
Available online at www.isr-publications.com/mns
Math. Nat. Sci., 2 (2018), 33–43

Research Article

Journal Homepage: www.isr-publications.com/mns

Analytic study for a fractional model of HIV infection of

CD4+T lymphocyte cells

Hasan Buluta,∗, Devendra Kumarb, Jagdev Singhb, Ram Swroopc, Haci Mehmet Baskonusd

aDepartment of Mathematics, Faculty of Science, Firat University, Elazig, Turkey.

bDepartment of Mathematics, JECRC University, Jaipur-303905, Rajasthan, India.

cDepartment of Mathematics, Arya Institute of Engineering & Technology, Rajasthan, India.

dDepartment of Computer Engineering, Munzur University, Tunceli, Turkey.

Communicated by O. K. Matthew

Abstract

In this article, we implemented homotopy transform methods, namely, homotopy analysis transform method and homo-
topy perturbation Sumudu transform method to examine the fractional model for HIV infection of CD4+T lymphocyte cells.
Proliferation of CD4+T lymphocyte cells is driven by a combination of the homeostatic response to cells depletion (CD4+T cells
counts) and viral load (HIV levels). The attraction of both the methods is that an approach of HPSTM is used and on other hand
by HATM a large admissible convergence range of series solution is described for standard as well as fractional order nonlinear
problems.
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1. Introduction

The model of fractional differential equations have been showed beyond doubt to be an excellent
tool to reveal the hidden aspect in various field of science and engineering associated with non-locality
[1, 3, 4, 9, 32]. These successes lead up with proposed techniques to system of time-fractional differential
equations occurring in HIV infection of CD4+T lymphocyte cells. The CD4+T lymphocyte cells are the
white blood cells that play a crucial role in protecting human body from infection by improving the
immune response [10]. They activate body’s immune response against “Intruders” like bacteria and
viruses. The CD4+T lymphocyte cells got killed by the HIV, once virus entered in the body and replicate
itself. A healthy individual has CD4+T lymphocyte cell count normal as 800 to 1200/ mm3. A fall in
CD4+T lymphocyte cells count may be due to a thymus failure or a defect in bone. One of the methods
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to decide that the person is living with HIV and is susceptible to move towards various opportunistic
infections is detected with very low count of CD4+T lymphocyte cells (less than 200/ mm3) [28].

A considerable and remarkable work is done earlier in the field of mathematical dynamical model
for HIV infection of CD4+T cells are: a combination of Adomian decomposition method and Laplace
transform [25], multistep Laplace decomposition scheme [8], differential transform technique [34], Bessel
collocation method [38], homotopy decomposition method [2] all mentioned above methods have com-
paratively local point effects and low convergence speed. In proposed techniques we provide rapid
convergence solution series in efficient and effective way for strongly nonlinear fractional differential
equations, uniformly valid for large/small parameters, appear these restrictive assumptions in traditional
perturbation techniques.

The power of homotopy perturbation Sumudu transform method (HPSTM) [20, 30, 31] is well cou-
pling of Sumudu transform algorithm and homotopy perturbation technique by using He’s polynomials.
The Sumudu transform was firstly proposed and applied by Watugala [36]. The pioneering work in con-
nection with the development of important and basic results of the Sumudu transform were conducted
by many authors notably Belgacem et al. [6], Belgacem and Al-Shemas [5] and Khalaf and Belgacem
[16]. Homotopy perturbation method (HPM) is propounded by Ji-Huan He and used it in varies fields
of research [12–14]. On the other hand homotopy analysis transform method (HATM) [11, 17, 19, 27, 33]
demonstrate that how the Laplace transform can be employed to obtain the solutions of time depended
fractional dynamical model for HIV infection of lymphocyte cells by manipulating the homotopy analysis
method (HAM). The HAM was offered by Liao [21] by making use of the theory of the homotopy [15]
an important part of topology [29]. A book entitled “Beyond Perturbation: Introduce to the Homotopy
Analysis Method” [22] which demonstrates the basic plan of the HAM and its relationship with other
analytic schemes and some of its uses in scientific fields [23, 24, 37]. Unlike HAM, HATM is not required
the assumption of auxiliary linear operator, uses the differentiation property of Laplace transform for
Caputo fractional derivative [7, 18].

2. Basic idea of HPSTM

We demonstrate the basic plan of HPSTM, by using a time-fractional nonlinear differential equation
possessing the initial condition of the form

Dα
t y(x, t) = R y(x, t) +Ny(x, t) + g(x, t), n− 1 < α 6 n, α > 0, (2.1)

subject to the initial condition Dm
0 y(x, 0) = fm(x), where m = 0, · · · ,n− 1, Dn

0 y(x, 0) = 0, and n = [α],
where is Dα

t y(x, t) the Caputo fractional derivative of the function y(x, t), R is the linear differential
operator, N represents the general nonlinear differential and g(x, t) designates the source term.

On using the Sumudu transform operator on Eq. (2.1), it yields

S[y] = uα
n−1∑

k=0

u−α+ky(k)(x, 0) + uαS [R y] + uαS[Ny] + uαS[g(x, t)]. (2.2)

Next, on applying the inversion of Sumudu transform operator on Eq. (2.2), it gives

y = F(x, t) + S−1 [uαS [R y] + uαS[Ny]] , (2.3)

where F(x,t) indicates the term occurring from the known function g(x,t) and the initial conditions.
Now we use the HPM

y(x, t) =

∞∑

n=0

Pnyn(x, t). (2.4)

We deform the nonlinear term as

Ny(x, t) =

∞∑

n=0

PnHn(y). (2.5)
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Using the He’s polynomials Hn(y) [26] given as:

Hn(y0, ... ... ...,yn) =
1

Γ(n+ 1)

∂n

∂Pn

[

N

(

∞∑

r=0

Pryr(x, t)

)]

,n = 0, 1, 2, ... .

Substituting (2.4) and (2.5) in (2.3), we have

∞∑

n=0

Pnyn = F(x, t) + P

[

S−1

[

uαS

[

R

(

∞∑

n=0

Pnyn

)]

+ uαS

[

N

(

∞∑

n=0

PnHn

)]]]

.

This is the mixture of the Sumudu transform and the HPM with the aid of He’s polynomials. Comparing
the coefficients of like power of P, it yields

P0 : y0 = F(x, t),

P1 : y1 = S−1 [uαS [R(y0) +H0(y)]] ,

P2 : y2 = S−1 [uαS [R(y1) +H1(y)]] ,

...

Pn : yn = S−1 [uαS [R(yn−1) +Hn−1(y)]] ,

...

The approximate the analytical solution y(x, t) of Eq. (2.1) is presented as

y(x, t) = y0(x, t) +
∞∑

k=1

yk(x, t).

3. Basic idea of HATM

To demonstrate the basic plan of this algorithm, we take a general fractional nonlinear non-homog-
eneous partial differential equation expressed as

Dα
t u(x, t) + Ru(x, t) +Nu(x, t) = g(x, t), n− 1 < α 6 n, (3.1)

where Dα
t u(x, t) indicates the Caputo fractional derivative of the function u(x, t), R stands for the linear

differential operator, N denotes the general nonlinear differential operator and g(x, t) is the source term.
By applying the Laplace transform on both sides of equation (3.1), we get

sαL[u] −

n−1∑

k=0

sα−k−1u(k)(x, 0) + L [Ru] + L[Nu] = L[g(x, t)].

On simplifying

L [u] −
1

sα

n−1∑

k=0

sα−k−1u(k)(x, 0) +
1

sα
[L [Ru] + L[Nu] − L[g(x, t)]] = 0.

We define the nonlinear operator

N[φ(x, t;q)] =L [φ(x, t;q)] −
1

sα

n−1∑

k=0

sα−k−1φ(k)(x, t;q)(0+)

+
1

sα
[L [Rφ(x, t;q)] + L[Nφ(x, t;q)] − L[g(x, t)]] ,
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where q ∈ [0, 1] and φ(x, t ;q) is a real function of x, t and q. Now using the same procedure as used in a
series of papers [11, 17, 19, 27, 33], we get the following mth-order deformation equation:

L [um(x, t) − χmum−1(x, t)] =  hℜm(~um−1).

Applying the inverse Laplace transform, we have

um(x, t) = χmum−1(x, t) +  hL−1[ℜm(~um−1)],

where

ℜm(~um−1) =
1

(m− 1)!

∂m−1N [φ(x, t ;q)]

∂qm−1
|q=0,

and

χm =

{
0, m 6 1,
1, m > 1.

4. Fractional dynamical model for HIV infection of CD4+T lymphocyte cells

We examine the dynamic model for HIV infection of CD4+T lymphocyte cells in fractional form. This
mathematical model is characterized by a system of the linear and nonlinear differential equations of
fractional order as follows






dµT
dtµ

= δ−αT + rT(1 − T+I
Tmax

) − kVT ,
dηI
dtη

= kVT −βI,
dωV
dtω

= NβI− γV ,

0 < µ, η, ω 6 1, (4.1)

having the initial conditions

T(0) = T0, I(0) = I0, V(0) = V0. (4.2)

This model is expressed the basic three components T(t), I(t) and V(t) which denote concentration of
susceptible CD4+T cells, CD4+T cells infected by the HIV viruses and virus population of CD4+T cells by
HIV in the blood, respectively. rT(1− T+I

Tmax
) is logistic growth of the healthy CD4+T cells, and proliferation

of infected CD4+T cells is neglected. r is the rate at which T cells multiply through mitosis when T cells
are stimulated by antigen or mitogen. Tmax is the maximum level of CD4+T cells in the human body [35].
Each infected CD4+T cell is assumed to produce 1 virus particles during its lifetime, including any of its
daughter cells. The body is believed to produce CD4+T cells from precursors in the bone marrow and
thymus at a constant rate δ. The term kVT describes the incidence of HIV infection of healthy CD4+T
cells, where k > 0 is the infection of T -cells. Nβ is the rate of production of virions by infected cells, where
N is the average number of virus particles produced by an infected T -cell and γ is the death rate of virus
particles [35]. In a normal human body, the level of CD4+T cells is 800/1200mm3. CD4+T cells are also
named as T helper cells or leukocytes. These CD4+T cells with order cells in human immunity systems
fight against disease. We set the following initial conditions and parameters for numerical approximate
solutions [2]

T(0) = 0.1, I(0) = 0, V(0) = 0.1,α = 0.02, β = 0.3,

γ = 2.4, δ = 0.1, k = 0.0027, r = 3, Tmax = 1, 500, N = 10.

5. Implementation of HPSTM

We apply the HPSTM for solving system of time-fractional differential equations arising in model for
HIV infection of CD4+T lymphocyte cells (4.1), and compared with well existing results.
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Operating the Sumudu transform on Eq. (4.1), we get






S
(

dµT
dtµ

)

= S
(

δ−αT + rT(1 − T+I
Tmax

) − kVT
)

,

S
(

dηI
dtη

)

= S (kVT −βI) ,

S
(

dωV
dtω

)

= S (NβI− γV) ,






S(T) = 0.1 + uµS
(

δ−αT + rT(1 − T+I
Tmax

) − kVT
)

,

S(I) = uηS (kVT −βI) ,
S(V) = 0.1 + uωS (NβI− γV) .

(5.1)

Operating with the inverse of Sumudu transform on Eq. (5.1), we have






T = 0.1 + S−1
(

uµS
(

δ−αT + rT(1 − T+I
Tmax

) − kVT
))

,

I = S−1 (uηS (kVT −βI)) ,
V = 0.1 + S−1 (uωS (NβI− γV)) .

(5.2)

The nonlinear terms noticed as, A = T 2,B = T · I,C = V · T at right side of system (5.2) will be represented
by an infinite series of He’s polynomials






Fm(T0, ..., Tm) = 1
Γ(m+1)

∂m

∂Pm [A (
∑∞

r=0 P
rTr(t))] ,m = 0, 1, 2, ...

Gm(T0, ... , Tm, I0, ..., Im) = 1
Γ(m+1)

∂m

∂Pm [B (
∑∞

r=0 P
rTr(t)Ir(t))] ,m = 0, 1, ...

Hm(V0, ...,Vm, T0, ... Tm) = 1
Γ(m+1)

∂m

∂Pm [C (
∑∞

r=0 P
rVr(t)Tr(t))] ,m = 0, 1, ... .

Now using the HPM, we get






∑∞
m=0 P

mTm = 0.1 + PS−1

(

uµ
(

S

(

δ+ (−α+ r)
∑∞

m=0 P
mTm

− r
Tmax

(
∑∞

m=0 P
mFm +

∑∞
m=0 P

mGm) − k
∑∞

m=0 P
mHm

)))

,

∑∞
m=0 P

mIm = PS−1 (uη (S (k
∑∞

m=0 P
mHm −β

∑∞
m=0 P

mIm))) ,
∑∞

m=0 P
mVm = 0.1 + PS−1 (uω (S (Nβ

∑∞
m=0 P

mIm − γ
∑∞

m=0 P
mVm))) .

Equating the coefficient of like powers of P, we have






P0 : T0 = 0.1, P0 : I0 = 0, P0 : V0 = 0.1,

P1 : T1 = S−1
(

uµ
(

S
(

δ+ (−α+ r)T0 −
r

Tmax
(F0 +G0) − kH0

)))

,

= S−1
(

uµ
(

S
(

δ+ (−α+ r)T0 −
r

Tmax

(

T 2
0 + T0I0

)

− kV0T0

)))

,

= 0.397953 tµ

Γ(µ+1) ,

P1 : I1 = S−1 (uη (S (kH0 −βI0))) ,

= S−1 (uη (S (kV0T0 −βI0))) = 0.000027 tη

Γ(η+1) , ,

P1 : V1 = S−1 (uω (S (NβI0 − γV0))) = −0.24 tω

Γ(ω+1) ,

P2 : T2 = S−1
(

uµ
(

S
(

(−α+ r)T1 −
r

Tmax
(F1 +G1) − kH1

)))

,

= S−1
(

uµ
(

S
(

(−α+ r)T1 −
r

Tmax
(2T0T1 + T0I1 + T1I0) − k(V0T1 + V1T0)

)))

,

= −5.4 × (10)−9 tµ+η

Γ(µ+η+1) + 6.4 × (10)−5 tµ+ω

Γ(µ+ω+1) ,

P2 : I2 = S−1 (uη (S (k(V0T1 + V1T0) −βI1))) ,
= S−1 (uη (S (kV0T0 −βI0)))

= −8.1 × (10)−6 t2η

Γ(2η+1) + 0.000107447 tµ+η

Γ(µ+η+1) − 0.0000648 tη+ω

Γ(η+ω+1) ,

P2 : V2 = S−1 (uω (S (NβI1 − γV1))) = 8.1 × (10)−5 tη+ω

Γ(η+ω+1) + 0.567 t2ω

Γ(2ω+1) ,
...
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and so on, in this way the remaining components can be obtained and the solution of the system of Eq.
(4.1) is presented by infinite series as






T(t) =
∑∞

l=0 Tl(t) = T0 + T1 + T2 + T3 + ...,
I(t) =

∑∞
l=0 Il(t) = I0 + I1 + I2 + I3 + · · · ,

V(t) =
∑∞

l=0 Vl(t) = V0 + V1 + V2 + V3 + · · · .

It’s clear to see that the HPSTM solution is same as obtained by HDM [2].

6. Implementation of the HATM

In this section, we apply HATM in a realistic and efficient way to handle nonlinear fractional model
for HIV infection of lymphocyte cells (4.1) leads three coupled equations, found more general solution
with large convergence domain, compared to LADM [8], DTM [34], BCM [38], HDM [2], are a particular
case of the HATM solution series when  h = −1.

System (4.1) and Eq. (4.2) suggest that we express the nonlinear operators as






N1[ψ1(t;q),ψ2(t;q),ψ3(t;q)]

= L[ψ1(t;q)] − (1 − χm) 1
s
T0 −

1
SµL[δ−αψ1(t;q) + rψ1(t;q)

− r
Tmax

(ψ1(t;q) −ψ
2
1(t;q) −ψ2(t;q)ψ1(t;q)) − kψ3(t;q)ψ1(t;q)],

N2[ψ1(t;q),ψ2(t;q),ψ3(t;q)]

= L[ψ2(t;q)] − (1 − χm) 1
s
I0 −

1
SηL[kψ3(t;q)ψ1(t;q) −βψ2(t;q)],

N3[ψ1(t;q),ψ2(t;q),ψ3(t;q)]

= L[ψ3(t;q)] − (1 − χm) 1
s
V0 −

1
SωL[Nβψ2(t;q) − γψ3(t;q)],

and the Laplace operator as






L [Tm − χmTm−1] =  hR1,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

],

L [Im − χmIm−1] =  hR2,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

],

L [Vm − χmVm−1] =  hR3,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

],

(6.1)

where






R1,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

] = L{Tm−1}− (1 − χm) 1
s
T0 −

1
sµ
L {(1 − χm) δ−αTm−1 + rTm−1

− r
Tmax

(
∑m−1

i=0 TiTm−1−i +
∑m−1

i=0 IiTm−1−i) − k
∑m−1

i=0 ViTm−1−i

}

,

R2,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

] = L{Im−1}− (1 − χm) 1
s
I0 −

1
sη
L
{

k
∑m−1

i=0 ViTm−1−i −βIm−1

}

.

R3,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

] = L{Vm−1}− (1 − χm) 1
s
V0 −

1
sω
L {NβIm−1 − γVm−1} .

(6.2)

Applying the inverse Laplace transforms in (6.1) and using (6.2), we have






Tm = χmTm−1 +  hL−1

{

R1,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

]

}

,

Im = χmIm−1 +  hL−1

{

R2,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

]

}

,

Vm = χmVm−1 +  hL−1

{

R3,m[
→

T
m−1

,
→

I
m−1

,
→

V
m−1

]

}

.

(6.3)

We solve the system of (6.3) for m = 1, 2, 3, · · · , and using initial conditions and parameters, we get
the following results
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




T0 (t) = T0 = 0.1, I0 (t) = I0 = 0, V0 (t) = V0 = 0.1,

T1 (t) = −0.397953 h tµ

Γ(µ+1) , I1 (t) = −0.000027 h tη

Γ(η+1) , V1 (t) = 0.24 h tω

Γ(ω+1)

T2 (t) = −0.397953 h( h+ 1) tµ

Γ(µ+1) + 1.18563 h2 t2µ

Γ(2µ+1) − 5.4 × (10)−9 h2 tµ+η

Γ(µ+η+1)

+6.4 × (10)−5 h2 tµ+ω

Γ(µ+ω+1) ,

I2 (t) = −0.000027 h( h+ 1) tη

Γ(η+1) − 8.1 × (10)−6 h2 t2η

Γ(2η+1)

+0.000107447 h2 tµ+η

Γ(µ+η+1) − 0.0000648 h2 tη+ω

Γ(η+ω+1) ,

V2 (t) = 0.24 h( h+ 1) tω

Γ(ω+1) + 8.1 × (10)−5 h2 tη+ω

Γ(η+ω+1) + 0.567 h2 t2ω

Γ(2ω+1) ,
...

and so on, in this way the remaining components can be computed by using the software Maple. The
approximate series solutions can be obtained by






T(t) =
∑∞

l=0 Tl(t) = T0 + T1 + T2 + T3 + ...,
I(t) =

∑∞
l=0 Il(t) = I0 + I1 + I2 + I3 + · · · ,

V(t) =
∑∞

l=0 Vl(t) = V0 + V1 + V2 + V3 + · · · .
(6.4)

It’s clear to see that when we set  h = −1 in HATM series solution, it converge to HPSTM and HDM [2]
series solution. Figures 1-3 represents the rate of change of three variablesT(t), I(t)and V(t) for standard
motion µ = η = ω = 1 and Brownian motions µ = η = ω = 0.95, 0.85, 0.75 of 3rd order HPSTM and
HATM solution series. Figures 4-6 display the  h−curves. It’s obvious that the middle point of  h−-curves
interval i.e.,  h = −1 is a proper choice, at this point the numerical solution convergences to series solution
for standard motion as well as Brownian motions. The horizontal line segment indicates the valid region
of  h which insures the convergence of the series solution.

Figure 1: Plot of T(t) vs. time t for standard motionµ = η = ω = 1 and Brownian motions µ = η = ω = 0.95, 0.85, 0.75 of 3rd
order HPSTM and HATM solution series.
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Figure 2: Plot of I(t) vs. time t for standard motionµ = η = ω = 1 and Brownian motions µ = η = ω = 0.95, 0.85, 0.75 of 3rd
order HPSTM and HATM solution series.

Figure 3: Plot of V(t) vs. time t for standard motion µ = η = ω = 1 and Brownian motionsµ = η = ω = 0.95, 0.85, 0.75 of 3rd
order HPSTM and HATM solution series.
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Figure 4:  h−curve for T(t) when µ = η = ω = 1.

Figure 5:  h− curve for I(t) when µ = η = ω = 1.
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Figure 6:  h− curve for V(t) when µ = η = ω = 1.

7. Conclusions

In this paper, two powerful coupled methods, HPSTM and HATM are successfully applied to derive
the solution of the fractional model for HIV infection of CD4+T lymphocyte cells, as compared with
existing results. It can be concluded that the proposed techniques are more convenient, straight forward
and power full than the standard methods STM, HPM and LTM, HAM. The HATM is capable to provide
rapid and considerably large convergence region by choosing the appropriate values of convergence-
control parameter  h . By selecting  h = −1 the solution series converge to the solution series of HPSTM.
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[8] N. Doğan, Numerical treatment of the model for HIV infection of CD4+T cells by using multistep Laplace Adomian

decomposition method, Discrete Dyn. Nat. Soc., 2012 (2012), 11 pages. 1, 6
[9] A. M. A. El-Sayed, S. Z. Rida, A. A. M. Arafa, Exact solutions of fractional-order biological population model, Commun.

Theor. Phys. (Beijing), 52 (2009), 992–996. 1

https://www.sciencedirect.com/science/article/pii/S0022247X06000801?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S0022247X06000801?via%3Dihub
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-94
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-94
https://advancesindifferenceequations.springeropen.com/articles/10.1186/1687-1847-2013-94
https://www.degruyter.com/view/j/math.2015.13.issue-1/math-2015-0052/math-2015-0052.xml
https://www.degruyter.com/view/j/math.2015.13.issue-1/math-2015-0052/math-2015-0052.xml
https://doi.org/10.3390/e17085771
https://doi.org/10.3390/e17085771
https://www.researchgate.net/publication/271373210_Towards_a_Sumudu_based_estimation_of_large_scale_disasters_environmental_fitness_changes_adversely_affecting_population_dispersal_and_persistence
https://www.researchgate.net/publication/271373210_Towards_a_Sumudu_based_estimation_of_large_scale_disasters_environmental_fitness_changes_adversely_affecting_population_dispersal_and_persistence
https://www.hindawi.com/journals/mpe/2003/439059/abs/
https://www.hindawi.com/journals/mpe/2003/439059/abs/
https://books.google.com.pe/books/about/Elasticit%C3%A0_e_dissipazione.html?id=-tcwHAAACAAJ&redir_esc=y
https://www.hindawi.com/journals/ddns/2012/976352/abs/
https://www.hindawi.com/journals/ddns/2012/976352/abs/
http://iopscience.iop.org/article/10.1088/0253-6102/52/6/04/meta
http://iopscience.iop.org/article/10.1088/0253-6102/52/6/04/meta


H. Bulut, D. Kumar, J. Singh, R. Swroop, H. M. Baskonus, Math. Nat. Sci., 2 (2018), 33–43 43

[10] R. W. Finberg, D. C. Diamond, D. B. Mitchel, Y. Rosenstein, G. Soman, T. C. Norman, S. L. Schreiber, S. J. Burakoff,
Prevention of HIV-1 infection and preservation of CD4 function by the binding of CPFs to gp 120, Science, 249 (1990),
287–291. 1

[11] S. Gupta, D. Kumar, J. Singh, Numerical study for systems of fractional differential equations via Laplace transform, J.
Egyptian Math. Soc., 23 (2015), 256–262. 1, 3

[12] J.-H. He, Homotopy perturbation technique, Comput. Methods Appl. Mech. Engrg., 178 (1999), 257–262. 1
[13] J.-H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003),

73–79.
[14] J.-H. He, New interpretation of homotopy perturbation method, Int. J. Mod. Phys. B, 20 (2006), 2561–2568. 1
[15] P. J. Hilton, An introduction to homotopy theory, Cambridge University Press, Cambridge, (1953). 1
[16] R. F. Khalaf, F. B. M. Belgacem, Extraction of the Laplace, Fourier, and Mellin transforms from the Sumudu transform,

AIP Conf. Proc., 1637 (2014), 1426–1432. 1
[17] M. Khan, M. A. Gondal, I. Hussain, S. Karimi Vanani, A new comparative study between homotopy analysis transform

method and homotopy perturbation transform method on semi infinite domain, Math. Comput. Modelling, 55 (2012),
1143–1150. 1, 3

[18] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science
B.V., Amsterdam, (2006). 1

[19] S. Kumar, D. Kumar, J. Singh, Fractional modelling arising in unidirectional propagation of long waves in dispersive
media, Adv. Nonlinear Anal., 5 (2016), 383–394. 1, 3
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