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In our previous papers [7], [8], 1) the notion of almost-analytic vector was 
introduced in certain almost-Hermitian spaces. In this paper we shall deal 
with tensors and obtain the notion of tensors which contains, as special

cases, the one of analytic tensors and decomposable tensors. 

1. Let us consider an n-dimensional space 2 which admits a tensor field

q of type (1, 1). Let-=jp. jl-j1 be a tensor of type (q, p). If it
commutes with q. then we shall say that is pure with respect to the
corrresponding indices, namely it is pure with respect to ik and jh, if

(1) (I) r f...r...ji7

and pure with respect to ik and if

(j) (j)r
p.....jk.jl mTk-bp...jk........ilzh

If e(1)(j) anti-commutes with q ' then we shall say that it is hybrid with

respect to the corresponding indices. Thus if 

(2) ξip...r...1(h)γ=-ξ(i)jqj19)

for example, holds good, then it is hybrid with respect toik and jh.(i)(j) is
called pure (resp. hybrid) if it is pure (resp. hybrid) with respect to all its 
indices.

CpZ' itself and i' are examples of the pure tensor. If q ' is a regular
tensor i. e. det(Z') 0, then the tensor whose components are given by the
elements of the inverse matrix of (q J) is also pure. 

LEMMA 1. If j)() is pure (hybrid) with respect to some indices, then 

is e) e1...

We shall prove only the case when e(I)(j) is pure with respect to it and
ik (k 81). In fact, we have

*(j)r- (I)r1 (5)mrmti
p......21 jl p..kg. TtTii

1) The number in b_ackets refers to the bibliography at the end of the paper.

2) We shall mean by a space a differentiable manifold of class C', and denote by xj
its local coordinates. Indices run over 1, 2, n. 
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=ξi
p…i2l(j)ψi1t

LEMMA 2. If a skew-symmetric tensor c) is pure, then ct) ip...

is also a skew-symmetric pure tensor. 

In fact, is pure by virtue of Lemma 1. It is evident that it is skew-
symmetric with respect to ik and ih (k, h 1). For k=f=1, we have

i1-ip...ik...i, i9. i1r-i, p...r..1qikip..ik..

x1, r1k1A(1) tptk11)i(0) Zp..tk1k

ξp…i1…i2ik q. e. d.

If (j)<<))=is a pure tensor of type (q+1, p), then ut (i) is
also pure for a (covariant) vector ui. Generalizing this fact, we have easily

LEMMA 3. Let e (i)and be pure tensors of type (q, p+1) and
(q'+1, p') respectively. Then ci)c1)a)1) is also a pure tensor of type (q+
q', p+p'), provided that p+p'+0 or q 4-q'+0.

A tensor q ' is called an almost-product structure, if it satisfies q q 1. 5
S, and is called an almost-complex structure, if it satisfies mir-
[1], [2], [4], [12].

In these cases, we can verify the following lemmas. 

LEMMA 4. Let qZ be a tensor such that fir 9i.3) Then we have
err=0 for a hybrid tensor'.

LEMMA 5. Let qZ be a tensor such that car cpr ESA'. If (c') is
pure and j(i j) is hybrid, then we have

0, (Tij 0).

LEMMA 6. Let q' be a regular tensor, i. e. rank (2)=n. If (ho)
is hybrid, then it is a zero tensor.

In fact, we have

t, ri (j-rj Pk kjr p=-

from which we findkjZ=0. q. e. d.

Now consider an almost-complex structure q, then if we choose a suit-

able frame at a point, i' has the following components at the point.

=Z&, a-Z Sad, a=0.4)

3) In this paper, by F we shall always mean t1.
4) Indices a, 3, run over 1,..., m(= n/2) and a=m+a.
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With respect to this frame, the equation (1) is equivalent to the equ-
ations

rp..ak.1, gyp..aA..jl L,

and the equation (2) is equivalent to 

gyp..k. 1 O, Gp...ak...flq. 0.

In this sense we have used the terminologies "pure" and "hybrid" [6], [11].

2. An almost-Hermitian space admits, by definition, a Riemannian metric
tensor g; and an almost-complex structure q' such that grsq;' q s=g; i

A Kahlerian space is an almost-Hermitian one such that the equation

(3)=0

is valid, where pl denotes the operator of the covariant derivative with

respect to the Christoffel's symbol h

We shall devote this section to a Kahlerian space. 
A pure tensor (;)cj) is called analytic [6], if its covariant derivative 

ple(1)(0) is also pure, i. e. it satisfies 

(4) φrl▽rξi(j)=φi1γ ▽zξipj

or 'PLr,. Jivl tf

In fact, the equation (4) is equivalent to the following one with respect to 
complex coordinates (z, za):

(5) a (a)cg)-0, acs)=0.a
azeca>

The definition (4) of the analytic tensor contains the Kahlerian metric 
in appearence, but (5) is independent to the metric. Hence it is natural to 
ask if the notion of the analytic tensor is defined in a complex manifold 
with respect to real coordinates. 

In this point of view, we shall attempt to eliminate the Christoffel's 
symbols in (4) by making use of (3). 

If we write down (4) explicitly, we hvae 
qp-,

r-

rl;k=1 k=1

(6.t.U) e'...12, L..r...ilai. 2lr

p. 1k=1
r c) -rci)i

t
k=2k
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where we have put ar=a/axr.

On the other hand, on taking account of (3), we have 

-a l1=kllr-kfTlrPtrr lr

a..trtrgel-al X11=lr qI {ir}1
aik. TItr rt-t-7" lr.

1lkl lzkr

If we substitute these equations into (6) and take account of the purity of
e(1)cf), then we find

(7)

# p
r (I) r C1)
1a, (f)-ai e(i)(J)+(aik l).........it(7) 

k=1

+..o(al p, fk-arcplf k) e(i)l.r...fl
k=1

where (;) is defined by

(8) (i)(i) qll. i....i (1) P 1ifq-....,f2r.r (i)

3. As we have known in the preceding section, the equation (7) which
defines the analytic tensor in a Kahlerian space does not contain the Kah-
lerian metric. Following to this fact, we shall introduce an operator in a
space which admits a tensor field of type (1, 1). The operator will produce 

from a pure tensor of type (q, p) a new tensor of type (q, p+1).
Let q- be a tensor of type (l, 1) and e(I)151 a pure tensor of type (q, p).

Now we define an operator P by 

(9)

# p

1e,)(i) a,a1(i)(1)-+-aikPlrl ip...,....lci)

+(a1qrkar 71fk) (0)5q.....i1
k=]

where (/)(1) is given by (8).
In the rest of the present section, we shall show that t1e(i)c. J) is a tensor,

if e(l)f is pure.
Let F be an affine connection, S, t its torsion tensor, i. e. S=(1/2)

(I-) and by pk we shall denote the operator of covariant derivative with
respect to I, . Hence if v is a vector field, then its covariant derivative is
given by Vkv=akv+rkvr.

If we represent (9) by terms of covariant derivatives, cT e(l) is the sum
of the following five terms al,......,a5:
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a1= lat(i)O it [Vt (0)(J)-rJk '(i). iq-}-rE;,..1

a2=-at (i)(J)/t($))+I'(i)jqt....j1Pti kip...t...il(j)

a=(airei(J) [c'.....rrrt+mr (0)3l) p.r.i] ilit, il........il

a4-(aii) (i)q..r...ii=[Vl cp Jk-FJk qjt+hlr t'Pt] e(z) iq...r..jllrrItrk,

a5=-(ar cptjk) e(0) in...r..jl=[-yrtjk+, rpltl.t ptik] (i1)jq..r...i
If we denote the X-th term of a, by a,, the following relations hold.

a12+a52=2 SrtJ Jlt eq...r...j5,

a13+a32-2 Stikr (J)
l1))) it

a43+a53=2 Slrt Pt5h C(I)..r

a22+a42=0,

a23-a33=2 Sih. ltr(i)otip...r...i1

Thus we find that

C(3) r(f) (j)

(10) +Vkr+2 (S'klt tr-Siktrqlt) (3)Tl Tt ip...r...l1

k=1

G, k Strfk q,lt) (i)iq...r...JI+{v1 Trfk Vrp/ic+2 (Strt q
k=I

which shows that ct C(f)c. t) is a tensor.

4. In this section, we shall represent (9) in different forms. Using the
notation in+3, we have

(11) *(J) r (i))11) a3=(ai1iu.taiip...r...15

(12) a4=q al C(i)(i)-El C(i)5q...r....i1.

Now if we put

p(i) (j)(na<l (i)>=al (1)-ai Cip...l...it
k=1

then, substituting (11) into (9), we find that 

* q

(13) C(i)(i) lr a<r C(i, >(J) a<i (i)>(i)+(al Prjk-a, q i!.t)50...r...J
k=1

FIence if C(;) is a pure tensor of type (0, p), it holds that
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* 1I (i) q 1 ac,.ci)>-a<1 (i)>.

In the next place, if we substitute (12) into (13), then we get

(J) ra (0)-aE (J)+a (J)

1k
(i)f9.....ii)((1)fq..,...J1a lJk+o1

k-1

Hence if is a pure tensor of type (q, 0), then we have 

1 (J)=Pr.+.(q-1) a1 (i)

1Jq...r....ill(q..,J1 71Jk+pJaar r
k=1

from which, in the case when q=1, we find 

7
r7r=JJr arra+

where denotes the operator of Lie derivative with respect to &.

If is a pure tensor of type (1, 1), then we have from (9) 

=lr a,. it mra1 eir+er, aT lr fir a,. q13 

1, 2

which is nothing but in Nijenhuis' paper [3]. 

In particular, we have 1b=0.

5(0)=(J)t(r)tbq'..'bl be pure tensors of typeLett(1) 1p...,1 and (a)-ha) 
(q, p+1) and type (q'+1, p') respectively. Then we shall verify the following 
formula:

(14) ((J) t(b)) ((J)) 1(b)et(I) 1 7(a)f(r,)

if p+p'+0 or q+q'+0.
In fact, the left hand side is the sum of the following six terms b1,

r (f) t(b)

…,b6.

b1=P1a,. 1)(a)),

t(r,*(J) (J)t (b) (J)r(b) 1b2=- 1)(a) a1 et(1)-t(1) al7)(a)+t(1))(a) a1
r(J) t(n)b3=(aik (P1) e1...r...it 17(a)
r(1) 1(b)

bq=(aak-1) et(i)1ap'...r...al

b5=(a1-rJk ar q ik) 1(1) {4...r...J2(a)t(b)
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bs=(a1, arqt) el(0)I(a)

from which we can easily obtain (14). 
If a pure tensor (or a vecter) satisfies Jt=0, then we shall say that

it is a c-tensor (or ci)-vector). If the tensor q is a complex structure, then
a c-tensor is an analytic tensor. If q is a product structure i. e. an almost

product structure such that its Nijenhuis' tensor vanishes, then a c-tensor is 
decomposable.

From (14) we have 

THEOREM 1. Ifand l(a)tcv) are -tensors, then so is 7J(a) 

provided that it is not a scalar. 

6. Let us consider two Riemannian metrics g;s and 'p, which are not 
necessarily positive definite. Putting q=i,. grs we shall introduce the
operator ci) which is associated to ct.

Since it holds that g, jp;= we know that is pure. 

* Taking account of g; j=q, we obtain

tgs 7lrar gjatgjZ+(aj)g t rrZ+(1r)gja-2ltLjt fg

where {jt} 9 and {J} are the Christoffel's symbols formed by gi and q-

respectively. Thus we have

THEOREM 2. Let g, and p; be two Riemannian metrics. Then a
necessa ry and sufficient condition in order that the Christoffil's symbols
coincide with each other is that ci)tg,=0, where i) is the operator associ-
ated to q=mZrgr,

In the rest of the present section, we shall assume that g; is ai)-tensor,
and denote by pi the operator of the Riemannian covariant derivative with

respect to g;. From Theorem 2, we know that citg;=0 is equivalent to
=0.

Let Rkand SkL be the Riemannian curvature tensors formed by gj
and cp; respectively, then we have RkiL=Skby means of the assumption.

Applying the Ricci's identity to L we get R; 'Lr=RkjZrh which

shows that RkjL is pure with respect to i and h. Hence Rkjih=Rk; rg,. his

pure with respect to k and j and also pure with respect to i and h.
On the other hand, Skzh being the Riemannian curvature tensor formed

by q, if we put Tkjth=SkjZr'Prh, then we have

(15) Tk, Zr=TZhkj

Since it holds that Tkjzh=Rk;jrphr and Tihkj=Rkrjh q, T, the equation (15)
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becomes q-Rkrihcojr, which shows that Rkjih is pure with respect to j
and h. Therefore Rkjih is pure. 

Since we have 

tRkjih=lr Vr Rkjih VtRkjih

mGr (Vk Rkrih+.V, Rkkih) ThrVl Rkjir
T

r=-Ph (Vk Rjttr+"Vs Rkjir+VtRkjir)=0,

Vl Rkjih is also pure. 

LEMMA 7. Let us assume that tgt=0. If a tensor, say T, and its
covariant derivative are pure, then we have 

VzIT=1VtT.

PROOF. Let T be a tensor of type (1, 1), for example. Then we have

VztTi-1VtTi=ctr(VtVr-VrVt)-(VtVt-VIVt) Ti.
On the other hand, it holds that 

(VtVt-V1V1)Ti=Rtcr Ti-Rtki Tr
jr Ts R

tttr Pr' Ts;=Rttr, i-

-Rt rsj c0tr Tis-Rtris cr Ts'

=cotr(VtVr-VrVt)Ti'.

From these equations, we find that the lemma is true. q. e. d.

If we apply Lemma 7 to our Rk;th, then we have Jt Vt Rkjih=0, which
shows that Vtpt Rkjih is pure. Thus we get 

THEOREM 3. Let and ojt be two Riemannian metrics and 1 be 

the operator associated to cpt'=coirft If cg=0 is valid, then Rkjih, and
its successive covariant derivatives are pure. 

Let cot' b an almost-product structure. then there exists a Riemannian
metric such that grsrqts=gt. Then we know that the tensor cThi=; r

g, t is also a Riemannian metric. Thus theorems in this section are applicable
to this case.

7. In this section we shall assume that cot' con'
lf we put ctcoi'=Nkt', then it holds that 

Nti'=cot'arci;+(10)qi+(akmr'-arcok') cir

=cotr(a, coij-ico,)-coir(ai. cotja-
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which is nothing but the Nijenhuis' tensor [1], [3], [4], [10], [11], [12].
It satisfies the equations

Nti'=Nil', NtrJgir-Nlirr

The last equation shows that Nti' is hybrid with respect to i and j, hence
taking account of the skew-symmetricity of N11', it is pure with respect to i
and 1. Thus we get

N1, q=N, 1r, N1, =0, Ntrrq 1=0,

by virtue of Lemma 4 and Lemma 5.
Now we introduce an affine connection hj such that 

 j S1L (/8) N 11,

where pt denotes the operator of the covariant derivative with respect to h1
and S its torsion tensor.

It is known that there exists such a connection, which will be called the
canonical connection [12].

If we make use of the canonical connection, the equation (10) becomes

*(J)r (f) (J)1
i (1)-Pt Qr (1)-Vt (1)

(16) 0+(2)r [N 1J/1.....i1i. N', (J)
x=1 X=1

Making use of the form (16), we shall obtain some formulas on the
operator cIi.

The tensor 'pi' being pure, if we substitute it in the place of or in

(14), then we get the following formulas. 

* b(J) b (1). N b r(J)
1(1)-r1(1) 1r (1)

(f) r (J)+Nr (#)
I0(2)-TaL r(1) lar(1)

We can see also that

t (1)(J)=J, (1)Jq...r...u+Nt, J(1)Jq...r...ii, if q1,

(J) rL) p>1

are valid.

In the next place, we shall prove the following formula:

*q

(17) t (L)(I)=Ptr (1)(J)+Ntr)h. (1)iq...r...JlY

k.1
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In fact, we have 

e(;) (J) vl (l)(1)=r

k #

+E/....)r G eci) rk e1..pt....il

=-e(+1r Vr/)

(5 ((5/2) [NIrJ. e(i)Jq...r...JI-

+Nlr (0)q
=-R (i)(1)+Nl rJ, t,). fQ...r..q,e.d.

Especially, for a pure tensor (;) of type (0, p), we have 

(18) mil(+)=-r

from which it holds, taking account of (14), 

(19) N rrctr r(i>+=-Pt c,e (l).

From (18) we have

THEOREM 4. Let p i' satisfies p c,.=(58i. If (0) is a T1-tensor, then

so is j).

In this case, we know by virtue of (19) that the relation 

Nijep.......0

holds good.
Next we shall generalize the fact that Ilp ij=Nli' is hybrid with respect

to l and j.

THEOREM 5. Let q satisfies=E. If is a pure tensor of
type (1, p), then ct l(0)J is hybrid with respect to Z and j.

In fact, we have by virtue of (17)

=(0). 7+Nl,.je(i)r

On the other hand, taking account of (14), ws find that 

1jl(z)=l (e(i)rjr)=rle(i)r+Nlr'e(i)r.

From these equations we obtain the theorem. q. e, d. 

If we define Alkj= NlkaNjyONabh, then it is evidently a pure tensor of
type (1, 4), hence tAlkji'L is a tensor which is hybrid with respect to t and
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h. It depends only on q' and contains its second derivatives. From Lemma
4, we have,. Alk=0, which may be a new identity on 

We denote by C the contraction's operator, i.e., if C means the contra-
ction with respect to it and j1, for example, then C(l)= ln. J2r. If (i)(J'
is a pure tensor of type (q, p), then the tensor C e(I)is also pure if it is not
a scalar. Making use of (16), we can verify the following relation, after some
calculations.

(20) C 1t (a)(t) clC (j)

In (20), we assumed that Ce(l)(a) is not a scalar and C operates on the same
indices of both sides.

From (20) we have

THEOREM 6. Let q.ii' satisfies coircor' 9 Si. If (0)(J)i5 a-tensor, then
so is C(I) (i) provided that it is not a scalar.

Let (i)(i) and (J)(i) be pure tensors of type (q, p) and type (p, q) respect-
ively. Then we have

(i) (J) (I) r(J) (i) (J)71(i)
t(i)-?(J) cot Qr li)7(f)l (l)

because we have from Lemma 4 and the hybridity of Nli', 

 l (t) (I)1V,.
iki,..k...ii

In the same manner, we get

(j) (i) (J) r (i) (J) (i)
(i) l IJ)-(i) cl Vr 17(j) (i) Vl1(1)

(i)(J) colt Qr7(J)(2)-(i)(1) Vl'7(3)(1)

Hence we obtain

(21) (i)(J) (jl(J)(L)+(1)(L)}l(i)(J)-colrar((1)(i)17(i)(J))-al(0)(J)7(3)(L))

8. Let us consider an almost-Hermitian space M whose positive definite 

Riemannian metric is g ji and the almost-complex structure is cm'. By defini-
tion these tensors satisfy grs jr<piS=gi, from which coji = ojr gri is skew-
symmetric. Now we assume that pr coir=0, where pr denotes the operator
of the Riemannian covariant derivative. The following lemma is known [7],

[8J

LEMMA 8. Let M be a compact almost-Hermitian space satisfying

Qr coir=0. If scalar functions f and g satisfy ai f=fir arg, then they are
both constant over M.

From this lemma and (21) we have
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THEOREM 7. Let M be a compact almost-Hermitian space satisfying 

p, qir=0. If (I)and (s)(t) are cJ- tensors of type (q, p) and of type (p, q)
respectively, then the inner product e(t)(0) ncj)(0) is constant.

COROLLARY. Let M be a compact almost-Hermitian space satisfying

prgtr=0. Ifis a J-tensor of type (q, p) and v(a=1,......,p), u (a=1,

......, q) are t-vectors, then the inner product e(I)(0) V ......v1luJQ......i4 is

constant.

9. Let us consider a Kahlerian space M with a positive definite metric.

We shall make use of the notation in+2.
An analytic tensor (t/ is by definition a pure tensor such that pt (t)(0)

is also pure.
Now we define, for a pure tensor 

ak(I)(0)(0)=Vk (t)(j)+P/ T'tlpl E%p..,r(1)

Vk (1)(1)kl Prf1 fq...12r

ak(a)(f)(f)=0 is equivalent to that the pure tensor E(a)(b) is analytic.
On taking account of that the Riemannian curvature tensor Rkjk and Ricci

tensor R, of a Kahlerian space satisfy

(1/2) fat Rct1h=Rirrh=Rncco.,

we can easily obtain

prar(o(f)=prpr(0)(1)+Rrt(0)IQ..,iiR, kr tp...r...

where pr=grpt. Hence ifis analytic, then it satisfies

prp, (0)+Rrlk..11R1; 1..l(0)=0.

Putting (1J)=T/p...gf111 gfghq....gj, hl(l)(etc., we have, after some calcul-

at ions,

pr(a (t)(s)(s)(a))=(pra, c)(f)) (t)+(1/2) a2 (0),

where

22) r a2(0)=ar(t)0)a(i)(j)

Thus, by Green's theorem, we have 

THEOREM 8. 5) In a compact Kahlerian space M, the integral formula

5) For a skew-symmetric contravariant pure tensor, see [6].
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(f) R} JQ u', il Rrw (i)f[(Vr
k=1 k=1

+(1/2)a2(0)]do-=o
is valid for a pure tensor e(;)where do- is the volume element of M

and a2(a) is given by (22).

 THEOREM 9. In a compact Kahlerian space, a necessary and sufficient 
condition for a pure tensorto be analytic is that it satisfies 

VrVr (t)(3)+Rr3k(t)}q...r...fl-0.
k=1 k=1

On the other hand, in a compact orientable Riemannian space, a nece-
ssary and sufficient condition for a skew-symmetic tensor e(;) to be harmonic
is that [13]

V' rsVr e(t)-Rik e1........it+Rt, ik Ep.......g...1=0.
l>k

Let s be a skew-symmetric pure tensor, then 

Rk, rs ctp...r...S...il 0,

by vritue of Lemma 5 and the hybridity of Rk, TS with respect to r and s.
Thus we have

COROLLARY [13]. In a compact Kahlerian space, a necessary and sufficient

condition for a skew-symmetric pure tensor to be analytic is that it is har-
monic.

Ifis skew-symmetric pure tensor, then so is by virtue of Lemma
2. Hence taking account of Theorem 4, in a compact Kahlerian space, if a

pure tensor(0) is harmonic, then so is 
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