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ANALYTIC TEST CONFIGURATIONS AND GEODESIC
RAYS

Julius Ross and David Witt Nyström

Starting with the data of a curve of singularity types, we use the
Legendre transform to construct weak geodesic rays in the space of
locally bounded metrics on an ample line bundle L over a compact
manifold. Using this we associate weak geodesics to suitable filtrations
of the algebra of sections of L. In particular this works for the natural
filtration coming from an algebraic test configuration, and we show how
this recovers the weak geodesic ray of Phong–Sturm.

1. Introduction

Let H(L) be the space of smooth strictly positive Hermitian metrics on an
ample holomorphic line bundle L over a compact manifold X. Then, by the
work of Mabuchi [31], Semmes [43] and Donaldson [23], formally H(L) has
the structure of an infinite-dimensional symmetric space with a canonical
Riemannian metric. Thus, a natural way to study this space is through its
geodesics, an approach that has been taken up by a number of authors
(e.g., Berndtsson [11], Chen–Tian [18], Donaldson, Phong–Sturm [34, 35],
Mabuchi, and Semmes among others).

In this paper, we give a general method for constructing weak geodesic
rays in the space of locally bounded positive metrics on L. In the following
we shall, in the standard way, identify a (positive) metric h on L with its
(plurisubharmonic) potential φ = log h. Our initial data consist of a fixed
smooth plurisubharmonic potential φ and a curve of singular plurisubhar-
monic potentials ψλ on L for λ ∈ R. We are really only interested in the
singularity type of ψλ, so we consider the equivalence class of ψλ under the
relation ψλ ∼ ψ′

λ if ψλ−ψ′
λ is bounded globally on X. We define the maximal

envelope of this data to be

(1.1) φλ := sup∗{ψ : ψ ≤ φ and ψ ∼ ψλ}
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where the supremum is over positive metrics ψ with the same singular-
ity type as ψλ, and the star denotes the operation of taking the upper-
semicontinuous regularization.

This equivalence relation on potentials was considered by Demailly–
Peternell–Schneider [22] and is relevant to metrics with minimal singulari-
ties. The envelope in (1.1) was studied in a special case by Berman [6], and
is the global analogue of a construction of Rashkovskii and Sigurdsson [32].
Observe that if ψλ is itself locally bounded then φ is a candidate for this
envelope implying φλ = φ, and thus we are most interested in the case that
ψλ is singular along some non-trivial subset of X. When ψλ has analytic sin-
gularities, it can be shown that φλ is the largest plurisubharmonic potential
bounded above by φ with the same singularity type as ψλ (see Remark 4.6).

We shall call a curve ψλ of plurisubharmonic potentials a test curve if it
is concave in λ, locally bounded for λ sufficiently negative and identically
−∞ for λ sufficiently large (we also make one further technical condition
concerning the kind of singularity allowed; see Definition 5.1). A justification
of this terminology will be given below, and as a simple example to have in
mind, suppose that s is a holomorphic section of L scaled so |s|2φ ≤ 1 and
let

(1.2) ψλ =

⎧
⎨
⎩

φ λ < 0,
(1 − λ)φ + λ ln |s|2 0 ≤ λ < 1,
−∞ λ ≥ 1,

so ψλ is decreasing and concave in λ. Geometrically then φλ = φ for λ ≤ 0
and for λ ∈ (0, 1) it is the largest plurisubharmonic potential bounded above
by φ with Lelong number at least λ along the divisor Y = {s = 0}.

Theorem 1.1. Let ψλ be a test curve and φ be a smooth positive potential,
and consider the Legendre transform of its maximal envelope φλ given by

φ̂t := sup∗
λ{φλ + λt} for t ∈ [0,∞).

Then φ̂t is a weak geodesic ray in the space of locally bounded plurisubhar-
monic potentials on L that emanates from φ.

Looking back at (1.2) it is clear that specific examples of test curves are
easy to produce, and thus this theorem gives a new construction of many
weak geodesic rays emanating from φ. In fact, as we shall observe in Remark
6.4, essentially every weak geodesic ray can be produced in this way.

We recall precisely what is meant by a weak geodesic. Let I ⊂ R be an
interval and consider the annulus A := {w ∈ C : − ln |w| ∈ I} and π : X ×
A → X be the projection. Then a curve of plurisubharmonic potentials φt for
t ∈ I can be identified with a rotation invariant potential Φ(x, w) := φ− log |w|

on π∗L. A simple calculation [43, 2.3,2.4] reveals that if φt is a smooth curve
of smooth potentials then the geodesic equation for φt is equivalent to the
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homogeneous complex Monge–Ampère equation

(1.3) MA(Φ) := (ddcΦ)n+1 = 0 on X × A◦.

A curve (φt)t∈I of locally bounded (not necessarily smooth) plurisubhar-
monic potentials given by Φ = Φ(x, w) is said to be a weak geodesic if ddcΦ
is positive and solves (1.3) in the sense of currents. When I = [0,∞) (so A
is the punctured unit disc) we say that φt is a weak geodesic ray.

The first step in our approach to Theorem 1.1 is showing that the Monge–
Ampère measure of the maximal envelope φλ satisfies

(1.4) MA(φλ) = 1{φλ=φ}MA(φλ) for all λ,

where 1S denotes the characteristic function of a set S. We say that a positive
metric φλ bounded by φ and having property (1.4) is maximal with respect
to φ (see Definition 4.5), and a test curve φλ where φλ is maximal with
respect to φ for all λ is referred to as a maximal test curve. We shall show

that the Legendre transform φ̂t of a maximal test curve φλ is a subgeodesic,
and also that Aubin–Mabuchi energy is linear in t, which together imply
that it is a weak geodesic (in the smooth case this is well known and goes
back to Mabuchi [30] and more generally can be deduced from a Theorem
of Berman–Boucksom–Guedj–Zeriahi, see Lemma 3.11).

The well-known Yau–Tian–Donaldson conjecture states that for a smooth
projective manifold it should be possible to detect the existence of a con-
stant scalar curvature Kähler metric algebraically. Through ideas developed
by many authors (e.g., Chen, Donaldson, Mabuchi, Tian) a general picture
has emerged in which such metrics appear as critical points of certain energy
functionals that are convex along smooth geodesics. The input from alge-
braic geometry arises through notion of an (algebraic) test configuration,
originally due to Tian [46] and then extended by Donaldson [24], which,
roughly speaking, is a one-parameter algebraic degeneration of the original
projective manifold X.

In a series of papers, Phong–Sturm show how one can naturally asso-
ciate a weak geodesic ray to a test configuration [34, 35, 37] (see also
[2, 15–17, 44, 45] for other constructions of geodesic rays related to test
configurations). We show how the geodesic of Phong–Sturm can be viewed
as a particular case of the Legendre transform construction. For example,
applying the Legendre transform construction to the example of the test
curve (1.2) given above recovers the geodesic of Phong–Sturm that is as-
sociated to the test configuration given by the degeneration to the normal
cone of the divisor Y .

Generalizing slightly, suppose that Fk,λ, for k ∈ N, λ ∈ R is a multi-
plicative filtration of the graded algebra ⊕kH

0(X, kL). Using the underly-
ing smooth positive metric φ and some auxiliary volume form we have an
L2-inner product on each H0(X, kL), and thus can consider the associated
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Bergman metric

φk,λ =
1

k
ln

∑

α

|sα|
2

where {sα} is an orthonormal basis for Fk,λk ⊂ H0(X, kL). So, for example,
if Y is a divisor on X we can let Fk,λ = {s ∈ H0(kL) : ordY (s) ≥ λ} be
the multiplicative filtration given by order of vanishing along Y , and then
φk,λ is the potential associated to the partial Bergman kernel coming from
sections of kL that vanish to at least order kλ along Y .

Theorem 1.2. Suppose that Fk,λ is left continuous and decreasing in λ and
bounded (see (7.2)). Then there is a well-defined limit

φF
λ = lim∗

k→∞φk,λ

where the star denotes taking the upper semicontinuous regularization after
the limit. Furthermore this limit is maximal except possibly for one critical
value of λ, and its Legendre transform is a weak geodesic ray.

In particular, this applies to a natural filtration associated to a test con-
figuration, and thus we have associated a weak geodesic to any such test
configuration. We prove that, in this case, we recover precisely Phong–Sturm
geodesic, thus reproving the main result of [35]. Hence, one interpretation
of Theorem 1.1 is that in the problem of finding weak geodesic rays, the
algebraic data of a test configuration can be replaced with a suitable con-
cave curve of singularity types which we thus refer to as an analytic test
configuration.

The relationship between a algebraic and analytic test configurations is
analogous to the relationship between holomorphic and plurisubharmonic
functions. Being given by a concave curve of singularity types, analytic test
configurations are easier to produce and manipulate. For example, it is pos-
sible to interpolate between two analytic test configurations merely by tak-
ing the line between them, whereas it is not so clear what the analogous
construction is for algebraic test configurations. With regard to the Yau–
Tian–Donaldson conjecture it is now expected that the notion of algebraic
test configuration needs to be extended in some way for it to detect a con-
stant scalar curvature metric (see the examples of Apostolov–Calderbank–
Gauduchon–Friedman [1] and also work of Székelyhidi [38], which considers
general filtrations of the ring of sections). Thus, analytic test configurations
provide a context for such extensions.

Interesting examples of analytic test configurations that do not correspond
to algebraic ones appear for example in the setting of Arakelov geometry.
In [12] Boucksom–Chen construct multiplicative filtrations of the section
ring, which encodes arithmetic properties of the sections such as their adelic
norm. This filtration then gives rise to an analytic test configuration whose
geometrical significance remains unclear.
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Another advantage of the notion of analytical test configurations is that
they can be defined independent of the polarization, and even in the non-
projective case (although we will not consider that further here). If we pick
an arbitrary Khler form ω we can consider a concave curve of singularity
types [ψλ] of ω-plurisubharmonic functions. Then choosing a polarization L
we get an analytic test configuration [φλ] by letting φλ be the envelope of all
positive singular metrics of L bounded from above by φ+ψλ, where φ is some
locally bounded metric of L. In fact, rather than choosing a polarization we
could have picked an arbitrary big (1, 1)-coholomogy class and worked with
that instead.

It should be stressed that in the problem of finding constant scalar cur-
vature metrics it is important to have control of the regularity of geodesics
under consideration. By using approximations to known regularity results of
solutions of Monge–Ampère equations, Phong–Sturm prove that their weak
geodesic is in fact C1,α for 0 < α < 1 (see [37]). It is interesting to ask
whether such regularity holds more generally, which is a topic we take up
in [40].
Organization: We start in Section 2 with some motivation from convex
analysis and toric geometry, and Section 3 contains preliminary material on
the space of singular metrics, the Monge–Ampère measure and the Aubin–
Mabuchi functional. The real work starts in Section 4 where we consider the
maximal envelopes associated to a given singularity type. Along the way we
prove a generalization of a theorem of Bedford–Taylor which says that such
envelopes are maximal (Theorem 4.10). This is then extended to the case
of a test curve of singularities, and in Section 6 we discuss the Legendre
transform and prove Theorem 1.1.

Following these analytic results, we move on to the algebraic picture. In
Section 7, we associate a test curve to a suitable filtration of the coordinate
ring of (X, L), and prove Theorem 1.2. We then recall how such filtrations
arise from test configurations, and in Section 9 show how this agrees with
the construction of Phong and Sturm.

2. Convex motivation

This section contains some motivation from convex analysis in the study of
the homogeneous Monge–Ampère equation. Much of this material is stan-
dard; our main references are the two papers [41,42] by Rubinstein–Zelditch.
We shall presently see how solutions to this equation can be found using the
Legendre transform in two different, but ultimately equivalent, ways. Al-
though this is logically independent of the rest of the paper, the techniques
used are similar and give an illustration in the toric setting.

Let Conv(Rn) denote the space of convex functions on Rn. We take the
convention that the function identically equal to −∞ is in Conv(Rn).
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Definition 2.1. Let φ be a C2 convex function on an open subset of Rn.
The (real) Monge–Ampère measure of φ, denoted by MA(φ), is the Borel
measure defined as

MA(φ) := d
∂φ

∂x1
∧ . . . ∧ d

∂φ

∂xn+1
.

The operator MA has an unique extension to a continuous operator on the
cone of (finite-valued) convex functions (see [42] for references). If φ is C2

then

(2.1) MA(φ) = det(∇2φ)dx = (∇φ)∗dx,

i.e., the Monge–Ampère measure is the pullback of the Lebesgue measure
under the gradient map.

If φ ∈ Conv(Rn), we say y is a subgradient of φ at x0 if the function
x �→ φ(x) − φ(x0) − y · (x − x0) is bounded from below, and we let

∆φ = {y : y is a subgradient for some x0}

be the set of all subgradients of φ. So, if φ is differentiable then ∆φ is simply
the image of ∇φ. One can easily check that ∆φ is convex, that if r > 0 then
∆rφ = ∆φ and ∆φ+ψ ⊆ ∆φ + ∆ψ.

When φ is C2 it follows from equation (2.1) that the total mass of the
Monge–Ampère measure MA(φ) equals the Lebesgue volume of ∆φ. An
important fact [42] is that this is true for all convex functions on Rn with
linear growth, i.e.,

(2.2)

∫

Rn

MA(φ) = vol(∆φ).

We say two convex functions φ and ψ are equivalent if |φ−ψ| is bounded,
and denote this by φ ∼ ψ. Since for two equivalent convex functions φ and
ψ with linear growth we clearly have that

∆φ = ∆ψ,

it follows from (2.2) that
∫

Rn

MA(φ) =

∫

Rn

MA(ψ) whenever φ ∼ ψ.

Definition 2.2. Let φ ∈ Conv(Rn) and let φ̇ be a bounded continuous
function on Rn. A curve φt in Conv(Rn), t ∈ [a, b], is said to solve the Cauchy
problem for the homogeneous real Monge–Ampère equation, abbreviated as
HRMA, with initial data (φ, φ̇), if the function Φ(x, t) := φt(x) is convex on
Rn × [a, b], and satisfies the equation

MA(Φ) = 0 on the strip Rn × (a, b),
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with initial data

φ0 = φ,
∂

∂t |t=0+
φt = φ̇.

Remark 2.3. This convex geometry has particular geometric significance
when ∆ is the moment polytope of a polarized toric manifold (X, L). Then,
through the notion of symplectic potentials, there is a correspondence be-
tween Hermitian metrics on L and convex functions on ∆ (where due care is
to be taken to ensure that a given convex function determines a smooth or
positive metric on L) and the Cauchy problem for the HRMA translates to
the Cauchy problem for finding geodesics in the space of Hermitian metrics
on L. We refer the reader to [41,42] for a detailed discussion of this idea.

Now let φ0 and φ1 be two equivalent convex functions with linear growth,
and φt be the affine curve between them. The energy of φ1 relative to φ0,
denoted by E(φ1, φ0) is defined as

E(φ1, φ0) :=

∫ 1

t=0

(∫

Rn

(φ1 − φ0)MA(φt)

)
dt.

We observe that by the linear growth assumption it follows that the relative
energy E(φ1, φ0) is finite. This energy has a cocycle property, namely if φ0,
φ1 and φ2 are equivalent with finite energy then

E(φ2, φ0) = E(φ2, φ1) + E(φ1, φ0),

which is easily seen to be equivalent to the fact that

∂

∂t
E(φt, φ) =

∫

Rn

∂

∂t
φtMA(φt).

The energy along a smooth curve φt of convex functions with linear growth
is related to the Monge–Ampère measure of Φ(x, t) := φt(x) by the identity

(2.3)

∫

Rn×[a,b]
MA(Φ) =

∂

∂t |t=b
E(φt, φa) −

∂

∂t |t=a
E(φt, φa).

Thus a smooth curve φt of equivalent convex functions of linear growth solves
the HRMA equation if and only if Φ is convex and the energy E(φt, φa) is
linear in t.

As is noted in [42] this Cauchy problem is not always solvable. Never-
theless there is a standard way to produce solutions φt with t ∈ [0,∞) to
the homogeneous Monge–Ampère equation with given starting point φ0 = φ
using the Legendre transform. We give a brief account of this.

For simplicity assume from now on that φ is differentiable and strictly
convex. Recall that the Legendre transform of φ is the function on ∆φ de-
fined as

φ∗(y) := sup
x
{x · y − φ(x)}
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(which we can also think of as being defined on the whole of Rn, by being −∞
outside of ∆φ). Since φ∗ is defined as the supremum of the linear functions
x ·y−φ(x), it is convex. In fact, one can show that φ being differentiable and
strictly convex essentially implies that φ∗ is also differentiable and strictly
convex (see [33, Theorem 1] for a precise statement that requires a further
boundary condition).

For a given y ∈ ∆φ, the function x · y − φ(x) is strictly concave, and is
maximized at the point where the gradient is zero. Thus

(2.4) φ∗(y) = x · y − φ(x), where ∇φ(x) = y,

and hence

∇φ∗(y) = x, where ∇φ(x) = y.

The Legendre transform is an involution. For using the above formula
∇φ∗∗(x) = y for x such that ∇φ∗(y) = x, which holds when ∇φ(x) = y, i.e.,

∇φ∗∗(x) = ∇φ(x).

If ∇φ(x) = y, then φ∗(y) = x · y − φ(x), therefore

φ∗∗(x) = x · y − φ∗(y) = x · y − (x · y − φ(x)) = φ(x),

as claimed.

Lemma 2.4. If φt is a curve of convex functions, then for any point y ∈ ∆φt

∂

∂t
φ∗

t (y) = −
∂

∂t
φt(x),

where x is the point such that ∇φ(x) = y.

Proof. Let xt be the solution to the equation ∇φt(xt) = y. By the implicit
function theorem xt varies smoothly with t. By equation (2.4) we know

∂

∂t
φ∗

t (y) =
∂

∂t
(xt · y − φt(x)) =

∂

∂t
(xt · y − φ(x)) −

∂

∂t
φt(x).

Since xt ·y−φ(x) is maximized at x = x0 the derivative of that part vanishes
at t = 0, so we get the lemma for t = 0, and similarly for all t. �

This leads us to the following formula relating the energy with the Le-
gendre transform,

Lemma 2.5. We have

(2.5) E(φt, φ) =

∫

∆φ

(φ∗ − φ∗
t ) dy.

Proof. We noted above that the derivative with respect to t of the left-hand
side of (2.5) is equal to ∫

Rn

∂

∂t
φtMA(φt).
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On the other hand, differentiating the right-hand side yields

∂

∂t

∫

∆φ

(φ∗ − φ∗
t )dy = −

∫

∆φ

∂

∂t
φ∗

t dy =

∫

∆φ

∂

∂t
φt(∇φ−1

t (y))dy

=

∫

Rn

∂

∂t
φt(∇φt)

∗dy =

∫

Rn

∂

∂t
φtMA(φt),

where we used Lemma 2.4 and the fact that the pullback (∇φt)
∗dy of the

Lebesgue measure is MA(φt). Since both sides of the equation (2.5) is zero
when φt = φ and the derivatives coincide, we get that they must be equal
for all t. �

Now fix a smooth bounded strictly concave function u on ∆φ and let

(2.6) φ̃t := (φ∗ − tu)∗.

Proposition 2.6. The curve φ̃t, t ∈ [0,∞) solves the HRMA equation with
initial data

φ̃0 = φ and
∂

∂t
|t=0+ φ̃t = u((∇φ)−1).

To see this note that from (2.5) it follows that

E(φ̃t, φ) =

∫

∆φ

(φ∗ − φ̃∗
t )dy =

∫

∆φ

(φ∗ − φ∗ + tu)dy = t

∫

∆φ

udy,

which is linear in t, and the initial conditions follow from (2.6) and

Lemma 2.4. The convexity of Φ̃(t, x) = φ̃t(x) can of course be shown directly,

but it also follows from another characterization of φ̃t that also involves a
Legendre transform, but in the t-coordinate instead of in the x-coordinates,
which we now discuss.

Let Aλ be the subset of ∆φ where u is greater than or equal to λ and let
φλ be defined as

(2.7) φλ := sup{ψ ≤ φ : ψ ∈ Conv(Rn), ∆ψ ⊆ Aλ}.

Lemma 2.7. The curve of functions φλ is concave in λ and

{φλ = φ} = {x : ∇φ(x) ∈ Aλ}.

Proof. Let ψi ≤ φ be such that ∆ψi
⊆ Aλi

with i = 1, 2. Let 0 < t < 1.
From our discussion above it follows that tψ1 + (1 − t)ψ2 ≤ φ and

∆tψ1+(1−t)ψ2
⊆ t∆ψ1 + (1 − t)∆ψ2 ⊆ tAλ1 + (1 − t)Aλ2 ⊆ Atλ1+(1−t)λ2

,

where the last inclusion follows from the fact that u was assumed to be
concave. For the second statement, it is easy to see that in fact φλ is
equal to the supremum of affine functions x · y + C bounded by φ and y
lying in Aλ. �
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Definition 2.8. For t ≥ 0 let φ̂t be defined as

φ̂t := sup
λ
{φλ + tλ}.

Since for each λ the function (x, t) �→ φλ(x) + tλ is convex in all its

variables, and the supremum of convex functions is convex, Φ̂(x, t) := φ̂t(x)
is convex.

Proposition 2.9. Recalling that φ̃t = (φ∗ − tu)∗ we have φ̃t = φ̂t. In

particular, this proves that Φ̃ is convex, thereby proving φ̃t solves the HRMA
equation (Proposition 2.6).

Proof. We claim

(2.8)
∂

∂t
φ̂t(x) = u(∇φ̂t(x)).

To see this first consider the right-derivative at t = 0. As we noted above,
the gradient of a Legendre transform is the point where the maximum is
attained, thus in this case

∂

∂t
|t=0+ φ̂t(x) = sup{λ : φλ(x) = φ(x)}.

By the second statement in Lemma 2.7 it follows that this supremum is
equal to u(∇φ(x)), and we are done for t = 0. On the other hand it is easy
to see that

φ̂t1+t2 = ψ̂t2 ,

with ψ := φ̂t1 . Using this, equation (2.8) holds for all t. Thus, by Lemma 2.4

the Legendre transform of φ̂t is equal to φ−tu, so by the involution property

of the Legendre transform φ̂t coincides with φ̃t. �

Now the above discussion can be reformulated as follows. Let ψλ be a
curve in Conv(Rn). We say that ψλ is a test curve if there is a C such that

(1) ψλ is concave in λ,
(2) ψλ − φ bounded for λ < −C and
(3) ψλ ≡ −∞ for λ > C.

Given such a test curve let u be the function on ∆φ defined by

u(y) := sup{λ : y ∈ ∆ψλ
}.

and observe that since ψλ is assumed to be concave the function u is also
concave.

Thus, our definition of φλ above (2.7) is

φλ = sup{ψ ≤ φ : ψ ∈ Conv(Rn), ∆ψ ⊆ Aλ}

= sup{ψ ≤ φ : ψ ∈ Conv(Rn), ∆ψ ⊆ {u ≥ λ}}.(2.9)
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Hence, we in fact have

(2.10) φλ := sup{ψ : ψ ≤ φ, ψ ≤ ψλ + o(1), ψ ∈ Conv(Rn)}.

From Proposition 2.9, φ̂t solves the homogeneous real Monge–Ampère
equation. Thus in order to get solutions to the HRMA, instead of starting
with a concave function u on ∆φ we can just as well start with a test curve
ψλ. It is this second reformulation (2.10) that extends more naturally to the
context of positive metrics on line bundles.

Remark 2.10. This convex picture can be given some geometric context by
considering toric manifolds (compare [5, Example 5.2]). Consider a complex
toric manifold (X, L) of dimension n, so L carries a compatible torus in-
variant Hermitian metric φ0. Pick complex coordinates z1, . . . , zn on a dense
complex torus T = (C∗)n ⊂ X and let ti = ln |zi|

2 so we consider t1, . . . , tn
as coordinates on Rn. Then φ0(z) descends to a convex function on Rn

which, by abuse of notation, we denote by φ0(t). Conversely any function φ
on Rn induces a metric on L|T , which will be (strictly) positive as long as
φ is (strictly) convex (one must make some additional hypothesis as to the
behavior of φ(t) at infinity if one wishes to ensure that this induced metric
extends to a smooth or locally bounded metric over all of X, but we will
not consider that further here).

As an illustration, consider the simplest case of dimension 1 so X = P1.
Fix a smooth strictly positive metric on L and assume the strictly convex
potential φ(t) on R satisfies φ′(0) = 0 and limt→∞ φ′(t) = 1. Then, for
λ ∈ (0, 1) define

ψλ(t) =

{
λt t ≥ 0

0 t ≤ 0

(this can be made into a test curve by extending it to be φ+C ′ for negative
λ and to be −∞ for λ ≥ 1 similar to the example (1.2) in the Introduction).
Now for λ ∈ (0, 1) let tλ be the point where φ′(tλ) = λ. Then one sees from
(2.9) that φλ = φ for t ≤ tλ and φλ = λ(t − tλ) + φ(tλ) for t ≥ tλ. One can
check that φλ defines a singular metric on L with the same singularity type
as ψλ. Observe that φλ is linear for t > tλ making this metric pluriharmonic
(and thus maximal) over this set, and it is this maximal property that will
be crucial in the generalization that follows.

3. Preliminary material

We collect here some preliminary material on the space of positive metrics,
the (non-pluripolar) Monge–Ampère measure and the Aubin–Mabuchi en-
ergy functional. Most of this material is standard, and we give proofs only
for those results for which we did not find a convenient reference.
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3.1. The space of positive singular metrics. Let X be a complex pro-
jective manifold of complex dimension n, and let L be an ample line bundle
on X. We start with some preliminaries on singular metrics, for which a
convenient reference is [19]. A continuous (or smooth) Hermitian metric on
L is a continuous (or smooth) choice of scalar product on the complex line
Lp at each point p on the manifold. If f is a local holomorphic frame for L
on Uf , then one writes

|f |2h = hf = e−φf ,

where φf is a continuous (or smooth) function on Uf . We will use the con-

vention to let φ denote the metric h = e−φ, thus if φ is a metric on L, kφ is
a metric on kL := L⊗k.

The curvature of a smooth metric is given by ddcφ which is the (1, 1)-form
locally defined as ddcφf , where f is any local holomorphic frame. Here dc is
short-hand for the differential operator

i

2π
(∂̄ − ∂),

so ddc = i/π∂∂̄. A classic fact is that the curvature form of a smooth metric
φ is a representative for the first Chern class of c1(L). The metric φ is said
to be strictly positive if the curvature ddcφ is strictly positive as a (1, 1)-
form, i.e., if for any local holomorphic frame f, the function φf is strictly
plurisubharmonic. We let H(L) denote the space of smooth strictly positive
(i.e., locally strictly plurisubharmonic) metrics on L, which is non-empty
since we assumed that L was ample.

A positive singular metric ψ is a metric that can be written as ψ := φ+u,
where φ is a smooth metric and u is a globally defined ddcφ-psh function,
i.e., u is upper semicontinuous and ddcψ := ddcφ + ddcu is a positive (1, 1)-
current. For convenience we also allow u ≡ −∞. We let PSH(L) denote the
space of positive singular metrics on L.

As an important example, if {si} is a finite collection of holomorphic
sections of kL, we get a positive metric ψ := 1

k ln(
∑

|si|
2) which is defined

by letting for any local frame f ,

e−ψf :=
|f |2

(
∑

|si|2)1/k
.

We note that PSH(L) is a convex set, since any convex combination of
positive metrics yields a positive metric. Another important fact is that if
ψi ∈ PSH(L) for all i ∈ I are uniformly bounded above by some fixed posi-
tive metric, then the upper semicontinuous regularization of the supremum
denoted by sup∗{ψi : i ∈ I} lies in PSH(L) as well. Similarly the upper
semicontinuous regularization of the pointwise limit limi ψi (when defined)
will be denote by lim∗

i ψi.
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If ψ is in PSH(L), then the translate ψ + c where c is a real constant
is also in PSH(L). For any ψ ∈ PSH(L), ddcψ is a closed positive (1, 1)-
current, and from the ddc lemma it follows that any closed positive current
cohomologous with ddcψ can be written as ddcφ for some φ in PSH(L). By
the maximum principle this φ is uniquely determined up to translation.

If there exists a constant C such that ψ ≤ φ + C, we say that ψ is more
singular than φ, and we will write this as

ψ � φ.

If both ψ � φ and φ � ψ we say that ψ and φ are equivalent, which we
write as ψ ∼ φ. Following [13] an equivalence class [ψ] is called a singularity
type, and we use the notation Sing(L) for the set of singularity types. If ψ
is equivalent to an element in H(L) we say that ψ is locally bounded.

The singularity locus of a positive metric ψ is the set where ψ is minus
infinity, i.e., the set where ψf = −∞ when f is a local frame and the
unbounded locus of ψ is the set where ψ is not locally bounded. Recall that
a set is said to be complete pluripolar if it is locally the singularity locus of
a plurisubharmonic function, while it is called pluripolar if you only have
a local inclusion in the singularity set. Pluripolar sets have zero measure
with respect to any smooth volume form (since this is true locally with
respect to the Lebesgue measure [29, Corollary 2.9.10]). In [13] Boucksom–
Eyssidieux–Guedj–Zeriahi give the following definition.

Definition 3.1. A positive metric ψ is said to have small unbounded lo-
cus if its unbounded locus is contained in a closed complete pluripolar
subset of X.

We note that metrics of the form 1
k ln(

∑
|si|

2) have small unbounded
locus, since they are locally bounded away from the algebraic set ∪i{si = 0}
which is a closed pluripolar set.

3.2. Regularization of positive singular metrics. If f is a plurisubhar-
monic function on an open subset U of Cn then using a convolution we can
write f as the limit of a decreasing sequence of smooth plurisubharmonic
functions on any relatively compact subset of U [29, Theorem 2.9.2].

If ψ is a positive singular metric, we can use a partition of unity with
respect to some open cover Ufi

to patch together the smooth decreasing
approximations of ψfi

. Thus any positive singular metric can be written as
the pointwise limit of a decreasing sequence of smooth metrics, but of course
because of the patching these smooth approximations will in general not be
positive.

A fundamental result due to Demailly [20] is that any positive singular
metric can be approximated by metrics of the form k−1 ln(

∑
i |si|

2), where
si are sections of kL. Let I(ψ) denote the multiplier ideal sheaf of germs of
holomorphic functions locally integrable against e−ψf dV, where f is a local
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frame for L and dV is an arbitrary volume form. We get a scalar product
(., .)kψ on the space H0(kL ⊗ I(kψ)) by letting

‖s‖2
kψ :=

∫

X
|s|2e−kψdV.

Let {si} be an orthonormal basis for H0(kL ⊗ I(kψ)) and set

ψk :=
1

k
ln

(∑
|si|

2
)

.

Theorem 3.2. The sequence of metrics ψk converge pointwise to ψ as k
tends to infinity, and there exists a constant C such that for large k,

ψ ≤ ψk +
C

k
.

As a reference see [21, (A4)] (note in fact the results of Demailly are
in fact much stronger than that stated here, and hold in greater generality
[20]). When ψ is assumed to be smooth and strictly positive, a celebrated
result by Bouche–Catlin–Tian–Zelditch [10, 14, 45, 50] on Bergman kernel
asymptotics implies that the ψk in fact converge to ψ in any Cm norm.

Using a variation of this construction, Guedj–Zeriahi prove [27, Theorem
7.1] that any positive singular metric on an ample line bundle over a compact
X is the pointwise limit of a decreasing sequence of smooth positive metrics.

3.3. Monge–Ampère measures. Let ψi, 1 ≤ i ≤ n, be an n-tuple of
positive metrics, so for each i, ddcψi is a positive (1, 1)-current. If all ψi are
smooth one can consider the wedge product

(3.1) ddcψ1 ∧ . . . ∧ ddcψn,

which is a positive measure on X. The fundamental work of Bedford–Taylor
shows that one can still take the wedge product of positive currents ddcψi

to get a positive measure as long as the metrics ψi are all locally bounded.
The Monge–Ampère measure of a locally bounded positive metric ψ, is then
defined as the positive measure

MA(ψ) := (ddcψ)n.

This measure does not put any mass on pluripolar sets. We recall the fol-
lowing important continuity property, proved in [3].

Theorem 3.3 (Bedford–Taylor). If ψi,k, 1 ≤ i ≤ n + 2, k ∈ N,
are sequences of locally bounded positive metrics such that each ψi,k de-
creases to a locally bounded positive metric ψi, then the signed measures
(ψ1,k − ψ2,k)ddcψ3,k ∧ . . . ∧ ddcψn+2,k converge weakly to (ψ1 − ψ2)ddcψ3 ∧
. . . ∧ ddcψn+2. If each sequence of locally bounded positive metrics ψi,k in-
stead increase pointwise a.e. to a positive metric ψi, then again the measures
(ψ1,k − ψ2,k)ddcψ3,k ∧ . . . ∧ ddcψn+2,k converge weakly to (ψ1 − ψ2)ddcψ3 ∧
. . . ∧ ddcψn+2.



ANALYTIC TEST CONFIGURATIONS AND GEODESIC RAYS 139

Since the curvature form ddcφ of any smooth metric φ is a representative
of c1(L), we see that if φi is any n-tuple of smooth metrics then

(3.2)

∫

X
ddcφ1 ∧ . . . ∧ ddcφn =

∫

X
c1(L)n

which is just a topological invariant of L. Since any positive metric can be
approximated from above in the manner of Theorem 3.3 by positive metrics
that are smooth, we see that (3.2) still holds if the φi are merely assumed
to be locally bounded instead of smooth.

Our proof that maximal envelopes are maximal (Theorem 4.10) is based
on an approximation argument that requires some technical results concern-
ing convergence of plurisubharmonic functions. Recall that a plurisubhar-
monic function is, by definition, upper semicontinuous, so if ψ is a positive
metric then for each local frame f the function ψf is upper semicontinu-
ous. The plurifine topology is defined as the coarsest topology in which all
local plurisubharmonic functions are continuous; a basis for this topology
is given by sets of the form A ∩ {u > 0}, where A is open in the stan-
dard topology and u is a local plurisubharmonic function. This topology
has the quasi-Lindelöf property [4, Thm 2.7], meaning that an arbitrary
union of plurifine open sets differs from a countable subunion by at most
a pluripolar set. Any basis set A ∩ {u > 0} is Borel, so it follows from
the quasi-Lindelöf property that the plurifine open (and closed) sets lie in
the completion of the Borel σ-algebra with respect to any Monge–Ampère
measure [4, Prop 3.1].

Definition 3.4. A function f is said to be quasi-continuous on a set Ω if
for every ǫ > 0 there exists an open set U with capacity less than ǫ so that
f is continuous on Ω \ U .

We refer to [3, (1.3)] for the definition of capacity, and in [3, Thm 3.5] it
is shown that plurisubharmonic functions are quasi-continuous.

If fk is a sequence of non-negative continuous functions increasing to the
characteristic function of an open set A then the characteristic function of
a basis set A ∩ {u > 0} is the increasing limit of the non-negative quasi-
continuous functions

kfk(max{u, 0} − max{u − 1/k, 0}).

From this fact and the quasi-Lindelöf property it follows that the charac-
teristic function of any plurifine open set differs from an increasing limit of
non-negative quasi-continuous functions at most on a pluripolar set.

A fundamental property of the Bedford–Taylor product is that it is local
in the plurifine topology, so if ψi = ψ′

i for all i on some plurifine open set O
then

1Oddcψ1 ∧ . . . ∧ ddcψn = 1Oddcψ′
1 ∧ . . . ∧ ddcψ′

n,
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where 1O denotes the characteristic function of O. We also have that the
convergence in Theorem 3.3 is local in this topology [4, Thm 3.2], i.e., we
get convergence when testing against bounded quasi-continuous functions.

Lemma 3.5. Let ψk be a sequence of locally bounded positive metrics that
decreases pointwise (or increases a.e.) to a locally bounded positive metric
ψ, and let O be a plurifine open set. Then

1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk),

where the lim inf is to be understood in the weak sense, i.e., when testing
against non-negative continuous functions.

Proof. Let ui be a sequence of quasi-continuous functions increasing to 1O

except on a pluripolar set. Let f be a non-negative continuous function.
Since uiMA(ψk) converges weakly to uiMA(ψ), and MA(ψk) does not put
any mass on a pluripolar set,

(3.3)

∫

X
fuiMA(ψ) = lim

k→∞

∫

X
fuiMA(ψk) ≤ lim inf

k→∞

∫

O
fMA(ψk).

Now ui increases to the characteristic function of O except possibly on a
pluripolar set, so letting i tend to infinity in (3.3) yields

∫

O
fMA(ψ) ≤ lim inf

k→∞

∫

O
fMA(ψk).

�

For singular ψi there is a (non-pluripolar) product constructed by
Boucksom–Eyssi-dieux–Guedj–Zeriahi [13], building on a local construc-
tion due to Bedford–Taylor [4]. Fix a locally bounded metric φ, and con-
sider the auxiliary metrics ψi,k := max{ψi, φ − k} for k ∈ N, and the sets
Ok :=

⋂
i{ψi > φ − k}. The non-pluripolar product of the currents ddcψi,

here denoted by ddcψ1 ∧ . . . ∧ ddcψn is defined as the limit

ddcψ1 ∧ . . . ∧ ddcψn := lim
k→∞

1Ok
ddcψ1,k ∧ . . . ∧ ddcψn,k.

Since we are assuming that X is compact this limit is well defined [13, Prop.
1.6]. The (non-pluripolar) Monge–Ampère measure of a positive metric is
ψ is defined as MA(ψ) := (ddcψ)n. Essentially by construction, the non-
pluripolar product is local in the plurifine topology [13, Prop. 1.4], and is
multilinear [13, Prop 4.4].

Clearly from the definition and (3.2), for any n-tuple of positive metrics
ψi on L, ∫

X
ddcψ1 ∧ . . . ∧ ddcψn ≤

∫

X
c1(L)n,

however the inequality may well be strict.
Combining Lemma 3.5 with the fact that the Monge–Ampère measure is

local in the plurifine topology yields the following continuity result.
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Lemma 3.6. Let ψk be a sequence of positive metrics decreasing to a positive
metric ψ, and let φ be some locally bounded positive metric. If O is a plurifine
open set contained in {ψ > φ − C} for some constant C then

(3.4) 1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk),

where again the lim inf is to be understood in the weak sense. If ψk instead is
increasing a.e. to ψ, and O is a plurifine open set contained in {ψj > φ−C}
for some natural number j and some constant C then once again

1OMA(ψ) ≤ lim inf
k→∞

1OMA(ψk).

Proof. First assume that ψk is decreasing to ψ. Let ψ′
k := max{ψk, φ − C}

and ψ′ := max{ψ, φ − C}. From Lemma 3.5 it follows that

1OMA(ψ′) ≤ lim inf
k→∞

1OMA(ψ′
k),

and since by assumption ψ′ = ψ and ψ′
k = ψk on O the lemma follows from

the locality of the non-pluripolar product. The case where ψk is increasing
a.e. follows by the same reasoning. �

In [13, Thm 1.16] it is shown that the non-pluripolar product, when
restricted to metrics with small unbounded locus, has the following mono-
tonicity property.

Theorem 3.7. Let ψi, ψ
′
i be two n-tuples of positive metrics with small

unbounded locus, and suppose that for all i, ψi is more singular than ψ′
i.

Then ∫

X
ddcψ1 ∧ . . . ∧ ddcψn ≤

∫

X
ddcψ′

1 ∧ . . . ∧ ddcψ′
n.

There is also a comparison principle for metrics with small unbounded
locus [13, Cor 2.3] and a domination principle [13, Cor 2.5]. When combined
with the comparison principle, the proof of the domination principle in [13]
in fact yields a slightly stronger version:

Theorem 3.8. Let φ be a positive metric with small unbounded locus and
suppose that there exists a positive metric ρ, more singular than φ, with
small unbounded locus and such that MA(ρ) dominates a volume form. If
ψ is a positive metric more singular than φ and such that ψ ≤ φ a.e. with
respect to MA(φ), then it follows that ψ ≤ φ on the whole of X.

3.4. The Aubin–Mabuchi Energy. The Aubin–Mabuchi energy bifunc-
tional maps any pair of equivalent positive metrics ψ1 and ψ2 to the number

E(ψ1, ψ2) :=
1

n + 1

n∑

i=0

∫

X
(ψ1 − ψ2)(ddcψ1)

i ∧ (ddcψ2)
n−i.
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Observe

E(ψ + t, ψ) = t

∫

X
MA(ψ).

The Aubin–Mabuchi energy restricted to the class of locally bounded
metrics has a cocycle property (see, for example, [7, Cor 4.2]), namely if φ0,
φ1 and φ2 are locally bounded equivalent metrics then

E(φ0, φ2) = E(φ0, φ1) + E(φ1, φ2).

In fact, the proof in [7] of the cocycle property extends to the case where
the equivalent metrics are only assumed to have small unbounded locus,
since the integration-by-parts formula of [13] used in the proof holds in that
case.

This leads to an important monotonicity property. If ψ0, ψ1 and ψ2 are
equivalent with small unbounded locus, and ψ0 ≥ ψ1, then

E(ψ0, ψ2) ≥ E(ψ1, ψ2)

since E(ψ0, ψ2) = E(ψ0, ψ1)+E(ψ1, ψ2), and E(ψ0, ψ1) ≥ 0 as it is the integral
of the positive function ψ0 − ψ1 against a positive measure.

We also record the following lemma, which comes from the locality of the
non-pluripolar product in the plurifine topology.

Lemma 3.9. Let ψ1 ∼ ψ2 be such that ψ1 ≥ ψ2. Let ψ′
1 and ψ′

2 be two other
metrics such that ψ′

1 ∼ ψ′
2 and assume that {ψ′

1 = ψ′
2} = {ψ1 = ψ2} and

that ψ′
1 = ψ1 and ψ′

2 = ψ2 on the set where ψ1 > ψ2. Then

E(ψ′
1, ψ

′
2) = E(ψ1, ψ2).

Following Phong–Sturm in [34] we can relate weak geodesics to the energy
functional. Let I ⊂ R be an interval and consider the annulus A := {w ∈
C : − ln |w| ∈ I} and π : X × A → X be the projection.

Definition 3.10. A curve of positive metrics φt, for t ∈ I is said to be a
weak subgeodesic if there exists a locally bounded positive metric Φ on π∗L
that is rotation invariant and whose restriction to X × {w} equals φ− ln |w|.
The curve φt is said to be a weak geodesic if it is a weak subgeodesic and
furthermore Φ solves the HCMA equation, i.e.,

MA(Φ) = 0

on X × A◦. A weak geodesic φt defined for 0 ≤ t < ∞ will be called a weak
geodesic ray.

As in the convex setting (2.3) there is a formula [8, Proposition 6.2]
relating the Aubin–Mabuchi energy of a locally bounded subgeodesic φt

with the Monge–Ampère measure of Φ, namely

(3.5) ddc
tE(φt, φa) = π∗(MA(Φ)),
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where π∗(MA(Φ)) denotes the push-forward of the measure MA(Φ) with
respect to the projection π. From this we immediately get the following
lemma.

Lemma 3.11. A curve φt of locally bounded positive metrics defined for
t ∈ [0,∞) is a weak geodesic ray if and only if it is a subgeodesic and for
any a ∈ (0,∞) the Aubin–Mabuchi energy E(φt, φa) is linear in t.

4. Envelopes and maximal metrics

In studying the Dirichlet problem for the HCMA equation it is often possible
to give a solution as an envelope in some space of plurisubharmonic functions
(or positive metrics). Such envelopes will be crucial in our setting as well.

Definition 4.1. If φ is a continuous metric, not necessarily positive, let Pφ
denote the envelope

Pφ := sup{ψ ≤ φ, ψ ∈ PSH(L)}.

Since φ is assumed to be continuous it follows that the upper semicontinuous
regularization of Pφ is bounded from above by φ, and hence also by Pφ.
Thus Pφ is itself upper semicontinuous and so Pφ ∈ PSH(L).

The next theorem is essentially just a reformulation of a local result of
Bedford–Taylor [3, Corollary 9.2] in our global setting. It follows as a special
case of [7, Proposition 1.10] (letting K = X).

Theorem 4.2. If φ is a continuous metric then Pφ = φ a.e. with respect
to MA(Pφ).

Recall that if A is a closed set and µ is a Borel measure we say that
µ is said to be concentrated on A if 1Aµ = µ, or equivalently µ(Ac) = 0.
Thus another way of formulating Theorem 4.2 is to say that MA(Pφ) is
concentrated on {Pφ = φ}. We now extend this result to more general
envelopes that arise from the additional data of singularity type.

Definition 4.3. Given a positive metric ψ ∈ PSH(L) let Pψ denote the
projection operator on PSH(L) defined by

Pψφ := sup{ψ′ ≤ min{φ, ψ}, ψ′ ∈ PSH(L)}.

We also define P[ψ] by

P[ψ]φ := lim
C→∞

Pψ+Cφ = sup{ψ′ ≤ φ, ψ′ ∼ ψ, ψ′ ∈ PSH(L)}.

Clearly Pψφ is monotone with respect to both ψ and φ. Since min{φ, ψ}
is upper semicontinuous, it follows that the upper semicontinuous regular-
ization of Pψφ is still less than min{φ, ψ}, and thus Pψφ ∈ PSH(L). By this
it follows that Pψ(Pψφ) = Pψφ, i.e., that Pψ is indeed a projection operator
on PSH(L). One also notes that the upper semicontinuous regularization
of P[ψ]φ, lies in PSH(L) and is bounded by φ.
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Definition 4.4. The maximal envelope of φ with respect to the singularity
type [ψ] is defined to be

φ[ψ] := usc(P[ψ]φ),

where usc denotes the process of taking the upper-semicontinuous
regularization.

Definition 4.5. If ψ ∈ PSH(L), then ψ is said to be maximal with respect
to a metric φ if ψ ≤ φ and furthermore ψ = φ a.e. with respect to MA(ψ).
Similarly, if A is a measurable set, we say that ψ is maximal with respect
to φ on A if ψ ≤ φ and ψ = φ a.e. on A with respect to MA(ψ).

Remark 4.6. The terminology is justified by a proof below that the maxi-
mal envelope of a continuous metric φ is maximal with respect to φ. As it is
defined as a limit, it is not clear from the definition if φ[ψ] is equivalent to ψ
(this can be shown if ψ has algebraic singularities by passing to a suitable
resolution, and we refer the reader to [40] for a further study of maximal
envelopes). For this reason, the method in the proof of Theorem 4.2 in [7]
does not directly apply, so instead we will use an approximation argument.

Our use of the word maximal is motivated by the following property:

Proposition 4.7. Let ψ be maximal with respect to a metric φ. Suppose
also that there exists a positive metric ρ � ψ with small unbounded locus
and such that MA(ρ) dominates a volume form. Then for any ψ′ ∼ ψ with
ψ ≤ φ we have ψ′ ≤ ψ.

Proof. Since ψ′ ≤ φ, the maximality assumption yields ψ′ ≤ ψ a.e. with
respect to MA(ψ), so the proposition thus follows from the domination
principle (Theorem 3.8). �

The next two lemmas are the main steps in showing that maximal en-
velopes are maximal.

Lemma 4.8. Let ψk be a sequence of positive metrics increasing a.e. to a
positive metric ψ, and assume that all ψk are maximal with respect to a fixed
continuous metric φ on some plurifine open set O. Then ψ is maximal with
respect to φ on O.

Proof. Since φ was assumed to be continuous, ψ ≤ φ. Now, for all k

{ψk = φ} ⊆ {ψ = φ}

and thus by the the maximality of ψk, we know 1OMA(ψk) is concentrated
on {ψ = φ}. Since ψ ≤ φ we have that {ψ = φ} = {ψ ≥ φ}, and since φ is
continuous this is a closed set. Let C be a constant. The set O∩{ψ1 > φ−C}
is plurifinely open, so by Lemma 3.6 it follows that

(4.1) 1O1{ψ1>φ−C}MA(ψ) ≤ lim inf
k→∞

1O1{ψ1>φ−C}MA(ψk).
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It is easy to see that if µk is a sequence of measures all concentrated on a
closed set A, and

µ ≤ lim inf
k→∞

µk

in the weak sense, then µ is also concentrated on A. It thus follows from
(4.1) that 1O1{ψ1>φ−C}MA(ψ) is concentrated on {ψ = φ}. Since MA(ψ)
puts no mass on the pluripolar set {ψ1 = −∞} the lemma follows by letting
C tend to infinity. �

Lemma 4.9. Let ψ ∈ PSH(L) and let φ be a continuous metric. Then the
envelope Pψφ is maximal with respect to φ on the plurifine open set {ψ > φ}.

Proof. Clearly Pψφ ≤ φ, so we have to show Pψφ is equal to φ almost
everywhere on {ψ > φ} with respect to MA(Pψφ). Let φk be a sequence of
continuous metrics decreasing pointwise to min{φ, ψ}, so that φk ≤ φ for
all k and φk = φ on the set {ψ > φ}. For example let φk := min{φ, ψk}
where ψk is a sequence of smooth metrics decreasing pointwise to ψ. From
Theorem 4.2 it follows that MA(Pφk) is concentrated on {Pφk = φk},
and since φk = φ when ψ > φ we see 1{ψ>φ}MA(Pφk) is concentrated on
{Pφk = φ}. Now Pφk is decreasing in k and limk→∞ Pφk ≤ min{φ, ψ}. At
the same time, for any k ∈ N we clearly have that Pψφ ≤ Pφk, which taken
together means that

lim
k→∞

Pφk = Pψφ.

Since Pφk ≤ φ this implies that {Pφk = φ} is decreasing in k and

(4.2) {Pψφ = φ} =
⋂

k∈Z

{Pφk = φ}.

Let O denote the plurifine open set {ψ > φ}∩{Pψφ > φ−C}. By Lemma 3.6
we know

1OMA(Pψφ) ≤ lim inf
k→∞

1OMA(Pφk),

and thus we conclude that 1OMA(Pψφ) is concentrated on {Pφk = φ} for
any k, so by (4.2) we get that 1OMA(Pψφ) is concentrated on {Pψφ = φ}.
Since MA(Pψφ) puts no mass on the pluripolar set {Pψφ = −∞}, letting C
tend to infinity yields the lemma. �

Theorem 4.10. Let ψ ∈ PSH(L) and let φ be a continuous metric. Then
φ[ψ] is maximal with respect to φ, i.e., φ[ψ] = φ a.e. with respect to MA(φ[ψ]).

Proof. P[ψ]φ = φ[ψ] a.e., and since Pψ+Cφ increases to P[ψ]φ, it thus increases
to φ[ψ] a.e. By Lemma 4.9 we get that Pψ+Cφ is maximal with respect to φ
on the plurifine open set {ψ > φ−C} and thus also on any set {ψ > φ−C ′}
whenever C ′ ≤ C. From Lemma 4.8 it thus follows that φ[ψ] is maximal with
respect to φ on the set {ψ > φ − C} for any C. Since MA(φ[ψ]) puts no
mass on {ψ = −∞} the theorem follows. �
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Example 4.11. Consider the case that s is a section of rL that vanishes
along a divisor D, and set ψ = 1

r ln |s|2. Then the maximal envelope φ[ψ] is
considered by Berman [6, Section 4], and equals

sup∗{ψ′ ≤ φ : ψ′ ∈ PSH(L), νD(ψ′) ≥ 1}

where νD denotes the Lelong number along D. This metric governs the
Bergman kernel asymptotics of sections of kL for k ≫ 0 that vanish along
the divisor D. The more general case when ψ has analytic singularities is
also considered in [6].

The maximal property gives the following bounds on the energy functional
which will be crucial for our construction of weak geodesics (Theorem 6.8).

Proposition 4.12. Suppose that ψ is maximal with respect to a positive
metric φ with small unbounded locus, and let t > 0. Then

(4.3) t

∫

X
MA(ψ) ≤ E(max{ψ + t, φ}, φ) ≤ t

∫

X
MA(φ).

Proof. Since by assumption ψ ≤ φ we know max{ψ + t, φ} ≤ φ + t, so from
the monotonicity of the Aubin–Mabuchi energy it follows that

E(max{ψ + t, φ}, φ) ≤ E(φ + t, φ) = t

∫

X
MA(φ)

which gives the upper bound. For the lower bound, first choose an ǫ with
0 < ǫ < t. Again by monotonicity,

(4.4) E(max{ψ + t, φ}, φ) ≥ E(max{ψ + t, φ}, max{ψ + ǫ, φ}).

Now clearly

(4.5) E(max{ψ + t, φ}, max{ψ + ǫ, φ}) ≥ (t − ǫ)

∫

{ψ+ǫ>φ}
MA(ψ).

By the assumption that ψ is maximal with respect to φ
∫

{ψ=φ}
MA(ψ) =

∫

X
MA(ψ)

and since {ψ = φ} ⊆ {ψ + ǫ > φ}, the combination of (4.4) and (4.5) yields

E(max{ψ + t, φ}, φ) ≥ (t − ǫ)

∫

X
MA(ψ).

Since ǫ > 0 was chosen arbitrarily the lower bound in (4.3) follows. �
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5. Test curves and analytic test configurations

Definition 5.1. A map λ �→ ψλ from R to PSH(L) is called a test curve if
there is a constant C such that

(i) ψλ is equal to some locally bounded positive metric ψ−∞ for λ < −C,
(ii) ψλ ≡ −∞ for λ > C,
(iii) ψλ has small unbounded locus whenever ψλ �≡ −∞ and
(iiii) ψλ is concave in λ.

Observe that since ψλ is concave and constant for λ sufficiently negative
it is decreasing in λ. The set of test curves forms a convex set, by letting

(∑
riγi

)
(λ) :=

∑
riγi(λ).

It is also clear that any translate γa(λ) := γ(λ − a) of a test curve γ is a
new test curve.

We introduce the notation λc for the critical value of a test curve
defined as

λc := inf{λ : ψλ ≡ −∞}.

For later use, we record here two continuity properties of test curves.

Lemma 5.2.

(1) A test curve ψλ is left-continuous in λ as long as λ < λc.
(2) Suppose that λ < λc and λk is a decreasing sequence that tends to λ.

Then

(5.1) lim∗
k→∞ψλk

= ψλ.

(So a test curve is right continuous modulo taking an upper semicon-
tinuous regularization.)

Proof. For (1), let λk increase to some λ < λc, so we need to show that

lim
k→∞

ψλk
= ψλ.

By our hypothesis there exists a λ′ such that λ < λ′ < λc, and thus ψλ′ �≡
−∞. Since ψλ(x) is concave in λ it is continuous for all x such that ψλ′(x) �=
−∞. Thus, ψλk

converges to ψλ at least away from a pluripolar set, i.e.,
a.e. with respect to a volume form. On the other hand we have that ψλk

is
decreasing in k, so the limit is a positive metric. Now if two positive metrics
coincide a.e. with respect to a volume form it follows that they are equal
everywhere, because this is true locally for plurisubharmonic function [29,
Corollary 2.9.8].

The proof of (2) is essentially the same. This time λk is a decreasing
sequence, so as λ < λc we may as well assume that each λk < λ′ and so in
particular ψλk

�≡ −∞. Then the ψλk
form an increasing sequence so the left

hand side of (5.1) is a positive metric. But for the same reason as above,
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the limit limk→∞ ψλk
equals ψλ away from a pluripolar set, and thus the left

and right hand side of (5.1) agree a.e. with respect to a volume form, and
thus are equal everywhere. �

Definition 5.3. A map γ from R to Sing(L) is called an analytic test con-
figuration if it is the composition of a test curve with the natural projection
of PSH(L) to Sing(L).

As with the set of test curves, the set of analytic test configurations is con-
vex. We now extend the definition of the maximal envelope (Definition 4.4)
to test curves.

Definition 5.4. Let ψλ be a test curve and φ an element in H(L). The
maximal envelope of φ with respect to ψλ is the map

λ �→ φλ := φ[ψλ] = usc(P[ψλ]φ).

It is easy to see that φλ only depends on φ and the analytic test config-
uration [ψλ], since if ψ′

λ ∼ ψλ we trivially have φ[ψλ] = φ[ψ′

λ
]. Observe also

that since ψ−∞ is locally bounded, we have φλ = φ for λ < −C.

Definition 5.5. We say that a test curve ψλ is maximal if for all λ the
metric ψλ is maximal with respect to ψ−∞.

Since ψλ is decreasing in λ,

{ψλ′ = ψλ} ⊇ {ψλ′ = ψ−∞} if λ ≤ λ′.

It follows that if ψλ is a maximal test curve, ψλ′ is maximal with respect to
ψλ whenever λ ≤ λ′. We shall show in the next section how the Legendre
transform of a maximal test curve gives a weak geodesic ray, and end this
section by showing how maximal envelopes give rise to maximal test curves.

Proposition 5.6. The maximal envelope φλ is a maximal test curve.

Proof. We first show it is a test curve. Pick a real number C. Let λ and λ′

be two real numbers, and let 0 ≤ t ≤ 1. By the concavity of ψλ,

tPψλ+Cφ + (1 − t)Pψλ′+Cφ ≤ tψλ + (1 − t)ψλ′ + C ≤ ψtλ+(1−t)λ′ + C.

Thus from the definition of the projection operator,

tPψλ+Cφ + (1 − t)Pψλ′+Cφ ≤ Pψtλ+(1−t)λ′+Cφ,

which means that Pψλ+Cφ is concave in λ for all C. Since Pψλ+Cφ increases
to P[ψλ]φ, and an increasing sequence of concave functions is concave, we get
that P[ψλ]φ is concave, and because of the monotonicity of the upper semi-
continuous regularization it follows that usc(P[ψλ]φ) = φλ also is concave.
The other properties of a test curve are immediate.

Clearly φ−∞ = φ, so that φλ is maximal follows from Theorem 4.10. �
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6. The Legendre transform and geodesic rays

If f is a convex function in the real variable λ, the set of subgradients of f,
denoted by ∆f , is the set of t ∈ R such that f(λ)−tλ is bounded from below.
If f happens to be differentiable, then the set subgradients coincides with
the image of the derivative of f . By convexity of f , the set of subgradients
is convex, i.e., an interval. Recall that the Legendre transform of f, here

denoted by f̂ , is the function on ∆f defined as

f̂(t) := sup
λ
{tλ − f(λ)}.

Since f̂ is defined as the supremum of the linear functions tλ − f(λ), it

follows that f̂ is convex.
If f is concave then of course −f is convex, and one can define the Le-

gendre transform of f, also denoted by f̂ , as the Legendre transform of −f,
i.e.,

f̂(t) := sup
λ
{f(λ) + tλ},

which is thus convex.

Definition 6.1. The Legendre transform of a test curve ψλ is

ψ̂t := sup∗
λ∈R

{ψλ + tλ},

where t ∈ [0,∞).

Recall that the star denotes the operation of taking the upper semicon-
tinuous regularization.

Lemma 6.2. Let ψλ be any test curve (not necessarily maximal). Then the

Legendre transform ψ̂t is locally bounded for all t, and the map t �→ ψ̂t is a
subgeodesic ray emanating from ψ−∞.

Proof. By assumption, for some λ, ψλ is locally bounded, and trivially

ψ̂t ≥ ψλ + tλ, thus ψ̂t is locally bounded. It is clear that for a fixed λ,
the curve ψλ + tλ is a subgeodesic. Clearly supλ∈R{ψλ + tλ} is convex and

Lipschitz in t, and the same is easily seen to hold for ψ̂t. Thus ψ̂t is up-
per semicontinuous in the directions in X and also Lipschitz in t, which
implies that it is upper semicontinuous on the product X × R≥0 . There-

fore ψ̂t (thought of as a function on the product) coincides with the upper
semicontinuous regularization of of supλ∈R{ψλ + tλ}.

Now, taking the upper semicontinuous regularization of the supremum of
subgeodesics yields a subgeodesic, as long as it is bounded from above. We
observed above that ψλ ≤ ψ−∞. Now for some constant C, ψC ≡ −∞. It

follows that ψ̂t ≤ ψ−∞ + tC, so it is bounded from above and thus it is a
subgeodesic.
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Finally by definition ψ̂0 = sup∗
λ{ψλ}, which clearly is equal to ψ−∞

since ψλ ≤ ψ−∞ (ψλ being decreasing in λ) and ψ−∞ itself being upper-
semicontinuous. �

One can also consider the inverse Legendre transform, going from sub-
geodesic rays to concave curves of positive metrics.

Definition 6.3. The Legendre transform of a subgeodesic ray φt, t ∈ [0,∞),

denoted by φ̂λ, λ ∈ R, is defined as

φ̂λ := inf
t∈[0,∞)

{φt − tλ}.

Remark 6.4. It follows from Kiselman’s minimum principle (see [28]) that

for any λ ∈ R, φ̂λ is a positive metric (we would like to thank Bo Berndtsson

for this observation). Furthermore, it is clear that φ̂λ is concave and decreas-
ing in λ. From the involution property of the (real) Legendre transform it

follows that the Legendre transform of φ̂λ is φt, thus any subgeodesic ray is
the Legendre transform of a concave curve of positive metrics.

The goal of this section is to prove that if ψλ is an maximal test curve

then the Legendre transform ψ̂t of ψλ is a weak geodesic ray emanating

from ψ−∞. By Lemma 6.2, we know ψ̂t is a subgeodesic ray emanating
from ψ−∞. What remains then is to show that if ψλ is maximal then the

Aubin–Mabuchi energy E(ψ̂t, ψ̂0) is linear in t, which we now do with an
approximation argument.

For N ∈ N consider the approximation ψ̂N
t to ψ̂t, given by

ψ̂N
t := sup

k∈Z

{ψk2−N + tk2−N}.

Since ψλ is concave it is continuous in λ at all points such that ψλ(x) > −∞.

From the continuity it follows that ψ̂N
t will increase pointwise to ψ̂t a.e. as

N tends to infinity. Also let ψ̂N,M
t denote the curve

ψ̂N,M
t := sup

k∈Z,k≤M
{ψk2−N + tk2−N},

and observe that ψ̂N
t and ψ̂N,M

t are all locally bounded.

Lemma 6.5. Let M < M ′ be two integers. Then

ψ̂N,M ′

t = ψM ′2−N + tM ′2−N

implies that

ψ̂N,M
t = ψM2−N + tM2−N .

Proof. Certainly f(λ) := ψλ(x) + tλ is concave in λ. If

ψ̂N,M
t > ψM2−N + tM2−N
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at x, then f would be strictly decreasing at λ = M2−N , so by concavity

we would get that f(M ′2−N ) < f(M2−N ) < ψ̂N,M
t (x), which would be a

contradiction. �

Lemma 6.6. If ψλ is a maximal test curve then

t2−N

∫

X
MA(ψ(M+1)2−N ) ≤ E(ψ̂N,M+1

t , ψ̂N,M
t ) ≤ t2−N

∫

X
MA(ψM2−N ).

Proof. By Lemma 6.5 it follows that ψ̂N,M
t = ψM2−N + tM2−N on the sup-

port of ψ̂N,M+1
t − ψ̂N,M

t and thus Lemma 3.9 yields

(6.1) E(ψ̂N,M+1
t , ψ̂N,M

t ) = E(max{ψM2−N , ψ(M+1)2−N + t2−N}, ψM2−N ).

Since we assumed that ψλ is maximal, ψ(M+1)2−N is maximal with respect
to ψM2−N , and thus the lemma follows immediately from Lemma 4.12. �

Let ψλ be a maximal test curve, and let F (λ) denote the function

F (λ) :=

∫

X
MA(ψλ).

Whenever λ < λ′, ψλ′ ≤ ψλ and therefore it follows from Theorem 3.7 that
F (λ) is decreasing in λ, hence F (λ) is Riemann integrable.

Proposition 6.7. If ψλ is a maximal test curve then

(6.2) E(ψ̂t, ψ̂0) = −t

∫ ∞

λ=−∞
λdF (λ).

Proof. Suppose first m ∈ Z is such that ψm = ψ−∞. For a given N ∈ N set
M = m2N . Then

ψ̂N,M
t = ψ−∞ + tm = ψ̂0 + tm.

By repeatedly using the cocycle property of the Aubin–Mabuchi energy
in combination with Lemma 6.6 we get that

(6.3) t
∑

k>M

2−NF ((k + 1)2−N ) ≤ E(ψ̂N
t , ψ̂N,M

t ) ≤ t
∑

k>M

2−NF (k2−N ).

We noted above that ψ̂N
t increases pointwise to ψ̂t a.e. as N tends to in-

finity. By the continuity of the Aubin–Mabuchi energy under a.e. pointwise
increasing sequences (3.6),

E(ψ̂t, ψ̂0 + tm) = t

∫ ∞

λ=m
λF (λ)dλ,

since both the left- and the right-hand side of (6.3) converges to this. Again
using the cocycle property we get that

E(ψ̂t, ψ̂0) = E(ψ̂t, ψ̂0 + tm) + E(ψ̂0 + tm, ψ̂0) =

= t

∫ ∞

λ=m
λF (λ)dλ + tm

∫

X
MA(ψ−∞) = t

∫ ∞

λ=m
F (λ)dλ + tmF (m).(6.4)
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Since by our assumption the measure dF is zero on (−∞, m), integration by
parts yields

−t

∫ ∞

λ=−∞
λdF (λ) = −tλF (λ)|∞m + t

∫ ∞

λ=m
F (λ)dλ

= tmF (m) + t

∫ ∞

λ=m
F (λ)dλ.(6.5)

The proposition follows from combining equation (6.4) and equation (6.5).
�

Theorem 6.8. The Legendre transform ψ̂t of a maximal test curve ψλ is a
weak geodesic ray emanating from ψ−∞.

Proof. That ψ̂t is a subgeodesic emanating from ψ−∞ was proved in Lemma

6.2. According to Proposition 6.7 the energy E(ψ̂t, ψ̂0) is linear in t, and

therefore by Lemma 3.11 we get that ψ̂t is a weak geodesic ray. �

These weak geodesics are continuous in φ in the following sense:

Proposition 6.9. Let ψλ be a test curve and φ, φ′ ∈ H(L). Suppose φλ is the
maximal curve of φ (with respect to ψλ) and similarly for φ′

λ. If ‖φ−φ′‖∞ <
C then

‖φ̂t − φ̂′
t‖∞ < C for all t.

Proof. We claim that ‖φλ−φ′
λ‖∞ < C for all λ. But this is clear since φ ≤ φ′

implies that φλ ≤ φ′
λ for all λ. It is also clear that (φ+C)λ = φλ+C when C

is a constant. Thus φ̂t ≤ φ̂′
t for all t and (φ+C)λ = φλ +C, so consequently

φ̂ + Ct = φ̂t + C which proves the lemma. �

Let [ψλ] be an analytic test configuration, and let φλ be the associated
maximal test curve. Then [φλ] defines a new analytic test configuration. This
could possibly differ from [ψλ], but the following proposition tells us that
the associated geodesic rays are the same.

Proposition 6.10. Let φ′ ∈ H(L). Then the Legendre transform of φ′
[φλ]

coincides with the Legendre transform of φ′
λ := φ′

[ψλ].

Proof. Since φ′
λ ∼ φλ we get that φ′

[φλ] = φ′
[φ′

λ
], thus without loss of gen-

erality we can assume that φ′ = φ. Recall that the critical value λc was
defined as

λc := inf{λ : φλ ≡ −∞}.

If λ < λc there exists a λ′ such that λ < λ′ < λc, and thus by the assumption
φλ′ has small unbounded locus. Let C be a constant less than λ such that
φC = φ. By concavity it follows that

φλ ≥ rφ + (1 − r)φλ′ ,
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where 0 < r < 1, is chosen such that

λ = rC + (1 − r)λ′.

If we let
ρ := rφ + (1 − r)φλ′ ,

by the multilinearity of the Monge–Ampére operator it follows that MA(ρ)
dominates the volume form rnMA(φ). Furthermore ρ has small unbounded
locus and is more singular than φλ. Thus, by Proposition 4.7 we have

Pφλ+Cφ ≤ φλ

for any constant C and therefore

(6.6) φ[φλ] = φλ,

whenever λ < λc. If λ > λc then clearly equation (6.6) holds as well since
both sides are identically equal to minus infinity. It follows that for any
ǫ > 0,

φλ ≤ φ[φλ] ≤ φλ−ǫ,

which implies that

(̂φλ)t ≤ (̂φ[φλ])t
≤ (̂φλ−ǫ)t = (̂φλ)t + ǫt.

Since ǫ > 0 was arbitrary the proposition follows. �

7. Filtrations of the ring of sections

First, we recall what is meant by a filtration of a graded algebra.

Definition 7.1. A filtration F of a graded algebra ⊕kVk is a vector space-
valued map from R × N,

F : (t, k) �−→ FtVk,

such that for any k, FtVk is a family of subspaces of Vk that is decreasing
and left-continuous in t.

In [12] Boucksom–Chen consider certain filtrations which behaves well
with respect to the multiplicative structure of the algebra. They give the
following definition.

Definition 7.2. Let F be a filtration of a graded algebra ⊕kVk. We shall
say that

(i) F is multiplicative if

(FtVk)(FsVm) ⊆ Ft+sVk+m

for all k, m ∈ N and s, t ∈ R.
(ii) F is (linearly) bounded if there exists a constant C such that

F−kCVk = Vk and FkCVk = {0} for all k.
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The goal in this section is to associate an “analytic test configuration”
φF

λ to any bounded multiplicative filtration of the section ring R(L) =
⊕kH

0(kL), which will be used in the next section to construct an associated
geodesic.

Example 7.3. An important example for our purpose will be the filtrations
constructed from an algebraic test configuration (Section 8). Another kind
of example to have in mind come when (X, L) is toric with moment polytope
∆. Let f : ∆ → R be a bounded positive concave function. Recalling that

∆ ∩ k−1Zn parametrizes a toric basis {s
(k)
α } for H0(kL) define

FtH
0(kL) = linspan{s(k)

α : f(α) ≥ k−1t} ⊂ H0(kL).

It is easy to check that the concavity of f implies that F is multiplicative
and that f is bounded implies that F is linearly bounded. When f is rational
piecewise linear it turns out that this is precisely the filtration associated to
the algebraic test configuration defined by f as considered by Donaldson [24]
(see also [38]). In this way, one sees how the analytic test configurations and
associated geodesics considered in this section and the next generalize the
algebraic picture.

Now fix φ ∈ H(L), and let dV be a smooth volume form on X with unit
mass. This gives the L2-scalar product on H0(kL) by letting

(s, t)kφ :=

∫

X
s(z)t(z)e−kφ(z)dV (z).

For any λ ∈ R let {si,λ} be an orthonormal basis for FkλH0(kL) and define

φk,λ :=
1

k
ln

(∑
|si,λ|

2
)

,

which is a positive metric on L.

Lemma 7.4. For any λ, the sequence of metrics φk,λ converges to a limit
as k tends to infinity, and the upper semicontinuous regularization of the
limit

φF
λ := lim∗

k→∞φk,λ

is a positive metric.

Proof. Since

Kλ(z, w) :=
∑

i

si,λ(z)si,λ(w)

is a reproducing kernel of FkλH0(kL) with respect to (·, ·)kφ, as for the
full Bergman kernel we have the following useful characterization (see, for
example, [5, (4.3)])

(7.1)
∑

|si,λ|
2 = sup{|s|2 : s ∈ FkλH0(kL), ‖s‖2

kφ ≤ 1}.
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Let ‖s‖2
∞ := supz∈X{|s(z)|2e−kφ} and define

Fk,λ(z) := sup{|s(z)|2 : s ∈ FkλH0(kL), ‖s‖2
∞ ≤ 1}.

We trivially have the upper bound

Fk,λ(z) ≤ e−kφ(z).

It follows that

usc

(
1

k
lnFk,λ

)
= sup∗

{
1

k
ln |s|2 : s ∈ FkλH0(kL), ‖s‖2

∞ ≤ 1

})

is a positive metric. Let λ be fixed, pick a point z ∈ X, and let for all k,
sk ∈ FkλH0(kL) be such that ‖sk‖∞ = 1 and

Fk,λ(z) = |sk(z)|2.

Since the product sksm lies in F(k+m)λH0((k +m)L) by the multiplicativity
of F , and ‖sksm‖∞ ≤ ‖sk‖∞‖sm‖∞, we get that

(7.2) Fk+m,λ(z) ≥ Fk,λ(z)Fm,λ(z),

so the map k �→ Fk,λ(z) is multiplicative. The existence of a limit

lim
k→∞

1

k
lnFk,λ(z)

thus follows from Fekete’s lemma (see e.g., [9, p37]). Since we assumed that
dV had unit mass, for any section s

‖s‖2
kφ ≤ ‖s‖2

∞,

and thus by equation (7.1)
∑

|si,λ(z)|2 ≥ Fk,λ(z).

On the other hand, by the Bernstein–Markov property of any volume form
dV we have that for any ǫ > 0 there exists a constant Cǫ so that

‖s‖2
∞ ≤ Cǫe

ǫk‖s‖2
kφ,

and thus

(7.3)
∑

|si,λ(z)|2 ≤ Cǫe
ǫkFk,λ(z).

It follows that the difference φk,λ(z) − 1
k lnFk,λ(z) tends to zero as k tends

to infinity, thus the convergence of φk,λ follows.
By the multiplicativity, for any k ∈ N

1

k
lnFk,λ ≤ lim

l→∞

1

l
lnFl,λ = lim

l→∞
φl,λ,

and thus

(7.4) usc

(
1

k
lnFk,λ

)
≤ lim∗

l→∞φl,λ =: φF
λ .



156 J. ROSS AND DAVID WITT NYSTRÖM

On the other hand, clearly

lim
l→∞

φl,λ ≤ supk

{
usc

(
1

k
lnFk,λ

)}
,

and it follows that

φF
λ = sup∗

k

{
usc

(
1

k
lnFk,λ

)}

so φF
λ is indeed a positive metric. �

Remark 7.5. Since all volume forms dV on X are equivalent, the limit φλ

does not depend on the choice of volume form dV .

Lemma 7.6. We have that

φk,λ ≤ φF
λ + ǫ(k),

where ǫ(k) is a constant independent of λ that tends to zero as k tends to
infinity.

Proof. By combining the inequalities (7.3) and (7.4) from the proof of the
the previous lemma we see that for any ǫ > 0 there exists a constant Cǫ

independent of λ such that

φk,λ ≤ φF
λ + ǫ + (1/k) lnCǫ.

This yields the lemma. �

Proposition 7.7. The map λ �→ φF
λ is a test curve.

Proof. Let λ be such that FkλH0(kL) = H0(kL) for all k. Then φk,λ is the
usual Bergman metric, and by the result on Bergman kernel asymptotics due
to Bouche–Catlin–Tian–Zelditch (see Section 3) we get that φk,λ converges

to φ. Trivially we see that if FkλH0(kL) = {0} for all k then φF
λ ≡ −∞.

By the boundedness of the filtration we thus have φF
λ = φ for λ < −C and

φF
λ ≡ −∞ for λ > C.
By the multiplicativity of the filtration φλ ≡ −∞ if and only if for all k,

FkλH0(kL) = {0}.

Pick a λ such that φF
λ �≡ −∞, then for some k, FkλH0(kL) is non-trivial.

From Lemma 7.6 it follows that φF
λ has small unbounded locus since φk,λ

has small unbounded locus.
It remains to prove concavity. Let λ1, λ2 ∈ R and let t be a rational point

in the unit interval. Let m be a natural number such that mt is an integer.
Given a point z ∈ X, let s1 ∈ Fkλ1H

0(kL) and s2 ∈ Fkλ2H
0(kL) be two

sections with ‖s1‖∞ = ‖s2‖∞ = 1 such that

Fk,λ1 = |s1(z)|2
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and

Fk,λ2 = |s2(z)|2.

By the multiplicativity of the filtration,

smt
1 s

m(1−t)
2 ∈ Fmk(tλ1+(1−t)λ2)H

0(mkL),

and trivially ‖smt
1 s

m(1−t)
2 ‖∞ ≤ 1. It follows that

Fmk,tλ1+(1−t)λ2
(z) ≥ Fk,λ1(z)mtFk,λ2(z)m(1−t).

Taking the logarithm on both sides, dividing by mk, and taking the limit
yields

(7.5) φF
tλ1+(1−t)λ2

≥ tφF
λ1

+ (1 − t)φF
λ2

except possibly on the pluripolar set where the limits are not equal to their
upper semicontinuous regularization.

Now if two plurisubharmonic functions ζ1 and ζ2 are equal almost ev-
erywhere then they are equal everywhere [29, 2.9.8]. Applying this to ζ1

and max{ζ1, ζ2} we see that if ζ1 ≥ ζ2 almost everywhere then this is true
everywhere. Thus in fact (7.5) holds on the whole of X.

Recall that t was assumed to be rational. If λ1 ≤ λ2, the left-hand side of
(7.5) is decreasing in t since clearly φF

λ is decreasing in λ. The right-hand
side of (7.5) is continuous in t, so it follows that the equation (7.5) holds for
all t ∈ (0, 1), i.e., φF

λ is concave in λ. �

Lemma 7.8. For any two φ, ψ ∈ H(L) and any λ ∈ R we have φF
λ ∼ ψF

λ .

Proof. If φ ≤ ψ then for all k and λ we have that φk,λ ≤ ψk,λ, and so

φF
λ ≤ ψF

λ . Also it is clear that (φ + C)k,λ = φk,λ + C, which proves the
lemma. �

Definition 7.9. We call the map λ �→ [φF
λ ] the analytic test configuration

associated to the filtration F .

So by the previous lemma this analytic test configuration depends only
on F and not on the choice of φ ∈ H(L). Our next goal is to show the curve
φF

λ is maximal for λ < λc, for which we will need a Skoda-type division
theorem.

Theorem 7.10. Let L be an ample line bundle. Assume that L has a smooth
positive metric φ with the property that ddcφ ≥ ddcφKX

for some smooth
metric φKX

on the canonical bundle KX . Let {si} be a finite collection of
holomorphic sections of L and m > n + 2 where n = dimX.

Suppose s is a section of mL such that
∫

X

|s|2

(
∑

|si|2)m
dV < ∞.
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Then there exists sections hα ∈ H0((n + 1)L) such that

s =
∑

α

hαsα,

where α is a multiindex α = (αi) with
∑

i αi = m − n − 1, and sα are the
monomials sα := Πis

αi

i .

Proof. Let k be an integer such that n + 2 ≤ k ≤ m. Then given a section
t ∈ H0(kL) with ∫

X

|t|2

(
∑

i |si|2)k
dV < ∞

an application of the Skoda division theorem [47, Thm. 2.1] yields sections
{ti} of (k − 1)L such that t =

∑
i tisi and

∫

X

|ti|
2

(
∑

i |si|2)k−1
dV < ∞.

(To apply the cited theorem replace F, E, ψ, η with kL−KX , L, kφ−φKX
, φ

respectively and replace αq with k − 1 > n + 1.)
Now we first apply the above with k = m to the section s, and then apply

again with k = m− 1 to each of the sections ti. Repeating this process with
k = m, m − 1, . . . , n + 2 we see that s can be written as a linear sum of
monomials in the si as required. �

Proposition 7.11. For λ less than the critical value λc,

φF
λ = lim

k→∞
φ[φk,λ].

Proof. Let φk := φk,−∞, i.e., the Bergman metric 1/k ln(
∑

|si|
2), where {si}

is an orthonormal basis for the whole space H0(kL) with respect to (·, ·)kφ.
By the Bernstein–Markov property of any volume form dV (see e.g., [48]),
or simply the maximum principle,

(7.6) φk ≤ φ + ǫk,

where ǫk tends to zero as k tends to infinity. Since φk,λ is decreasing in λ,
the inequality (7.6) still holds when φk is replaced by φk,λ, i.e., φk,λ−ǫk ≤ φ.
Therefore, φk,λ − ǫk belongs to the class of metrics the supremum of which
yields P[φk,λ]φ, so

φk,λ ≤ P[φk,λ]φ + ǫk ≤ φ[φk,λ] + ǫk,

so letting k tend to infinity

φF
λ ≤ φ[φk,λ].

For the other inequality it is enough to show that for any constant C,

(7.7) Pφk,λ+C φ ≤ φF
λ .
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By the assumption that λ < λc it follows that φF
λ �≡ −∞. Let ψ be a positive

metric dominated by both φk,λ+C and φ, where k is large enough so that kL
fulfills the requirements of Theorem 7.10. We denote by J (kψ) the multiplier
ideal sheaf of germs of holomorphic functions locally integrable against e−kψ.
Let {si} be an orthonormal basis of H0(kL⊗J (kψ)), and denote by ψk the
Bergman metric

ψk :=
1

k
ln

(∑
|si|

2
)

.

By Theorem 3.2,
ψ ≤ ψk + δk

where δk tends to zero as k tends to infinity, and ψk converges pointwise to
ψ. If s lies in H0(kL ⊗ J (kψ)), specifically we must have that

∫

X

|s|2∑
|si,λ|2

dV < ∞,

since we assumed that ψ was dominated by φk,λ +C = 1/k ln(
∑

|si,λ|
2)+C.

Similarly if s lies in H0(kmL ⊗ J (kmψ)) we have
∫

X

|s|2

(
∑

|si,λ|2)m
dV < ∞.

From Theorem 7.10 applied to the sections {si,λ} it thus follows that

s =
∑

hαsα,

where hα ∈ H0(k(n+1)L), and the sα are monomials in the {si,λ} of degree
m − n − 1. Because of the multiplicativity of the filtration each sα lies in

Fk(m−n−1)λH0(k(m − n − 1)L),

and by the boundedness of the filtration we also have that each hα lies in

F−k(n+1)CH0(k(n + 1)L)

for some fixed constant C. We thus get that H0(kmL⊗J (kmψ)) is contained
in

(F−k(n+1)CH0(k(n + 1)L))(Fk(m−n−1)λH0(k(m − n − 1)L))

⊆ Fk(m−n−1)λ−k(n+1)CH0(kmL).(7.8)

Since we assumed that ψ ≤ φ we have that ψkm is less than or equal to
the Bergman metric using an orthonormal basis for H0(kmL ⊗ J (kmψ))
with respect to φ. Because of (7.8) this Bergman metric is certainly less
than or equal to φkm,λ′ , where

λ′ :=
1

km
(k(m − n − 1)λ − k(n + 1)C).

Hence
ψkm ≤ φkm,λ′ .
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On the other hand, by Lemma 7.6 we get

φkm,λ′ ≤ φF
λ′ + ǫ(km),

where ǫ(km) is a constant independent of λ′ that tends to zero as km tends
to infinity. Since λ′ tends to λ as m tends to infinity this implies ψ ≤
limλ′→λ φF

λ′ , and thus by Lemma 5.2 ψ ≤ φF
λ . Taking the supremum over all

such ψ completes the proof. �

Corollary 7.12. Suppose F is a multiplicative linearly bounded filtration of
⊕kH

0(kL). Then the associated test curve φF
λ is maximal for λ < λc and its

Legendre transform is a geodesic ray.

Proof. Theorem 4.10 tells us that φ[φk,λ] is maximal with respect to φ =

φ−∞. By Lemma 4.8 it follows that this is true for the limit φF
λ =

limk→∞ φ[φk,λ] as well. Let φλ be the test curve defined by φλ := φF
λ for

λ < λc and φλ ≡ −∞ for λ ≥ λc. Thus φλ is a maximal test curve, thus its
Legendre transform is a geodesic ray. On the other hand, for every ǫ > 0

φλ ≤ φF
λ ≤ φλ−ǫ,

and therefore

φ̂t ≤ (̂φF )t ≤ φ̂t + ǫt.

Since ǫ was arbitrary we get that the Legendre transform of φF
λ coincides

with that of φλ, and thus it is a geodesic ray. �

Remark 7.13. Given an analytic test configuration [ψλ] there is a naturally
associated filtration F of the section ring, defined as

FkλH0(kL) := H0(kL ⊗ J (kψλ)).

This filtration is bounded, but in general not multiplicative.

8. Filtrations associated to algebraic test configurations

We recall briefly Donaldson’s definition of a test configuration [24, 25]. In
order to not confuse them with the our analytic test configurations, we will
in this article refer to them as algebraic test configurations.

Definition 8.1. An algebraic test configuration T for an ample line bundle
L over X consists of:

(i) a scheme X with a C×-action ρ,
(ii) a C×-equivariant line bundle L over X ,
(iii) and a flat C×-equivariant projection π : X → C where C× acts on C

by multiplication, such that L is relatively ample, and such that if we
denote by X1 := π−1(1), then L|X1

→ X1 is isomorphic to rL → X
for some r > 0.
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By rescaling we can without loss of generality assume that r = 1 in the
definition. An algebraic test configuration is called a product test configura-
tion if there is a C×-action ρ′ on L → X such that L = L×C with ρ acting
on L by ρ′ and on C by multiplication. An algebraic test configuration is
called trivial if it is a product test configuration with the action ρ′ being the
trivial C×-action.

Since the zero-fiber X0 := π−1(0) is invariant under the action ρ, we get
an induced action on the space H0(kL0), also denoted by ρ, where we have
denoted the restriction of L to X0 by L0. Specifically, we let ρ(τ) act on a
section s ∈ H0(kL0) by

(8.1) (ρ(τ)(s))(x) := ρ(τ)(s(ρ−1(τ)(x))).

By standard theory any vector space V with a C×-action can be split into
weight spaces Vλi

on which ρ(τ) acts as multiplication by τλi , (see e.g., [24]).
The numbers λi with non-trivial weight spaces are called the weights of the
action. Thus we may write H0(kL0) as

H0(kL0) = ⊕λVλ

with respect to the induced action ρ.
In [35, Lemma 4] Phong–Sturm give the following linear bound on the

absolute value of the weights.

Lemma 8.2. Given a test configuration there is a constant C such that

|λi| < Ck

whenever dimVλi
> 0.

In [49] the second author showed how to get an associated filtration F of
the section ring ⊕kH

0(kL) given a test configuration T of L which we now
recall.

First note that the C×-action ρ on L via the equation (8.1) gives rise to
an induced action on H0(X , kL) as well as H0(X \ X0, kL), since X \ X0

is invariant. Let s ∈ H0(kL) be a holomorphic section. Then using the C×-
action ρ we get a canonical extension s̄ ∈ H0(X \X0, kL) which is invariant
under the action ρ, simply by letting

(8.2) s̄(ρ(τ)x) := ρ(τ)s(x)

for any τ ∈ C× and x ∈ X.
We identify the coordinate z with the projection function π(x), and we

also consider it as a section of the trivial bundle over X . Exactly as for
H0(X , kL), ρ gives rise to an induced action on sections of the trivial bundle,
using the same formula (8.1). From this one sees

(8.3) (ρ(τ)z)(x) = ρ(τ)(z(ρ−1(τ)x) = ρ(τ)(τ−1z(x)) = τ−1z(x),
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where we used that ρ acts on the trivial bundle by multiplication on the
z-coordinate. Thus

ρ(τ)z = τ−1z,

which shows that the section z has weight −1.
By this it follows that for any section s ∈ H0(kL) and any integer λ, we

get a section z−λs̄ ∈ H0(X \ X0, kL), which has weight λ.

Lemma 8.3. For any section s ∈ H0(kL) and any integer λ the section
z−λs̄ extends to a meromorphic section of kL over the whole of X , which we
also will denote by z−λs̄.

Proof. It is equivalent to saying that for any section s there exists an integer
λ such that zλs̄ extends to a holomorphic section S ∈ H0(X , kL). By flat-
ness, which was assumed in the definition of a test configuration, the direct
image bundle π∗L is in fact a vector bundle over C. Thus it is trivial, since
any vector bundle over C is trivial. Therefore there exists a global section
S′ ∈ H0(X , kL) such that s = S′

|X . On the other hand, as for H0(kL0),

H0(X , kL) may be decomposed as a direct sum of invariant subspaces Wλ′

such that ρ(τ) restricted to Wλ′ acts as multiplication by τλ′

. Let us write

(8.4) S′ =
∑

S′
λ′ ,

where Sλ′ ∈ Wλ′ . Restricting the equation (8.4) to X gives a decomposition
of s,

s =
∑

sλ′ ,

where sλ′ := S′
λ′ |X . From (8.2) and the fact that S′

λ′ lies in Wλ′ we get that

for x ∈ X and τ ∈ C×

s̄λ′(ρ(τ)(x)) = ρ(τ)(sλ′(x)) = ρ(τ)(S′
λ′(x)) = (ρ(τ)S′

λ′)(ρ(τ)(x))) =

= τλ′

S′
λ′(ρ(τ)(x)),

and therefore s̄λ′ = τλ′

S′
λ′ . Since trivially

s̄ =
∑

s̄λ′

it follows that tλs̄ extends holomorphically as long as λ ≥ max−λ′. �

Definition 8.4. Given a test configuration T we define a vector space-
valued map F from Z × N by letting

(λ, k) �−→ {s ∈ H0(kL) : z−λs̄ ∈ H0(X , kL)} =: FλH0(kL).

It is immediate that Fλ is decreasing since H0(X , kL) is a C[z]-module.
We can extend F to a filtration by letting

FλH0(kL) := F⌈λ⌉H
0(kL)
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for non-integers λ, thus making F left-continuous. Since

z−(λ+λ′)ss′ = (z−λs̄)(z−λ′

s̄′) ∈ H0(X , kL)H0(X , mL) ⊆ H0(X , (k + m)L)

whenever s ∈ FλH0(kL) and s′ ∈ Fλ′H0(kL), we see that

(FλH0(kL))(Fλ′H0(mL)) ⊆ Fλ+λ′H0((k + m)L),

i.e., F is multiplicative.
Recall that we had the decomposition of H0(kL0) into weight spaces Vλ.

Lemma 8.5. For each λ, we have that

dimFλH0(kL) =
∑

λ′≥λ

dimVλ′ .

Proof. We have the following isomorphism:

(π∗kL)|{0} ∼= H0(X , kL)/zH0(X , kL),

the right-to-left arrow being given by the restriction map (see e.g., [39, p12]).
Also, for k ≫ 0, (π∗kL)|{0} = H0(kL0), therefore for large k

(8.5) H0(kL0) ∼= H0(X , kL)/zH0(X , kL),

We also had a decomposition of H0(X , kL) into the sum of its invariant
weight spaces Wλ. By Lemma 8.3 it is clear that a section S ∈ H0(X , kL)
lies in Wλ if and only if it can be written as z−λs̄ for some s ∈ H0(kL), in
fact we have that s = S|X . Thus

Wλ
∼= FλH0(kL),

and by the isomorphism (8.5) then

Vλ
∼= FλH0(kL)/Fλ+1H

0(kL).

Therefore

(8.6) dimFλH0(kL) =
∑

λ′≥λ

dimVλ′ .

�

Using Lemma 8.5 together with Lemma 8.2 shows that the filtration F is
bounded.

9. The geodesic rays of Phong and Sturm

In [35] Phong–Sturm show how to construct a weak geodesic ray, starting
with a φ ∈ H(L) and an algebraic test configuration T (see also [44] for
how this works in the toric setting). In the previous section we showed
how to associate an analytic test configuration [φF

λ ] to an algebraic test
configuration, and thus get a weak geodesic using the Legendre transform of
its maximal envelope. Recall by Proposition 6.10 this geodesic is the same as
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the Legendre transform of the original test curve φF
λ . The goal in this section

is to prove that this ray coincides with the one constructed by Phong–Sturm.
To describe what we aim to show, recall that if V is a vector space with

a scalar product, and F is a filtration of V, there is a unique decomposition
of V into a direct sum of mutually orthogonal subspaces Vλi

such that

FλV = ⊕λi≥λVλi
.

Furthermore we allow for λi to be equal to λj even when i �= j, so we
can assume that all the subspaces Vλi

are one dimensional. This additional
decomposition is of course not unique, but it will not matter in what follows.

Let φ ∈ H(L) and H0(kL) = ⊕Vλi
be the decomposition of H0(kL) with

respect to the scalar product (·, ·)kφ coming from the volume form (ddcφ)n.
Consider next the filtration coming from an algebraic test configuration
(note that then the collection of λi will depend also on k but we omit that
from our notation) and define the normalized weights to be

λ̄i :=
λi

k
,

which form a bounded family by Lemma 8.2.
Now if si is a vector of unit length in Vλi

, then {si} will be an orthonormal
basis for H0(kL). Since the filtration F encodes the C∗-action on H0(kL) it
is easy to see that the basis {si} is the same one as in [35, Lem 7]. In terms
of the notation in the previous sections

φk,λ =
1

k
ln

⎛
⎝ ∑

λi≥kλ

|si|
2

⎞
⎠ and φF

λ = lim∗
k→∞φk,λ.

Definition 9.1. Let

Φk(t) :=
1

k
ln

(∑

i

etλi |si|
2

)

The Phong–Sturm ray is the limit

(9.1) Φ(t) := lim∗
k→∞(sup

l≥k
Φl(t)).
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Our goal is the following:

Theorem 9.2. Let φF be the analytic test configuration associated to the
filtration F from a test configuration. Then

Φ(t) = (̂φF )t.

In particular, the results from the previous section yield another proof
of [35, Thm 1] which says that Φ(t) is a weak geodesic ray emanating from
φ.

Lemma 9.3.

(9.2) Φ(t) = lim∗
k→∞(sup

l≥k
Φl(t)) = lim∗

k→∞(sup
l≥k

max
i

{φl,λ̄i
+ tλ̄i}).

Proof. Our proof will be based on the elementary fact that if {al,i : i ∈ Il}
is a set of real numbers then

(9.3) max
i∈Il

al,i ≤
1

l
ln

∑

i∈Il

elal.i ≤ max
i∈Il

al,i +
1

l
ln |Il|.

Now pick x ∈ X and t > 0. Let

al,i :=
1

l
ln |si(x)|2 + tλ̄i

and Il be the indexing set for the λi. Then |Il| = O(ln) and

Φl(t) =
1

l
ln

(∑

i

elal,i

)
.

Thus by (9.3)

(9.4) max
i

{al,i} ≤ Φl(t) ≤ max
i

{al,i} +
|Il|

l
.

Now set

bl,i := φl,λ̄i
+ tλ̄i =

1

l
ln

∑

λj≥λi

|sj(x)|2 + tλ̄i.

For fixed i, pick any j0 such that

max
λj≥λi

|sj(x)|2 = |sj0 |
2 and λj0 ≥ λi.

Then

bl,i ≤
1

l
ln(|Il||sj0 |

2 + tλ̄i ≤
1

l
ln |sj0 |

2 + tλ̄j0 +
ln |Il|

l
= aj0,l +

ln |Il|

l
.

Clearly al,i ≤ bl,i for all i, so we in fact have

max
i

{al,i} ≤ max{bl,i} ≤ max
i

{al,i} +
ln |Il|

l
,
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which combined with (9.4) yields

max
i

{bl,i} −
ln |Il|

l
≤ Φl(t) ≤ max

i
{bl,i} +

ln |Il|

l
.

Now taking the supremum over all l ≥ k followed by the upper semicontin-
uous regularization and then the limit as k tends to infinity gives the result
since k−1 ln |Ik| tends to zero. �

Proof of Theorem 9.2. From Lemma 7.6 there is a constant ǫ(l) such that

φl,λ̄i
+ tλ̄i ≤ φF

λ̄i
+ tλ̄i + ǫ(l),

where ǫ(l) is independent of λi and tends to zero as l tends to infinity. Thus

max
i

{φl,λ̄i
+ tλ̄i} ≤ sup

λ
{φF

λ + tλ} + ǫ(l),

and so

lim∗
k→∞supl≥k max

i
{φl,λ̄i

+ tλ̄i} ≤ (φ̂F )t + lim
k→∞

sup
l≥k

ǫ(l),

so using Lemma 9.3 gives

Φ(t) ≤ (φ̂F )t.

For the opposite inequality, let λ ∈ R be arbitrary. Trivially

Φk(t) =
1

k
ln

(∑

i

etλi |si|
2

)
≥

1

k
ln

⎛
⎝ ∑

λi≥kλ

etkλ|si|
2

⎞
⎠ = φk,λ + tλ.

Hence

Φ(t) ≥ φF
λ + tλ

for any λ, and thus

Φ(t) ≥ (φ̂F )t.

�

Remark 9.4. Phong–Sturm prove in [35] that the geodesic ray one gets
from an algebraic test configuration F is non-trivial if the norm of F is
non-zero. From the above we see that the weak geodesic ray is trivial if and
only if the associated analytic test configuration is trivial, i.e., if there exists
a number λc such that φλ = φ when λ < λc and φλ ≡ −∞ when λ > λc.
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