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Abstract  In this paper, a sine-cosine method is used to construct many periodic and solitary wave solutions to 
Kadomtsev-Petviashvili equation with power law nonlinearity. Many new families of exact traveling wave solutions of the 
Kadomtsev-Petviashvili equation with power law nonlinearity are successfully obtained.  
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1. Introduction 
Nonlinear partial differential equations (NPDEs) are 

widely used to describe complex phenomena in various 
fields of science, especially in physics. Therefore solving 
nonlinear problems plays an important role in nonlinear 
sciences. Many effective methods of obtaining explicit 
solutions of NPDEs have been presented such as the 
tanh-method[1-3],the extended tanh method[4-6], the 
sine–cosine method[7-10], the homogeneous balance 
method[11], homotopy analysis method[12-18], the F-expa
nsion method[19],three-wave method[20-22], extended 
homoclinic test approach[23-25], the (G’/G)-expansion 
method[26] and the exp-function method[27-30]. 

In this paper, by means of the Sine-cosine method, we will 
obtain some analytic solutions for the Kadomtsev- 
Petviashvili equation with power law nonlinearity. In the 
following section we have a brief review on the Sine-cosine 
method and in Section 3 and 4 , we apply the Sine-cosine 
method to obtain analytic solutions of the Kadomtsev- 
Petviashvili equation with power law nonlinearity. Finally, 
the paper is concluded in Section 5.  

2. The Sine-cosine method 
1. We introduce the wave variable = x ctξ −  into the 

PDE  
( , , , , , , ) = 0t x tt xx txP u u u u u u 

          (1) 

where ( , )u x t  is traveling wave solution. This enables us 
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to use the following changes: 
2 2 2 22
2 2 2 2= , = , = , = ,c ct xt xξ ξξ ξ
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 (2) 

One can immediately reduce the nonlinear PDE (1) into a 
nonlinear ODE  

( , , , , ) = 0.Q u u u uξ ξξ ξξξ 
       (3) 

The ordinary differential equation (3) is then integrated as 
long as all terms contain derivatives, where we neglect 
integration constants. 

2. The solutions of many nonlinear equations can be 
expressed in the form[8] 
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or in the form  
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where ,λ µ  and 0β ≠  are parameters that will be 
determined, µ  and c  are the wave number and the wave 
speed respectively. We use  
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and the derivatives of (5) becoms 
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and so on for other derivatives. 
3.We substitute (6) or (7) into the reduced equation 

obtained above in (3), balance the terms of the cosine 
functions when (7) is used, or balance the terms of the sine 
functions when (6) is used, and solving the resulting system 
of algebraic equations by using the computerized symbolic 
calculations. We next collect all terms whit same power in 

( )cosk µξ  or ( )sin k µξ  and set to zero their coefficients 
to get a system of algebraic equations among the unknowns 

,µ β  and λ . We obtained all possible value of the 
parameters ,µ β  and λ [7].  

3. The (1+2)-Dimensional KP Equation 
with Power Law Nonlinearity 

The dimensionless form of the (1+2)-dimensional KP 
equation, with power law nonlinearity, that is going to be 
studied in this paper is given by[31]  

( ) = 0.n
x xxx x yytu au u u bu+ + +       (8) 

Here in Eq. (8), a  and b  are real valued constants. 
After that we use the transformation  

( , , ) = ( ) , =u x y t x y ctϕ ξ ξ + −     (9) 
where c  is constant. There for the Eq. (8) converts to 

( ) = 0,nc a bϕ ϕ ϕ ϕ ϕ− + + +′ ′ ′′′ ′ ′′      (10) 
where by integrating twice we obtain  

1( ) = 0,1
nab c nϕ ϕ ϕ+− + + ′′+

          (11) 

substituting (4) into (11) gives  
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Equating the exponents and the coefficients of each pair of 
the sine functions we find the following system of algebraic 
equations:  

2 2
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Solving the system (13) yields  
1
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where c is a free parameter. Hence, for >b c , the following 
periodic solutions  
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where 0 < ( ) <
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However, for >c b , the following periodic solutions  
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4. The (1+3)-Dimensional KP Equation 
with Power Law Nonlinearity 

The dimensionless form of the (1+3)-dimensional KP 
equation, with power law nonlinearity, that is going to be 
studied in this paper is given by[32]  

( ) = 0n
x xxx x yy zztu au u u bu cu+ + + +      (17) 

Here in Eq. (17), ,a b  and c  are real valued constants. 
After that we use the transformation  

( , , ) = ( ) , =u x y t x y z mtϕ ξ ξ + + −    (18) 
where m  is constant. There for the Eq. (17) converts to 
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substituting (4) into (20) gives  
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Equating the exponents and the coefficients of each pair of 

the sine functions we find the following system of algebraic 
equations:  
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solving the system (22) yields  
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where m  is a free parameter. Hence, for >b c m+ , the 
following periodic solutions  
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where 0 < ( ) <
2

b c m ξ π+ − , and  
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However, for b c m+ < , the following periodic 
solutions  
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5. Conclusions 
In this paper, by using the sine-cosine method, we 

obtained some new explicit formulas of solutions for the 
generalized (1+2)-dimensional and the generalized (1+3)- 
dimensional KP equations. Those solutions were similar to 
the solutions obtained in other paper. The study reveals the 
power of the method. 
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