mass density out of the total mass 
density; it can be adjusted between 0 and 1. The body force F, with 
amplitude [[F[I =pG, is along the direction of e~. The system satisfies the 
Navier-Stokes equation (6) with the kinetic viscosity 
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The slip velocity U, depends on the boundary condition. The boundary 
conditions in refs. 1 and 3 generate a zero slip velocity, hence give the exact 
solution of the Poiseuille flow. 

With the bounce-back boundary condition, for example, at the bot- 
tom, f ~ = f o ,  1_ o f 3 - - f 6 ,  the slip velocity can be derived as 

2U,.(n+ I)  3 ( 2 z z - 3 3 + 2 )  
Us - n 2 + 2(2r - 1 ) 6,G (A4) 

which is of first order in general. 
Similarly, for the case of bounce back with halfway wall, the error of 

the velocity of the L B G K  is derived as 

0c(432 - 63 + 1 ) 
uj-u~- (n- 1) 2 (A5) 

the same result as in ref. 18, which is of second-order accuracy. The factor 
4 3 2 - 6 3 +  1 takes a maximal absolute value of 1.25 for 0.5 <r~.< 1.25. 
Notice also that a complete bounce back can be used for the bounce back 
with a halfway wall. 

For  the Couette flow with v = 0 ,  the model at the beginning of this 
appendix can be used with G = 0. Suppose that we use a correct boundary 
condition as in refs. 2 and 3 at the top wall and use bounce back at the 
bottom; then the x velocity is 

u j=  U 2 ( n - j )  U 2j--__~l U (A6) 
2n - 1 2n - 1 

where U is the velocity at the top. This is the same result as in the square- 
lattice case, and bounce back with halfway wall still gives the exact 
solution. 

Other boundary conditions can be studied as well. 
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