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Analytic static structure factors and pair-correlation functions
for the unpolarized homogeneous electron gas
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We propose a simple and accurate model for the electron static structure factors~and corresponding pair-
correlation functions! of the three-dimensional unpolarized homogeneous electron gas. Our spin-resolved pair-
correlation function is built up with a combination of analytic constraints and fitting procedures to quantum
Monte Carlo data, and, in comparison to previous attempts,~i! fulfills more known integral and differential
properties of the exact pair-correlation function,~ii ! is analytic both in real and in reciprocal space, and~iii !
accurately interpolates the newest, extensive diffusion–Monte Carlo data of Ortiz, Harris, and Ballone@Phys.
Rev. Lett.82, 5317~1999!#. This can be of interest for the study of electron correlations of real materials and
for the construction of new exchange and correlation energy density functionals.
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I. INTRODUCTION

The homogeneous electron gas, a model solid whose p
tive ionic charges are smeared throughout the whole cry
volume to yield a shapeless, uniform positive backgrou
~whence the nickname of jellium! has provided, since the
very start of quantum mechanics, a key conceptual refere
and a mine of information for solid-state and many-bo
theorists.1–3 Initially it was mostly regarded as an approx
mation of the true distribution of valence electrons in sim
metals, since, in spite of its crudity, it could already acco
for some of their experimental properties.4 Although the im-
portance of valence-charge inhomogeneities in real mate
was soon recognized~and described first by perturbation5

and later by self-consistent pseudopotential theory6!, the ho-
mogeneous electron gas stood by itself, over the decade
an independent active field of theoretical7 and numerical8–13

investigation. One reason for this continued interest is t
the model, by ignoring the ionic lattice which makes re
materials different from one another, allows the theorists
concentrate on key aspects of the electron-electron inte
tion. Another reason for caring about such an unrealistic s
tem resides in its connection to the inhomogeneous elec
gas:1,2,14 not only does the jellium model represent an ob
ous limit, but also, through the density functional theory15

and its local density approximation~LDA !, it links to a popu-
lar and very successful description of real materials.16 For
the latter reason, from the simplest Hartree-Fo
approximation15 to the pioneering quantum Monte Car
~QMC! simulations,8 almost any theory of jellium, its elec
tron correlations, and its pair-correlation functions has a
implied an improved understanding and construction
Kohn-Sham energy functionals.17,18

In this context our work aims at a new simple analy
expression for the pair-correlation function of the homog
neous electron gas, which describes the spatial correlat
of electron pairs with prescribed spin orientations. A go
model pair-correlation function and static structure factor
PRB 610163-1829/2000/61~11!/7353~11!/$15.00
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its own interest; its availability over a wide density range
crucial for new developments and applications of the den
functional theory, through the construction ofab initio ex-
change and correlation energy functionals in generalized
dient approximations19 and in other beyond-LDA
schemes.17,20–22 As a consequence, over the last 20 yea
several authors have already proposed ingenious expres
for this or related functions.21,23–31 A first motivation for
resuming and improving over previous efforts is the ava
ability, from recent quantum Monte Carlo simulations,10,13of
a wealth of new numerical results for the pair-correlati
functions and static structure factors of jellium. A seco
motivation comes from the observation that most of the p
vious models were not spin resolved, none fulfilled all t
known exact properties and none was given in analy
closed form in both real and reciprocal space. Our goa
thus to give a new, spin-resolved expression for the p
correlation function that is analytic in both real and recipr
cal space, automatically incorporates more exact prope
than any previous expression, and contains enough free
rameters to fit the new QMC results.13

We recall the exact properties of the pair-correlation fun
tion for the unpolarized jellium in Sec. II. The three subs
quent sections are devoted to a description of our gen
strategy~Sec. III! and of the resulting functional form for th
antiparallel- ~Sec. IV! and parallel-spin~Sec. V! pair-
correlation functions. In Sec. VI we describe our fitting pr
cedure to QMC data.13 Once the exact constraints are im
posed, 18 free parameters~9 for antiparallel spins and 9 fo
parallel spins! are enough to yield extremely accurate tw
dimensional fits of the'900019000 new QMC data
points13 as a function of the interelectronic distancer and the
density parameterr s in the relevant density ranger s<10.
Our results are discussed and compared with the widely u
Perdew-Wang29 model in Sec. VII.

In Sec. VIII we report the correlation energy that corr
sponds to our model pair-correlation function, and we fi
that its agreement with the QMC energies,13 not targeted by
7353 ©2000 The American Physical Society
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7354 PRB 61GORI-GIORGI, SACCHETTI, AND BACHELET
our fitting procedure, is as good (;5%) as the most popula
interpolation formulas for the correlation energy. The la
Sec. IX is devoted to conclusions and perspectives.

II. EXACT PROPERTIES

We briefly recall many known properties of the pa
correlation function of the unpolarized homogeneous e
tron gas. Its integral properties~sum rules! will be rewritten
in terms ofq→0 properties of Fourier transforms, since th
choice turns out to be convenient for our subsequent st
Hartree atomic units are used throughout this work.

A. Definitions

For an electronic system the pair-correlation functi
gs1s2

(r1 ,r2), if ns(r ) is the density of electrons with spi

s5↑ or ↓, is defined by

ns1
~r1!ns2

~r2!gs1s2
~r1 ,r2!

5^Fucs1

† ~r1!cs2

† ~r2!cs2
~r2!cs1

~r1!uF& ~1!

and is thus related to the probability of finding two electro
of prescribed spin orientations at positionsr1 and r2. The
normalization ofg is such that the expected number of ele
trons of spins2 in the volumedV at r2 when another elec
tron of spins1 is known to be atr1 is given by

dN~r2s2ur1s1!5ns2
~r2!gs1s2

~r1 ,r2!dV; ~2!

the lack of any correlation amounts, then, to the condit
gs1s2

(r1 ,r2)51. In the spin-unpolarized jellium the elec

tronic spin densityn↑(r )5n↓(r )5n/25(8pr s
3/3)21 is uni-

form in space~i.e., independent ofr ),32 sogs1s2
(r1 ,r2) only

depends on the distance between the two electronsr 5ur1
2r2u. The static structure factorS(q) is directly related to
the Fourier transform of the pair-correlation function. For
unpolarized homogeneous electron gas, after introducing
Fermi wave vector qF5(3p2n)1/35a/r s , with a
5(9p/4)1/3, the scaled variablesr5qFr and k5q/qF are
often convenient. With these variables the static struct
factors are written as

S↑↓~k!5
2

3pE0

`

dr@g↑↓~r!21#r2
sin~kr!

kr
, ~3!

S↑↑~k!511
2

3pE0

`

dr@g↑↑~r!21#r2
sin~kr!

kr
, ~4!

and the total pair-correlation function and static structure f
tor are given by

g~r;r s!5 1
2 @g↑↑~r;r s!1g↑↓~r;r s!#, ~5!

S~k;r s!5S↑↑~k;r s!1S↑↓~k;r s!. ~6!
t

c-

s.

s

-

n

he

re

-

B. Pair-correlation function near rÄ0

The behavior ofgs1s2
(r ;r s) in the r→0 limit can be

directly obtained from the many-body Schro¨dinger equation
when two electrons approach each other~cusp
conditions!.23,33,34

]

]r
g↑↓~r ;r s!U

r→0

5g↑↓~r→0;r s!Þ0, ~7!

]

]r
g↑↑~r ;r s!U

r→0

5g↑↑~r→0;r s!50, ~8!

]3

]r 3
g↑↑~r ;r s!U

r→0

5
3

2

]2

]r 2
g↑↑~r ;r s!U

r→0

Þ0. ~9!

Equations~7!–~9! hold for any three-dimensional~3D! sys-
tem of N fermions interacting via the two-body repulsiv
Coulomb potential.

C. Structure factor near qÄ0

The conservation of particles in the system implies
relations

S↑↓~q→0;r s!5S↑↑~q→0;r s!50. ~10!

The asymmetry between the definitions~3! and ~4! leads to
the two well-known sum rules forg↑↓ andg↑↑ ~see, for in-
stance, Ref. 23!.

The long-wavelength behavior of the total static structu
factor of Eq.~6! is determined by the plasmon contributio
proportional to q2, and by the single-pair and multipa
quasiparticle-quasihole excitation contributions, proportio
to q5 andq4, respectively:3,35

S~q→0;r s!5
q2

2vp~r s!
1Cq41O~q5!, ~11!

wherevp(r s)5A3/r s
3 is the classical plasma frequency.

the paramagnetic gas, the parallel- and antiparallel-spin c
tributions to the plasma mode are the same. Moreover
build up model functions for the spin-resolvedSs1s2

, it is
crucial to include the following property of the so-calle
magnetic structure factorS↑↑2S↑↓ :

S↑↑2S↑↓uk→05
3

4
k2

k3

16
1O~k4!, ~12!

where the scaled variablek5q/qF has been used. Equatio
~12! is valid in the framework of the random-phas
approximation3 ~RPA! and can be obtained from a serie
expansion ofS↑↓

RPA(k) near k50 ~Ref. 36!, and from the
corresponding expansion of the totalSRPA ~see, for instance
Ref. 37!. Since in thek→0 limit the RPA is exact,3,37–39we
expect Eq.~12! to hold for the exact structure factor as we
To be more precise, Eq.~12! must hold for the exactS to first
order ink. The k3 term should be exact in the high-densi
limit, while its validity at anyr s must be verified. It is worth-
while, however, to point out that Eq.~12! also implies that
no terms}k3 appear in the small-k expansion of the tota
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static structure factor, a property which is known to hold
the exactS.3,35 From Eqs.~11! and ~12! we can write the
small-k expansion ofSs1s2

:

S↑↓uk→052
3

8
k1

qF
2k2

4vp~r s!
1

k3

32
1O~k4!, ~13!

S↑↑uk→05
3

8
k1

qF
2k2

4vp~r s!
2

k3

32
1O~k4!. ~14!

D. Correlation energy

The electron-electron potential energy is, as known, gi
by the sum of repulsive two-body Coulomb terms:

U5
1

2 (
iÞ j

N
1

ur i2r j u
. ~15!

Its ground-state expectation value~per electron!, in a homog-
enous electron gas of densityr s , is given by the following
integral over the pair-correlation function:

^U& r s
5

3

2a2r s
E

0

`

@g~r;r s!21#r dr. ~16!

By the virial theorem40 and the usual definition of the corre
lation energyec as total electronic energy minus Hartre
Fock energy, we have

^U& r s
52

3qF

4p
1

1

r s

d

drs
@r s

2ec~r s!#. ~17!

Putting together Eqs.~16! and ~17! one obtains the known
relation betweeng(r;r s) and the exchange and correlatio
energy:

exc52
3qF

4p
1ec5

3

2a2r s
2E0

`

dr rE
0

r s
drs8@g~r;r s8!21#.

~18!

The same relation can be obtained in a more general w17

by the Hellmann-Feynman theorem and the coupli
constant average ofg(r;r s), which, for the homogeneou
system is just the average overr s :

ḡ~r;r s!5
1

r s
E

0

r s
g~r;r s8!drs8 . ~19!

The functionḡ(r;r s) is directly related to the exchange an
correlation hole17,29 of the electron gas.

We have recalled these relations because we will la
check our analytical expressions forg(r;r s) against avail-
able energy data, and also because, among other constr
we want our functional form ofg(r;r s) to be consistent with
the high-density limit ofec(r s):

ec~r s→0!5A ln r s1B1Crs ln r s1Dr s , ~20!

where A, B, C, and D are known constants,38,41–46 A5(1
2 ln 2)/p2, B520.046 920 5,C50.009 229 2,D520.01,
and the next leading term isO(r s

2 ln rs).
r

n

-

r

nts,

III. GENERAL STRATEGY

We study the antiparallel- and parallel-spin correlati
functions in both real and reciprocal space and we split th
as usual, into exchange and correlation according to

g↑↓~r;r s!511g↑↓
c ~r;r s!, ~21!

g↑↑~r;r s!5gex~r!1g↑↑
c ~r;r s!, ~22!

S↑↓~k;r s!5S↑↓
c ~k;r s!, ~23!

S↑↑~k;r s!5Sex~k!1S↑↑
c ~k;r s!, ~24!

where the exchange functions, given by the Hartree-F
approximation, are equal to

gex~r!5129S sinr2r cosr

r3 D 2

, ~25!

Sex~k!5H 3k/42k3/16 for k<2

1 for k.2, ~26!

and our model only concerns the correlation part. Putt
together Eqs.~6!, ~11!, ~23!, ~24!, and~26! one finds a well-
known result: in the totalS5Sex1S↑↓

c 1S↑↑
c , the linear term

of Sex(k), 3k/4, which dominates its small-k behavior~and
corresponds to a large-r leading term}1/r4 of gex) exactly
cancels the small-k leading term of the correlation partS↑↓

c

1S↑↑
c . This property has been incorporated in several pre

ous functional forms for the totalg, such as the widely used
Perdew-Wang29 model ~hereafter PW!, where, however, the
k2 coefficient in the small-k expansion ofS(k) is slightly
different from the exact one@Eq. ~11!#, because of spurious
k2 contributions from their̂ gx& @Eq. ~19! of Ref. 29# and
from their short-range part ofgc @Eq. ~37! of Ref. 29#.

The k→0 limit of Eq. ~12! seems, instead, to be les
known: even the best-to-date spin-resolved PW model29 does
not incorporate such a nontrivial analytic property, whi
can alternatively be expressed asS↑↑

c being identical toS↑↓
c

in the the small-k limit and corresponds to a visible featur
of the magnetic structure factor~see Sec. VII!. Our goal is to
produce simple and practical analytical functional forms
S↑↓

c (k;r s) and S↑↑
c (k;r s) @and hence g↑↓

c (r,r s) and
g↑↑

c (r,r s)] which satisfy all the physical properties of Sec.
and have enough variational flexibility to accurately interp
late the QMC data of Ortiz, Harris, and Ballone.13

To do this, let us start with a few simple consideratio
about spherical Fourier transforms:Ss1s2

c (k) and gs1s2

c (r)

are related to one another by an integration like Eq.~3!. The
function sin(kr)/kr is an even function, i.e., its odd deriva
tives in k50 ~or r50) are all equal to zero. However, th
small-r and the small-k properties ofg andS tell us that they
must have nonzero odd derivatives inr50 andk50. This is
achieved if~and only if!, as the integration variable goes
infinity, the integrand goes to zero slowly enough to avo
absolute convergence, so that differentiation within the in
gral sign is not allowed. It is easy to establish a connect
between the large-k ~large-r) behavior ofS (g) and the odd
derivatives inr50 (k50) of g (S): a derivative ofg in
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r50 of order 2n11 corresponds, inS, to a large-k term
}1/k2n14 and vice versa. This simple relation was used
Ref. 23 to obtain the large-k expansion ofSs1s2

from the
cusp conditions of Eqs.~7! and ~9!. These elementary con
siderations lead us to write down a very simple functio
form Sc in reciprocal space which automatically has the e
act small-k and large-k behavior. Its spherical Fourier trans
form gc is analytic and closed form, consisting of the sam
kind of functions used in reciprocal space. We thus have
equally simple expression forSc andgc.

We begin by studying the antiparallel-spin part, and do
in several steps. First~Sec. IV A! we choose our functiona
form. Then ~Sec. IV B! we impose on it the properties o
Sec. II. At this point we are left with six free paramete
which, independently for each availabler s , are used to ac-
curately fit the QMC data in both real and reciprocal spa
as was done in Ref. 10. In our case, however, ther s depen-
dence of each of the six optimal parameters turns out to
both regular and monotonic. We then try to represent eac
them as a simple function ofr s in such a way that~i! as r s
→0 the exact high-density expansion of the correlation
ergy @Eq. ~20!# is recovered~Sec. IV C!, and ~ii ! for finite
r s<10 an optimal global fit of all the QMC data13 is obtained
~Sec. VI!. We apply the same strategy to the parallel-s
part ~Sec. V!. In addition to the excellent quality of the fina
fits of g and S, we see that even the resulting correlati
energy, not targeted by our fitting strategy except atr s→0,
turns out to be in good agreement~within 5%! with the cor-
responding QMC results13 at anyr s . We compare our cor-
relation energy with the most popular interpolation formu
and we discuss their relative efficiency in fitting the ne
QMC energies.13

IV. ANTIPARALLEL SPINS

A. Functional form

In reciprocal space our functional form is simply writte
as

S↑↓
c ~k;r s!5exp@2b↑↓~r s!k# (

n51

6

cn
↑↓~r s!k

n

1
a6

↑↓~r s!k
81a4

↑↓~r s!k
10

@~a↑↓!21k2#7
; ~27!

as mentioned, the correspondingg↑↓
c amounts to a linear

combination of the same kind of functions47 in real space
@see Appendix A, Eq.~A1!#. Two types of functions appea
in Eq. ~27!: the first one, an exponential cutoff times a tru
cated power series, fully characterizes the long-wavelen
behavior ofS, while the second one entirely determines
large-k expansion. The leading term ask→` is of order
k24, as exactly known from the cusp condition;23,33 in real
space the short-range behavior is thus entirely determine
the parametera4

↑↓(r s):

]

]r
g↑↓~r;r s!U

r→0

52
3p

4
a4

↑↓~r s!, ~28!
l
-

e
n

it

,

,

e
of

-

n

s

th

by

g↑↓~r50;r s!52
3p

4
qF~r s!a4

↑↓~r s!. ~29!

B. Physical constraints

The k→0 conditions of Sec. II C are easily imposed:

c1
↑↓52 3

8 , ~30!

c2
↑↓5b↑↓c1

↑↓1
qF

2

4vp
, ~31!

c3
↑↓5~b↑↓!2

c1
↑↓

2
1b↑↓ qF

2

4vp
1

1

32
. ~32!

The cusp condition of Eq.~7! fixes a simple relation betwee
a6

↑↓ and the other parameters:

a6
↑↓5~a↑↓!3Fa4

↑↓S 11

a↑↓ 2
512

21
qFD

2
2048

21p S 1

3
1 (

n51

6

cn
↑↓ ~n12!!

~b↑↓!n13D G . ~33!

After imposing all the↑↓ physical conditions, our mode
@Eq. ~27!# is left with six free parameters: the two expone
tial cutoffs (a↑↓ in real space andb↑↓ in reciprocal space!,
the parametera4

↑↓ , which determines the short-range beha
ior of g(r ), and the three linear parametersc4

↑↓ , c5
↑↓ , and

c6
↑↓ , which will be used to further increase the variation

flexibility and fit the numericalg↑↓ obtained from QMC
simulations.13 The dependence of these free parameters or s
will be determined according to the strategy summarized
Sec. III and detailed in the following Sec. IV C and Sec.

C. High-density expansion

As anticipated in Sec. II D, we want our pair-correlatio
function such that its↑↓ and↑↑ contributions automatically
fulfill the high-density limit of the correlation energy. W
thus fix ther s→0 limit of our free parameters by means
Eqs.~16!, ~17!, and~20!. Our antiparallel contribution to the
expectation value of the potential energyU5U↑↓1U↑↑ is
simply given by

U↑↓5
qF

p (
n51

6 cn
↑↓n!

~b↑↓!n11
1

qF

2048S 7a6
↑↓

~a↑↓!5
1

21a4
↑↓

~a↑↓!3D .

~34!

In the high-density limit, the correlation-energy constraint
Eq. ~20! translates into the following condition on̂U↑↓& r s

:

^U↑↓& r s→052A↑↓ln r s1~A↑↓12B↑↓!1O~r s ln r s!,
~35!

where, comparing to Eq.~20!, A↑↓ is simply given43 by 1
2 A.

To determineB↑↓ we recall that the constantB in Eq. ~20! is
the sum of two contributions: a second-order exchange te
Bexc

(2) , which only concerns the↑↑ part, and a direct term
Bd , which is, instead, equally split~in the unpolarized gas!
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between↑↑ and ↑↓. Hence,B↑↓5Bd/2. Both Bexc
(2) and Bd

have been evaluated exactly.44,45

Provided that the three linear parametersc4
↑↓ , c5

↑↓, and
c6

↑↓ remain finite asr s→0, the exact high-density limit o
Eq. ~35! amounts to the following conditions:

a4
↑↓~r s→0!5

11k1r s ln r s1k2r s1O~r s
2 ln r s!

23pqF/4
, ~36!

b↑↓~r s→0!5S 4

9p D 1/3

pA3

r s
1O~r s

0!, ~37!

a↑↓~r s→0!5const1O~r s![a↑↓1O~r s!, ~38!

wherek1 andk2 depend onA↑↓ , B↑↓ , anda↑↓:

k15
18p~a↑↓!2

a
A↑↓ , ~39!

k25
729

64

~a↑↓!2

a4
2

21

64

1

a↑↓a
1

9~a↑↓!2p

2a
~A↑↓12B↑↓!.

~40!

Inserting Eq.~36! into Eq. ~29! we see that in our model
once the high-density expansion ofec(r s) is fixed, ther s
→0 limit of g(r50;r s) is also fixed to the form 1
1Crs ln rs1O(rs). The corresponding exact form48 is, up to
ordersr s

2 , 11C1r s1C2r s
2 ln rs, and thus slightly different

from ours. Evidently, the simple functional form of Eq.~27!
does not correctly describe the short-range behavior of
Coulomb hole at very high densities. It is worthwhile
point out that this contradiction is due to the exponen
cutoff times a truncated power series in real space@Eq.
~A1!#, and emerges when the cusp condition of Eq.~7! is
imposed on it. The relevance of this limitation, which on
concerns densitiesr s&0.1, will be discussed in Sec. VII.

V. PARALLEL SPINS

A. Functional form

For the correlation part of the↑↑ pair-distribution func-
tion we apply the same strategy used for the antiparal
spin case. In reciprocal space we thus have

S↑↑
c ~k;r s!5exp@2b↑↑~r s!k# (

n51

6

cn
↑↑~r s!k

n

1
a10

↑↑~r s!k
81a8

↑↑~r s!k
101a6

↑↑~r s!k
12

@~a↑↑!21k2#9
,

~41!

which again corresponds, in real space, to a linear comb
tion of the same kind of functions47 @see Appendix A, Eq.
~A2!#. The long-wavelength term has the same form as
↑↓ part. The large-k term describes the short-range behav
of g↑↑ : the cusp condition of Eq.~9! tells us that, ask→`,
the leading term ofS↑↑

c must be of orderk26. With respect to
the ↑↓ case, one more parameter is needed for the largk
e

l

–

a-

e
r

-

term to satisfy the Pauli principle. As in the antiparallel-sp
case, the short-range properties ofg↑↑ are characterized by
the a6

↑↑ parameter:

]3

]r3
g↑↑~r;r s!U

r→0

5
3p

8
a6

↑↑~r s!, ~42!

]2

]r2
g↑↑~r;r s!U

r→0

5
p

4
qF~r s!a6

↑↑~r s!. ~43!

B. Physical constraints

The small-k properties imply, for the↑↑ case, identical
constraints as for the↑↓ case@see Eqs.~30!, ~31!, and~32!#.

The Pauli principle and the cusp condition of Eqs.~8! and
~9! fix the dependence ofa8

↑↑ and a10
↑↑ on the remaining

parameters:

a8
↑↑5

2048

3p
~a↑↑!5(

n51

6 cn
↑↑

~b↑↑!n13 S ~n12!! 2
5~n14!!

~a↑↑b↑↑!2D
1

4096

33p
~a↑↑!32a6

↑↑~a↑↑!3S 2560qF

33
1

26

a↑↑D , ~44!

a10
↑↑5

2048

3p
~a↑↑!7(

n51

6 cn
↑↑

~b↑↑!n13 S ~n14!!

~a↑↑b↑↑!2
2

13

3
~n12!! D

2
4096

15p
~a↑↑!51

a6
↑↑

3
~a↑↑!5S 143

a↑↑ 1512qFD . ~45!

The cusp condition of Eq.~9! is not included in the PW
model. As in the antiparallel-spin case, we have six free
rameters: the exponential cutoff in real space,a↑↑, the expo-
nential cutoff in reciprocal space,b↑↑, the a6

↑↑ parameter,
which determines the short-range behavior ofg↑↑ , and the
three linear parametersc4

↑↑ , c5
↑↑ , andc6

↑↑ , which are used to
fit the oscillatory behavior ofg↑↑ .

C. High-density expansion

The contribution to the expectation value of the poten
energy due to the correlation part of ourg↑↑ (U↑↑
523qF/4p1U↑↑

c ) is

U↑↑
c 5

qF

p (
n51

6 cn
↑↑n!

~b↑↑!n11
1

qF

65 536

3S 35a10
↑↑

~a↑↑!9
1

45a8
↑↑

~a↑↑!7
1

99a6
↑↑

~a↑↑!5D . ~46!

As r s→0, the condition onU↑↑
c is identical to Eq.~35!,

where43 A↑↑5 1
2 A andB↑↑5Bexc

(2) 1 1
2 Bd . As in the↑↓ case,

the exactr s→0 expansion ofU↑↑
c implies for the two expo-

nential cutoffs in real (a↑↑) and reciprocal (b↑↑) space iden-
tical conditions to Eqs.~37! and ~38!. For a6

↑↑ the condition
is similar to Eq.~36!:
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a6
↑↑~r s→0!5

4

pqF
S 2

5
1p1r s ln r s1p2r s11O~r s

2 ln r s! D ,

~47!

where p1 and p2 depend onA↑↑ , B↑↑ , and a↑↑ through
equations similar to Eqs.~39! and ~40!. From Eqs.~43! and
~47! one can see that, as expected, whenr s→0, g↑↑9 (r50)
goes to the Hartree-Fock value 2/5. As in the antiparal
spin case, the high-density limit of the correlation ener
fixes the r s→0 expansion ofg↑↑9 (r50;r s). The exact
g↑↑9 (r50;r s→0) should have the form23 2/51O(r s), while
our functional form gives 2/51O(r s ln rs). Again, we find
that in real space the simple exponential cutoff times a tr
cated power series@Eq. ~A2!# does not correctly describe th
short-range Coulomb interactions at very high densities.

VI. FIT TO QMC DATA

For each available density in the range 0.8<r s<10 ~i.e.,
r s50.8, 1, 2, 3, 4, 5, 8, and 10! we performed a best fit of the
six free parameters to the QMC data,13 separately for the↑↓
and the↑↑ parts. Ther s dependence of the parameters tur
out to be quite smooth and monotonic and well described
the following functional forms@which also take into accoun
the exact high-density limit of Eqs.~36!–~38! and ~47! and
guarantee the exact low-density expansion of the resul
correlation energy8,18,41,49,50d1r s

211d2r s
23/2]:

a4
↑↓~r s!52

4@12k1~a↑↓!r s ln~11 k̃2~a↑↓!/r s!#

3pqF~11k3r s
2!

, ~48!

a6
↑↑~r s!5

8@12p1~a↑↑!r s ln~11p2~a↑↑!/r s!#

5pqF~11p3r s
2!

, ~49!

as1s2~r s!5as1s2, ~50!

bs1s2~r s!5S 4

9p D 1/3

pA3

r s
1b1

s1s2 , ~51!

cn
s1s2~r s!5

ln
s1s21gn

s1s2r s

11r s
3/2

, n54,5,6, ~52!

wherek1(a↑↓) is given by Eq.~39!, and k̃2(a↑↓), p1(a↑↑),
andp2(a↑↑) are equal to

k̃2~a↑↓!5expS 7

384p~a↑↓!3A↑↓
2

81

128pa3A↑↓
2

B↑↓
A↑↓

2
1

2D ,

~53!

p1~a↑↑!5
33pA↑↑~a↑↑!4

a
, ~54!

p2~a↑↑!5expS 7

960p~a↑↑!5A↑↑
2

81

128pa3A↑↑
2

B↑↑
A↑↑

2
1

2D .

~55!

The nine constants for↑↓ and the nine constants for↑↑ have
been fixed by a two-dimensional best fit to the QMC data
real and reciprocal space~9368 1 9368 data points!. The
l-
y

-

s
y

g

n

optimal nine parameters that define our best antiparallel-s
model area↑↓50.838, k350.141, b1

↑↓53.27, l4
↑↓5278,

g4
↑↓528, l5

↑↓5216, g5
↑↓52124, l6

↑↓52140, g6
↑↓555, and

the other nine parameters for the parallel-spin part area↑↑

51.32, p350.015, b1
↑↑53.47, l4

↑↑598, g4
↑↑5236, l5

↑↑

52295, g5
↑↑574, l6

↑↑5170, g6
↑↑5213. Since our final

analytic expressions involve both exact constraints and a
fit of the QMC data13 ~the accuracy and density of the latt
being poorer in those regions where most exact constra
come into play55!, we did not attempt to define a confidenc
level of our best free parameters. The efficiency of our int
polation scheme has been tested by performing prelimin
fits in which some of the availabler s were not included and
then verifying that the interpolatedg and S were in good
agreement with the corresponding QMC quantities for
excludedr s . Since this was always the case, we included
the availabler s in order to have optimal values for our fina
parameters. We thus expect ourg and S to be very reliable
and accurate in the whole density ranger sP@0.8,10#.

VII. RESULTS IN REAL AND RECIPROCAL SPACE

After fixing the 919 parameters that fully specify ou
model, we are now ready to present, in Fig. 1, our real-sp
pair-correlation functiongs1s2

, shown as a solid line, as

FIG. 1. Spin-resolved pair-correlation function of the unpola
ized homogenous electron gas plotted against the electron se
tion r scaled by the density parameterr s for eight different values of
r s betweenr s50 and r s510. Solid line: this work; dots: QMC
data; dashed line: Perdew-Wang model.
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function of the scaled variabler /r s . This is done for the
eight values ofr s for which QMC results,13 shown as solid
dots, were available. The best-to-date model correla
function of Perdew-Wang29 is also shown for comparison a
a dashed line. Perdew and Wang29 interpolated the total pair
correlation function g(r ) between its short-range limit
dominated by the on-top value and cusp, and the nonosc
tory part of its long-range limit. Their interpolation, con
trolled by normalization and energy integrals, agreed w
older spin-unresolved QMC data.8 They needed only the to
tal g(r ) for construction of the generalized gradie
approximation;19 however, they also made an estimate
the spin resolution ofg, using scaling relations that preserv
the normalization integrals but are exact only for the e
change contribution.

Our new expression, explicitly constructed to fit spi
resolved numerical correlation functions, follows the QM
data13 better~low r s) or much better~medium and highr s)
than the corresponding PW model, whose performance w
respect to the new QMC data13 becomes reasonable on
after summing the two contributions and going back to
total, spin-unresolved version~not shown!. This can be
guessed from the fact that forr s>2, where the discrepancie
become clearly visible, they generally have opposite sig
both the up-up and the up-down correlations are larger~i.e.,
less close to 1! than they should be. This is due to the fa
that the PW estimate for the↑↑ part is a simple rescaling o
the pair-correlation function of the fully polarized gas51

while in the unpolarized case correlations are dominated
↑↓ interactions~see, for instance, Ref. 3!. Like the PW
model, our pair-correlation function breaks down forr s
.10: for very low densitiesg tends to become negative
small r. This is probably due to the limited variational flex
ibility of the model, which in this low-density regime cann
at the same time fulfill the cusp conditions atr50 and re-
produce a flatter and flatter, yet non-negative,g for r*0. As
we shall see in Sec. VIII, such a breakdown has no impac
the resulting correlation energy, which is an integral ofg and
remains accurate at anyr s .

We compare in Fig. 2 ourg↑↓(r50;r s) ~solid line! to the
Yasuhara52 electron-electron ladder approximation~dashed
line!. Built up to interpolate the QMC data, ourg↑↓(r
50;r s) is larger than the Yasuhara result forr s*0.5, as
expected from Fig. 1, where the discrepancy between

FIG. 2. Antiparallel-spin correlation function at zero interele
tronic distance plotted against the density parameterr s . Solid line:
this work; dashed line: electron-electron ladder evaluation~Ref.
52!. In the inset the exact high-density expansion~Ref. 48! is also
shown as dots.
n

a-

h

r

-

th

e

s:

t

y

n

e

short-range behavior of the QMC data and the PW mo
~which by construction follows the Yasuhara approximatio!
is clearly visible. In the inset the corresponding high-dens
expansions are shown, together with the exact limit48 ~dots!,
which, as anticipated in Sec. IV C, is not fulfilled by ou
g↑↓(r50;r s). Rather than giving up our exact limit ofec(r s)
for r s→0 or trying to fulfill both the ec and theg↑↓(0)
limits, we have preferred to accept a slight discrepancy
g(0) and keep our functional form as described up to no
in our experience the collateral complications, at least wit
our functional form, were not worth the effort. Because
this limitation, our pair-correlation function does not fulfi
the high-density limit ofgc/r s recently computed by Rasso
lov et al.53

In Fig. 3 we report the total static structure factorS↑↑
1S↑↓ and the magnetic structure factorS↑↑2S↑↓ for the same
eight values ofr s as in Fig. 1. Again, our model is shown a
solid lines, the QMC data13 as dots, and the PW model29 as
dashed lines. Our combination of analytic constraints a
fitting procedure nicely interpolates the QMC data, filteri
out their noise. In reciprocal space it becomes clear that
long range of the PW spin-resolved model is not exa
Moreover, as said in Sec. III, the PW total static structu
factor does not recover, asq→0, the exact plasma frequenc
in its leadingq2/2vp term. This is visible forr s58 and 10.

FIG. 3. Static structure factor and magnetic structure factor
the unpolarized jellium plotted against the wave vectorq scaled by
the Fermi wave vectorqF for the same eightr s values as Fig. 1.
Solid line: this work; dots: QMC data; dashed line: Perdew-Wa
model.
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VIII. CORRELATION ENERGY

A. Spin unresolved

The correlation energy obtained by integrating ourg @see
Eq. ~18!# is reported in Fig. 4, together with the correspon
ing QMC data.13 Its ↑↑ and ↑↓ contributions (ec5ec

↑↓

1ec
↑↑) are also separately shown. As expected,3 correlations

are dominated by↑↓ interactions. Our total correlation ene
gies are in agreement with QMC data within 5%~the maxi-
mum absolute error is 3.4 mRy!. Notice that, even if our
model pair-distribution function breaks down forr s.10, it
gives very good correlation energies even at higherr s values.
This is due to the optimal choice of ther s dependence of ou
free parameters, which also includes the low-density exp
sion of ec .

To have an idea of the accuracy of our correlation en
gies, we performed best fits of the QMC data of Ortiz, H
ris, and Ballone13 ~hereafter OHB! based on other popula
interpolation formulas forec(r s), i.e., the Perdew-Zunger18

~PZ!, the Vosko-Wilk-Nusair49 ~VWN!, and the
Perdew-Wang41 ~PW2, to distinguish it from the pair
correlation model! functional forms. The new QMC data fo
the correlation energy of the unpolarized jellium are ava
able for a large set ofr s : 0.8, 1, 2, 3, 4, 5, 8, 10, 20, 30, 40
50, and 60. The results are the following: with the PZ fo
mula one obtains a rather good fit~within 3%!, but a wrong
negative coefficient for the high-density termr sln rs, an un-
pleasant feature already pointed out in Ref. 10. Moreov
the PZ energy has a discontinuity in its second derivative
r s51, an unpleasant feature for whoever is interested in
corresponding pair-correlation function, related to the fi
derivative ofec .

The VWN form efficiently interpolates the OHB dat
~2.7% maximum relative error; 1.5 mRy maximum absolu
error! only if the free parameterx0 of the VWN formula has
a positive value, which, however, implies an unphysi
logarithmic divergence at finiter s (;0.6). If x0 is con-
strained to be negative, then the fit provided by the VW
form is not better than ours~5.2% maximum relative error
3.4 mRy maximum absolute error!.

The fit accomplished with the PW2 form is not very a
curate~see also Ref. 10!: 7% maximum relative error, 3.4
mRy maximum absolute error. Moreover, the optimal fit p
rameterb3 of the PW2 form turns out to be negative~see
also Ref. 10!, thus leading to a negative coefficient for th
low-density expansion termr s

23/2 and to the violation of the
Ferrel condition.54

FIG. 4. Total~solid! and spin-resolved~dashed! correlation en-
ergy of the unpolarized homogenous electron gas plotted agains
density parameterr s . QMC data are also shown as dots.
-
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We can conclude that the correlation energies vsr s ,
which directly emerge from our pair-correlation function
although not targeted by our fits, are rather good.

The main inaccuracies of the popular correlation-ene
models just reviewed are located in the high-density regi
where at first sight the new QMC results13,10 cannot be rec-
onciled with the exactr s→0 limiting behavior. This discrep-
ancy can be related to the combined impact of fixed-no
approximation55 and infinite-size extrapolation~which would
match the finding that, forr s<2, Monte Carlo simulations
based on different nodes and size-scaling rules in Refs. 8
12 obtain somewhat different energies!. It is not easy to give
a reliable separate estimate of fixed-node and finite-size
rors because the available release-node simulations8 or fixed-
node simulations based on better wave functions~e.g., back-
flow and three-body correlations12! deal with much smaller
simulation cells (;50 electrons! than those used in Ref. 1
(;1000 electrons!. It should also be kept in mind that th
exact high-density expansion only holds forr s→0, and
could, in principle, start dominating the correlation energy
smaller r s values than implicitly assumed by the existin
models.

An alternative correlation-energy model, not related
our pair-correlation function but capable of an excellent
terpolation of the QMC energies of Refs. 10 and 13 inclu
ing those at high density, can be obtained by a minor gen
alization of the PW2 form. Such a generalization keeps
exact r s→0 limit, improves some of its original analytic
properties, and appears flexible enough to interpolate dif
ent sets of high-density QMC data.8,10,12,13 We present it
separately in our Appendix B.

B. Spin-resolved

The spin-resolved contributions to the correlation ener
shown in Fig. 4, should be reliable in the density ranger s
<10, since they are obtained by integrating the correspo
ing QMC pair-correlation functions. This appears to be t
only way to extract the↑↓ and↑↑ contributions toec from
QMC data. Forr s.10 we cannot expect our spin-resolve
contributions to be as reliable as forr s<10, since at these
very low densities they do not correspond to good pa
correlation functions~see Sec. VII!.

In Fig. 5 we compare our parallel-spin part of the corr
lation energy with two corresponding widely used scali
guesses: Perdew-Wang29 @ec

↑↑(r s ,z50)5ec(r s ,z51)/21/3,
where z5un↑2n↓u/n] and Stoll et al.56 @ec

↑↑(r s ,z50)
5ec(2

1/3r s ,z51)#. Both seem to overestimate the↑↑ con-
tribution to the correlation energy. Even if the Stollet al.56

the

FIG. 5. Our parallel-spin contribution to the total correlatio
energy compared to the Perdew-Wang~Ref. 29! and Stoll et al.
~Ref. 56! approximations.ec(r s ,z51) is from Ref. 41.
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estimate fulfills the exact high-density limit43 (A/2 ln rs), the
PW model29 ~in which ther s→0 limit is violated! seems to
do better in the relevant density ranger s*0.1.

As r s increases, the PW and Stollet al. approximations
tend to the same limit, which is rather different from o
result. Figure 5 suggests that, even if we take a conserva
approach and fully trust only ourr s<10 spin-resolved con
tributions toec , the common PW and Stollet al. low-density
tail hardly matches the QMC data.

IX. CONCLUSIONS AND PERSPECTIVES

We have proposed a new, analytic, spin-resolved, st
structure factor and pair-correlation function for the unpol
ized jellium which works in the density ranger s<10. Our
model functions fulfill a wealth of known analytic propertie
of their exact counterparts, nicely interpolate the most rec
and complete QMC data of Ortiz, Harris, and Ballone,13 and
consistently yield accurate correlation energies. They can
of interest to build up beyond-LDA exchange-correlation e
ergy density functionals,17,19–22for the magnetic response o
the unpolarized homogeneous electron gas,7,57 and also,
within the theory developed in Refs. 58, for thee-e correla-
tion in real materials. As a by-product, we have obtained t
g
ilit
.

ve

ic
-

nt

be
-

o

correlation-energy models that work well in the entirer s
,` density range.

In further developments we plan to extend our proced
to the partially polarized jellium and to lower densities (r s
.10). A smallFORTRAN code aimed at the numerical evalu
ation of our functions@Eqs.~27!,~41!,~A1!,~A2!,~B1!# can be
obtained upon request to Giovanni.Bachelet@roma1.infn
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APPENDIX A: PAIR-CORRELATION FUNCTIONS
IN REAL SPACE

The expressions of Eqs.~27! and ~41! correspond in real
space to
g↑↓
c ~r;r s!5

pe2a↑↓r

480 Fa4
↑↓

a↑↓ S 10 395

64
2

12 645

64
a↑↓r1

585

8
~a↑↓r!22

705

64
~a↑↓r!31

45

64
~a↑↓r!42

~a↑↓r!5

64 D
1

a6
↑↓

~a↑↓!3 S 945

64
1

945

64
a↑↓r2

315

16
~a↑↓r!21

345

64
~a↑↓r!32

33

64
~a↑↓r!41

~a↑↓r!5

64 D G
13(

n51

6

cn
↑↓~21!n11

]n11

]~b↑↓!n11 S 1

r21~b↑↓!2D , ~A1!

g↑↑
c ~r;r s!5

pe2a↑↑r

6881 280S a6
↑↑

~a↑↑!3
@135 1351135 135a↑↑r2270 270~a↑↑r!21114 765~a↑↑r!3220 370~a↑↑r!4

11722~a↑↑r!5268~a↑↑r!61~a↑↑r!7#1
a8

↑↑

~a↑↑!5
@231 185231 185a↑↑r16930~a↑↑r!2117 325~a↑↑r!3

26930~a↑↑r!41938~a↑↑r!5252~a↑↑r!61~a↑↑r!7#1
a10

↑↑

~a↑↑!7
@14 175114 175a↑↑r11890~a↑↑r!2

22835~a↑↑r!32882~a↑↑r!41378~a↑↑r!5236~a↑↑r!61~a↑↑r!7# D
13(

n51

6

cn
↑↑~21!n11

]n11

]~b↑↑!n11 S 1

r21~b↑↑!2D . ~A2!
al
APPENDIX B: OPTIMAL FIT TO THE QMC
CORRELATION ENERGY

Since the Perdew–Wang41 ~PW2! form is simple and
physically motivated, we slightly modify it by introducin
one more free parameter which grants us enough flexib
to accurately fit the new data by Ortiz, Harris, and Ballone13

We also include the exactr s ln rs and r s coefficients~see
y

Sec. II D! in the high-density expansion of the function
form, which now reads

ec~r s!522A~11a1r s1a2r s
2!lnS 11

1

2A(
n51

6

bnr s
n/2D .

~B1!
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This modified PW2 form provides a much more drastic se
ration between the high- and low-density regimes with
spect to the original PW2 one. Such a separation is crucia
obtain a good fit that both reproduces the new QM
energies13 at the highest densities and avoids undesired
fects on the low-density regime~such as a negative coeffi
cient for ther s

23/2 term!. The parametersA, b1 , b2 , b3, and
A

t-

-

f

m
g

ev
-
-
to

f-

a1 are fixed by imposing the high-density expansion of E
~20!: a15C/A, b150.5/A exp(0.5B/A), b252Ab1

2 andb3

50.5b1(8b1
2A42CB1DA)/A2. A best fit to new QMC

data13 gives for the four free parametersa255, b4545,
b5532, andb6512.7. The resulting low-density expansio
is 20.39/r s10.99/r s

3/2. The maximum absolute error is 1.
mRy, while the maximum relative error is 2.4%.
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