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We propose a simple and accurate model for the electron static structure fartdrsorresponding pair-
correlation functiongsof the three-dimensional unpolarized homogeneous electron gas. Our spin-resolved pair-
correlation function is built up with a combination of analytic constraints and fitting procedures to quantum
Monte Carlo data, and, in comparison to previous atten{ptgulfills more known integral and differential
properties of the exact pair-correlation functidin) is analytic both in real and in reciprocal space, &iid
accurately interpolates the newest, extensive diffusion—Monte Carlo data of Ortiz, Harris, and Balgae
Rev. Lett.82, 5317(1999]. This can be of interest for the study of electron correlations of real materials and
for the construction of new exchange and correlation energy density functionals.

[. INTRODUCTION its own interest; its availability over a wide density range is
crucial for new developments and applications of the density
The homogeneous electron gas, a model solid whose podiinctional theory, through the construction al initio ex-
tive ionic charges are smeared throughout the whole crystalhange and correlation energy functionals in generalized gra-
volume to yield a shapeless, uniform positive backgroundlient approximatior’S and in other beyond-LDA
(whence the nickname of jelliumhas provided, since the schemes$?°-22As a consequence, over the last 20 years,
very start of quantum mechanics, a key conceptual referencgeveral authors have already proposed ingenious expressions
and a mine of information for solid-state and many-bodyfor this or related function§-“*=>* A first motivation for
theorists' 2 Initially it was mostly regarded as an approxi- resuming and improving over previous efforts is the avail-
mation of the true distribution of valence electrons in simpleability, from recent quantum Monte Carlo simulatiofis? of
metals, since, in spite of its crudity, it could already accounta wealth of new numerical results for the pair-correlation
for some of their experimental propertieAlthough the im-  functions and static structure factors of jellium. A second
portance of valence-charge inhomogeneities in real materialmotivation comes from the observation that most of the pre-
was soon recognize¢and described first by perturbatibn vious models were not spin resolved, none fulfilled all the
and later by self-consistent pseudopotential th®piie ho-  known exact properties and none was given in analytic,
mogeneous electron gas stood by itself, over the decades, e®sed form in both real and reciprocal space. Our goal is
an independent active field of theoreticahd numericd®  thus to give a new, spin-resolved expression for the pair-
investigation. One reason for this continued interest is thatorrelation function that is analytic in both real and recipro-
the model, by ignoring the ionic lattice which makes realcal space, automatically incorporates more exact properties
materials different from one another, allows the theorists tdhan any previous expression, and contains enough free pa-
concentrate on key aspects of the electron-electron interacameters to fit the new QMC resufts.
tion. Another reason for caring about such an unrealistic sys- We recall the exact properties of the pair-correlation func-
tem resides in its connection to the inhomogeneous electrotion for the unpolarized jellium in Sec. Il. The three subse-
gas % not only does the jellium model represent an obvi-quent sections are devoted to a description of our general
ous limit, but also, through the density functional thédry strategy(Sec. Il) and of the resulting functional form for the
and its local density approximatighDA), it links to a popu-  antiparallel- (Sec. 1\) and parallel-spin(Sec. \} pair-
lar and very successful description of real materfalsor  correlation functions. In Sec. VI we describe our fitting pro-
the latter reason, from the simplest Hartree-Fockcedure to QMC dat& Once the exact constraints are im-
approximatiod® to the pioneering quantum Monte Carlo posed, 18 free paramete(@ for antiparallel spins and 9 for
(QMC) simulations® almost any theory of jellium, its elec- parallel sping are enough to yield extremely accurate two-
tron correlations, and its pair-correlation functions has alsalimensional fits of the~9000+9000 new QMC data
implied an improved understanding and construction ofpoints® as a function of the interelectronic distarcand the
Kohn-Sham energy functionat$® density parametery in the relevant density range,<10.
In this context our work aims at a new simple analytic Our results are discussed and compared with the widely used
expression for the pair-correlation function of the homoge-Perdew-Wan& model in Sec. VIL.
neous electron gas, which describes the spatial correlations In Sec. VIII we report the correlation energy that corre-
of electron pairs with prescribed spin orientations. A goodsponds to our model pair-correlation function, and we find
model pair-correlation function and static structure factor hashat its agreement with the QMC energfésiot targeted by
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our fitting procedure, is as good-6%) as the most popular B. Pair-correlation function near r=0
interpolation formulas for the correlation energy. The last

: i , The behavior ofg, ., (r;rs) in the r—0 limit can be
Sec. IX is devoted to conclusions and perspectives. L2

directly obtained from the many-body Schioger equation
when two electrons approach each othecusp
Il. EXACT PROPERTIES conditiong. 233334

We briefly recall many known properties of the pair- 9
correlation function of the unpolarized homogeneous elec- ﬁgu(r;rs)
tron gas. Its integral propertigsum rules will be rewritten
in terms ofg— 0 properties of Fourier transforms, since this
choice turns out to be convenient for our subsequent steps.
Hartree atomic units are used throughout this work.

=g;,(r—0;r5) #0, (7)

r—0

=0;1(r—0:rgy=0, 8

r—0

(9 .
(Q_rgﬂ(r’rs)

(93 2

ﬁgﬁ(r;rs)

A. Definitions
#0. (9

r—0

=3 an(f;rs)

For an electronic system the pair-correlation function o

Jo,0,(M1.72), if N (r) is the density of electrons with spin ) _ _
o=1 or |, is defined by Equations(7)—(9) hold for any three-dimension&BD) sys-

' tem of N fermions interacting via the two-body repulsive
Coulomb potential.

nrrl(rl)n(rz(rZ)g(rl(rz(rl 1r2)

C. Structure fact =0
=(®[y] (r)Pl (1) ¥ (12) s ()| @) (D) SHHeire factorneard o
The conservation of particles in the system implies the

and is thus related to the probability of finding two electronsrelatIonS

of prescribed spin orientations at positionsandr,. The ) — ) —

o . rs)= irg)=0. 1
normalization ofg is such that the expected number of elec- S1(q=0:rg) =Sy (q—=0iry) =0 (10
trons of spino, in the volumedV atr, when another elec- The asymmetry between the definitio(® and (4) leads to
tron of spino; is known to be at, is given by the two well-known sum rules fog,| andg;; (see, for in-
stance, Ref. 23

The long-wavelength behavior of the total static structure
factor of Eq.(6) is determined by the plasmon contribution,
] _ proportional tog?, and by the single-pair and multipair
the lack of any correlation amounts, then, to the conditionyyasiparticle-quasihole excitation contributions, proportional
g,,l(,z(rl,rz)zl. In the spin-unpolarized jellium the elec- g® andg*, respectively®3
tronic spin densitynT(r)znl(r)=n/2=(877r§/3)‘1 is uni-
form in spaceli.e., independent af),*? sog,, ,,,(r1.r2) only
depends on the distance between the two electrens;
—r1,|. The static structure factd®(q) is directly related to B . .
the Fourier transform of the pair-correlation function. For anWhere @p(rs) = y3frs is the classical plasma frequency. In

unpolarized homogeneous electron gas, after introducing tHE'® Paramagnetic gas, the parallel- and antiparallel-spin con-
Fermi wave vector gr=(372n)=alr with  a tributions to the plasma mode are the same. Moreover, to
S

= (97/4)3, the scaled variablep=qer and k=q/q are build up model functions for the spin-resolvaj,l,,z, it is

often convenient. With these variables the static structurérucial to include the following property of the so-called
factors are written as magnetic structure factds;; — S, :

dN(r20-2|rla-l):naz(rZ)golaz(rlarZ)dV; (2)

2

S(QHO;fs)=m

+Cqg*+0(q%), (11

3

3k
2 (= sin(kp) - _o=—-k——=+0(k%, 12
Su(k)=§jo dplg;,(p)—1]p? nlipp, ) Si17Siilk-0=7k= 7570 12

where the scaled variable=q/qr has been used. Equation
. (12) is valid in the framework of the random-phase
Sy(k)=1+ ifmdp[g (p)_l]pzs”‘(kp)' (4) approximatioﬁ (RPA) and can be obtained from a series
! 37Jo I kp expansion ofS{PA(k) neark=0 (Ref. 36, and from the
corresponding expansion of the to81"™ (see, for instance,
and the total pair-correlation function and static structure facRef. 37. Since in thek—0 limit the RPA is exact*'~**we
tor are given by expect Eq(12) to hold for the exact structure factor as well.
To be more precise, E¢L2) must hold for the exac$to first
order ink. Thek® term should be exact in the high-density
limit, while its validity at anyr ¢ must be verified. It is worth-
while, however, to point out that Eq12) also implies that
S(k;rg) =Sy (kirg) +S; (K;ry). (6) no termsock® appear in the smak- expansion of the total

Q(P§fs):%[QTT(P;rs)*'gu(P;rs)], 5
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static structure factor, a property which is known to hold for [ll. GENERAL STRATEGY
the exactS3*® From Egs.(11) and (12) we can write the

smallk expansion 01301021 We study the antiparallel- and parallel-spin correlation

functions in both real and reciprocal space and we split them,

3 q2k2 3 as usual, into exchange and correlation according to
F

=——k+t—-—+ —=+0(k%), 13

Siil-0=~g doy(ry) 32 (k% (13 91,(pird=1+97,(p;re), (21

3 gk K . 911(piTs) =Gex(p) + 971 (pirs), (22
Smlk_,o—gk+4wp(rs) - 3—2+O(k ). (14

S (kirg) =S (k;rs), 23

D. Correlation energy S;1(k;rg) =Sex(k) + s%(k; ry, (24

The electron-electron potential energy is, as known, given ] _
by the sum of repulsive two-body Coulomb terms: where the exchange functions, given by the Hartree-Fock
approximation, are equal to

1Y 1
u=22 - (15 sinp—pcosp | >
25 Iri—rjl gex(p)=1—9(—p Z p) 7 (29
Its ground-state expectation val(mer electroy, in a homog- P
enous electron gas of density, is given by the following 3k/4—Kk3/16 for k<2
integral over the pair-correlation function: Sex(k):[ 1 for k=2, (26)
3 o
(U = —zf [9(p;rs)—1]pdp. (16 and our model only concerns the correlation part. Putting
2ars/o together Eqs(6), (11), (23), (24), and(26) one finds a well-

By the virial theorerf and the usual definition of the corre- known result: in the totab= S+ S‘f_ﬁs‘ﬁ , the linear term
lation energye, as total electronic energy minus Hartree- Of Sex(k), 3k/4, which dominates its smaki-behavior(and

Fock energy, we have corresponds to a largedeading terme1/p* of g,,) exactly
cancels the smaklt-leading term of the correlation paﬁl
3¢ 1 d_, +S‘T3T. This property has been incorporated in several previ-
(U=~ A Is d_rs[rsec(rs)]' (17 ous functional forms for the tota, such as the widely used

Perdew-Wantf model (hereafter PW, where, however, the
Putting together Eqg(16) and (17) one obtains the known k2 coefficient in the smalk expansion ofS(k) is slightly
relation betweerg(p;rs) and the exchange and correlation different from the exact onfEq. (11)], because of spurious
energy: k? contributions from theirg,) [Eq. (19) of Ref. 29 and
from their short-range part af. [Eq. (37) of Ref. 29.
30 * 's o The k—0 limit of Eq. (12) seems, instead, to be less
€= gp T Eczzazrzjo dp pfo drsfg(pirs) —1]. known: even the best-to-date spin-resolved PW nfddiles
S (18) not incorporate such a nontrivial analytic property, which
_ S . can alternatively be expressed 8§ being identical toS;
The same relation can be obtained in a more generat'wayin the the smalk limit and corresponds to a visible feature
by the Hellmann-Feynman theorem and the couplingof the magnetic structure factésee Sec. VII. Our goal is to
constant average of(p;rs), which, for the homogeneous produce simple and practical analytical functional forms for

system is just the average owey: S} (kirg) and Sf(kirg) [and hence gf (p,rs) and
1 (r g51(p.rs)] which satisfy all the physical properties of Sec. Il
glpir ):_J ° (piriydrl. (19  and have enough variational flexibility to accurately interpo-
9Pl F'sJo 9Pl s)Cls late the QMC data of Ortiz, Harris, and Ballotie.

o o To do this, let us start with a few simple considerations
The functiong(p;rs) is directly related to the exchange and g0yt spherical Fourier transforme,lgz(k) and giloz(f’)

correlation hol&”?° of the electron gas. . Co
We have recalled these relations because we will latef''® “?'ate‘?' to one .another by an |n'tegre'1t|on.l|ke B Th?
unction sinkp)/kp is an even function, i.e., its odd deriva-

check our analytical expressions fg(p;rs) against avail- . C T =

able energy data, and also because, among other constrain yes n k=0 (or p=0) are aII. equal to zero. However, the

we want our functional form of(p:r.) to be consistent with smallp and the smalk properties ofy andStell us that they

the high-density limit ofe.(ry): v must have nonzero odd derivativespir 0 andk=0. This is
c\'s/*

achieved if(and only if), as the integration variable goes to
€(re—>0)=Alnr+B+CrInr+Dry, (20) infinity, the integrand goes to zero sloyvly enoyg_h to a\_/oid
absolute convergence, so that differentiation within the inte-
where A, B, C, and D are known constant§;*=*® A=(1  gral sign is not allowed. It is easy to establish a connection
—In2)/7% B=-0.0469205,C=0.0092292,D=-0.01, between the largk-(largep) behavior ofS (g) and the odd
and the next leading term @(r§ Inry). derivatives inp=0 (k=0) of g (S): a derivative ofg in



7356 GORI-GIORGI, SACCHETTI, AND BACHELET PRB 61

p=0 of order h+1 corresponds, iI§ to a largek term . 37 i

«1/k?"** and vice versa. This simple relation was used in 911 (p=0irg) == = Qr(rs)a, (ry). (29)
Ref. 23 to obtain the largk-expansion ofS, , from the

cusp conditions of Eqg7) and (9). These elementary con- B. Physical constraints

siderations lead us to write down a very simple functional " o _
form S° in reciprocal space which automatically has the ex- 1"€k—0 conditions of Sec. Il C are easily imposed:
act smallk and largek behavior. Its spherical Fourier trans-

3
form g° is analytic and closed form, consisting of the same CP: Bk (30
kind of functions used in reciprocal space. We thus have an )
equally simple expression f& andg°®. cll=pticlt 4 9F 31)
We begin by studying the antiparallel-spin part, and do it 2 L 4wy
in several steps. FirgSec. IV A) we choose our functional
form. Then(Sec. IV B) we impose on it the properties of cl! qz
Sec. II. At this point we are left with six free parameters, Cgl:(b“)27+b“m+3—2- (32
which, independently for each availahlg, are used to ac- P

curately fit the QMC data in both real and reciprocal spaceThe cusp condition of Eq7) fixes a simple relation between
as was done in Ref. 10. In our case, however,rthdepen- agi and the other parameters:

dence of each of the six optimal parameters turns out to be

both regular and monotonic. We then try to represent each of 11 512
them as a simple function of in such a way thati) asrg aj'=(alt)? a}(T_ZqF)
—0 the exact high-density expansion of the correlation en- a

ergy [Eq. (20)] is recoveredSec. IV Q, and (ii) for finite
r<=10 an optimal global fit of all the QMC ddf3is obtained S
(Sec. V). We apply the same strategy to the parallel-spin 21m
part(Sec. V). In addition to the excellent quality of the final
fits of g and S, we see that even the resulting correlation
energy, not targeted by our fitting strategy exceptsat0,

2048( 1 8
. (33

Ly Cum)

=4 n (bH)n-%—S

After imposing all the | physical conditions, our model
[Eq. (27)] is left with six free parameters: the two exponen-

i I L in reci
turns out to be in good agreememtithin 5%) with the cor- tial cutoffs (@ 1 {n re"%' space ar_lb in reciprocal space
responding QMC resuftd at anyr,. We compare our cor- f[he parametew,*, which determmes the short-ra??e behav-
relation energy with the most popular interpolation formulasi®’ of 9(r), and the three linear parametery , c{', and

and we discuss their relative efficiency in fitting the newCs » Which will be used to further increase the variational
QMC energies? flexibility and fit the numericalg,, obtained from QMC

simulationst® The dependence of these free parametens,on
will be determined according to the strategy summarized in

IV. ANTIPARALLEL SPINS Sec. lll and detailed in the following Sec. IV C and Sec. V.

A. Functional form

In reciprocal space our functional form is simply written C. High-density expansion

as As anticipated in Sec. Il D, we want our pair-correlation
function such that it§ | and {1 contributions automatically
6 fulfill the high-density limit of the correlation energy. We
S5 (ki) =exg —bTH(rok] X, ¢l (rok" thus fix thers—0 limit of our free parameters by means of
n=1 Egs.(16), (17), and(20). Our antiparallel contribution to the
expectation value of the potential energy=U, +U,, is

T 8 11 10
ag (ro)k®+ay, (rok™ (27)  Simply given by

[(alh)2+k?]7
_ . . _OF S chin! g [ 7ad'  2lal!
as mentioned, the correspondiigy, amounts to a linear Un=- i1 (bThn+1 2048\ (alhy5 " (alh)3)
combination of the same kind of functid¥sn real space (34)

[see Appendix A, Eq(Al)]. Two types of functions appear

in Eq. (27): the first one, an exponential cutoff times a trun- In the high-density limit, the correlation-energy constraint of
cated power series, fully characterizes the long-wavelengtkq. (20) translates into the following condition ditJ, i>rs:
behavior ofS while the second one entirely determines its

largek expansion. The leading term &s—o is of order (Ui e 0=2A; InTg+ (A +2B;)+O(rgInry),
-2 ) 3 s
k=4 as exactly known from the cusp conditi6te® in real (35)
space the short-range behavior is thus entirely determined by
the parameter}'(r): where, comparing to Eq20), A, | is simply giverf® by 3A.

To determineB, | we recall that the constatin Eq. (20) is
P 37 the sum of two contributions: a second-order exchange term,
—g,(pitd)| == ——all(ry), 289 BB, which only concerns thé 1 part, and a direct term,
ap p—0 4 By, which is, instead, equally spliin the unpolarized gas
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between71 and 1 |. Hence,B 5L=Bd/2. Both Bffx)c andBy  term to satisfy the Pauli principle. As in the antiparallel-spin
have been evaluated exac‘lfv.I case, the short-range propertiesgef are characterized by

Provided that the three linear parametefs, cl!, and the }' parameter:
c' remain finite asr¢—0, the exact high-density limit of

Eq. (35 amounts to the following conditions: J° 3 .
Fgm(l’?rs) =g % (Is), (42)
Al (r0) 1+kirgInrg+korg+O(r2inryg) . P p—0
4 s _37Tq|:/4 ! "
J . 11
401 3 &_ngﬁ(p;rs) =2 Ar(ro)ag (ro). (43
b”(r@0>:(9—ﬁ) W\E+O(r2>, (37) PO

B. Physical constraints
all(r¢—0)=const-O(ry)=a't+0(ry), (38 o o
The smallk properties imply, for thel T case, identical

wherek; andk, depend om\; |, B;,, andal': constraints as for th¢| case[see Eqs(30), (31), and(32)].
The Pauli principle and the cusp condition of E(.and
187(a'l)? (9) fix the dependence o' and al) on the remaining
1= A (39 parameters:
6 11
T1y2 1142 2048 C 5(n+4)!
_f9fa)t 2l 1 %@ o os) ol =%—@ "y ——| (n+2)—————
262 4 Bhglly 2o Aut2Bi). 3m =1 (b!T)" (alb!")
(40 4096 2560 26
. . . +—(ah-all(@"? ——+— (44)
Inserting Eq.(36) into Eq. (29) we see that in our model, 337 6 33 altl’
once the high-density expansion ef(rs) is fixed, therg
—0 limit of g(p=0;r;) is also fixed to the form 1 6 i |
+CrgInrg+O(r). The corresponding exact foffhis, up to a”=2048(a” 7 Cn (n+4)! —1—3(n+2)!
ordersr?, 1+ Cyrg+Corinrg, and thus slightly different 107 37 a=1 (b3 (allp'h)2 3
from ours. Evidently, the simple functional form of EQ7) "
does not correctly describe the short-range behavior of the 4096 . 5 a5 .. 5[ 143
Coulomb hole at very high densities. It is worthwhile to B 1577(a ) +?(a ) E+51ZQF ' (45

point out that this contradiction is due to the exponential

cutoff times a truncated power series in real sp€g. The cusp condition of Eq(9) is not included in the PW
(A1)], and emerges when the cusp condition of EQ.is  model. As in the antiparallel-spin case, we have six free pa-
imposed on it. The relevance of this limitation, which only rameters: the exponential cutoff in real spa&€, the expo-

concerns densities,=<0.1, will be discussed in Sec. VII. nential cutoff in reciprocal spacé'!, the a}' parameter,
which determines the short-range behaviorgef, and the
V. PARALLEL SPINS three linear parametecg ', cl', andc)', which are used to

A Functional form fit the oscillatory behavior o, .
For the correlation part of th¢7 pair-distribution func-

tion we apply the same strategy used for the antiparallel— o _ _
spin case. In reciprocal space we thus have The contribution to the expectation value of the potential

energy due to the correlation part of ouwy;; (Uqy
=—3qp/4m+US,) is

C. High-density expansion

6
Sf(kirg)=exd —b(rok] X o}l (rok”
C:%E clfn! n (O[3
L ab(rok®+ag (rgk*+ ag/(rok’? N=r &4 (pI)n+1 65536
[(alh)?+k?)° ’

35a) . 45q}! . 99a!

(41) (46)
which again corresponds, in real space, to a linear combina-

tion of the same kind of functiofi§[see Appendix A, Eq. As r<—0, the condition O”UTT is identical to Eq.(39),
(A2)]. The long-wavelength term has the same form as thavheré® A, =3A andB,;; =B+ 3B,. As in the | case,
1] part. The largee term describes the short-range behaviorthe exactr .—0 expansion ofu?T implies for the two expo-
of g;; : the cusp condition of Eq9) tells us that, ak—,  nential cutoffs in real¢'") and reciprocallf'") space iden-
the leading term o8, must be of ordek~°. With respect to tical conditions to Eqs(37) and (38). For a}! the condition
the 7] case, one more parameter is needed for the llarge-is similar to Eq.(36):



7358 GORI-GIORGI, SACCHETTI, AND BACHELET PRB 61
4 2 1.2_I =()I.8 T T T I_ _I =]: T T T I_
all(re—0)=——| = +pirsInre+pore+ +0(rlinry) |, o N ‘
g | S 0.8
(47)
where p; and p, depend onA;;, B;;, anda'’ through 0.4
equations similar to Eq$39) and (40). From Eqs.(43) and ol
(47) one can see that, as expected, wher 0, g{;(p=0)
goes to the Hartree-Fock value 2/5. As in the antiparallel- 12}
spin case, the high-density limit of the correlation energy 08
fixes the re—0 expansion ofg{,(p=0;rs). The exact T
g7,(p=0;rs—0) should have the forfi 2/5+O(r), while 04l 7~
our functional form gives 2/ O(rgsInry). Again, we find R ‘
that in real space the simple exponential cutoff times a trun- ¢» 0t
cated power serid€q. (A2)] does not correctly describe the 3 12F
short-range Coulomb interactions at very high densities. g:
5 08}
VI. FIT TO QMC DATA 04
For each available density in the range918<10 (i.e., z
r«=0.8,1,2,3,4,5, 8, and 10ve performed a best fit of the Ot
six free parameters to the QMC dafsseparately for the | 12F
and the 1 parts. Therg dependence of the parameters turns
out to be quite smooth and monotonic and well described by 0.8 -
the following functional formgwhich also take into account 04
the exact high-density limit of Eq$36)—(38) and (47) and =1
guarantee the exact low-density expansion of the resulting ol
correlation enerdy!®4-495%  r S+ d,r S 37: 0 05 1 15 2 25 0 05 1 15 2 25
T r/r
o A k@ DR i) /s
4 3mqe(1l+ kgrg) ’ FIG. 1. Spin-resolved pair-correlation function of the unpolar-
ized homogenous electron gas plotted against the electron separa-
o B 8[1— pl(a”) reIn(1+ pz(a”)/rs)] tionr scaled bz/ the densn_ty param.etgffor_elght dlfferfent vallues of
ag'(rg)= > , (49 rs betweenrs=0 andrs=10. Solid line: this work; dots: QMC
S5mqe(1+psry) data; dashed line: Perdew-Wang model.
a"l”z(rs):a‘flgz, (50)

optimal nine parameters that define our best antiparallel-spin
model area''=0.838, k;=0.141, b}'=3.27, \}!=—-78,
yht=28,\['=216, yl!=—124,\['=—140, y}' =55, and

the other nine parameters for the parallel-spin partafe
=1.32, p;=0.015, b]'=3.47, \}'=98, y,'=-36, Al
=-295, yl'=74, \|'=170, y{'=—13. Since our final

1/3 3
T \/r:-l- b‘lrl(rz, (51
s

0102 0102
)\n Ty, s

b(71(72(rs):(%

1 n:4!5161 (52)

7102 —
c,tiry=
n 1+r32

wherek,(a'') is given by Eq.(39), andk,(a''), pi(a'l),
andp,(a'’) are equal to

ot p( 7 81 B, 1)
a =eX — -],

? 384m(al!)®A,, 128macA,, Ay 2
(53

337A;(alh)?
py(all)= ————, (54)
o

7 81 B, 1

a'l)=ex - -2

Pl ;{96077(a”)5Am 12877013Aﬁ Ay 2
(59

The nine constants fdr| and the nine constants fof have

analytic expressions involve both exact constraints and a best
fit of the QMC data® (the accuracy and density of the latter
being poorer in those regions where most exact constraints
come into play®), we did not attempt to define a confidence
level of our best free parameters. The efficiency of our inter-
polation scheme has been tested by performing preliminary
fits in which some of the available, were not included and
then verifying that the interpolated and S were in good
agreement with the corresponding QMC quantities for the
excludedr. Since this was always the case, we included all
the available g in order to have optimal values for our final
parameters. We thus expect ayiand S to be very reliable
and accurate in the whole density range:[0.8,10.

VII. RESULTS IN REAL AND RECIPROCAL SPACE
After fixing the 9+9 parameters that fully specify our

been fixed by a two-dimensional best fit to the QMC data inmodel, we are now ready to present, in Fig. 1, our real-space

real and reciprocal spad®368 + 9368 data poinis The

pair-correlation functiorg, ,,,, shown as a solid line, as a
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1.2
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S 08|
[e=)
1]
= 0.4
2
&0 0

FIG. 2. Antiparallel-spin correlation function at zero interelec-
tronic distance plotted against the density parameteiSolid line:
this work; dashed line: electron-electron ladder evaluati@ef.
52). In the inset the exact high-density expansi®ef. 48 is also
shown as dots.

5::(q/qp) £5;,(q/qp)

function of the scaled variable/rg. This is done for the
eight values of ¢ for which QMC results? shown as solid
dots, were available. The best-to-date model correlation
function of Perdew-Warfg is also shown for comparison as
a dashed line. Perdew and W&hinterpolated the total pair-
correlation functiong(r) between its short-range limit,
dominated by the on-top value and cusp, and the nonoscilla 04
tory part of its long-range limit. Their interpolation, con-

trolled by normalization and energy integrals, agreed with ot L L L
older spin-unresolved QMC datarhey needed only the to- 0 05 1 15 2 25 0 05 1 15 2 25
tal g(r) for construction of the generalized gradient /

approximation'® however, they also made an estimate for 9

the spin resolution o, using scaling relations that preserve

h lizati . s b v f h FIG. 3. Static structure factor and magnetic structure factor of
the normalzgtlor) Integrals but are exact only for the X the unpolarized jellium plotted against the wave vectscaled by
change contribution.

the Fermi wave vectoge for the same eight values as Fig. 1.

Our new expression, explicitly constructed to fit Spin- gyjig line; this work; dots: QMC data; dashed line: Perdew-Wang
resolved numerical correlation functions, follows the QMC y,0del.

datd® better(low r¢) or much bettefmedium and higtr)

than the corresponding PW model, whose performance with )
respect to the new QMC dafabecomes reasonable only short-range behavior of the QMC data and the PW model

after summing the two contributions and going back to the(Which by construction follows the Yasuhara approximation
total, spin-unresolved versiofot shown. This can be IS clearly visible. In the inset the cqrrespondmg hlglh—densny
guessed from the fact that for=2, where the discrepancies €xpansions are shown, together with the exact fihtdots),
become clearly visible, they generally have opposite signsthich, as anticipated in Sec. IV C, is not fulfilled by our
both the up-up and the up-down correlations are latger, 97 (p=0;rs). Rather than giving up our exact limit @f(rs)
less close to Jlthan they should be. This is due to the factfor r—0 or trying to fulfill both the e. and theg; (0)
that the PW estimate for thig] part is a simple rescaling of limits, we have preferred to accept a slight discrepancy of
the pair-correlation function of the fully polarized gds, g(0) and keep our functional form as described up to now:
while in the unpolarized case correlations are dominated byn our experience the collateral complications, at least within
1] interactions(see, for instance, Ref.)3Like the PW  our functional form, were not worth the effort. Because of
model, our pair-correlation function breaks down foy  this limitation, our pair-correlation function does not fulfill
>10: for very low densitieg) tends to become negative at the high-density limit ofg®/r recently computed by Rasso-
small p. This is probably due to the limited variational flex- lov et al>3
ibility of the model, which in this low-density regime cannot  In Fig. 3 we report the total static structure facsy,
at the same time fulfill the cusp conditions@t0 and re-  +S;, and the magnetic structure fac®r, — S, | for the same
produce a flatter and flatter, yet non-negatiyéor p=0. As  eight values of ¢ as in Fig. 1. Again, our model is shown as
we shall see in Sec. VIII, such a breakdown has no impact osolid lines, the QMC datd as dots, and the PW mod&hs
the resulting correlation energy, which is an integrafj@ind  dashed lines. Our combination of analytic constraints and
remains accurate at amy. fitting procedure nicely interpolates the QMC data, filtering
We compare in Fig. 2 ouy; | (p=0;r) (solid line) to the  out their noise. In reciprocal space it becomes clear that the
Yasuhar@?® electron-electron ladder approximatiédashed long range of the PW spin-resolved model is not exact.
line). Built up to interpolate the QMC data, ow; (p Moreover, as said in Sec. lll, the PW total static structure
=0;rg) is larger than the Yasuhara result foyg=0.5, as factor does not recover, as— 0, the exact plasma frequency
expected from Fig. 1, where the discrepancy between thin its Ieadingq2/2wp term. This is visible for ;=8 and 10.

ML
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FIG. 5. Our parallel-spin contribution to the total correlation
energy compared to the Perdew-WafRef. 29 and Stoll et al.

FIG. 4. Total(solid) and spin-resolveddashed correlation en- ﬁgef- 56 approximationse,(r,,¢— 1) is from Ref. 41.

ergy of the unpolarized homogenous electron gas plotted against t

density parameter,. QMC data are also shown as dots. . .
yp s Q We can conclude that the correlation energiesrys

which directly emerge from our pair-correlation functions,
although not targeted by our fits, are rather good.

A. Spin unresolved The main inaccuracies of the popular correlation-energy
models just reviewed are located in the high-density region,
where at first sight the new QMC resd#ts® cannot be rec-
onciled with the exaat,— 0 limiting behavior. This discrep-
ancy can be related to the combined impact of fixed-node
approximatior® and infinite-size extrapolatiofwhich would
match the finding that, for,<2, Monte Carlo simulations
based on different nodes and size-scaling rules in Refs. 8 and
12 obtain somewhat different energiel$ is not easy to give

a reliable separate estimate of fixed-node and finite-size er-

gives very good correlation energies even at highealues. (o5 hecause the available release-node simul&tmrfixed-
This is due to the optimal choice of thig dependence of our nde simulations based on better wave functi@ng., back-

free parameters, which also includes the low-density exparow and three-body correlatiols deal with much smaller

sion of €¢ . . _ simulation cells 50 electronsthan those used in Ref. 13
To have an idea of thg accuracy of our correlathn enery— 1000 electrons It should also be kept in mind that the
gies, we performed best fits of the QMC data of Ortiz, Har-gy4ct high-density expansion only holds foz—0, and
ris, and Ballon&’ (hereafter OHB based on other popular ¢qyig. in principle, start dominating the correlation energy at
interpolation formulas fore(rs), i.e., the Perdew-Zung€r smallerrg values than implicitly assumed by the existing
(P2), the Vosko-Wilk-Nusat® (VWN), and the . odels.
Perdew-Wan§f (PW2, to distinguish it from the pair- Ay aiternative correlation-energy model, not related to
correlation modslfunctional forms. The new QMC data for - hair-correlation function but capable of an excellent in-
the correlation energy of the unpolarized jellium are ava'l'terpolation of the QMC energies of Refs. 10 and 13 includ-
able for a large set afs: 0.8, 1, 2, 3, 4, 5, 8 10, 20, 30, 40, ng those at high density, can be obtained by a minor gener-
50, and 60. The results are the fQ”QW'”Og- with the PZ for-gjization of the PW2 form. Such a generalization keeps its
mula one obtains a rather good fitithin 3%), but a wrong  gyactr .0 limit, improves some of its original analytic

negative coefficient for the high-density teminrs, an un-  properties, and appears flexible enough to interpolate differ-
pleasant feature aIreacjy p0|.nte'd (_)ut_ in Ref. 10. Morgoverem sets of high-density QMC dafta%1213\We present it
the PZ energy has a discontinuity in its se_cqnd derlvatl_ve a§eparately in our Appendix B.

r<=1, an unpleasant feature for whoever is interested in the
corresponding pair-correlation function, related to the first
derivative ofe. .

The VWN form efficiently interpolates the OHB data  The spin-resolved contributions to the correlation energy,
(2.7% maximum relative error; 1.5 mRy maximum absoluteshown in Fig. 4, should be reliable in the density ramge
erron only if the free parametex, of the VWN formula has <10, since they are obtained by integrating the correspond-
a positive value, which, however, implies an unphysicaling QMC pair-correlation functions. This appears to be the
logarithmic divergence at finites (~0.6). If X, is con-  only way to extract thef | and 11 contributions toe, from
strained to be negative, then the fit provided by the VWNQMC data. Forrs>10 we cannot expect our spin-resolved
form is not better than our&.2% maximum relative error; contributions to be as reliable as fog<10, since at these
3.4 mRy maximum absolute erjor very low densities they do not correspond to good pair-

The fit accomplished with the PW2 form is not very ac- correlation functiongsee Sec. VI\.
curate(see also Ref. 10 7% maximum relative error, 3.4 In Fig. 5 we compare our parallel-spin part of the corre-
mRy maximum absolute error. Moreover, the optimal fit pa-lation energy with two corresponding widely used scaling
rameterB; of the PW2 form turns out to be negativeee  guesses: Perdew-Waig[e!!(rs,(=0)=e(rs,(=1)/223
also Ref. 10, thus leading to a negative coefficient for the where /=|n;—n||/n] and Stoll et al® [eLT(rS,g“:O)
low-density expansion terrns‘3’2 and to the violation of the =¢,(2Y%,7=1)]. Both seem to overestimate thé con-
Ferrel conditiorn* tribution to the correlation energy. Even if the Stetlal®®

VIIl. CORRELATION ENERGY

The correlation energy obtained by integrating gusee
Eq. (18)] is reported in Fig. 4, together with the correspond-
ing QMC data® Its 77 and 1| contributions €.=el!

+ sy) are also separately shown. As expectedyrelations
are dominated by | interactions. Our total correlation ener-
gies are in agreement with QMC data within 3%e maxi-
mum absolute error is 3.4 mRRyNotice that, even if our
model pair-distribution function breaks down fog>10, it

B. Spin-resolved
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estimate fulfills the exact high-density lifit(A/2InrJ), the  correlation-energy models that work well in the entirg
PW modef® (in which ther —0 limit is violated seems to <% density range.
do better in the relevant density range=0.1. In further developments we plan to extend our procedure
As rq increases, the PW and Stalt al. approximations to the partially polarized jellium and to lower densities; (
tend to the same limit, which is rather different from our >10). A smallFORTRAN code aimed at the numerical evalu-
result. Figure 5 suggests that, even if we take a conservativation of our function$Egs.(27),(41),(A1),(A2),(B1)] can be
approach and fully trust only our,<10 spin-resolved con- obtained upon request to Giovanni.Bachelet@romal.infn.it.
tributions toe., the common PW and Stadtt al. low-density
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We have proposed a new, analytic, spin-resolved, stati
structure factor and pair-correlation function for the unpolar-
ized jellium which works in the density range=<10. Our
model functions fulfill a wealth of known analytic properties
of their exact counterparts, nicely interpolate the most rece
and complete QMC data of Ortiz, Harris, and BalldAend
consistently yield accurate correlation energies. They can b

of interest to build up beyond-LDA exchange-correlation en- APPENDIX A: PAIR-CORRELATION EUNCTIONS

ergy density functionals’*°=?*for the magnetic response of IN REAL SPACE
the unpolarized homogeneous electron Gisand also,
within the theory developed in Refs. 58, for thee correla- The expressions of Eq§27) and (41) correspond in real

tion in real materials. As a by-product, we have obtained twaspace to

_ Tl 11 \5
¢, . . me a 10395 12645 t 585 oz 705 13 4_5 g (a'‘p)
11 allp)®
af' (945 945 315 345 33 (a'lp)
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+32 cll(—1nt : A2
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|
APPENDIX B: OPTIMAL FIT TO THE QMC Sec. I D in the high-density expansion of the functional
CORRELATION ENERGY form, which now reads

Since the Perdew—Waﬁ’g(PWZ) form is simple and
physically motivated, we slightly modify it by introducing  e.(rs)=—2A(1+ ars+ azrg)ln 1+
one more free parameter which grants us enough flexibility ZAE B P2
to accurately fit the new data by Ortiz, Harris, and Ballbhe. = s
We also include the exactInrg andr coefficients(see (B1)
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This modified PW2 form provides a much more drastic sepa«, are fixed by imposing the high-density expansion of Eq.
ration between the high- and low-density regimes with re20): a;=C/A, B,=0.5/Aexp(0.B/A), B,=2AB? and B,
spect to the original PW2 one. Such a separation is crucial te- 0.5,81(8,3§A4—CB+ DA)/A%. A best fit to new QMC
obtain a good fit that both reproduces the new QMCdatd® gives for the four free parameters,=5, ,=45,
energie$’ at the highest densities and avoids undesired ef8s=32, andBg=12.7. The resulting low-density expansion

fects on the low-density regimguch as a negative coeffi-
cient for ther; *2 term). The parameters, 3, 3, B3, and

is —0.39f+0.99+32. The maximum absolute error is 1.6
mRy, while the maximum relative error is 2.4%.
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