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Abstract—This work presents analytic solutions for a useful
integral in wireless communications, which involves the Marcum
Q−function in combination with an exponential function and
arbitrary power terms. The derived expressions have a rather
simple algebraic representation which renders them convenient
both analytically and computationally. Furthermore, they can
be useful in wireless communications and particularly in the
context of cognitive radio communications and radar systems,
where this integral is often encountered. To this end, we derive
novel expressions for the probability of detection in energy
detection based spectrum sensing over η−μ fading channels.
These expressions are given in closed-form and are subsequently
employed in analyzing the effects of generalised multipath fading
conditions in cognitive radio systems. As expected, it is shown
that the detector is highly dependent upon the severity of fading
conditions as even slight variation of the fading parameters affect
the corresponding performance significantly.

I. INTRODUCTION

The generalized Marcum Q−function, Qm(a, b), is a vital
special function in wireless communication theory. It was
proposed several decades ago and has appeared extensively
in various analyses in the context of stochastic processes in
probability theory, single- and multi-channel based commu-
nications over fading channels, information-theoretic analysis
of multiple-input-multple-output (MIMO) systems, cognitive
radio and radar systems, among others [1]–[9], and the refer-
ences therein. Its use has also led to the derivation of numerous
tractable analytic expressions, while its computational realiza-
tion is rather straightforward since it is included as a built-in
function in the most popular software packages [10]–[15].

However, it is widely known that the derivation of tractable
analytic expressions in natural sciences and engineering can
be rather laborious and cumbersome, if not impossible, as
integrals that involve combinations of elementary and special
functions are often required to be evaluated analytically [16]–
[21], and the references therein. This is also the case when
the Marcum Q−function is involved in integrands along with
exponential and arbitrary power terms. A general form of such
an integral is the following:

Ia,b(k,m, p) =

∫ ∞

0

x2k−1Qm(ax, b)e−px2

dx (1)

which can be equivalently expressed as

Ia,b(k,m, p) =
1

2

∫ ∞

0

xk−1Qm(a
√
x, b)e−pxdx. (2)

The integrals in (1) and (2) are encountered in various
applications relating to wireless communications, such as
in the analysis of multichannel diversity systems with non-
coherent and differentially coherent detection and in sensing
of unknown signals in the context of cognitive radio and radar
systems [22]–[40] and the references therein. Based on this,
a recursive formula restricted to only integer values of k and
m was reported in [3] while an infinite series representation
for the case that k is arbitrary and m is positive integer was
recently reported in [41].

Nevertheless, these expressions are neither generic, nor ac-
count for the case that m is an arbitrary real. Motivated by this,
this work is devoted to the derivation of analytic expressions



for Ia,b(k,m, p) which can be useful in applications relating
to the wide field of digital communications. To this end, novel
analytic expressions are derived for the probability of detection
of energy detection based spectrum sensing over generalized
η−μ fading channels. The derived expressions are given in
closed-form and are utilized in analyzing the performance of
the detector in various fading conditions.

The remainder of this paper is organized as follows: Sec.
II provides the derivation of two analytic expressions for
Ia,b(k,m, p). Sec. III is devoted to the application of the
offered results in the analytic performance evaluation of energy
detection based spectrum sensing over η−μ fading channels
for various severity scenarios. The corresponding numerical
results are given in Sec. IV along with useful discussions,
while closing remarks are provided in Sec. V.

II. ANALYTIC SOLUTIONS TO Ia,b(k,m, p) INTEGRALS

A. A Closed-Form Expression for Arbitrary Integer Values of
k and Arbitrary Real Values of m

As already mentioned, no analytic expressions for (1) and
(2) for the case of arbitrary real values of m have been reported
in the open scientific and technical literature.

Theorem 1. For a, b,m, p ∈ R
+ and k ∈ N, the following

closed-form expressions is valid,

Ia,b(k,m, p) =
Γ(k)Γ

(
m, b2

2

)
2pkΓ(m)

(3)

+

k−1∑
l=0

a2b2mΓ(k) 1F1

(
l + 1,m+ 1, a2b2

2a2+4p

)
m!pk−l2m−l+1 (a2 + 2p)

l+1
e

b2

2

where Γ(x) and Γ(x, a) denote the gamma function and upper
incomplete gamma function, respectively, x! � Γ(x−1) is the
increasing factorial and 1F1(x, y, z) is the Kummer confluent
hypergeometric function [42]–[44].

Proof: By integrating (2) by parts one obtains,

Ia,b(k,m, p) =

T︷ ︸︸ ︷
lim
c→∞

[
Qm(a

√
x, b)

2

∫
xk−1e−pxdx

]c
0

− 1

2

∫ ∞

0

[∫
xk−1

epx
dx

]
d

dx
Qm(a

√
x, b)dx

(4)

where c is a non-negative finite real. By recalling that the lower
incomplete gamma function is given by γ(a, x) � Γ(a) −
Γ(a, x), it readily follows that

∫
xa−1exp(−x)dx = γ(a, x) =

−Γ(a, x). Upon substituting in (4) one obtains,

T = lim
c→∞

[
Qm(a

√
x, b)γ(k, px)

2pk

]c
0

=
Qm(0, b)Γ(k, 0)

2pk
− lim

c→∞

Qm(a
√
c, b)Γ(k, pc)

2pk
.

(5)

With the aid of the identities for Qm(a, b) and Γ(a, x) func-
tions in [?], [3] and [42] as well as expressing dQm(a, b)/da

according to [3, eq. (10)], it follows that

Ia,b(k,m, p) =

m−1∑
l=0

Γ(k)b2l

l!pk2l
e−

b2

2

+
bm

pke
b2

2

∫ ∞

0

Γ
(
k, py

2

a2

)
e−

y2

2 Im(by)

ym−1
dy.

(6)

By making the necessary variable transformation in [43, II. 7
- pp. 726] and substituting in (6) yields

Ia,b(k,m, p) =
m−1∑
l=0

Γ(k)b2l

l!pk2l
e−

b2

2

(7)

+

k−1∑
l=0

bmΓ(k)e−
b2

2

l!pk−la2l

∫ ∞

0

y2l−m+1Im(by)

e
y2

2 (1+
2p

a2 )
dy.

Notably, the above integral can be expressed in closed-form
with the aid of [43, eq. (2.15.5.4)]. To this effect, by perform-
ing the necessary change of variables and substituting in (7),
equation (3) is deduced, which completes the proof.

It is noted that the algebraic representation of the derived
solution is simpler than the recursive expression in [3], [4]
and additionally, the value of m is subject to no restrictions.

B. An Exact Infinite Series to Ia,b(k,m, p) for Arbitrary Reals

It is recalled that no analytic expressions exist for (1) and
(2) for arbitrary real values, i.e. unrestricted, of all involved
parameters.

Lemma 1. For a, b, k,m, p ∈ R
+, the following exact infinite

series representation is valid for the integral in (1) and (2),

Ia,b(k,m, p) =

∞∑
l=0

a2l2kΓ(k + l)Γ
(
m+ l, b2

2

)
l!Γ(m+ l) (a2 + 2p)

k+l
. (8)

Proof: The Qm(a, b) function can be expressed in infinite
series according to [6, eq. (29)]. Therefore, by performing the
necessary change of variables it immediately follows that,

Qm(a
√
x, b) = e−

xa2

2

∞∑
l=0

a2lxlΓ
(
l +m, b2

2

)
l!2lΓ(l +m)

(9)

which upon substitution in (2) yields,

Ia,b(k,m, p) =

∞∑
l=0

a2lΓ
(
m+ l, b

2

2

)
l!2lΓ(m+ l)

∫ ∞

0

xk+l−1

e
x
(
p+ a2

2

) dx

︸ ︷︷ ︸
R

.

(10)
The above integral can be expressed in terms of the Γ(.)
function in [43, eq. (2.10.3.2)], yielding

R =
2k+lΓ(k + l)

a2 + 2p
. (11)

Evidently, by substituting (11) in (10), equation (8) is deduced
thus completing the proof.



The series in (8) is convergent and can provide acceptable
accuracy when truncated after relatively few terms. However,
deriving a closed-form expression for the truncation error is
particularly advantageous in determining the corresponding
truncation error accurately and straightforwardly.

Lemma 2. For a, b, k,m, p ∈ R
+, the following inequality

can serve as a closed-form upper bound for the truncation
error of (8),

εt ≤
Γ(k)

pk
−

n∑
l=0

a2l2kΓ(k + l)Γ
(
m+ l, b

2

2

)
l!Γ(m+ l) (a2 + 2p)

k+l
. (12)

Proof: The truncation error of (8) when this is truncated
after n terms is expressed as,

εt =
∞∑

l=n+1

a2l2kΓ(k + l)Γ
(
m+ l, b

2

2

)
l!Γ(m+ l) (a2 + 2p)k+l

=

∞∑
l=0

a2l2kΓ(k + l)Γ
(
m+ l, b2

2

)
l!Γ(m+ l) (a2 + 2p)

k+l

−
n∑

l=0

a2l2kΓ(k + l)Γ
(
m+ l, b2

2

)
l!Γ(m+ l) (a2 + 2p)

k+l
.

(13)

It is recalled that the Γ(a, x) function is monotonically de-
creasing w.r.t. x and thus, Γ(a, x) ≤ Γ(a). To this effect, the
upper incomplete gamma function in (13) can be bounded as,

εt ≤
∞∑
l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

−
n∑

l=0

a2l2kΓ(k + l)Γ
(
m+ l, b2

2

)
l!Γ(m+ l) (a2 + 2p)

k+l
.

(14)
By recalling the Pochhammer symbol, (a)n � Γ(a+n)/Γ(a),
it follows that Γ(k + l) = (k)lΓ(k). Based on this, the above
infinite series can be expressed as follows,

∞∑
l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

=
Γ(k)2k

(a2 + 2p)
k

∞∑
l=0

a2l(k)l

l! (a2 + 2p)
l
. (15)

The infinite series in the right-hand side of (15) can be
expressed in terms of the hypergeometric function, namely,

∞∑
l=0

a2l(k)l(1)l

l! (a2 + 2p)l (1)l
= 1F0

(
k; ;

a2

a2 + 2p

)
(16)

Based on (16), it immediately follows that

1F0

(
k; ;

a2

a2 + 2p

)
=

(a2 + 2p)k

2kpk
. (17)

Therefore, by substituting in (17) in (15) one obtains,
∞∑
l=0

a2l2kΓ(k + l)

l! (a2 + 2p)
k+l

=
Γ(k)

pk
. (18)

Evidently, by substituting (18) in (14) yields (12) thus, com-
pleting the proof.

To the best of the Authors’ knowledge, equations (3),
(8) and (12) have not been previously reported in the open
technical literature.

III. APPLICATIONS IN COGNITIVE RADIO

A. Energy Detection Based Spectrum Sensing

Cognitive radio (CR) is an emerging technology that allows
opportunistic access of licensed frequency bands when they
are not utilized. Given the increased spectrum scarcity along
with the high demands for bandwidth resources, CR is antic-
ipated to play a core role in the next generation of mobile
communication systems, namely 5G. The most important part
of CR technology is the accurate and robust sensing of vacant
frequency bands and based on the respective decision the user
will decide on whether it can establish communication or
not. Therefore, spectrum sensing is the most critical operation
in CR systems with energy detection being regarded as the
most simple and popular method [23]. In this context, the
performance of energy detection based spectrum sensing over
various fading conditions have been investigated in [24]–[33],
[35] - and the reference therein.

It is recalled that in narrowband energy detection, the
received signal waveform follows a binary hypothesis that can
be represented as [33, eq. (1)],

r(t) =

{
n(t) : H0

hs(t) + n(t) : H1

(19)

where s(t), h and n(t) denote an unknown deterministic
signal, the amplitude of the channel coefficient and an additive
white Gaussian noise (AWGN) process, respectively. The
samples of n(t) are assumed to be zero-mean Gaussian random
variables with variance N0W with W and N0 denoting the
single-sided signal bandwidth and a single-sided noise power
spectral density, respectively [33]. The hypotheses H0 and
H1 refer to the cases that a signal is absent or present, re-
spectively. The received signal is subject to filtering, squaring
and integration over the time interval T which is expressed
as [22, eq. (2)], y � 2

N0

∫ T

0
| r(t) |2 dt. The output of

the integrator corresponds to a measure of the energy of the
received waveform and acts as a test statistic that determines
whether the received energy measure corresponds only to the
energy of noise (H0) or to the energy of both the unknown
deterministic signal and noise (H1). By denoting the time
bandwidth product as u = TW , the test statistic typically
follows the central chi-square distribution with 2u degrees of
freedom under the H0 hypothesis and the non central chi-
square distribution with 2u degrees of freedom under the H1

hypothesis [24]. Based on this and by recalling that energy
detection is largely affected by a predefined energy threshold,
λ, the performance of the detector is characterized by the
probability of false alarm, Pf = Pr(y > λ | H0) and the
probability of detection, Pd = Pr(y > λ | H1), namely [22],

Pf =
Γ
(
u, λ

2

)
Γ(u)

(20)

and
Pd = Qu

(√
2γ,
√
λ
)

(21)

respectively.



B. The η−μ Distribution

The η−μ distribution is a generalized fading model that
has been widely shown to provide adequate characterization
of multipath fading in non-line-of-sight (NLOS) communi-
cations. It was reported in [45] along with the κ−μ fading
model which accounts for corresponding line-of-sight (LOS)
communication scenarios. The η−μ fading model has been
shown to be particularly flexible and it includes as special
cases the well known Hoyt, Nakagami−m, Rayleigh and one-
sided Gaussian distributions [45]. Its remarkable flexibility and
usefulness were demonstrated clearly in [45, Fig. 9] along
with the κ−μ fading model where it is clearly shown that the
η−μ fading model is significantly more flexible than the more
commonly adopted Nakagami−m and Rayleigh distributions.

In terms of physical interpretation, the η−μ fading model
is expressed by two physical parameters, η and μ and it
holds for two formats, namely Format-1 and Format-2. In
the former, the η parameter denotes the ratio of the powers
between the multipath waves in the in-phase and quadrature
components, whereas in the latter it denotes the correlation
coefficient between the scattered wave in-phase and quadrature
components of each cluster of multipath. Likewise, the μ
parameter denotes - in both formats - the inverse of the
normalised variance and relates to the number of multipath
clusters in the environment1 [45].

The SNR probability density function of the η−μ distribu-
tion is expressed as,

pγ(γ) =
2
√
πμμ+ 1

2hμ

Γ(μ)Hμ− 1
2

γμ− 1
2

γμ+ 1
2

e−2μh γ
γ Iμ− 1

2

(
2μHγ

γ

)
(22)

where γ denotes the average SNR whereas

h =
2 + η−1 + η

4
, H =

η−1 − η

4
(23)

in Format-1 with 0 < η <∞ and,

h =
1

1− η2
, H =

η

1− η2
(24)

in Format-2 with −1 < η < 1. In addition,

μ =
E2(R2)

2Var(R2)

[
1 +

H

h

]
(25)

with E(.) and r̂ denoting expectation and the root-mean-
square (rms) value of the envelope R, respectively [45].

C. Energy Detection over η−μ Fading Channels

Corollary 1. For u, γ, λ ∈ R
+ and μ ∈ N, the following

closed-form expressions hold for the average probability of

1The Format-2 of the η−μ distribution is also known as λ−μ distribution.

detection over η−μ fading channels,

P d =

μ−1∑
l=0

(μ)lh
μG

(
u, λ2

)
l!2μ+lHμ+l

{
(−1)l

(h−H)μ−l
+

(−1)μ
(h+H)μ−l

}

+

μ−1∑
l=0

μ−l−1∑
i=0

hμμiλu(μ)lγe
−λ

2

u!l!2μ+u+i−iHμ+l
×

⎧⎨
⎩

(−1)l 1F1

(
1 + i, 1 + u, λγ

2γ+4μ(h−H)

)
(h−H)μ−l−i(γ + 2(h−H)μ)i+1

+
(−1)μ 1F1

(
1 + i, 1 + u, λγ

2γ+4μ(h+H)

)
(h+H)μ−l−i(γ + 2(h+H)μ)i+1

⎫⎬
⎭

(26)

where G(a, x) � Γ(a, x)/Γ(a) denotes the regularized upper
incomplete gamma function and h and H are given by (23)
and (24) according to Format-1 and Format-2, respectively.

Proof: The average detection probability is obtained by
averaging (21) over the fading statistics of the channel, namely,

P d =

∫ ∞

0

Qu

(√
2γ,
√
λ
)
pγ(γ)dγ. (27)

By substituting (22) in (27) one obtains,

P d = A
∫ ∞

0

Qu

(√
2γ,
√
λ
)
Iμ− 1

2

(
2μHγ

γ

)
γ

1
2−μe2μh

γ
γ

dγ (28)

where

A =
2
√
πμμ+ 1

2hμ

Γ(μ)Hμ− 1
2 γμ+ 1

2

. (29)

Importantly, for the special case that μ is a positive integer,
the Bessel function in (28) can be expressed in closed-form
with the aid of [46, eq. (8.467)] namely,

Iμ− 1
2

(
2μHγ

γ

)
=

μ−1∑
l=0

(−1)lΓ(μ+ l)γl+ 1
2 e

2μHγ
γ

l!
√
πΓ(μ− l)(4μHγ)l+

1
2

+

μ−1∑
l=0

(−1)μΓ(μ+ l)γl+ 1
2 e−

2μHγ
γ

l!
√
πΓ(μ− l)(4μHγ)l+

1
2

.

(30)

Therefore, by substituting (30) in (28) it follows that,

P d =

μ−1∑
l=0

A(−1)lΓ(μ+ l)γl+ 1
2

l!
√
πΓ(μ− l)(4μH)l+

1
2

∫ ∞

0

Qu

(√
2γ,
√
λ
)
dγ

γl−μ+1e
2μ(h−H)γ

γ

+

μ−1∑
l=0

A(−1)μΓ(μ+ l)γl+ 1
2

l!
√
πΓ(μ− l)(4μH)l+

1
2

∫ ∞

0

Qu

(√
2γ,
√
λ
)
dγ

γl−μ+1e
2μ(h+H)γ

γ

.

(31)

Notably, the integrals in (31) have the same algebraic represen-
tation as (1) and (2) and thus, they can be expressed in closed-
form with the aid of Theorem 1. As a result, by performing the
necessary change of variables in (3), substituting in (31) and
carrying out long but basic algebraic manipulations, equation
(26) is deduced and thus, the proof is completed.



Remark 1. The energy threshold in (20) can be expressed
as λ = 2G−1 (u, Pf ), where G−1(.) is the inverse regularized
upper incomplete gamma function. To this effect (26) can be
also equivalently expressed in terms of Pf as follows:

P d =

μ−1∑
l=0

(μ)lh
μPf

l!2μ+lHμ+l

{
(−1)l

(h−H)μ−l
+

(−1)μ
(h+H)μ−l

}

+

μ−1∑
l=0

μ−l−1∑
i=0

γ hμμi
[
G−1 (u, Pf )

]u
(μ)l

u!l!2μ+i−iHμ+leG
−1(u,Pf )

×
⎧⎨
⎩

(−1)l 1F1

(
1 + i, 1 + u,

G
−1(u,Pf )γ

γ+2μ(h−H)

)
(h−H)μ−l−i(γ + 2(h−H)μ)i+1

+
(−1)μ 1F1

(
1 + i, 1 + u,

G
−1(u,Pf )γ

γ+2μ(h+H)

)
(h+H)μ−l−i(γ + 2(h+H)μ)i+1

⎫⎬
⎭ .

(32)

To the best of the Authors knowledge (26) and (32) have not
been previously reported in the open technical literature.

IV. NUMERICAL RESULTS

This section is devoted to the analysis of the behaviour
of energy detection in η−μ fading conditions by means of
P d versus γ curves and complementary receiver operating
characteristics (ROC) curves (Pm versus Pf ). To this end, Fig.
1 illustrates the behavior of the P d versus γ for different values
of the fading parameters η and μ for constant time-bandwidth
product u = 3 and the case that Pf = 0.01 and Pf = 0.1. One
can notice that the average probability of detection is increased
as η increases from 0.01 to 0.95 for both cases of Pf . This
is also the case for the μ parameter as for a fixed value of
η, the P d increases when μ = 3 compared to the case that
μ = 1. This also holds for both Pf = 0.01 and Pf = 0.1 and
particularly for moderate to high average SNR levels.

In the same context, Fig. 2 depicts the corresponding ROC
curves (Pm = 1−Pd versus Pf ). The value of Pf is assumed
between 0.01 and 0.2 while u = 4 and γ = 15dB. One
can observe how the performance of the detector improves
as the severity of fading is reduced in terms of both η and μ.
Indicatively, for Pf = 0.1 the value of Pm reduces by over
70% when η changes from 0.01 to 0.95 for μ = 1.0 and
over 65% when μ changes from 1.0 to 2.0 for η = 0.95. This
demonstrates the sensitivity of the energy detector in multipath
fading conditions and how the corresponding severity of fading
can affect its performance and robustness.

V. CONCLUSION

New expressions were derived for a Marcum Q−function
based integral that is often encountered in the broad area of
digital communications. These expressions include an exact
closed-form expression and an infinite series representation
along with a closed-form upper bound for the corresponding
truncation error. The offered results have a relatively simple
algebraic representation which render them analytically and
numerically convenient while they can be useful in numerous
applications in wireless communications. As an example, they
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and Pf = 0.1.
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were used in energy detection based spectrum sensing, in
the context of cognitive radio and radar systems, deriving
novel closed-form expressions for the average probability of
detection of unknown signals over η−μ fading channels. The
derived expressions were subsequently employed in analyzing
the effect of multipath fading on the spectrum sensing perfor-
mance and it was shown that the overall performance of the
detector is, as expected, largely affected by the value of the
involved fading parameters, particularly for moderate and high
SNR levels.
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