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Abstract. White-box cryptography is an obfuscation technique for protecting secret keys in software
implementations even if an adversary has full access to the implementation of the encryption algorithm
and full control over its execution platforms. This concept was presented by Chow et al. with white-box
implementations of DES and AES in 2002. The strategy used in the implementations has become a design
principle for subsequent white-box implementations. However, despite its practical importance, progress
has not been substantial. In fact, it is repeated that as a proposal for a white-box implementation is
reported, an attack of lower complexity is soon announced. This is mainly because most cryptanalytic
methods target specific implementations, and there is no general attack tool for white-box cryptography.
In this paper, we present an analytic toolbox on white-box implementations in this design framework and
show how to reveal the secret information obfuscated in the implementation using this. For a substitution-
linear transformation cipher on n bits with S-boxes on m bits, if mQ-bit nonlinear encodings are used to
obfuscate output values in the implementation, our attack tool can remove the nonlinear encodings with
complexity O( n

mQ
23mQ). We should increase mQ to obtain higher security, but it yields exponential storage

blowing up and so there are limits to increase the security using the nonlinear encoding. If the inverse of
the encoded round function F on n bits is given, the affine encoding A can be recovered in O( n

m
·mA

323m)
time using our specialized affine equivalence algorithm, where mA is the smallest integer p such that A

(or its similar matrix obtained by permuting rows and columns) is a block-diagonal matrix with p × p

matrix blocks. According to our toolbox, a white-box implementation in the Chow et al.’s framework has

complexity at most O
(

min
{

22m

m
· nm+4, n log n · 2n/2

})

within reasonable storage, which is much less

than 2n.
To overcome this, we introduce an idea that obfuscates two AES-128 ciphers at once with input/output
encoding on 256 bits. To reduce storage, we use a sparse unsplit input encoding. As a result, our white-box
AES implementation has up to 110-bit security against our toolbox, close to that of the original cipher.
More generally, we may consider a white-box implementation on the concatenation of t ciphertexts to
increase security.

Keywords: white-box cryptography, white-box implementation, specialized affine equivalence algorithm,
AES, block cipher.

1 Introduction

Traditionally, the security of cryptographic algorithms is studied in the black-box model—the end
points are trusted and the attacker only has access to the input/output of the algorithm. Under this
model, cryptographic schemes are designed to prevent attackers from obtaining secret information
using only the input/output values of algorithm without any knowledge of its internal information. In
the real world, however, untrusted hosts may access unapproved contents illegally, malicious software in
user devices may access the memory used to execute a cryptographic algorithm, or internal information
may be leaked during the process of communication. Actually, many attacks have been proposed, such
as side channel attacks [10, 13, 14, 18, 19], which extract secret information by access to the internal
states in the implementation of algorithm. The concept of white-box cryptography has been proposed
to enhance security of cryptosystems under such hostile environment.

The white-box cryptography is defined as an obfuscation technique which gives a secure software
implementation, by Chow et al. in 2002. Its goal is to prevent attackers, who have full access to the
implementation, from extracting secret key information. In the past, hardware such as smart cards
and trusted platform modules were used to protect internal information. Such hardware is costly and
difficult to be replaced by a new one when a flaw is discovered. White-box cryptography is a means
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of protecting the internal information of the software implementation. Many commercial products
can use white-box cryptography. One of the main applications is in the digital rights management.
Suppose that some content is in encrypted form, and should only be decrypted by permitted devices. If
an adversary obtains the decryption key for the content, she can use it in other devices and distribute
illegal copies of the content. White-box cryptography aims to prevent attackers from obtaining the
decryption key.

The first proposals to implement cryptographic primitives in white-box cryptography were made by
Chow et al., who presented a white-box AES implementation [5] and a white-box DES implementation
[6] in 2002. They are based on the basic strategy: the whole cipher is decomposed into round functions
and the round functions are represented by summation of lookup tables with small size. Although Chow
et al.’s implementations have been broken with complexity 214 for DES [24] and 222 for AES [15], their
strategy provided a framework, called “CEJO framework”, for designing white-box implementation of
using table lookups. Most white-box implementations after Chow et al.’s proposal follow the CEJO
framework: Xiao and Lai [25] proposed white-box AES implementation using wider linear encodings
than Chow et al.’s. Karroumi [12] modified the algebraic operations in each AES round function using
dual representations of the AES cipher and presented a white-box AES implementation. However all of
these have been broken in the sense that the secret key can be recovered in the lower complexity than
their claimed security when the full lookup tables are given (complexity of 232 and 222, respectively
[17, 15]).

On the other hand, researches for white-box cryptography have been proceeded in various ways:
Some security notions for white-box cryptography have been studied in [8, 20, 23]. Independently,
Biryukov et al. [2] proposed a new symmetric ASASA-based block cipher with secret S-boxes satisfying
white-box security notion, whereas previous works focused on proposing white-box implementation of
the existing cipher which is well-known and secure.

As we can see from previous implementations, it is very difficult to design a white-box implemen-
tation with a security level similar to the black-box model. Hence, the practical objective of white-box
implementations is to increase the complexity of cryptanalysis. All of the implementations mentioned
above suffered unpredicted attacks soon after their designs were announced. This is mainly because
there are no standard attack tools such as differential cryptanalysis and linear cryptanalysis for block
ciphers.

Our Contributions: Throughout this paper, we focus on white-box implementations of SLT ciphers
following CEJO framework. Let E = M ◦ S be the round function of an SLT cipher on n bits, where
M is an invertible linear map and S is a concatenation of S-boxes on m bits with a fixed key. We
define the input encoding as f = A ◦ P , where A is an invertible linear map and P is a concatenation
of small nonlinear permutations. If we let g be the input encoding of the next round, then the encoded
round function F of E is of the form F = g−1 ◦E ◦ f = QBSAP , where B is an invertible linear map
and Q is a concatenation of small nonlinear permutations.

Our contributions are two-folded.

1. We present an analytic toolbox for white-box implementations of SLT ciphers in the CEJO
framework. Our toolbox consists of several algorithms to recover nonlinear and affine encodings
used in this model.
First, by adopting the Biryukov–Shamir technique [4], we show that the nonlinear part Q can be

removed up to an affine transformation in O
(

n
mQ

23mQ

)
when Q = (Q1, · · · , Qn/mQ

) and each

Qi is a nonlinear bijection on mQ bits. For example, the nonlinear encoding in the Chow et al.’s
implementation can be removed in 218 bit operations, whereas it takes 229 bit operations using
Billet et al.’s attack [1]. While Billet et al.’s method is only available when the input size of the
S-boxes is the same as the input size of the encodings, ours can be efficiently applied whenm 6= mQ.



3

Second, when F = B ◦ S ◦ A for affine mappings A,B, it is affine equivalent to S. Hence we can
apply the affine equivalence algorithm in [3], which has a complexity of O(n322n). We improve this
algorithm for the case where S consists of small S-boxes of sizem. According to our specialized affine
equivalence algorithm (SAEA), if the F−1 oracle is given, we can find A and B in O

(
n
m ·mA

323m
)
,

where mA is the smallest integer p such that A (or its similar matrix obtained by permuting rows
and columns) is a block diagonal matrix with p × p matrix blocks. In fact, mA is the minimal
block size when considering A as a block diagonal mapping. When F−1 oracle is not given, SAEA
requires O

(
min

{
n
m ·mA

m+3 · 22m, n · logmA · 2mA/2
})

, including the complexity of inverting F ,
to recover the affine encodings.
Our attack is universal in the sense that all known implementations based on the CEJO framework
are susceptible to them. Furthermore, they could play a role of estimating the security of possible
white-box implementation designs.

2. We propose a new design for a white-box implementation whose security level is close to
that of the original cipher. Most variants of Chow et al.’s implementation [12, 25] attempted to
increase the security by introducing new affine encodings. According to our toolbox, however, for
any affine encoding the complexity for finding the secret key is upper bounded by the minimum
of O(2

2m

m · nm+4) and O(n log n · 2n/2), which is much lower than 2n. This provides a negative
perspective on secure white-box implementations of SLT ciphers using table lookups.
Our new approach is to use the encryption of multiple plaintexts: For AES-128, we consider the
concatenation of two AES-128 ciphers. Let E be a round function of AES-128 and F = g−1 ◦
(E,E) ◦ f be the encoded round function on 256 bits. Then we can take mA = 2n > n and
hence accomplish higher security, up to 2110 for mA = 256 and m = 8. This approach can be
applied to any SLT cipher with mA = tn for suitable t ∈ Z and then the security level is large
up to

(
2·4n

m nm+4
)
· tm+4. Therefore, this provides a new approach for the design of a secure white-

box implementation, regardless of the block length of the original cipher. One shortcoming of this
approach is its large storage requirement. However, this is compensated by the use of special sparse
encodings. We give an instance with storage requirements of about 16 MB and 64 MB for a single
round when mA = 128 and 256, respectively, in Section 5. Our design does not have a security
reduction to well known problems and needs to be scrutinized to get a confidence. However, it is
still worthy in that it explains why the previous design trials have been failed and how to overcome
this barrier in the current state. We expect our work inspires further research to design a secure
white-box implementation.

Outline of the Paper: In Section 2, we introduce the basic strategy of Chow et al.’s white-
box implementation, and discuss its extension in previous works. We propose attack tools that can
be applied to a white-box implementation in Section 3. An approach to the design of a white-box
implementation based on the result of our toolbox is given in Section 4. In Section 5, we present an
instance of such a the white-box AES implementation. We conclude the paper in Section 6.

2 Revisiting the Chow et al.’s implementation for the SLT Cipher

In the black-box model, it is assumed that the encryption algorithm is executed in trusted platforms.
Hence, an adversary cannot observe the internal behavior of the encryption process, but can only the
external values, such as the plaintext/ciphertext of the encryption algorithm. However, these models
are theoretical, and the leakage of secret information can occur in practical implementations. In gray-
box models, adversaries can access more information about the internal details of the encryption
algorithm. This information includes side channel information related to runtime, power consumption,
and fault analysis, which can be leaked by partial access.
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Mout ◦ E
(r) ◦ f (r)

︸ ︷︷ ︸

table

◦ (f (r))−1 ◦ E(r−1) ◦ f (r−1)

︸ ︷︷ ︸

table

◦ · · · ◦ (f (2))−1 ◦ E(1) ◦ f (1)

︸ ︷︷ ︸

table

◦ (f (1))−1 ◦Min
︸ ︷︷ ︸

table

= Mout ◦ E
(r) ◦ · · · ◦ E(2) ◦ E(1) ◦Min

Fig. 1: The basic strategy of in the CEJO framework

In the white-box model, however, it is assumed that the adversary has full access to the implemen-
tation of the encryption algorithm and full control over its execution platforms. In this context, the
main objective of the adversary is to extract the secret key. That is, the purpose of secure white-box
implementations is to prevent the encryption key from being revealed even when internal algorithm
details are completely visible in the untrusted platform, and the adversary has full access to the
execution of the encryption algorithm.

One approach for secure white-box implementation of a block cipher is to give a table of all
input/output values of the encryption. In this case, the security of the implementation of an algorithm
is equivalent to the security of the encryption in the black-box model, and hence depends on the security
of the encryption scheme itself, regardless of implementations. Unfortunately, such an implementation
is not practical, because the storage requirements of the table are prohibitive. For example, the size
of the input/output table of AES-128 is 2128 × 128 = 2102 GB. Chow et al. suggested a white-box
implementations with an implementable table size for AES [5].

Chow et al.’s implementation In the Chow et al.’s implementation, the basic approach for reducing
the table size is to decompose the table into small tables with a composition that composition is
equivalent to the original input/output table. The most important factor in the table size is the size
of the input affecting each S-box, because the S-boxes cannot be decomposed into smaller parts. In
AES, one S-box in a single round is influenced by only 8 input bits, but in more than two rounds,
each S-box is influenced by all input bits. Hence, Chow et al. decomposed the whole AES cipher
into round functions, and represented these as the composition of small tables whose inputs are those
corresponding to each S-box.

Because the round key can be exposed if the input/output values of a single round are provided,
the input/output tables of each round must be obfuscated by input/output encoding functions. For
equivalence with the original AES, the input encoding of the i-th round is offset by the output en-
coding of the previous round, as in Fig 1 (where E(i) is the i-th round function, f (i) is an input
encoding function of the i-th round, and Min/Mout are external input/output encodings for security
supplement).

The strategy used in the Chow et al.’s implementation can be summarized as follows:

1. The cipher is decomposed into round functions and the round functions are obfuscated by in-
put/output encodings.

2. Each round function is decomposed into a network of lookup tables whose inputs are those corre-
sponding to each S-box.

This strategy provided a framework for designing white-box implementation of block cipher using
table lookups. We call it “CEJO framework”.

In Chow et al.’s implementation, the encodings composed of nonlinear mappings and linear map-
pings are used. To prevent an increase in the size of the input that affects each S-box, Chow et al. used
8-bit encodings whose size are the same as that of the size of the S-boxes. A more precise description
of the encoded round function is as follows. Each encoded round function on 128 bits is composed
of four parallel subround functions on 32 bits. In the Chow et al.’s implementation, the subround
function F on 32 bits has the form F = QBMSAP , where P,Q are concatenations of 4-bit nonlinear
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permutations, A,B are block diagonal linear mappings with block size 8, S is the bytewise operation of
S-boxes, and M is the Mixcolumns operation on 32 bits. Note that an AddRoundKey operation can be
merged to the nonlinear encoding P . Because the block size of the encodings is 8 which is the same as
the input size of the S-boxes, the ShiftRows operation can be omitted in the round function. (Thus, we
consider the encoded round function as a concatenation of four parallel subround functions.) Hence,
F can be represented by the summation of four 8-bit to 32-bit lookup tables. For the “summation” of
these tables, twenty-four 8-bit to 4-bit XOR tables are required additionally.1

BGE Attack BGE attack [1] exploited that the input encoding size is the same as that of the S-box
in the Chow et al.’s implementation. It consists of three steps. First, they recover the nonlinear parts of
the encodings. As the Chow et al.’s implementation only uses input encoding on 8 bits (composition of
8-bit mixing bijection and two 4-bit nonlinear encodings), it is easy to obtain the bijective subfunction
of F on 8 bits by fixing three bytes of the input. Using this property, the BGE attack can recover
nonlinear parts of the encodings (up to affine) in 224 time. In the second step of the attack, the relations
between input/output of the table are found using a property of the Mixcolumns operation. Finally,
the round key can be found using the result of the second step. The dominant part of this attack’s
complexity is in the first step, and the total complexity of recovering a 128-bit AES key is 230.

Michiels et al.’s Cryptanalysis for SLT cipher The CEJO framework can be applied for de-
signing white-box implementation of any other ciphers, such as a generic class of substitution-linear
transformation (SLT) ciphers. Michiels et al. [16] considered the white-box implementation of SLT
ciphers based on the CEJO framework and presented the associated cryptanalysis. The SLT cipher
defined in [16] is a type of iterated cipher with substitution layers and linear transformation layers. A
more precise definition of the SLT cipher is as follows.

Definition 1. The SLT cipher E is defined as follows. It consists of R rounds for some R ≥ 1. For
each r = 1, · · · , R, the r-th round function E(r)(x1, · · · , xk) is a bijective function on n bits, where
n = k ·m and xj is an m-bit value for each j and consists of the following three operations:

1. XOR-ing round key XOR the r-th round key K(r) = (K
(r)
1 , · · · ,K

(r)
k ) of n bits to the input

(x1, · · · , xk). This outputs yi = xi ⊕K
(r)
i for all i = 1, · · · , k.

2. Substitution Compute zi = S
(r)
i (yi) for all i = 1, · · · , k, where each S

(r)
i is an invertible S-box on

m bits in the i-th round.

3. Linear transformation For z = (z1, · · · , zk), compute M (r)z where M (r) is an n× n invertible
matrix over GF(2). This n-bit value is the output of the r-th round function.

Michiels et al.’s use input encodings whose input size is the same as the input size of the S-boxes, as
for the original Chow et al.’s implementation. This means the first step of the BGE attack is available
to recover the nonlinear parts of the encodings. However, because Michiels et al.’s setting is not only
defined on AES, but on any SLT cipher, the other steps of the BGE attack that use the property of
AES are not available. Instead, Michiels et al. transformed the encoded round function into a block
diagonal mapping whose block size is the same as that of the S-boxes, and recovered the affine encoding
of each block using an affine equivalence algorithm [3]. The reason for transforming the encoded round
function into a block diagonal mapping is that the input encodings still have an input size that is the
same as that of the S-boxes.

1 As each output value is transformed by a nonlinear encoding, the output values cannot be added directly. Therefore,
we need an “XOR table” to perform decoding-XOR-reencoding.
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Fig. 2: Original encodings and extended encodings for the CEJO framework

CEJO framework with extended encoding In the Chow et al.’s implementation and Michiels et
al.’s modification, the reason for using the input encodings whose input size is the same as that of the
S-boxes is to maintain the number of input bits affecting the S-boxes. However, this leads to weakness
against BGE attack and Michiels et al.’s cryptanalysis. Therefore, the next step is to extend the form
of the encodings for CEJO framework to satisfy both practical and security aspects.

Consider a white-box implementation of an SLT cipher, which follows the CEJO framework. Let
E = M ◦ S be a round function of the SLT cipher on n = km bits, where M is a linear layer of
the SLT cipher and S is a concatenation of S-boxes S1, · · · , Sk on m bits.2 Let f and g be input
and output encoding functions, respectively, which are bijections on n bits. Clearly, g is the inverse
function of the input encoding function of the next round. Thus, the encoded round function F is
defined as F = g ◦ E ◦ f . We first consider an extended form of the encoding at f = A ◦ P , where A
is an invertible linear map on n bits and P is a nonlinear permutation. In the CEJO framework, the
table size is mainly determined by the size of input affecting each S-box. Therefore, if A and P are
arbitrary bijective linear and nonlinear mappings, respectively, the table size would be huge. Hence,
we consider a special mappings that ensure the white-box implementation with reasonable size.

Let A =



A1
...
Ak


, where Aj is the j-th horizontal strip of size m×n, and let P be a concatenation of

nonlinear bijective encodings P1, · · · , PkP on mP bits, where n = kP ·mP . The output of fj = Aj ◦ P
is the input of Sj , and hence the net input3 size of fj determines the table size related to Sj . The net
input size of fj is related to the net input size of Aj , and the net input size of Aj is the number of
nonzero columns in Aj . Therefore, if we can ensure a small number of nonzero columns in Aj , the table
size will be small. Furthermore, since these net input bits are affected by the corresponding Pjt , we
should aim for few Pjt , each with a small number of input bits. Therefore, P should be a concatenation
of small nonlinear permutations, and A should be an invertible linear map, where each Aj has a small
number of nonzero columns.

Since the output encoding is the inverse of the input encoding of the next round, we can write
the output encoding g as g = Q ◦B, where Q is a concatenation of small nonlinear permutations and
B is an invertible linear map. Thus, the encoded round function is of the form F = QBMSAP . For
simplicity, we write BM as B, because B,M are invertible linear maps, and M is known, i.e., we let
F = QBSAP .

We may consider the case f = P ◦ A, where the encoded round function is of the form F =
BQMSPA. In this case, since the n × n linear map B follows the Q layer, the XOR tables should
decode the encoding BQ, rather than Q. This will make the size of XOR tables huge, and hence we
must decompose F into two parts after the Q layer. That is, we let F = G◦H and make input/output

2 For a fixed key, the adding key operation can be merged with the nonlinear permutation or the S-box.
3 The net input of a function is the part that really affects the output of the function.
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tables of G and H, where G = B ◦Q1 and H = Q2MSPA with Q = Q1 ◦Q2. However, if we combine
H with G from the previous round, the function is of the form Q′MSP ′, because the linear mappings
A and B (from the previous round) will be canceled out. Since this is covered by the case f = A ◦ P ,
we do not consider it further in this paper. Similarly, for a composition of more than two encodings,
we just consider the case f = A ◦ P as a generalized form of the encoding.

Remark 1. In practice, mP cannot be much larger than m, because the use of a nonlinear encoding
of size mP induces the use of a 2mP -bit to mP -bit XOR table. Hence, the choice of mP is limited.
However, we need not be restricted to mP | m or m | mP . The nonlinear encodings of the P layer do
not need to be aligned with the S-boxes because two different fj can share some input bits and input
encodings. For example, let n = 192, m = 8, mP = 6, and A be a block diagonal linear mapping with
block size 8. For all j = 1, · · · , 24, the number of net input bits of fj is 12. f1, f2 share the same input
bits corresponding to P2 and f2, f3 share the same input bits corresponding to P3. The tables related
to each S-box are 12-bit to 192-bit tables and the total table size (including XOR tables) for a round
is about 4.4 MB.

Notation In the remainder of this paper, we define E = M ◦ S to be a round function of the SLT
cipher with block size n, where M is a linear mapping on n bits and S is a layer of k S-boxes on m bits.
We let F = QBSAP be the encoded round function of E, where P,Q are layers of small nonlinear
permutations, A,B are layers of linear mappings on n bits, and each Aj has a small number of nonzero
columns (Aj is the j-th m× n horizontal strip of A). Note that B contains M .

We also define variables for the input size of the mappings. For the encoded round function F =
QBSAP on n bits, we let P,Q be layers of kP nonlinear bijective encodings on mP bits and kQ
nonlinear bijective encodings on mQ bits, respectively. Furthermore, if A is a block diagonal map
consisting of mixing bijections on each block, then we write mA to denote the size of the blocks and
kA for the number of blocks (i.e., n = k ·m = kP ·mP = kQ ·mQ = kA ·mA).

3 General Attack Toolbox for White-Box Implementation

In white-box cryptography, the attacker’s objective is to extract the secret key information. Most
block ciphers have key schedules, and so cryptanalysis focuses on recovering one round key. In order
to extract the secret key, we find the encodings of consecutive two round functions. Using the relation
between the output encodings and the input encodings of the consecutive two rounds, the secret key
can be extracted efficiently. Therefore, the goal of this section is the extraction of the secret encodings
used to obfuscate in the implementation.

We introduce general tools to recover encodings in F = QBSAP as defined in the previous section.
We first recover nonlinear parts of encodings up to affine transforms and then we can let F = B◦S ◦A,
where A, B are invertible affine maps. Next, we propose attack tools to find A and B in general cases.

3.1 Recovering Nonlinear Encodings

Usually, recovering nonlinear parts of encoding is very difficult, but in white-box implementations it is
easier because only small nonlinear encodings are used. Billet et al. [1] presented a method to recover
nonlinear parts of the encoding in Chow et al.’s implementation [5] in 23m steps. Billet et al. applied
this method to only the case that the size of encoding blocks is the same as the size of S-boxes, more
precisely, lcm(mP ,mA,mQ) = m, where lcm means the least common multiple. Actually, in Chow
et al.’s implementation [5] the size of the S-boxes and the mixing bijections is 8 and the size of the
nonlinear encodings is 4. The BGE attack can be easily extended to the case that lcm(mP ,mA,mQ)
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divides m by regarding m
mP

encodings in layer P , m
mA

mixing blocks in layer A and m
mQ

encodings in

layer Q as a single encoding in the P , A, Q layers, respectively.

How about the case that lcm(mP ,mA,mQ) does not dividem? In this case, also the BGE attack can
be applied to the implementation if lcm(mP ,mA,mQ,m) < n, by considering lcm(mP ,mA,mQ,m) as
the size of encodings in the P , A, Q and S layers. The complexity of this attack is 23lcm(mP ,mA,mQ,m),
and no longer depend only m. For example, consider the case that n = 192,mP = mQ = 6 and
mA = m = 8, the BGE attack has complexity 275. This gives the following theorem which is extended
version of the BGE attack.

Theorem 1. Let F = QBSAP be an encoded round function of white-box implementation as defined
in Section 2. If l = lcm(mP ,mA,mQ,m) < n, then one can recover a nonlinear part Q (up to affine
transformation) in time n

l · 2
3l.

In this subsection, we introduce a more efficient tool to recover nonlinear parts of encodings for
the latter case, which is based on the multiset attack of Biryukov and Shamir [4]. Using this tool, we
can recover nonlinear parts of encodings efficiently even if the size of linear mixing bijections is larger
than the size of the S-boxes or the layer of the nonlinear encodings is not aligned with the layer of the
S-boxes. This is first approach which provides a link between the technique in [4] and cryptanalysis of
white-box implementation.

In order to explain this tool, we will use the multiset properties as in [4]. For more general attack,
we add a subscript to each property symbol to denote the size of input. For a multiset M of m-bit
values (m > 1), the multiset properties are defined as follows:

– M has property Cm (constant) if it contains only numbers of a single m-bit value.

– M has property Pm (permutation) if it contains all numbers of the 2m possible values exactly once.

– M has property Em (even) if each value occurs an even number of times or does not occur.

– M has property Bm (balanced) if the XOR of all the values is 0m.

We extend this notation to denote combined properties. First, we define a projection map πI :
{0, 1}n → {0, 1}τ by πI(x1, · · · , xn) = (xi1 , · · · , xiτ ), for index set I = {i1, · · · , iτ} ⊆ {1, · · · , n}. We
say a multiset M of n-bit values has property Pk

2mCn−2km, if π{2im+1,··· ,2im+2m}(M) has property P2m

for each i = 0, · · · , k − 1 and π{2km+1,··· ,n}(M) has property Cn−2km.

Now let us consider how the multiset properties are transformed by an affine mapping, in the
following two lemmas. See Appendix A for the proofs.

Lemma 1. Let A : Zn
2 → Z

m
2 be an affine mapping and I = {i1, · · · , iτ} ⊆ {1, · · · , n} with τ ≥ m > 1.

For a multiset M of n-bit values, a multiset A(M) has property Pm or Em if πI(M) has property Pτ ,
π{1,··· ,n}\I(M) has property Cn−τ .

Lemma 2. Let A : Zn
2 → Z

m
2 be an affine mapping. For a multiset M of n-bit values, the multiset

A(M) of m-bit values has property Bm if M has property Bn and the size of M is even.

Using these lemmas, we obtain the following theorem, a generalized version of the result in [4].
This attack tool which can remove the nonlinearity of encodings is more efficient than Billet et al.’s
attack.

For description of the theorem, we provide some definitions. We say a function f : Zu
2 → Z

v
2 with

u ≥ v is balanced if every output occurs 2u−v times. We define F i,α : Zi·mP
2 → Z

n
2 as F i,α(x) :=

F (α1, x, α2) where α = (α1, α2) and α1 ∈ Z
t·mP
2 , α2 ∈ Z

n−(i+t)·mP

2 for some 0 ≤ t ≤ kP − i and

F i,α
j := πj ◦ F i,α, where πj is a projection onto the j-th block of layer Q. Lastly, we define a set of

functions Λi,j = {F i,α
j | α ∈ Z

t·mP
2 × Z

n−(i+t)·mP

2 for some 0 ≤ t ≤ kP − i}.
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Fig. 3: The relations between multiset properties on QBSAP

Theorem 2. Let F = QBSAP be a round function of white-box implementations and Λi,j be a set of
functions defined above where i = ⌈ m

mP
⌉. Assume the probability that a function in Λi,j is not balanced

is at least p > 0 for each j. If lcm(mP ,mA,mQ) does not divide m, then one can recover nonlinear
part Q (up to affine transformation) using 2i·mP+mQ ·O(1/p) chosen plaintexts in about O(kQ · 23mQ)
bit operations.

Proof. Let α be an (n−i·mP )-bit value. For some t, takeMα to be a set with property Ct
mP

P(i·mP )C
kP−(i+t)
mP

such that π{1,··· ,t·mP ,(i+t)mP+1,··· ,n}(x) = α for each x ∈ Mα.

The property Ct
mP

P(i·mP )C
kP−(i+t)
mP is preserved by the layer P , and thus output multiset has also

property Ct
mP

P(i·mP )C
kP−(i+t)
mP . Since A can be divided into k affine mappings from n-bit to m-bit and

i ·mP ≥ m, this property is transformed by the layer A into the multiset with property (Pm or Em)k

by Lemma 1. Since the property (Pm or Em)k is preserved after layer S, the multiset after layer S
has the property Bk

m and this property is equivalent to property Bn. By Lemma 2, the property Bn is

transformed by the layer B into the multiset with property B
kQ
mQ by dividing B into kQ affine mappings

from n-bit to mQ-bit.
Now, consider the j-th nonlinear bijective encoding Qj in the layer Q and define Fj = πj ◦F , where

πj is a projection onto the j-th block. Then we get a homogeneous equation
∑

x∈Mα

Q−1
j (Fj(x)) = 0mQ

and since we know the values of Fj(x) for all x ∈ Mα, this equation is a homogeneous equation of the
unknowns Q−1

j (y)’s for all y through mQ-bit values, i.e.,

∑

y

cα,y ·Q
−1
j (y) = 0mQ

where cα,y is the number of x ∈ Mα satisfying Fj(x) = y.
Since the number of unknowns is 2mQ , we need more than 2mQ equations. If we use different

constant α at the part correspond to property C from Ct
mP

P(i·mP )C
kP−(i+t)
mP , we are likely to get a

different homogeneous equation of Q−1
j (y)’s. By the assumption, we can obtain 2mQ equations from

2mQ · O(1/p) multisets, then we can solve the system of equations by Gaussian elimination. We can
do this process for all j’s and hence we need O(kQ2

3mQ) bit operations with 2i·mP+mQ ·O(1/p) chosen
plaintexts to recover the layer Q up to affine transformation. �

The BGE attack take 23lcm(mP ,mA,mQ,m) bit operations, but our attack tool only takes 23mQ bit
operations. Reconsider example for n = 192,mP = mQ = 6 and mA = m = 8. In this case, our
attack tool reduces the complexity from 275 to 223 to remove the layer Q up to affine transformation.
Therefore, our attack tool is useful for removing the non-linear encodings in white-box implementation,
whether the nonlinear encodings and the S-boxes are aligned or unaligned.
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Remark 2. To apply the method in Theorem 2, we require sufficiently many homogeneous equations
of the form

∑
x∈Mα

Q−1
j (Fj(x)) = 0mQ . It is related to the probability p because if F i,α

j is balanced,

the equation is a trivial equation. By the nonlinearity of S-boxes, if F i,α
j is related to more than 2

S-boxes, F i,α
j is likely to be not balanced. So, we have to take care of choosing multiset of plaintexts,

so that F i,α
j is related to more than 2 S-boxes and we note that if lcm(mP ,mA,mQ) does not divide

m, F i,α
j is related to more than 2 S-boxes. However, in the case that mA, mP and mQ are equal to m,

we can acquire only trivial equation, and hence we cannot use this method. Nevertheless, we can also
recover the nonlinear parts of the encodings because the BGE attack can be applied to this case (the
BGE attack has same complexity as the method in Theorem 2). Therefore, the toolbox to recover the
nonlinearity of the encodings should include both methods with same complexities, considering all the
cases.

Actually, we cannot recover Q exactly because we cannot get a system of equation with full rank
of 2mQ , but we can recover Q up to affine transform. Furthermore, we can recover P by attack for the
previous round. Therefore, if we assume kP = kQ, we can recover all nonlinear part of encoding of a
round function in 2kQ · 23mQ steps.

Applications In Chow et al.’s implementation [5], the input bit size of the linear encodings and
the S-boxes is 8 and the size of input/output nonlinear encodings is 4: In our notations, m = mA = 8
and mP = mQ = 4. Thus, applying the result of Theorem 2, we can recover the nonlinear encodings
in 2kQ · 23mQ = 2 · 32 · 23·4 = 218 time and the complexity is much less than Billet et al.’s [1], 229. The
only thing to be careful about is to take multiset of plaintexts. We have to take multiset of plaintexts,
so that the function is related to two S-boxes, for example, the multiset of plaintexts of size 128-bit
values that has the property C4P8C

29
4
.

3.2 Affine Equivalence Algorithm with Multiple S-boxes

We say that two bijections F and S are linear/affine equivalent if there exist linear/affine mappings
A,B such that F = B ◦ S ◦A. The linear/affine equivalence problem is to find invertible linear/affine
mappings A and B such that F = B ◦ S ◦A for given nonlinear bijections F and S.

Biryukov et al. [3] proposed algorithm for solving the linear equivalence problem for arbitrary
permutations over Z

n
2 with complexity O(n32n). For the affine equivalence algorithm, they proposed

the concept of the representatives for the linear equivalence classes of permutations and solved the
affine equivalence problem in O(n322n) time.

In this subsection, we consider the case that the nonlinear mapping S consists of k invertible
S-boxes Si’s which map from Z

m
2 to Z

m
2 , where n = km, as shown in Fig. 4. The problem may be

considered to be a specific case of [3] and so called the specialized affine equivalence problem. The
following theorem says the problem can be solved more efficiently when compared with the affine
equivalence problem.

Theorem 3. Let F and S be two permutations on n bits where S = (S1, · · · , Sk) with nonlinear
permutations Si on m bits for i = 1, · · · , k. Assume that we can easily access the inversion of F .
Then, we can find all affine mappings A and B such that F = B ◦ S ◦ A in time O(kn323m) if they
exist.

Proof. First, we assume that F and S are linear equivalent. Suppose that A and B are invertible linear
mappings over Zn

2 with F = B ◦ S ◦A. Let us consider A and B−1 to be partitioned into k horizontal
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Fig. 4: Affine equivalence problem and specialized affine equivalence problem

strips of size m× n. Denote the i-th strip of A and B−1 by Ai and Bi respectively. That is,

A =



A1
...
Ak


 and B−1 =



B1
...
Bk


 . (1)

If one can obtain two sets {x1, x2, · · · , xn} and {Bi ◦ F (x1), Bi ◦ F (x2), · · · , Bi ◦ F (xn)} such that
{F (x1), F (x2), · · · , F (xn)} is linearly independent, then one can find Bi from

Bi =

[
Bi ◦ F (x1) Bi ◦ F (x2) · · · Bi ◦ F (xn)

][
F (x1) F (x2) · · · F (xn)

]−1

, (2)

where we consider Bi◦F (xj) and F (xj) as column vectors for 1 ≤ j ≤ n. Hence, the main strategy is to
find two sets {x1, · · · , xn} and {Bi ◦ F (x1), · · · , Bi ◦ F (xn)} such that {F (x1), · · · , F (xn)} is linearly
independent in order to recover Bi.

Suppose that we have two sets {x1, · · · , xℓ} and {y1 = Bi ◦ F (x1), · · · , yℓ = Bi ◦ F (xℓ)} such that
{x1, · · · , xℓ} is linearly independent. For any x =

∑ℓ
j=1 bjxj (bj ∈ {0, 1}), we can compute y = Bi◦F (x)

from y1, · · · , yℓ by

y = Si ◦Ai(x) = Si




ℓ∑

j=1

bjAi(xj)


 = Si




ℓ∑

j=1

bjS
−1
i (yj)


 . (3)

Since F is a nonlinear bijection, we can obtain another vector x such that F (x) /∈ Z2F (x1) + · · · +
ZℓF (xℓ) with high probability. (Assuming F is random bijection, at least one of {F (x) | x ∈ Z2x1 +

· · · + Z2xℓ} does not belong to Z2F (x1) + · · · + Z2F (xℓ) with probability 1 −
(
2dℓ
2n

)2ℓ−ℓ
where dℓ =

dim〈{F (x1), · · · , F (xℓ)}〉.)
On the other hand, suppose that we have two sets {F (x1), · · · , F (xℓ)} and {y1 = Bi◦F (x1), · · · , yℓ =

Bi◦F (xℓ)} such that {F (x1), · · · , F (xℓ)} is linearly independent. For any x′ = F−1(
∑ℓ

j=1 b
′
jF (xj)) (b

′
j ∈

{0, 1}), we can compute y′ = Bi ◦ F (x′) from y1, · · · , yℓ by

y′ = Bi ◦ F


F−1




ℓ∑

j=1

b′jF (xj)




 =

ℓ∑

j=1

b′jBi ◦ F (xj) =

ℓ∑

j=1

b′jyj . (4)

Since F−1 is a nonlinear bijection then we can obtain a new vector x′ such that x′ /∈ Z2x1+ · · ·+Z2xℓ
with high probability by assuming F−1 is random bijection.

Set x0 = 0, y0 = Bi ◦ F (x0), x1 = F−1(0) with F (x1) = 0. Then we have y0 = Si ◦ A(x0) =
Si(0), y1 := Bi ◦ F (x1) = 0. We need to make an initial guess y2 := Bi ◦ F (x2) for some x2 ∈
{0, 1}n\{x0, x1} to generate another vectors. Note that x1, x2 are linearly independent. If we set x3 =
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x2+x1, then F (x3) does not belong to Z2F (0)+Z2F (x2) because F is nonlinear and x3 /∈ {x0, x1, x2}.
By repeating above process in the equation (3) and (4) several times, we can successfully obtain n
vectors whose F values are linearly independent. For each successful guessing, we get an m× n linear
mapping Bi. We check whether the mapping S−1

i ◦ Bi ◦ F is linear and reject the incorrect guesses.
This process requires n3 operations for each guessing, and thus the complexity becomes kn32m to find
full matrix B.

Now, let us consider the affine equivalence problem. An affine case is very similar to the linear
case. Since an affine mapping is the composition of a linear map and a translation, we can write

Bi ◦ F (x) + bi = Si (Ai(x) + ai) ,

for m× n linear mappings Ai, Bi and the m-bit constant vectors ai, bi for i = 1, · · · , k.
For each pair (ai, bi) ∈ Z

m
2 ×Z

m
2 , we follow the above process with inputs F (x) and Si(x+ ai) + bi

and then we can solve the affine equivalence problem. Therefore, the total complexity is O(kn323m)
by additionally choosing two m-bit constant vectors. �

We call the algorithm in the Theorem 3 the specialized affine equivalence algorithm (SAEA). While
the affine equivalence algorithm has the complexity O(n322n) to find the affine mappings A,B, the
SAEA has only complexity O(kn323m). This algorithm gives that the dominant parts of the complex-
ities depend on m, not on n even though A and B are random affine mapping over Z

n
2 . Therefore,

the SAEA is more efficient whenever S is a concatenation of several S-boxes as in the white-box
implementation.

Without the oracle of the invese of F The SAEA requires several evaluations of F−1 in
equation (4) and so we can not apply the SAEA directly when the oracle of inversion of F is not given.
In that case, we can use only the property in the equation (3). We have to guess about logmA vectors,
instead of one vector, to obtain mA linearly independent vectors, which results in complexity

O
(
kn32m(logmA+2)

)
= O

(
knm+322m

)

for finding the affine encodings. On the other hand, we can use the relation (4) if we evaluate the
required inverse value of F in the equation (4). We will discuss about it in Section 4.2.

When A is split We may consider A ∈ (Z2)
n×n as a Ã ∈ (Zm×m

2 )k×k with n = km. If Ã is of form


∗ 0 ∗

0 A∗ 0

∗ 0 ∗


 for some A∗ ∈ (Zm×m

2 )k0×k0 and k0 ≥ 1, we say that A is split, and unsplit otherwise.

If A is split, we can recover the encoding that corresponds to A∗ with complexity k0(k0m)323m. For
more detail, refer to the appendix B.

Applications In Xiao and Lai’s implementation [25], they use only the linear mappings for in-
put/output encoding. The input bit size of the input encodings is twice of the input bit size of the
S-boxes. By fixing input value on all but 2 bytes as a constant, one can obtain the bijection map F
on 16 bits of the following form:

F = B ◦ (S, S) ◦ (⊕K′ ,⊕K′′) ◦A

where A, B are linear invertible maps on 16 bits. Then F is affine equivalent to (S, S) with linear map
B and affine map (⊕k′ ,⊕k′′) ◦A.

By applying the extended affine equivalence algorithm, we can recover one part of the secret
encoding in n

mn322m = 229 steps for m = 8 and n = 16. This result is coincident with the result of
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Mulder et al. [17], 2n32n = 229 steps. However, our attack tool has some potential advantages over
Mulder et al.’s: (1) First, as n is larger than twice of m, i.e., n = km with k > 2, our attack has
less complexity than Mulder et al.’s. For the case of m = 8 and n = 4m = 32, the complexity to
recover one part of the secret encoding is n

mn322m = 233 using our attack tool, while 2n32n = 248

using Mulder et al.’s method. (2) One additional advantage of our attack is that if we set A and B to
be affine mappings instead of linear mappings to increase security, our tool can be applicable to the
scheme while Mulder et al.’s method cannot. For the affine case with same n and m, one can recover
a secret encoding in n

mn323m = 237 using our tool.

4 Approaches for Resisting Our Attack Tools

There have been many proposals for a new white-box implementation, but none appear to require
more than 232 complexity to recover the whole secret key. Hence, the urgent subject of white-box
cryptography is to design a white-box implementation of higher security with reasonable storage. In
this section, we explore why previous white-box implementations can be attacked with low complexity,
and investigate several approaches that may overcome this barrier. Note that we consider an SLT-type
block cipher of n-bit inputs with m-bit S-boxes.

Recall thatmA is the size of the minimized blocks of block diagonal affine encodings. More precisely,
consider the affine encoding of the form ⊕a◦A, where A is an invertible matrix in Rk×k with R = Z

m×m
2

and a is an n-bit value. Let k0 be the smallest integer such that there exist two permutation matrices

P1 and P2 ∈ Z
km×km
2 satisfying P1AP2 =

[
A1 0

0 A2

]
for some A1 ∈ Rk0×k0 . We define mA = k0 ·m.

4.1 Limitation of White-Box Implementation

Putting the above theorems together, we can summarize our attacks in the following theorem:

Theorem 4. (Main Theorem) For i = 1, 2, 3, F (i) = Q(i) ◦B(i) ◦S(i) ◦⊕K(i) ◦A(i) ◦P (i), bijections
on n bits and S(i), a concatenation of n

m nonlinear bijections on m bits are given where K(i) are secret

keys of n bits, P (i) and Q(i) are concatenations of n
mQ

nonlinear bijection on mQ bits, and A(i) and

B(i) are invertible linear mappings on n bits, satisfying Q(i) ◦ P (i+1) = id = B(i) ◦A(i+1).

Then, one can find K(2) in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2

n

m
· lcm(mA,mQ)

323m
)

with O
(
2n log(lcm(mA,mQ))

lcm(mA,mQ)

)
calls of (F (i))−1 oracle, or in time

O

(
3

n

max(mQ,m)
· 23max(mQ,m) + 2

n

m
· lcm(mA,mQ)

m+322m
)

without using (F (i))−1 oracle, where mA is the size of minimized blocks of A(i)’s as difined above.

Proof. Note that m|mA by definition of mA. Since lcm(mA,mQ)|m implies l = lcm(mA,mQ,m) = m,
one can recover Q(i) (up to affine transformation) in time O( n

max(mQ,m) · 2
3max(mQ,m)) by Theorem 1

and Theorem 2 and also can recover P (1) and P (2) from P (1) = (Q(0))−1 and P (2) = (Q(1))−1.

Now, for i = 1, 2, the nonlinear effects of P (i) and Q(i) can be removed in F (i) and hence F (i) can
be considered F (i) = B̃(i)◦S(i)◦⊕K(i) ◦Ã(i) for some affine mappings Ã(i) and B̃(i) on n bits. Note that
Ã(i) can be considered block diagonal affine mappings with block size l = lcm(mA,mQ). Therefore,
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one can apply SAEA to each block of size l. When SAEA is applied to block of size l, it needs log l
calls of (F (i))−1 oracle or to guess about logmA vectors, instead of one vector, without using (F (i))−1

oracle. It follows that one can recover Â(i) = ⊕K(i) ◦ Ã(i) and B̃(i) in time O( n
m · l323m) with n

l log l

calls of (F (i))−1 oracle or O( n
m · l32m(log l+2)) = O

(
n
m · lm+322m

)
without using (F (i))−1 oracle.

From the relation between P (2) and Q(1), one can find K(2) by computing Â(2) ◦ B̃(1)(0) = ⊕K(2) ◦
A(2) ◦B(1)(0) = K(2). �

All of the previous white-box implementations have common features: For n = 128,m = 8, (1)
they use affine/linear encodings with mA ≤ 16, and (2) they do not use nonlinear encodings, or use
nonlinear encodings with only mQ = 4. In these case, lcm(mA,mQ) ≤ 16, and so one can easily
compute the inverse. By the result of Theorem 4, all previous implementations can be broken in less
than 241 time without using a specific attack.

To increase the complexity, we need to increase lcm(mA,mQ). IncreasingmQ results in large storage
requirements for the XOR table; e.g., one XOR table requires 8 for mQ = 16. Another approach is to
increase mA. We may try to increase mA up to n. When mA = n ≤ 128 and m = 8, the complexity is
at most 250 if the F−1 oracle is given, where F is an encoded round function.

4.2 Perspective of White-Box Implementation

In reality, however, the oracle of F−1 is not provided, and so we focus on this case. By Theorem 4,
when mA = n, the complexity of the SAEA is O

(
n
m ·mA

m+322m
)
, which is a polynomial of mA with

degree m+3. On the other hand, we could also use the SAEA by evaluating the required inverse values
of F . Using a meet-in-the-middle attack (MITM), one inverse evaluation of F has a time complexity of
O(mA2

mA/2) and memory requirement of O(mA2
mA/2), which can be reduced to O(mA2

mA/4) using a
dissection-type technique [9] (See Appendix C). Because the SAEA requires about logmA evaluations
of F−1, its complexity is

O
(

n
m ·m3

A2
3m + n

mA
· logmA ·mA · 2mA/2

)

which is dominated by the complexity of inversion when mA > 6m. Therefore, when mA = n = 128
and m = 8, the SAEA complexity is

O
(
min

{
n
m ·mA

m+3 · 22m, n · logmA · 2mA/2
})

= 274.

A security level of 74 bits is higher than that of previous implementations [5, 12, 25], but is not
sufficient considering the security level of the original cipher. This limitation arises because the com-
plexity is heavily dependent on mA, but mA cannot exceed n. We must therefore examine another
approach to further increase the security level of the white-box implementation.

Let us consider the case whereby we encrypt messages that are longer than the cipher’s block length
or multiple messages. We investigate an approach in which multiple plaintexts are simultaneously
encrypted by one white-box implementation. Then, we can take mA larger than n, such as mA =
2n, 3n, · · · , and hence the security level can be improved over that stated above. For example, the
complexity of the SAEA can be large up to 2109 when mA = 2n, n = 128, and m = 8. However, this
approach may lead to large storage requirement. To overcome this problem, we use special “sparse
unsplit” encodings, as shown in Fig 5. In the next section, we present an instance of this white-box
implementation for concatenations of AES-128 using sparse unsplit encodings that are bijections on
mA = 256.

5 A Proposal for a White-Box Implementation of the AES Cipher

We propose a white-box implementation for concatenation of two AES using table lookups. The
AES consists of 10 rounds and the round function of AES is made of the four steps: SubBytes(SB),
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Fig. 5: The hard-to-invert encoded round function with mA = 2n

ShiftRows(SR), MixColumns(MC), and AddRoundKey(ARK). Each step is a bytewise operation on the
16 bytes. For efficiency, we set the round function AES(r) of AES as follows:

AES(r) =

{
MC ◦ SR ◦ SB ◦ ARK, if r = 1, · · · , 9

SR ◦ AK ◦ SB ◦ ARK, if r = 10
.

Input and Output Encodings We use sparse unsplit encodings as input encodings like in equa-
tion (5) to reduce the storage: Let Ar ∈ Z

256×256
2 be an invertible linear map such that Ar

i,j is the
zero matrix for all (i, j) 6= (i, i), (i, i + 1) and (32, 1), where Ar

i,j is (i, j)-th block of Ar when Ar is

partitioned into 1024 blocks Ar
i,j of size 8× 8 for i, j = 1, · · · , 32. We define an input encoding A(r) of

r-th round of the form ⊕ar
◦Ar for a 256-bit value ar = (ar1, · · · , a

r
32) where a

r
i ’s are 8-bit values. That

is,

A(r)(x) =




Ar
1,1 Ar

1,2 0 0 · · · 0

0 Ar
2,2 A

r
2,3 0 · · · 0

...
...

...
...
. . .

...
Ar

32,1 0 0 0 · · · Ar
32,32







x1
x2
...

x32


⊕




ar1
ar2
...

ar32


 (5)

for x = (x1, · · · , x32) ∈ {0, 1}256 with 8-bit values xi’s.
For the input encoding A(r+1) of the (r + 1)-th round, we define the output encoding B(r) of r-th

round by B(r) = (A(r+1))−1 ◦ (MC ◦ SR,MC ◦ SR), for r = 1, · · · , 9, where (MC ◦ SR,MC ◦ SR) is a
concatenation of MC ◦ SR on 128 bits. In general, the inversion (Ar)−1 has no sparse characteristics
despite the sparse structure of Ar. (One can easily check it using Gaussian elimination.) Therefore, the
output encoding B(r) has no specific structure. Note that nonlinear encodings of small size are used
in the white-box implementation in general and the complexity of removing the nonlinear encodings
is not higher than the complexity of finding the affine encodings. We have no consideration for the
nonlinear encodings in this section.

Then, the encoded round function F (r) of AES(r) is defined by F (r) = (A(r+1))−1◦(AES(r),AES(r))◦
A(r) = B(r) ◦ (S, · · · , S) ◦ ⊕(Kr,Kr) ◦ A

(r) for r = 1, · · · , 9, where S is the S-box function on 8 bits in
the SubBytes step and Kr is the secret key of r-th round on 128 bits in the AddRoundKey step. Since
the final round of AES is slightly different from the other rounds, the encoded round function of final
round will be discussed later.

Construction of Lookup Tables Let Br
i be a linear mapping from 8 bits to 256 bits for i = 1, · · · , 32

and br be a 256-bit value vector such that B(r)(x) = [Br
1| · · · |B

r
32](x)⊕br for any 256-bit value x. Choose

256-bit random value bri for each i = 1, · · · , 31, and let br32 := br ⊕ br1 ⊕ · · · ⊕ br31.
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mA m
⊕Kr

iS
2m mmA

⊕Kr
iS

2m

h
(r)
i

h
(r)
i+1

⊕

⊕

Fig. 6: The lookup tables of F
(r)
i and T

(r)
i

Now, each 16-bit to 256-bit table F
(r)
i , depicted in Fig 6, is defined as follows:

F
(r)
i =





⊕bri
◦Br

i ◦ S ◦ ⊕Kr
i ⊕ari

◦ (Ar
i,i, A

r
i,i+1), if 1 ≤ i ≤ 16

⊕bri
◦Br

i ◦ S ◦ ⊕Kr
i−16⊕ari

◦ (Ar
i,i, A

r
i,i+1), if 17 ≤ i < 32

⊕br32
◦Br

32 ◦ S ◦ ⊕Kr
16⊕ar32

◦ (Ar
32,32, A

r
32,1), if i = 32

whereKr = (Kr
1 , · · · ,K

r
16) is the r-th round key forKr

i ∈ {0, 1}8. The affine mapping ⊕ar
i
◦(Ar

i,i, A
r
i,i+1)

from Z
16
2 to Z

8
2 is inserted before S ◦ ⊕Kr

i
and the affine mapping ⊕bri

◦Br
i from Z

8
2 to Z

256
2 is inserted

after the S-box part. Then the encoded round function F (r) of AES(r) can be expressed as a sum of

F
(r)
i ’s:

F (r)(x1, x2, · · · , x32) = F
(r)
1 (x1, x2)⊕ F

(r)
2 (x2, x3)⊕ · · · ⊕ F

(r)
32 (x32, x1)

for r = 1, · · · , 9 and 8-bit values xi’s. Therefore, the encoded round function F (r) can be implemented
using thirty-two 16-bit to 256-bit lookup tables, instead of implementing a 256-bit to 256-bit table of

huge size. However, since F
(r)
i (x, 0) = ⊕bri

◦ Br
i ◦ S ◦ ⊕Kr

i ⊕ari
◦ Ar

i,i(x) is a 8 bit-to-128 bit function
for 8-bit value x, it can be transformed to a bijection on 8 bits by some projection. Then, it is affine

equivalent to S, Hence, the affine equivalent algorithm of [3] can be applied to each F
(r)
i (x, 0) and it

has only 225 complexity to recover affine mappings. To prevent the individual attack, we modify the

functions F
(r)
i ’s. We replace F

(r)
i by T

(r)
i : Z16

2 → Z
256
2 such that

T
(r)
i (x, y) =

{
F

(r)
i (x, y)⊕ h

(r)
i (x)⊕ h

(r)
i+1(y), if i 6= 32

F
(r)
32 (x, y)⊕ h

(r)
32 (x)⊕ h

(r)
1 (y), if i = 32

for any random function h
(r)
i from Z

8
2 to Z

256
2 and 8-bit values x, y. The resulting lookup table T

(r)
i is

depicted in Fig 6. Then, if we set x33 := x1,

32∑

i=1

T
(r)
i (xi, xi+1) =

32∑

i=1

F
(r)
i (xi, xi+1) = F (r)(x1, · · · , x32)

for 8-bit valued xi’s. Furthermore, since the functions h
(r)
i have no certain structure unlike F

(r)
i , we

cannot extract encodings from T
(r)
i ’s using the affine equivalence algorithm.

Therefore, we can express the encoded round function F (r) as a sum of 16-bit to 256-bit lookup

tables T
(r)
i ’s without revealing F

(r)
i ’s.
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External Encoding Tables LetMin andMout be random affine functions on 256 bits. Then, external
input encoding function F (0) is defined by F (0) = (A(1))−1 ◦Min and the encoded round function of
the final round is defined by F (10) = Mout ◦ (AES

(10),AES(10)) ◦ A(10), where AES(10) = ⊕K11 ◦ SR ◦
(S, · · · , S) ◦ ⊕K10 .

Since the external input encoding function F (0) is an affine function on 256 bits, it is implemented
using a matrix of size 256×256 and a vector of length 256 bits. The external output encoding function

F (10) is split into thirty-two 16-bit to 256-bit lookup tables T
(10)
i by the above design technique.

Security Analysis Since the encoded round function F (r) is a bijection on 256 bits, computing the
inverse value of F (r) is not an easy task for r = 1, · · · , 10. Therefore, we count the complexity of
computing the inverse of F (r) in the cryptanalysis of our proposed white-box implementation using
SAEA. The hardness of inverting F (r) for r = 1, · · · , 10, which has sparse unsplit encodings can be
considered as a special version of sparse subset sum problem (SSSP) used in [7, 11, 22] to design fully
homomorphic encryptions.

If Ar is a block diagonal matrix (i.e., all off-diagonal blocks Ar
ij (i 6= j) are zero matrices), then

F (r) is expressed by the summation of the F
(r)
i ’s, where F

(r)
i is a function from Z

8
2 to Z

256
2 . For a given

256-bit value y and sets {(x, F
(r)
i (x)) ∈ Z

8
2 × Z

256
2 | x ∈ {0, 1}8}32i=1, computing (F (r))−1 of y is to find

the 8-bit values xi such that y =
∑32

i=1 F
(r)
i (xi) = F (r)(x1, · · · , x32). It is equivalent to a variant of the

SSSP problem to finding the coefficients δi,x, such that

y =

32∑

i=1

∑

x∈{0,1}8

δi,x · F
(r)
i (x),

where

δi,x ∈ {0, 1},#{x ∈ {0, 1}8 | δ1,x = 1} = · · · = #{x ∈ {0, 1}8 | δ32,x = 1} = 1.

In this case, if we regard F (r) as a bijection on mA bits, this SSSP can be solved in Õ(2mA/2)
time with Õ(2mA/4) memory using a variant of Schroeppel–Shamir algorithm [21]. This is the same
complexity as for the proposed MITM attack. However, the presented implementation uses an unsplit
encoding that is not a block diagonal mapping. As a result, the 8-bit value xi is used as the input

value of several T
(r)
j ’s, and the computation of (F (r))−1 is slightly different from that in the SSSP.

Using the unsplit encoding instead of a block diagonal encoding makes the computation of (F (r))−1

from the subfunctions T
(r)
j more difficult. Therefore, computing (F (r))−1 from the subfunctions T

(r)
j

seems as difficult as in the SSSP, and the subfunctions T
(r)
j do not help determine the inverse of F (r).

More generally, if we use sparse unsplit input encodings that are affine mappings on mA bits, then
the complexity of extracting the secret key in the proposed implementation is

O
(
min

{
mA

12 · 214, 2mA · logmA · 2mA/2
})

formA = 128, 256, 384, · · · . Table 1 presents the security level and storage requirements of the proposed
implementation for mA = 128, 256, 384. The attack complexity can be up to 2110 and 2117 when
mA = 256 and 384, respectively, which is quite close to the original 128-bit security level. This shows
that sparse unsplit input encodings that have a multiple input size of the cipher’s block length may
be a useful way of designing a secure white-box implementation.
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mA
Security Storage

min
{

mA
12 · 214, 2mA · logmA · 2mA/2

}
mA

8
·mA · 216 bits

128 2mA · logmA · 2mA/2 = 275 16 MB × (# of rounds)

256 mA
12 · 214 = 2110 64 MB × (# of rounds)

384 mA
12 · 214 = 2117 144 MB × (# of rounds)

Table 1: The security and storage of the proposed white-box AES implementation for mA = 128, 256, 384

6 Conclusion

In this paper, we proposed a general analytic toolbox for white-box implementation, which can effi-
ciently extract the secret encodings used to obfuscate in the implementation when its design follows
CEJO framework. With our toolbox, it is very easy to evaluate the asymptotic complexity of any
white-box implementation of SLT ciphers, and all previous designs belong to this model. Hence, our
toolbox could be used to measure the security of white-box implementations.

Another advantage of our toolbox is that we can remove insecure designs at an early stage, and
concentrate on more plausible approaches. We showed that the input size of the encodings is the
most important factor in the security of a white-box implementation. In this sense, we presented
a white-box implementation that uses sparse unsplit input encodings with an input size that is a
multiple of the block length. This not only produces high level of security, but also has reasonable
storage requirements. Thus, we have developed a good candidate design for a white-box implementation
with practical security. We expect that this will lead to the design of a practically secure white-box
implementation.
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A Proofs of the Lemmas

A.1 Proof of Lemma 1

We may assume that A is linear, because an addition by a constant preserves property Pm or Em when
M has an even number of elements.

Let A =
[
a1 · · · an

]
with column vectors ai’s and A∗ =

[
ai1 · · · aiτ

]
. Then we have A(M) =

{A∗(x′) + b | x′ ∈ πI(M)} for some constant vector b ∈ Z
m
2 . It is enough to show that the multiset

A∗(πI(M)) has property Pm or Em.
If τ = m and A∗ has rank m, then the multiset A∗(πI(M)) of m-bit values has property Pm.

Otherwise, the size of the kernel of A∗ is 2τ−rank(A∗) and hence the number of preimage of y ∈
A∗(πI(M)) is 2τ−rank(A∗). Since 2τ−rank(A∗) is even, the multiset A∗(πI(M)) has property Em. It follows
that A∗(πI(M)) has property Pm or Em. �

A.2 Proof of Lemma 2

We can write A(x) = L(x) + b for some linear mapping L from n bits to m bits and a m bits value b.
Then

∑

y∈A(M)

y =
∑

x∈M

(Lx+ b) = L

(
∑

x∈M

x

)
+
∑

x∈M

b = 0

since the multiset M has property Bn and the size of M is even. �
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B The SAEA with split A

When we use the SAEA for the white-box implementation, we can reduce the complexity for the case
where input encoding A is of some special form.

For convenience, let A and B be linear. Let’s consider A ∈ (Z2)
n×n as a Ã ∈ (Zm×m

2 )k×k, where
n = km. If Ã is block-diagonal map, then we can perform separately the above attack on each block.
If the size of the each block of block-diagonal map Ã is ki with

∑
i ki = k, Ai ∈ Z

kim×kim
2 is i-th

block of A and Bi ∈ Z
n×kim
2 is i-th vertical strip of B correspond to Ai, we can find maps of the form

Fi = Bi ◦ (S, · · · , S) ◦Ai, where (S, · · · , S) is concatenation of ki S-boxes. Since image of Fi has rank
ki, we can find a ki × n matrix Ci satisfying that Ci ◦ Fi is bijective. Then we obtain bijective maps
of the following form:

F̃i = B̃i ◦ (S, · · · , S) ◦Ai

where B̃i = Ci ◦ Bi. Thus we can recover the encodings in complexity
∑

i ki(kim)323m, less than
kn323m.

More generally, if Ã can be split into two or more bijective map, that is, A is split as defined in
section 3.2, we can apply the above argument to Ã. In detail, in the case that (Ã)i,j = 0m×m for
(i, j) ∈ [k1 +1, k1 + k0]× ([1, k] \ [k2 +1, k2 + k0]) or (i, j) ∈ ([1, k] \ [k1 +1, k1 + k0])× [k2 +1, k2 + k0]
fore some k0, k1, k2 with k1 + k0, k2 + k0 ≤ k,

i.e., Ã is the form of




∗ 0 ∗

0 A∗ 0

∗ 0 ∗


, one can obtain a bijective map on Z

k0m
2 using small submatrix, A∗

in the above.

C Computing Inverse of F

In order to use the SAEA, several number of evaluation of F−1 are required, so we need to check
the complexity to compute the inverse of F . As in Section 3.2, we let F be a bijection on n bits.
For simplicity, we assume F (x) =

∑k
j=1 Fj(xj) for Fj : Zm

2 → Z
n
2 , where x = (x1, · · · , xk) and xj ’s

are m-bit values with n = km. A trivial approach to invert F is the exhaustive search, which takes
2n time complexity. One can improve it using the meet-in-the-middle (MITM) attack: By combining
functions, we let F (x) = G1(x1, · · ·x⌊ k

2⌋
) +G2(x⌊ k

2⌋+1, · · · , xk). For y ∈ Z
n
2 , one can make a table of

⊕y ◦ G1, sort it by the output values, and compare it with the value of G2. Then one can evaluate
F−1(y) in O(n2n/2) time complexity with O(n2n/2) memory. The size of required memory for the
MITM attack is quite large to implement - for example, 238 GB are required for n = 128. We provide
another method requiring smaller memory while maintaining asymptotic time complexity.

For convenience of notations, we let F (x) =
∑4

j=1 Fj(xj) where x = (x1, x2, x3, x4) and each xj is

an m0-bit value with m0 = n
4 . For a function f whose value is on n bits, f̃ denotes the projection of

f on the first m0 bits. To evaluate F−1(y) for any n-bit value y, we perform the following steps:

1. Guess m0-bit value z̃ for F̃1(x1) + F̃2(x2).

2. Perform the MITM attack using F̃1(x1) + F̃2(x2) = z̃ and store the list

L =
{
(x1, x2, F1(x1) + F2(x2) + y) | F̃1(x1) + F̃2(x2) = z̃

}

for the result of the MITM attack.

3. Perform the MITM attack using F̃3(x3) + F̃4(x4) = ỹ + z̃, where ỹ is the first m0-bit of y.

4. For each (x3, x4) satisfying F̃3(x3) + F̃4(x4) = ỹ + z̃, compare F3(x3) + F4(x4) with the values in
L.
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Both the average number of elements in L and the number of (x3, x4) satisfying F̃3(x3)+ F̃4(x4) =
ỹ + z̃ are 2n/4. For one guessing of n

4 -bit value, we perform 3 times of MITM attacks on the sets

with 2n/4 cardinality. Therefore, we can evaluate F−1(y) in O(n2n/2) time complexity with O(n2n/4)
memory. For the case of n = 128, the required memory is 64 GB, which is practical to implement.


