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Analytic Solutions to a Family of Lotka-Volterra
Related Differential Equations

C. M. Evans and G. L. Findley
Department of Chemistry, Northeast Louisiana University, Monroe, LA 71209

An initial formal analysis of the analytic solution [C. M. Evans and G. L. Findley,
J. Math. Chem., in press] to the Lotka-Volterra dynamical system is presented.  A
family of first-order autonomous ordinary differential equations related to the LV
system is derived, and the analytic solutions to these systems are given.  Invariants
for the latter systems are introduced, and a simple transformation which allows
these systems to be reduced to Hamiltonian form is provided.

I.  INTRODUCTION

The Lotka-Volterra (LV) problem, originally
introduced in 1920 by A. Lotka [1] as a model
for undamped oscillating chemical reactions,
and later applied by V. Volterra [2] to predator-
prey interactions, consists of the following pair
of first-order autonomous ordinary differential
equations:

where x1(t) and x2(t) are real functions of time,
x0000 i = dxi /dt, and a, b, c are positive real constants.
Since that time, the LV model has been applied
to problems in population biology [3], chemical
kinetics [4], neural networks [5] and
epidemiology [6], and has become a classic
example for nonlinear dynamical systems [7,8].
In the 1960s, E. H. Kerner [10] showed that the
dynamical invariant, known since the original
publication by Lotka [1] and having the form,

could reduce eq. (1), by means of a logarithmic
transformation, to a Hamiltonian system.  This
initial discovery has been expanded by E. H.
Kerner [10,11] and M. Plank [12] to multi-
dimensional Lotka-Volterra equations, and R.
Dutt [13] has analyzed the Hamiltonian form of
eq. (2) using Hamilton-Jacobi theory. 

Recently, eq. (1) was shown [14] to have the
solution 

where a " = c and w is given by the solution to

With the use of eq. (2), eq. (4) can be written as

where k2 = - b2 e -7/a.  In [14] we showed that the
formal analytic solution to eq. (5) is

where eD solves



2

(9)

(8)
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(11)
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Eq. (6) represents a complete reduction of
the LV problem to an integral quadrature which,
however, is not reducible to elementary
functions.  The purpose of the present paper is
to begin an exploration of this quadrature.  

In Section 2, we provide an initial analysis
of eq. (5) [and, therefore, of eq. (6)] by means of
a power series expansion of the exponential
e("+1)w, for small integer values of " (" = 1,2,3).
Moreover, for the case " = 1, the relationship of
the solutions provided by eq. (6) to the family of
elliptic functions will be explored.  In Section 3,
an inverse transformation of eq. (3), along with
the solutions to eq. (5) provided in Section 2, is
used to develop a family of LV related first-
order autonomous ordinary differential
equations, and the dynamical invariant for each
of these systems is derived.  Finally, a simple
transformation of these invariants which permits
each system to be placed into Hamiltonian form
is presented.

II.  POWER SERIES ANALYSIS

Our analysis begins by expanding the
exponential term in eq. (5) in a power series to
give 

 

Truncation of the power series in eq. (8) gives
approximate solutions to the LV problem (cf.
Fig. 1).  As will be shown below, the truncation
of eq. (8) leads to a family of differential
equations, each seemingly more complex than
the original LV problem, which can be solved in
terms of known functions.  For finite integer n,
eq. (8) can be approximated as 

which has the solution

where D is given by the solution to 

When " is an integer, eq. (11) reduces to an " +
1 degree polynomial which can be solved in
terms of radicals for " # 3 with the aid of a
symbolic processor [15].

For " = 1, the solution to eq. (11) is

which, when substituted into eq. (10), gives the
solution
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With the use of a symbolic processor [15,16],
eq. (12) can be integrated in terms of known
functions for n # 3; these solutions are given in
Table 1.  The solutions for n = 0 and n = 1 are
exponential, although the solution for n = 1 can
become periodic when a2 < 2 k2.  When n = 2 or
n = 3, the solutions are elliptic functions of the
first kind [17].

When " = 2, the solution of eq. (11) leads to
three values for D which can then be substituted
into eq. (10) to yield the analytic solutions 

and

where p2 is defined as

Substituting the four solutions of eq. (11)
when " = 3 into eq. (10) gives the analytic
solutions

and

where

and
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TABLE 1.  Analytic Solutions to Eq. (12) of Text for " = 1 and n # 3

  
 n            Solution

   0

   1 where 

   2

where F is an elliptic function of the first kinda and

with p2 defined as

continued on next page

When " > 3, the polynomial can no longer be
solved in terms of radicals.

The solutions of eq. (9) represent analytic
solutions to a family of first-order autonomous
ordinary differential equations.  The next
Section develops this family of differential
equations from an inverse transformation of eq.
(3) coupled with the knowledge of eq. (9).

III.  SYSTEMS OF LV RELATED
DIFFERENTIAL EQUATIONS

In this Section, an inverse transformation of
eq. (3) is used to develop the family of first-
order autonomous ordinary differential
equations which are equivalent to eq. (9).  Eq.
(10) represents the analytic solutions to this
family of equations which, as shown in Section
2, can be solved in terms of known functions for
" = 1 and n # 3.  The phase space trajectories
(cf. Fig. 1) indicate that these systems are
conservative since closed orbits exist.  Later in
this Section, the constant of the motion for each
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TABLE 1.  continued

  
 n            Solution

   3

where

with p defined by

aM. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
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Fig. 1.  Phase-plane plot of eq. (3) obtained by a fourth-
order Runge-Kutta solution to eq. (8) for n = 2 (      ), n =
3 (      ), n = 4 (      ) and n = 4 (      )when a = c = 1.00
and b = 1.30.  Initial data for these trajectories are x1 (t =
0) = 0.7000 and x2 (t = 0) = 0.5556.  The phase-plane
trajectory for n = 1 is not shown since the trajectory is
exponential for the initial conditions chosen.

system will be derived, and a transformation
will be presented which allows this family of
equations to be placed into Hamiltonian form.

The inverse transformation of eq. (3) is
given by

Substituting obtained from eq. (9) into the time
derivative of eq. (3), and employing the
transformation given by eq. (13) yields the
following system of first-order autonomous
ordinary differential equations:

Although these equations appear to be more
complicated than the original LV system given
in eq. (1), eq. (14) can be solved analytically in
terms of known functions for " = 1 and n # 3.
When n = 2 and " = 1, eq. (14) has the quadratic
coupling term which appears in the LV
predator-prey model [i.e., eq. (1)] as well as
quadratic terms dependent only on x1 and x2
(which is reminiscent of the LV competition
model [18]). 

The phase space trajectories of eq. (14) are
determined by 
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(16)

(17)

(18)

(19)

(20)

which can be integrated to give
 

That In is an invariant for the system, thereby
explaining the closed-orbit nature of the phase-
space trajectories of Fig. 1, may be shown by
induction as follows.

The condition that In be constant is

where MiIn = MIn /Mxi and x0000 i
(n) = x0000 i, for some

specific value of n.  For n = 0, eq. (17) becomes

which simplifies to

  

When n = j + 1, eq. (14) can be written
recursively as

and Ij+1 [eq. (16)] can be rewritten as

Substituting eq. (18) and the derivatives of eq.
(19) into eq. (17) and rearranging gives

Since M1Ij x00001
(j) + M2Ij x00002

(j) = 0 by assumption,
dIj+1/dt reduces to

which simplifies to dIj+1/dt = 0, thus completing
the proof.

The invariant of eq. (16) can be written in
Hamiltonian form by introducing (q, p)
variables

           
       and

This transformation allows the system
represented by eqs. (14) and (16) to be written
as
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(21)

(22)

(23)

with the function

serving as a Hamiltonian, which may be shown
simply as follows.  The derivatives of eq. (22)
with respect to q and p are 

Directly comparing eq. (23) with eq. (21) gives
                       

                  and

which are, of course, Hamilton�s equations.

IV.  CONCLUSION

In this paper, we have presented an initial
analysis of the analytic solution [14] to the
Lotka-Volterra problem and have shown, for the
special case of " = 1, the relationship between
this solution and the family of elliptic functions.
We also have provided the form of the integral
quadrature [eq. (6)] for the cases of " # 3.  The
truncation of the power series used in our
analysis of the analytic solution has been shown
to lead to a new family of LV related differential
equations which, for " = 1 and n # 3, can be
solved in terms of known functions.  The
constant of the motion for this family was given,
and a simple transformation was found to take
this invariant into Hamiltonian form. 
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