ANALYTIC TENSOR AND ITS GENERALIZATION
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(Received September 20, 1959)

In our previous papers [7], [8],” the notion of almost-analytic vector was
introduced in certain almost-Hermitian spaces. In this paper we shall deal
with tensors and obtain the notion of @®-tensors which contains, as special
cases, the one of analytic tensors and decomposable tensors.

1. Let us consider an n-dimensional space? which admits a tensor field
@ of type (1,1). Let &, = &, ...;, ="/ be a tensor of type (g,p). If it
commutes with @;’, then we shall say that £, is pure with respect to the
corrresponding indices, namely it is pure with respect to #; and j,, if

¢)) gip---r---h“) @, = Epl e,

and pure with respect to 7, and 7, if
j _
51p"'7""ik""'l( )¢7,‘kr = Eip"'l'k'-'r"'ix(j)¢ihr'

If £, anti-commutes with @, then we shall say that it is hybrid with
respect to the corresponding indices. Thus if

(2) f;,..‘,...;l(")¢¢,cr = — 'E(i)jq”'r"'jl¢rjk,

for example, holds good, thea it is hybrid with respect to #; and j, &, is
called pure (resp. hybrid) if it is pure (resp. hybrid) with respect to all its
indices.

@/ itself and 8, are examples of the pure tensor. If @, is a regular
tensor i.e. det(@,’) = 0, then thz tensor whose components are given by the
elements of the inverse matrix of (@,’) is also pure.

LEMMA 1. If &4, is pure (hybrid) with respect to some indices, then
*
So is E(i)(j) = Eip-‘-igr'(j)¢[1,r.

We shall prove only the cass when & is pure with respect to 7, and
7y (k =+ 1). In fact, we have

*

J — (€] r Dy Ty b
‘E«',,vnrn-i,() @, = &ip"-r---igt )¢ik P, = ‘Epn-i,,-ui,r PPy

1) The number in b:ackets refers to the bibliography at the end of the paper.

2) We shall mean by a space a differentiable manifold of class C*, and denote by xt
its local coordinates. Indices run over 1, 2, - n.
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t

*
= Eipn -i,.,LU) PDiy - qg. €. d

*
LEMMA 2. If a skew-symmetric tensor €y is pure, then & = &) .10 @1,
is also a skew-symmetric pure tensor.

In fact, gm is pure by virtue of Lemma 1. It is evident that it is skew-
symmetric with respect to 7; and 7, (k,h==1). For £==1, we have
zip"'ik""'l = fip...;k...i,_,,.qJ;l’ = g,p...,....,-lq;%’
=(—1)E 4= (— DT Elﬁp---i;---hik
= —Eip...;l...;,,-k. q. e. d.

If £, =g, """ is a pure tensor of type (¢ + 1,p), then wu&,' is
also pure for a (covariant) vector #;. Generalizing this fact, we have easily

LEMMA 3. Let & " and nw ™ be pure tensors of type (q,p + 1) and
(¢'+ 1,9) respectively. Then &y Pna)® is also a pure tensor of type (q +
q” P + P’), Provided that p+P, =‘F0 or q + q' #_—_ O'

A tensor @,’ is called an almost-product structure, if it satisfies @, ’@,’ =
P p PP
87, and is called an almost-complex structure, if it satisfies @, @,” =— &/,

(1), [2], [4], [12]

In these cases, we can verify the following lemmas.

LEMMA 4. Let @/ be a tensor such that @, @’ = &8,.Y Then we have
¢ = 0 for a hybrid tensor &/ .

LEMMA 5. Let @, be a tensor such that @, @’ = &8/°. If &’ (EV) is
pure and 7, (n;;) is hybrid, then we have

&7 =0, (€7 ni5 = 0).

LEMMA 6. Let @, be a regular tensor, i.e. rank (@) = n. If & (&)
is hybrid, then it is a zero tensor.

In fact, we have
flm ¢;’r = - ‘Er}'i ¢kr = 57@7- ¢ir = - gmt ‘Pjrr
from which we find &, = 0. q. e d.

Now consider an almost-complex structure @,’, then if we choose a suit-
able frame at a point, @;” has the following components at the point.

pf=i8? PP =—1i8:°, 9P = @.f =02

3) In this paper, by & we shall always mean + 1.
4) Indices @,8, run over 1,...,m(=n/2) and a = m + a.
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With respect to this frame, the equation (1) is equivalent to the equ-
ations
Et'p”-ak---i{,q”"?"-.”'h: 0, ‘gip---Rk“-i,j’“”'sh.”h =0,
and the equation (2) is equivalent to
Eipoooapr PN =0, E e B =,
In this sense we have used the terminologies “pure” and “hybrid” [ 6], [11].

2. An almost-Hermitian space admits, by definition, a Riemannian metric
tensor g;; and an almost-complex structure @, such that g,,¢, p," = Jii
A Kibhlerian space is an almost-Hermitian one such that the equation

3) Vt¢zn =0
is valid, where vy, denotes the operator of the covariant derivative with
respect to the Christoffel’s symbol {;lz}

We shall devote this section to a Kihlerian space.

A pure tensor &, is called analytic [67], if its covariant derivative
v.é” is also pure, i.e. it satisfies
(4) 2 V¢ = @V i P,
or ¢lr Vré(i)(n — ¢r}'xvlg([)jq“.}gr'

In fact, the equation (4) is equivalent to the following one with respsct to
complex coordinates (27, 2%):

o _ o _® _
(5) P §ayP =0, Py ¢a = 0.

The definition (4) of the analytic tensor contains the Kihlerian metric
in appearence, but (5) is independent to the metric. Hence it is natural to
ask if the notion of the analytic tensor is defined in a complex manifold
with respect to real coordinates.

In this point of view, we shall attempt to eliminate the Christoffel’s
symbols in (4) by making use of (3).

If we write down (4) explicitly, we hvae

- Q. » -
r | g g 12
P La,- En" + 2 ii;} Egyar=tn — 37 Jrik} &ip”-z-”il(j)J

k=1 k=1

q .
(6) = ¢i1t [8‘ &[p-..iz 4 Z «lz];} ,g‘n,_.l.zlf.,-"r---h
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where we have put 9, = 9/0x.
On the other hand, on taking account of (3), we have

8@/" - at¢tjk = {{;J" ¢Lr - {g;i} ¢Lr’
t r z »
84’] ¢tt - 8L¢51L = {lr} Piy — {ilr} P>

t __ |7 t t r
aikz‘]’t - {hl} Pr {Zkr} P -

If we substitute these equations into (6) and take account of the purity of
£,Y, then we find

* »
¢lr a,. &(i)('i) - al f(i)(f) + Z (8,-,‘ ¢Lr)§i“. RPN .,;10)
(7) k1

q
+ Z (al q),.”‘ —_ ar¢tj’c) E(:‘,)J"- ceree 0,
k=1
*
where &,,"” is defined by

*
(8) £, = @ Eipoonnn = @ VE Jor,

3. As we have known in the preceding section, the equation (7) which
defines the analytic tensor in a Kihlerian space does not contain the Kih-
lerian metric. Following to this fact, we shall introduce an operator in a
space which admits a tensor field of typz (1, 1). The operator will produce
from a pure tensor of type (¢,2) a new tensor of type (g, + 1).

Let @, be a tensor of type (1,1) and &, a pure tensor of type (g, P)-
Now we define an operator @ by

* p
(9) P, E(I_)(f) — ¢lr o, ‘f(i)m -2 E(l)(l) + Z(ai"q)/)&p.__T“_“(I)
k=1

q
+ Z(al ¢T’k - a;. (ptjk) E(i)"q""""h,
k=1

where §<i)<-'> is given by (8).

In the rest of the present section, we shall show that ®£&u" is a tensor,
if &, is pure.

Let T be an affine connection, S,* its torsion tensor, ie. Sy" = (1/2)
(I, — T and by v, we shall denote the operator of covariant derivative with
respect to I™. Hence if v’ is a vector field, then its covariant derivative is
given by v’ = 0, v' + T .

If we represent (9) by terms of covariant derivatives, @, &, is the sum
of the following five terms ay,......, as:
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— t — 12 B R L 3
a, =@, o fmm =@, [Vté(i)(n — 2T E(t) g4 El"ﬁik E:‘,,~~-r-~-u())],

*

* * * .
ay, = — alf(“(h =— v, E(i)(h + 211&». &(qu...t...h _ E Pfikéi,,---z---nm,
a; = E (ai/c ¢LT) Eip"'r"'i](j) = 2 [VL'A- ¢l7‘ — I‘?kt ¢LL + lecl ¢Lr] Ei‘,"'T"'ilU);

a, = %(9, ?’r',k) “;:(i)"“mr"'j1 =2 [v. ‘Pr"k - F{Lk ¢r: + T, ‘Pt"k] ‘E(i)"q'

ceresljl

3

a; =— (ar ¢ij) E(l),lq..‘r-.-h — E[._ \va ‘PL"’ + 1-!.7{;6 ‘Pzt _ I‘,., ¢£.1,‘] E((])jQ.,.r...jl.

If we denote the X-th term of a, by a,, the following relations hold.

a, + a5, = 2 2 Srtjk wlc E(i)jq...r...jl,

s+ @y =258 @l Eror )

a3 + as; =228, @t Eyla

Qyy T @y =0,

Qy3 + Az = 2 ES;AJI!PLT & ..4r...,-](j).
Thus we find that

*
) — r i
o, ‘EU) )= ?, Vr g(i)() —Vu E(i)w

(10) + Z {Vik ¢Lr + 2 (Siut ‘Ptr - Sikzr¢zt)}":'i,,---r-~-11“)

k=1

q
+ Z §Vz ‘7’7-"" — V- ¢tjk + 2 (S”z ¢zjk - Str,k ?’zt)}g(i)"l"'r"'h,
k=1

which shows that ®, £, is a tensor.

4. In this section, we shall represent (9) in different forms.
notation in § 3, we have

(11) a3 =320 &0 =@ i by,

*
(12) a,=q2 &y — =2 ‘Pr"k o f(i)J"-“T”"h-

Now if we put

k=1

Hence if & is a pure tensor of type (0, ), it holds that

Using the
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*
D, E(i) = ‘7)[7 O<r &u‘)> — O« E(i)>-
In the next place, if we substitute (12) into (13), then we get

* *
, )
D, £ = @ ki — Dk + ¢, En?

Hence if &7 is a pure tensor of type (g,0), then we have

(Dl &(J')= ¢lrar E(}) + (q — 1) aL E(J)
q

— @D g+ g B b,

k=1
from which, in the case when ¢ = 1, we find
Q& =—(0, ¢Lj - ¢tr 0.8 + ¢rj o, g) = éf' q’Lj’
where %j denotes the operator of Lie derivative with respect to &’.

If &’ is a pure tensor of type (1, 1), then we have from (9)
D& = ¢tr 0, & — 90,8 + &’ 0 P — & o, e/,

1,2

which is nothing but > ,’ in Nijenhuis’ paper [3].

In particular, we have ®,8§,’ = 0.

213

5. Let &, =&,,...,' and 7./ = 74”9 "™ be pure tensors of type
(g, + 1) and type (¢" + 1, ") respectively. Then we shall verify the following

formula :
(14) ®, ()" ")) = (P E0)") Ny + &y Py 0y P,
if p+p ==0o0rqg+q ==0.

In fact, the left hand side is the sum of the following six terms b&,,

b, = @, 0, €y 1y ™),

*
— £ o _ W X 1o f) i t
by =— 1wy 0, & £ oM + Ewna6 "0, .,

by =20, @) &yt 0y,
b, = z (aak ¢Lr) Ef(i)(” Nay’ --p-- 'alr(b):
by = 2(0, @, — 0, /) €7 ) s
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—_— b I/ th.7.eor...b
be = 2(0, @,* — 0, @) &y meay™ T,

from which we can easily obtain (14).

If a pure tensor (or a vecter) & satisfies @, £ = 0, then we shall say that
it is a ®-tensor (or ®-vector). If the tensor @,’ is a complex structure, then
a ®-tensor is an analytic tensor. If @,” is a product structure ie. an almost-
product structure such that its Nijenhuis’ tensor vanishes, then a ®-tensor is
decomposable.

From (14) we have

THEOREM 1. If &w and na'® are ®-tensors, then so is &' ey
provided that it is not a scalar.

6. Let us consider two Riemannian metrics ¢;; and ¢@;; which are not
necessarily positive definite. Putting @, = ;. ¢” we shall introduce the
operator ® which is associated to @/

Since it holds that ¢,.@; = @, = @;; = ¢;,@,, we know that g,, is pure.

*
Taking account of ¢;, = @, we obtain

*
D95 = 90,91 — 995 + (0;92.)9 + (@95 =— 2 @ [} — Lilel,

where {}il, and {}i}, are the Christoffel’s symbols formed by g¢;; and @
respectively. Thus we have

THEOREM 2. Let g, and @; be two Riemannian metrics. Then a
necessary and sufficient condition in order that the Christoffel’s symbols
coincide with each other is that ®,9;, = 0, where ® is the operalor associ-
ated to @ = @,.9"°.

In the rest of the present section, we shall assume that ¢;, is a ®-tensor,
and denote by vy; the operator of the Riemannian covariant derivative with
respect to ¢;. From Theorem 2, we know that &®,g; = 0 is equivalent to

Vi@ = 0.
Let R,;" and S;;" be the Riemannian curvature tensors formed by g,
and @,, respectively, then we have Ry;" = S;;" by means of the assumption.

Applying the Ricci’s identity to @, we get R;," @, = Ry @,", which
shows that R,;" is pure with respect to 7 and h. Hence Ry, = Ry g, is
pure with respect to % and j and also pure with respect to 7 and A.

On the other hand, S;,," being the Riemannian curvature tensor formed
by @, if we put Tij, = Sk’ @, then we have

(15) Tkjih = Tthkj-
Since it hOldS that Tkjih = Rkjir¢nr and Tihkj = erih ¢jr, the equation (15)
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becomes Ryj, @, = Riyi:@;, which shows that Ry, is pure with respect to j
and h. Therefore Ry, is pure.
Since we have

D, Ry = @, Vr Rijin —V, I*zkjih
=— @/ (Vi Ryyin + V; Rouin) — @4V, R,
== @1 (Vs Rjir + vy Rixir + Vi Riyir) = 0,
V. Ry is also pure.

LEMMA 7. Let us assume that ®,9;,, = 0. If a tensor, say T, and its
covariant derivative are pure, then we have

veT=d9,T.
PROOF. Let T be a tensor of type (1,1), for example. Then we have

. . ., . x
voT1T’ - oVvT’ =/ (vv, —v,.v) TS — (v, — vv) T/ .
On the other hand, it holds that

* *

*
Vv —wvw)T/ =R, TV — R, T/
=R, o/ T — Ry 9" T/
=R,’o T — R, ¢/ T/
= @/ (v.v, — v,V T7.
From these equations, we find that the lemma is true. q. e. d.

If we apply Lemma 7 to our R,;", then we have ®, v, Ry, = 0, which
shows that v,v, Ry;n is pure. Thus we get

THEOREM 3. Let 9;; and @j;; be two Riemannian metrics and ® be
the operator associated to @, = @,,9". If ®,9;, = 0 is valid, then Ry, and
its successive covariant derivatives are pure.

Let @, be an almost-product structure. then there exists a Riemannian
metric ¢;; such that ¢,,9,/®," = 9. Then we know that the tensor @; = @;
¢, is also a Riemannian metric. Thus theorems in this section are applicable
to this case.

7. In this section we shall assume that @, @, = &8,
If we put ®,@,’ = N/, then it holds that

Ny’ = @09 + (@i )p,” + (Qup,’ — 2,97) @i
= ¢lr(ar¢ij - aiq)w‘j) - q’ir(ar¢lj - at¢7'j),
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which is nothing but the Nijenhuis’ tensor [1], [3], [4], [10], [11], [12].
It satisfies the equations

Nlij = Nuj, Ntrj¢ir - Nur¢rj-

The last equation shows that N, is hybrid with respect to i and j, hence
taking account of the skew-symmetricity of N/, it is pure with respect to i
and /. Thus we get

Nlrj¢ir = N1'ij¢lr9 Nlrr = 0’ Arlr‘¢tr = 0’

by virtue of Lemma 4 and Lemma 5.
Now we introduce an affine connection I'j; such that

Vz¢ij =0, Sjih =— (&/8) Njih,

where y, denotes the operator of the covariant derivative with respect to I'};
and S;" its torsion tensor.

It is known that there exists such a connection, which will be called the
canonical connection [12].

If we make use of the canonical connection, the equation (10) becomes

x
D¢ =9, v, 8" — v, EnY
(16) o [ BE deiteij i : %)
+ (¢/2) @, [LM& PEah B3 Ny Y J .
k=1 k=1

Making use of the form (16), we shall obtain some formulas on the
operator ®.

The tensor @,’ being pure, if we substitute it in the place of & or # in
(14), then we get the following formulas.

*
(i) b (1 b ()
DY = @,  DEND+ N, EY,

*
W D) r
Q&0 = @) ©EHD+ NG E .

We can see also that

*
® E, D =@l DE 0 4 NIE T g >,

are valid.
In the next place, we shall prove the following formula :

* 1 _
(17) (bz E(i)(h - (pqu)r E(i)(” + Z NLrJI.-E(i),Iq...r-..jl'

k=1
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In fact, we have
: o £ W )
Dl =@/ v, EnV— €V,
* *
+ (&/2) @/ [Z N, &pleth — N EL ]

* P
=—&v. & + 9/ v, €Y

= ¢LT D, f(i)“) + S N, 'f(:,)""'“r'"”. q. e. d.

Especially, for a pure tensor &;, of type (0, p), we have

(18) D, 20‘) =— @, ®, &,
from which it holds, taking account of (14),
(19) N &y + @/ @ &y =— @, D, iy,

From (18) we have

THEOREM 4. Let @, satisfies @, @, = &8,/ If &y is a D-tensor, then
so is g(,,).
[n this case, we know by virtue of (19) that the relation

Ny &y =0

holds good.
Next we shall generalize the fact that ®,¢;” = N,;’ is hybrid with respect
to / and j.

THEOREM 5. Let @, satisfies @ @,’ = &E8/. If &, is a pure tensor of
type (1, p), then ® £’ is hybrid with respect to 1 and j.

In fact, we have by virtue of (17)
* j r j j r
i’ =— P/ ®,&u + N,EG
On the other hand, taking account of (14), ws find that
* s r - : r . ”
L0’ = @, (Eip,’) = @,/ DEw" + N, &
From these equations we obtain the theorem. q. e. d.

If we define A,;" = N,“N,’N,,", then it is evidently a pure tensor of
type (1,4), hence ®,A,;" is a tensor which is hybrid with respect to ¢ and
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h. It depends only on @,” and contains its second derivatives. From Lemma
4, we have ®, A,;, = 0, which may be a new identity on ¢,’.

We denote by C the contraction’s operator, i. e., if C means the contra-
ction with respect to 7, and j,, for example, then C§; "= & ....,/« % If &,
is a pure tensor of type (g, p), then the tensor C &g, “is also pure if it is not
a scalar. Making use of (16), we can verify the following relation, after some
calculations.

(20) Cd E," =@, CEL.

In (20), we assumed that C&,“ is not a scalar and C operates on the same
indices of both sides.
From (20) we have

THEOREM 6. Let @, satisfies @@, = E8]. If £yPis a ®-iensor, then
so is CE,L" provided that it is not a scalar.

Let £, and 75(;” be pure tensors of type (q,p) and type (p, q) respect-
ively. Then we have

*
’7(.1>m d, E(i)u) = "lu)(” <PLT Vr fmm - "7(1)“0 \ ‘Emm,
because we have from Lemma 4 and the hybridity of N7,

) —

¢ )
1V iy Eip---l-“iI Ny~ =

In the same manner, we get
*
W B _ g 7 h_ g D g
£ @1y = EuY @ Ve 10" — €0 vin

£ 3
T @ » 0
= £, @/ v, 15" — En vinn .

Hence we obtain

*
(21) En D0y, + 9y @ EL = @0, Eny i) — 2En 1,y ®).

8. Let us consider an almost-Hermitian space M whose positive definite
Riemannian metric is ¢;; and the almost-complex structure is ¢,’. By defini-
tion these tensors satisfy ¢,, @;/@;" = gj, from which ¢@; = @,/ g,; is skew-
symmetric. Now we assume that v, @, = 0, where v, denotes the operator
of the Riemannian covariant derivative. The following lemma is known [ 7],
[8].

LEMMA 8. Let M be a compact almost-Hermitian space satisfying
V. @ = 0. If scalar functions f and g satisfy O,f = @ 0,9, then they are
both constant over M.

From this lemma and (21) we have
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THEOREM 7. Let M be a compact almost-Hermitian space satisfying
V.@, = 0. If EnPVand 1," are ®-tensors of type (q,p) and of type (p,q)
respectively, then the inner product €, nu)\" is constant.

COROLLARY. Let M be a compact almost-Hermitian space satisfying
Vr¢ir = 0. If‘E(I)U) is a O-tensor Of type (q, P) and v' (a =1,...... ,P)’ 51 (a =1,

constant.

9. Let us consider a Kihlerian space M with a positive definite metric.
We shall make use of the notation in § 2.
An analytic tensor £y’ is by definition a pure tensor such that v, &,
is also pure.
Now we define, for a pure tensor &,
ak(,-)“)( £)= V& E(t)w + ¢kl ¢Llr A\ E"p--wer”’
=vén? + @ o v, Ep

avy”? (€)= 0 is equivalent to that the pure tensor £, is analytic.
On taking account of that the Riemannian curvature tensor R,;" and Ricci
tensor R;, of a Kihlerian space satisfy

- (1/2) g’” R“‘h = R£r¢rh = R1h¢ir’
we can easily obtain
Vrar(i)m — Vrvrg(l)(}) + erl,. g(‘)!q...p...h . Eler‘Elp-nr--'llU)’
where V" = ¢"'v,. Hence if &, is analytic, then it satisfies

VTVT g(l)(h + 2 Rr"kg(i)jq. ST d 2 Rtkrf,p. PPN ‘llu) = 0.

Putting &9y, = ¢»'> " g"" gipg ... 9sm E™ etc., we have, after some calcul-
ations,
V(@€ y) = (Va,u?) £V + (1/2) a® (€),
where
(22) a*(€) = a,Va "y,

Thus, by Green’s theorem, we have

THEOREM 8.” In a compact Kdihlerian space M, the integral formula

5) For a skew-symmetric contravariant pure tensor, see [6].
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- a )
-/:r I,(VT v & + ZR,rjv{:(i)mmr.”ll - ZR krfiu'“r'--ixm) &,
: k=1

+ (/D a(E) |de=0

is valid for a pure tensor &.'”, where do is the volume element of M
and a* (&) is given by (22).

THEOREM 9. In a compact Kihlerian space, a necessary and sufficient
condition for a pure tensor £, to be analytic is that it satisfies

q »
VTVT E(L)U) + Z R,.jk E(;)jq.“r.”h - ZR[,I_T &,p...,....[l(j) = 0.
k=1 k=1
On the other hand, in a compact orientable Riemannian space, a nece-
ssary and sufficient condition for a skew-symmetic tensor &;, to be harmonic
is that [13]

VT VT g(i) - Z Rrkr g"p"'T"'il + ZR[,/ %rs EIp"'?""S"'h:O-

>k

Let &, be a skew-symmetric pure tensor, then

by vritue of Lemma 5 and the hybridity of R, with respect to r and s.
Thus we have

COROLLARY [13]. In a compact Kihlerian space, a necessary and sufficient
condition for a skew-symmetric pure tensor to be analytic is that it is har-
monic.

*
If £, is skew-symmetric pure tensor, then so is &, by virtue of Lemma
2. Hence taking account of Theorem 4, in a compact Kihlerian space, if a

*
pure tensor £, is harmonic, then so is &g,.
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