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ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS, AND THE FRIED
CONJECTURE

SHU SHEN

ABSTRACT. We prove the equality of the analytic torsion and the value at zero of a Ruelle
dynamical zeta function associated with an acyclic unitarily flat vector bundle on a closed
locally symmetric reductive manifold. This solves a conjecture of Fried. This article should
be read in conjunction with an earlier paper by Moscovici and Stanton.
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1. INTRODUCTION

The purpose of this article is to prove the equality of the analytic torsion and the value
at zero of a Ruelle dynamical zeta function associated with an acyclic unitarily flat vector
bundle on a closed locally symmetric reductive manifold, which completes a gap in the
proof given by Moscovici and Stanton [MoSt91] and solves a conjecture of Fried [F87].

Let Z be a smooth closed manifold. Let F be a complex vector bundle equipped with a
flat Hermitian metric gF . Let H ·(Z, F ) be the cohomology of sheaf of locally flat sections
of F . We assume H ·(Z, F ) = 0.

The Reidemeister torsion has been introduced by Reidemeister [Re35]. It is a positive
real number one obtains via the combinatorial complex with values in F associated with
a triangulation of Z, which can be shown not to depend on the triangulation.

Let gTZ be a Riemannian metric on TZ. Ray and Singer [RS71] constructed the ana-
lytic torsion T (F ) as a spectral invariant of the Hodge Laplacian associated with gTZ and
gF . They showed that if Z is an even dimensional oriented manifold, then T (F ) = 1.
Moreover, if dimZ is odd, then T (F ) does not depend on the metric data.
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In [RS71], Ray and Singer conjectured an equality between the Reidemeister torsion
and the analytic torsion, which was later proved by Cheeger [C79] and Müller [M78]. Us-
ing the Witten deformation, Bismut and Zhang [BZ92] gave an extension of the Cheeger-
Müller Theorem which is valid for arbitrary flat vector bundles.

From the dynamical side, in [Mi68a, Section 3], Milnor pointed out a remarkable
similarity between the Reidemeister torsion and the Weil zeta function. A quantitative
description of their relation was formulated by Fried [F86] when Z is a closed oriented
hyperbolic manifold. Namely, he showed that the value at zero of the Ruelle dynamical
zeta function, constructed using the closed geodesics in Z and the holonomy of F , is
equal to T (F )2. In [F87, p. 66, Conjecture], Fried conjectured that a similar result holds
true for general closed locally homogeneous manifolds.

In this article, we prove the Fried conjecture for odd dimensional1 closed locally sym-
metric reductive manifolds. More precisely, we show that the dynamical zeta function is
meromorphic on C, holomorphic at 0, and that its value at 0 is equal to T (F )2.

The proof of the above result by Moscovici-Stanton [MoSt91], based on the Selberg
trace formula and harmonic analysis on reductive groups, does not seem to be complete.
We tried to give the proper argument to make it correct. Our proof is based on the
explicit formula given by Bismut for semisimple orbital integrals [B11, Theorem 6.1.1].

The results contained in this article was announced in [Sh16]. See also Ma’s talk
[Ma17] at Séminaire Bourbaki for an introduction.

Now, we will describe our results in more details, and explain the techniques used in
their proof.

1.1. The analytic torsion. Let Z be a smooth closed manifold, and let F be a complex
flat vector bundle on Z.

Let gTZ be a Riemannian metric on TZ, and let gF be a Hermitian metric on F . To gTZ

and gF , we can associate an L2-metric on Ω·(Z, F ) , the space of differential forms with
values in F . Let �Z be the Hodge Laplacian acting on Ω·(Z, F ). By Hodge theory, we
have a canonical isomorphism

ker�Z ≃ H ·(Z, F ).(1.1)

Let
(
�Z
)−1

be the inverse of �Z acting on the orthogonal space to ker�Z . Let NΛ·(T ∗Z)

be the number operator of Λ·(T ∗Z), i.e., multiplication by i on Ωi(Z, F ). Let Trs denote
the supertrace. For s ∈ C, Re (s) > 1

2
dimZ, set

θ(s) = −Trs

[
NΛ·(T ∗Z)

(
�Z
)−s
]
.(1.2)

By [Se67], θ(s) has a meromorphic extension to C, which is holomorphic at s = 0. The
analytic torsion is a positive real number given by

T (F ) = exp(θ′(0)/2).(1.3)

Equivalently, T (F ) is given by the following weighted product of the zeta regularized
determinants

T (F ) =

dimZ∏

i=1

det
(
�Z |Ωi(Z,F )

)(−1)ii/2
.(1.4)

1The even dimensional case is trivial.
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1.2. The dynamical zeta function. Let us recall Fried’s general definition of the formal
dynamical zeta function associated to a geodesic flow [F87, Section 5].

Let (Z, gTZ) be a connected manifold with nonpositive sectional curvature. Let Γ =

π1(Z) be the fundamental group of Z, and let [Γ] be the set of the conjugacy classes of
Γ. We identify [Γ] with the free homotopy space of Z. For [γ] ∈ [Γ] , let B[γ] be the set of
closed geodesics, parametrized by [0, 1], in the class [γ]. The map x· ∈ B[γ] → (x0, ẋ0/|ẋ0|)
induces an identification between

∐
[γ]∈[Γ]−{1}B[γ] and the fixed points of the geodesic

flow at time t = 1 acting on the unit tangent bundle SZ. Then, B[γ] is equipped with the
induced topology, is connected and compact. Moreover, all the elements in B[γ] have the
same length l[γ]. Also, the Fuller index indF (B[γ]) ∈ Q is well defined (c.f. [F87, Section
4]). Given a finite dimensional representation ρ of Γ, for σ ∈ C, the formal dynamical
zeta function is then defined by

Rρ(σ) = exp


 ∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]indF (B[γ])e

−σl[γ]


 .(1.5)

Note that our definition is the inverse of the one introduced by Fried [F87, P. 51].
The Fuller index can be made explicit in many case. If [γ] ∈ [Γ] − {1}, the group S

1

acts locally freely on B[γ] by rotation. Assume that the B[γ] are smooth manifolds. This is
the case if (Z, gTZ) has a negative sectional curvature or if Z is locally symmetric. Then
S
1\B[γ] is an orbifold. Let χorb(S

1\B[γ]) ∈ Q be the orbifold Euler characteristic [Sa57].
Denote by

m[γ] =
∣∣ker

(
S
1 → Diff(B[γ])

)∣∣ ∈ N∗(1.6)

the multiplicity of a generic element in B[γ]. By [F87, Lemma 5.3], we have

indF (B[γ]) =
χorb(S

1\B[γ])

m[γ]

.(1.7)

By (1.5) and (1.7), the formal dynamical zeta function is then given by

Rρ(σ) = exp


 ∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb(S
1\B[γ])

m[γ]

e−σl[γ]


 .(1.8)

We will say that the formal dynamical zeta function is well defined if Rρ(σ) is holomor-
phic for Re (σ) ≫ 1 and extends meromorphically to σ ∈ C.

Observe that if (Z, gTZ) is of negative sectional curvature, then B[γ] ≃ S
1 and

χorb(S
1\B[γ]) = 1.(1.9)

In this case, Rρ(σ) was recently shown to be well defined by Giulietti-Liverani-Pollicott
[GiLP13] and Dyatlov-Zworski [DyZw16]. Moreover, Dyatlov-Zworski [DyZw17] showed
that, if (Z, gTZ) is a negatively curved surface, the order of the zero of Rρ(σ) at σ = 0 is
related to the genus of Z.

1.3. The Fried conjecture. Let us briefly recall Fried’s results in [F86]. Assume Z is
an odd dimensional connected orientable closed hyperbolic manifold. Take r ∈ N. Let
ρ : Γ → U(r) be a unitary representation of the fundamental group Γ. Let F be the
unitarily flat vector bundle on Z associated to ρ.
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Using the Selberg trace formula, Fried [F86, Theorem 3] showed that there exist ex-
plicit constants Cρ ∈ R∗ and rρ ∈ Z such that as σ → 0,

Rρ(σ) = CρT (F )2σrρ +O(σrρ+1).(1.10)

Moreover, if H ·(Z, F ) = 0, then

Cρ = 1, rρ = 0,(1.11)

so that

Rρ(0) = T (F )2.(1.12)

In [F87, P. 66, Conjecture], Fried conjectured that the same holds true when Z is a
general closed locally homogeneous manifold.

1.4. The V -invariant. In this and in the following subsections, we give a formal proof
of (1.12) using the V -invariant of Bismut-Goette [BG04].

Let S be a closed manifold equipped with an action of a compact Lie group L, with Lie
algebra l. If a ∈ l, let aS be the corresponding vector field on S. Bismut-Goette [BG04]
introduced the V -invariant Va(S) ∈ R.

Let f be an aS-invariant Morse-Bott function on S. Let Bf ⊂ S be the critical subman-
ifold. Since aS|Bf

∈ TBf , Va(Bf ) is also well defined. By [BG04, Theorem 4.10], Va(S)

and Va(Bf) are related by a simple formula.

1.5. Analytic torsion and the V -invariant. Let us argue formally. Let LZ be the free
loop space of Z equipped with the canonical S1-action. Write LZ =

∐
[γ]∈[Γ](LZ)[γ] as a

disjoint union of its connected components. Let a be the generator of the Lie algebra of
S
1 such that exp(a) = 1. As explained in [B05, Equation (0.3)], if F is a unitarily flat

vector bundle on Z such that H ·(Z, F ) = 0, at least formally, we have

log T (F ) = −
∑

[γ]∈[Γ]
Tr[ρ(γ)]Va

(
(LZ)[γ]

)
.(1.13)

Suppose that (Z, gTZ) is an odd dimensional connected closed manifold of nonpositive
sectional curvature, and suppose that the energy functional

E : x· ∈ LZ → 1

2

∫ 1

0

|ẋs|2ds(1.14)

on LZ is Morse-Bott. The critical set of E is just
∐

[γ]∈[Γ]B[γ], and all the critical points
are local minima. Applying [BG04, Theorem 4.10] to the infinite dimensional mani-
fold (LZ)[γ] equipped with the S

1-invariant Morse-Bott functional E, we has the formal
identity

Va

(
(LZ)[γ]

)
= Va

(
B[γ]

)
.(1.15)

Since B[1] ≃ Z is formed of the trivial closed geodesics, by the definition of the V -
invariant,

Va(B[1]) = 0.(1.16)

By [BG04, Proposition 4.26], if [γ] ∈ [Γ]− {1}, then

Va(B[γ]) = −χorb(S
1\B[γ])

2m[γ]

.(1.17)
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By (1.13), (1.15)-(1.17), we get a formal identity

log T (F ) =
1

2

∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb(S
1\B[γ])

m[γ]

,(1.18)

which is formally equivalent to (1.12).

1.6. The main result of the article. Let G be a linear connected real reductive group
[K86, p. 3], and let θ be the Cartan involution. Let K be the maximal compact subgroup
of G of the points of G that are fixed by θ. Let k and g be the Lie algebras of K and
G, and let g = p ⊕ k be the Cartan decomposition. Let B be a nondegenerate bilinear
symmetric form on g which is invariant under the adjoint action of G and θ. Assume
that B is positive on p and negative on k. Set X = G/K. Then B induces a Riemannian
metric gTX on the tangent bundle TX = G×K p, such that X is of nonpositive sectional
curvature.

Let Γ ⊂ G be a discrete torsion-free cocompact subgroup of G. Set Z = Γ\X. Then
Z is a closed locally symmetric manifold with π1(Z) = Γ. Recall that ρ : Γ → U(r) is a
unitary representation of Γ, and that F is the unitarily flat vector bundle on Z associated
with ρ. The main result of this article gives the solution of the Fried conjecture for Z.
In particular, this conjecture is valid for all the closed locally symmetric space of the
noncompact type.

Theorem 1.1. Assume dimZ is odd. The dynamical zeta function Rρ(σ) is holomorphic for

Re (σ) ≫ 1 and extends meromorphically to σ ∈ C. Moreover, there exist explicit constants

Cρ ∈ R∗ and rρ ∈ Z (c.f. (7.75)) such that, when σ → 0,

Rρ(σ) = CρT (F )2σrρ +O
(
σrρ+1

)
.(1.19)

If H ·(Z, F ) = 0, then

Cρ = 1, rρ = 0,(1.20)

so that

Rρ(0) = T (F )2.(1.21)

Let δ(G) be the nonnegative integer defined by the difference between the complex
ranks of G and K. Since dimZ is odd, δ(G) is odd. If δ(G) 6= 1, Theorem 1.1 is originally
due to Moscovici-Stanton [MoSt91] and was recovered by Bismut [B11]. Indeed, it was
proved in [MoSt91, Corollary 2.2, Remark 3.7] or [B11, Theorem 7.9.3] that T (F ) = 1

and χorb

(
S
1\B[γ]

)
= 0 for all [γ] ∈ [Γ]− {1}.

Remark that both of the above two proofs use the Selberg trace formula. However, in
the evaluation of the geometric side of the Selberg trace formula and of orbital integrals,
Moscovici-Stanton relied on Harish-Chandra’s Plancherel theory, while Bismut used his
explicit formula [B11, Theorem 6.1.1] obtained via the hypoelliptic Laplacian.

Our proof of Theorem 1.1 relies on Bismut’s formula.

1.7. Our results on Rρ(σ). Assume that δ(G) = 1. To show that Rρ(σ) extends as a
meromorphic function on C when Z is hyperbolic, Fried [F86] showed that Rρ(σ) is an
alternating product of certain Selberg zeta functions. Moscovici-Stanton’s idea was to
introduce the more general Selberg zeta functions and to get a similar formula for Rρ(σ).
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Let us recall some facts about reductive group G with δ(G) = 1. In this case, there
exists a unique (up to conjugation) standard parabolic subgroup Q ⊂ G with Langlands
decomposition Q = MQAQNQ such that dimAQ = 1. Let m, b, n be the Lie algebras of
MQ, AQ, NQ. Let α ∈ b∗ be such that for a ∈ b, ad(a) acts on n as a scalar 〈α, a〉 ∈ R

(c.f. Proposition 6.3). Let M be the connected component of identity of MQ. Then M

is a connected reductive group with maximal compact subgroup KM = M ∩K and with
Cartan decomposition m = pm ⊕ km. We have an identity of real KM -representations

p ≃ pm ⊕ b⊕ n.(1.22)

An observation due to Moscovici-Stanton is that χorb(S
1\B[γ]) 6= 0 only if γ can be

conjugated by an element of G into AQKM . For σ ∈ C, we define the formal Selberg zeta
function by

Zj(σ) = exp


−

∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb(S
1\B[γ])

m[γ]

TrΛ
j(n∗) [Ad(k−1)]

∣∣ det(1−Ad(eak−1))|n⊕θn

∣∣1/2 e
−σl[γ]


 ,

(1.23)

where a ∈ b, k ∈ KM are such that γ can be conjugated to eak−1. We remark that
l[γ] = |a|. To show the meromorphicity of Zj(σ), Moscovici-Stanton tried to identify
Zj(σ) with the geometric side of the zeta regularized determinant of the resolvent of
some elliptic operator acting on some vector bundle on Z. However, the vector bundle
used in [MoSt91], whose construction involves the adjoint representation of KM on
Λi(p∗m)⊗ Λi(n∗), does not live on Z, but only on Γ\G/KM .

We complete this gap by showing that such an objet exists as a virtual vector bundle
on Z in the sense of K-theory. More precisely, let RO(K), RO(KM) be the real repre-
sentation rings of K and KM . We can verify that the restriction RO(K) → RO(KM) is
injective. Note that pm, n ∈ RO(KM). In Subsection 6.3, using the classification theory
of real simple Lie algebras, we show pm, n are in the image of RO(K). For 0 6 j 6 dim n,
let Ej = E+

j − E−
j ∈ RO(K) such that the following identity in RO(KM) holds:

( dim pm∑

i=0

(−1)iΛi(p∗m)
)
⊗ Λj(n∗) = Ej |KM

.(1.24)

Let Ej = G ×K Ej be a Z2-graded vector bundle on X. It descends to a Z2-graded
vector bundle Fj on Z. Let Cj be a Casimir operator of G action on C∞(Z,Fj ⊗R F ).
In Theorem 7.6, we show that there are σj ∈ R and an odd polynomial Pj such that if
Re (σ) ≫ 1, Zj(σ) is holomorphic and

Zj(σ) = detgr
(
Cj + σj + σ2

)
exp

(
r vol(Z)Pj(σ)

)
,(1.25)

where detgr is the zeta regularized Z2-graded determinant. In particular, Zj(σ) extends
meromorphically to C.

By a direct calculation of linear algebra, we have

Rρ(σ) =

dim n∏

j=0

Zj

(
σ +

(
j − dim n

2

)
|α|
)(−1)j−1

,(1.26)
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from which we get the meromorphic extension of Rρ(σ). Note that the meromorphic
function

T (σ) =
dimZ∏

i=1

det
(
σ +�Z |Ωi(Z,F )

)(−1)ii
(1.27)

has a Laurent expansion near σ = 0,

T (σ) = T (F )2σχ′(X,F ) +O(σχ′(X,F )+1),(1.28)

where χ′(X,F ) is the derived Euler number (c.f. (2.8)). Note also that the Hodge Lapla-
cian �Z coincides with the Casimir operator acting on Ω·(Z, F ). The Laurent expansion
(1.19) can be deduced form (1.25)-(1.28) and the identity in RO(K),

dim p∑

i=1

(−1)i−1iΛi(p∗) =

dim n∑

j=0

(−1)jEj .(1.29)

1.8. Proof of Equation (1.20). To understand how the acyclicity of F is reflected in the
function Rρ(σ), we need some deep results of representation theory. Let p̂ : Γ\G → Z

be the natural projection. The enveloping algebra of U(g) acts on C∞(Γ\G, p̂∗F ). Let
Z(g) be the center of U(g). Let V ∞ ⊂ C∞(Γ\G, p̂∗F ) be the subspace of C∞(Γ\G, p̂∗F )

on which the action of Z(g) vanishes, and let V be the closure of V ∞ in L2(Γ\G, p̂∗F ).
Then V is a unitary representation of G. The compactness of Γ\G implies that V is a
finite sum of irreducible unitary representations of G. By standard arguments [BoW00,
Ch VII, Theorem 3.2, Corollary 3.4], the cohomology H ·(Z, F ) is canonically isomorphic
to the (g, K)-cohomology H ·(g, K;V ) of V .

Vogan-Zuckerman [VZu84] and Vogan [V84] classified all irreducible unitary repre-
sentations with nonzero (g, K)-cohomology. On the other hand, Salamanca-Riba [SR99]
showed that any irreducible unitary representation with vanishing Z(g)-action is in the
class specified by Vogan and Zuckerman, which means that it possesses nonzero (g, K)-
cohomology.

By the above considerations, the acyclicity of F is equivalent to V = 0. This is essen-
tially the algebraic ingredient in the proof of (1.20). Indeed, in Corollary 8.18, we give a
formula for the constants Cρ and rρ, obtained by Hecht-Schmid formula [HeSc83] with
the help of the n-homology of V .

1.9. The organization of the article. This article is organized as follows. In Sections 2,
we recall the definitions of certain characteristic forms and of the analytic torsion.

In Section 3, we introduce the reductive groups and the fundamental rank δ(G) of G.
In Section 4, we introduce the symmetric space. We recall basic principles for the Sel-

berg trace formula, and we state formulas by Bismut [B11, Theorem 6.1.1] for semisim-
ple orbital integrals. We recall the proof given by Bismut [B11, Theorem 7.9.1] of a
vanishing result of the analytic torsion T (F ) in the case δ(G) 6= 1, which is originally due
to Moscovici-Stanton [MoSt91, Corollary 2.2].

In Section 5, we introduce the dynamical zeta function Rρ(σ), and we state Theorem
1.1 as Theorem 5.5. We prove Theorem 1.1 when δ(G) 6= 1 or when G has noncompact
center.

Sections 6-8 are devoted to establish Theorem 1.1 when G has compact center and
when δ(G) = 1.
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In Section 6, we introduce geometric objects associated with such reductive groups G.
In Section 7, we introduce Selberg zeta functions, and we prove that Rρ(σ) extends

meromorphically, and we establish Equation (1.19).
Finally, in Section 8, after recalling some constructions and results of representation

theory, we prove that (1.20) holds.
In the whole paper, we use the superconnection formalism of Quillen [Q85] and

[BeGeVe04, Section 1.3]. If A is a Z2-graded algebra, if a, b ∈ A, the supercommuta-
tor [a, b] is given by

[a, b] = ab− (−1)deg adeg bba.(1.30)

If B is another Z2-graded algebra, we denote by A⊗̂B the super tensor product algebra of
A and B. If E = E+ ⊕ E− is a Z2-graded vector space, the algebra End(E) is Z2-graded.
If τ = ±1 on E±, if a ∈ End(E), the supertrace Trs[a] is defined by

Trs[a] = Tr[τa].(1.31)

We make the convention that N = {0, 1, 2, · · · } and N∗ = {1, 2, · · · }.

1.10. Acknowledgement. I am deeply grateful to Prof. J.-M. Bismut for sharing his
insights on this problem. Without his help, this paper would never have been written.
I am indebted to Prof. W. Müller for his detailed explanation on the paper [MoSt91]. I
would also like to thank Prof. L. Clozel and Prof. M. Vergne for very useful discussions.
I appreciate the encouragement and constant support of Prof. X. Ma. I am also indebted
to referees who read the manuscript very carefully and offered detailed suggestions for
its improvement.

This article was prepared while I was visiting Max-Planck-Institut für Mathematik at
Bonn and the Humboldt-Universität zu Berlin. I would like to thank both institutions for
their hospitality.

This research has been financially supported by Collaborative Research Centre “Space-
Time-Matte” (SFB 647), funded by the German Research Foundation (DFG).

2. CHARACTERISTIC FORMS AND ANALYTIC TORSION

The purpose of this section is to recall some basic constructions and properties of
characteristic forms and the analytic torsion.

This section is organized as follows. In Subsection 2.1, we recall the construction of
the Euler form, the Â-form and the Chern character form.

In Subsection 2.2, we introduce the regularized determinant.
Finally, in Subsection 2.3, we recall the definition of the analytic torsion of flat vector

bundles.

2.1. Characteristic forms. If V is a real or complex vector space of dimension n, we
denote by V ∗ the dual space and by Λ·(V ) =

∑n
i=0Λ

i(V ) its exterior algebra. Let Z be
a smooth manifold. If V is a vector bundle on Z, we denote by Ω·(Z, V ) the space of
smooth differential forms with values in V . When V = R, we write Ω·(Z) instead.

Let E be a real Euclidean vector bundle of rank m with a metric connection ∇E . Let
RE = ∇E,2 be the curvature of ∇E . It is a 2-form with values in antisymmetric endomor-
phisms of E.
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If A is an antisymmetric matrix, denote by Pf[A] the Pfaffian [BZ92, eq. (3.3)] of A.
Then Pf[A] is a polynomial function of A, which is a square root of det[A]. Let o(E) be
the orientation line of E. The Euler form e

(
E,∇E

)
of
(
E,∇E

)
is given by

e
(
E,∇E

)
= Pf

[
RE

2π

]
∈ Ωm

(
Z, o(E)

)
.(2.1)

If m is odd, then e(E,∇E) = 0.
For x ∈ C, set

Â(x) =
x/2

sinh(x/2)
.(2.2)

The form Â
(
E,∇E

)
of
(
E,∇E

)
is given by

Â
(
E,∇E

)
=

[
det

(
Â

(
−RE

2iπ

))]1/2
∈ Ω·(Z).(2.3)

If E ′ is a complex Hermitian vector bundle equipped with a metric connection ∇E′

with curvature RE′

, the Chern character form ch
(
E ′,∇E′

)
of (E ′,∇E′

) is given by

ch
(
E ′,∇E′

)
= Tr

[
exp

(
−RE′

2iπ

)]
∈ Ω·(Z).(2.4)

The differential forms e
(
E,∇E

)
, Â
(
E,∇E

)
and ch

(
E ′,∇E′

)
are closed. They are the

Chern-Weil representatives of the Euler class of E, the Â-genus of E and the Chern
character of E ′.

2.2. Regularized determinant. Let (Z, gTZ) be a smooth closed Riemannian manifold
of dimension m. Let (E, gE) be a Hermitian vector bundle on Z. The metrics gTZ, gE

induce an L2-metric on C∞(Z,E).
Let P be a second order elliptic differential operator acting on C∞(Z,E). Suppose that

P is formally self-adjoint and nonnegative. Let P−1 be the inverse of P acting on the
orthogonal space to ker(P ). For Re (s) > m/2, set

θP (s) = −Tr
[(
P−1

)s]
.(2.5)

By [Se67] or [BeGeVe04, Proposition 9.35], θ(s) has a meromorphic extension to s ∈ C

which is holomorphic at s = 0. The regularized determinant of P is defined as

det(P ) = exp
(
θ′P (0)

)
.(2.6)

Assume now that P is formally self-adjoint and bounded from below. Denote by Sp(P )

the spectrum of P . For λ ∈ Sp(P ), set

mP (λ) = dimC ker(P − λ)(2.7)

its multiplicity. If σ ∈ R is such that P + σ > 0, then det(P + σ) is defined by (2.6).
Voros [Vo87] has shown that the function σ → det(P + σ), defined for σ ≫ 1, extends
holomorphically to C with zeros at σ = −λ of the order mP (λ), where λ ∈ Sp(P ).
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2.3. Analytic torsion. Let Z be a smooth connected closed manifold of dimension m

with fundamental group Γ. Let F be a complex flat vector bundle on Z of rank r. Equiv-
alently, F can be obtained via a complex representation ρ : Γ → GLr(C).

Let H ·(Z, F ) = ⊕m
i=0H

i(Z, F ) be the cohomology of the sheaf of locally flat sections of
F . We define the Euler number and the derived Euler number by

χ(Z, F ) =

m∑

i=0

(−1)i dimCH i(Z, F ), χ′(Z, F ) =

m∑

i=1

(−1)ii dimCH i(Z, F ).(2.8)

Let
(
Ω·(Z, F ), dZ

)
be the de Rham complex of smooth sections of Λ·(T ∗Z)⊗R F on Z.

We have a canonical isomorphism of vector spaces

H · (Ω·(Z, F ), dZ
)
≃ H ·(Z, F ).(2.9)

In the sequel, we will also consider the trivial line bundle R. We denote simply by H ·(Z)

and χ(Z) the corresponding objects. Note that, in this case, the complex dimension in
(2.8) should be replaced by the real dimension.

Let gTZ be a Riemmanian metric on TZ, and let gF be a Hermitian metric on F . They
induce an L2-metric 〈 , 〉Ω·(Z,F ) on Ω·(Z, F ). Let dZ,∗ be the formal adjoint of dZ with
respect to 〈 , 〉Ω·(Z,F ). Put

DZ = dZ + dZ,∗, �Z = DZ,2 =
[
dZ , dZ,∗

]
.(2.10)

Then, �Z is a formally self-adjoint nonnegative second order elliptic operator acting on
Ω·(Z, F ). By Hodge theory, we have a canonical isomorphism of vector spaces

ker�Z ≃ H ·(Z, F ).(2.11)

Definition 2.1. The analytic torsion of F is a positive real number defined by

T
(
F, gTZ , gF

)
=

m∏

i=1

det
(
�

Z |Ωi(Z,F )

)(−1)ii/2
.(2.12)

Recall that the flat vector bundle F carries a flat metric gF if and only if the holonomy
representation ρ factors through U(r). In this case, F is said to be unitarily flat. If Z is
an even dimensional orientable manifold and if F is unitarily flat with a flat metric gF ,
by Poincaré duality, T (F, gTZ, gF ) = 1. If dimZ is odd and if H ·(Z, F ) = 0, by [BZ92,
Theorem 4.7], then T (F, gTZ, gF ) does not depend on gTZ or gF . In the sequel, we write
instead

T (F ) = T
(
F, gTZ , gF

)
.(2.13)

By Subsection 2.2,

T (σ) =

dimZ∏

i=1

det
(
σ +�Z |Ωi(Z,F )

)(−1)ii
(2.14)

is meromorphic on C. When σ → 0, we have

T (σ) = T (F )2σχ′(Z,F ) +O(σχ′(Z,F )+1).(2.15)
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3. PRELIMINARIES ON REDUCTIVE GROUPS

The purpose of this section is to recall some basic facts about reductive groups.
This section is organized as follows. In Subsection 3.1, we introduce the reductive

group G.
In Subsection 3.2, we introduce the semisimple elements of G, and we recall some

related constructions.
In Subsection 3.3, we recall some properties of Cartan subgroups of G. We introduce

a nonnegative integer δ(G), which has paramount importance in the whole article. We
also recall Weyl’s integral formula on reductive groups.

Finally, in Subsection 3.4, we introduce the regular elements of G.

3.1. The reductive group. Let G be a linear connected real reductive group [K86, p. 3],
that means G is a closed connected group of real matrices that is stable under transpose.
Let θ ∈ Aut(G) be the Cartan involution. Let K be the maximal compact subgroup of G
of the points of G that are fixed by θ.

Let g be the Lie algebra of G, and let k ⊂ g be the Lie algebra of K. The Cartan
involution θ acts naturally as a Lie algebra automorphism of g. Then k is the eigenspace
of θ associated with the eigenvalue 1. Let p be the eigenspace with the eigenvalue −1, so
that

g = p⊕ k.(3.1)

Then we have

[k, k] ⊂ k, [p, p] ⊂ k, [k, p] ⊂ p.(3.2)

Put

m = dim p, n = dim k.(3.3)

By [K86, Proposition 1.2], we have the diffeomorphism

(Y, k) ∈ p×K → eY k ∈ G.(3.4)

Let B be a real-valued nondegenerate bilinear symmetric form on g which is invariant
under the adjoint action Ad of G on g, and also under θ. Then (3.1) is an orthogonal
splitting of g with respect to B. We assume B to be positive on p, and negative on k.
The form 〈·, , ·〉 = −B(·, θ·) defines an Ad(K)-invariant scalar product on g such that the
splitting (3.1) is still orthogonal. We denote by | · | the corresponding norm.

Let ZG ⊂ G be the center of G with Lie algebra zg ⊂ g. Set

zp = zg ∩ p, zk = zg ∩ k.(3.5)

By [K86, Corollary 1.3], ZG is reductive. As in (3.1) and (3.4), we have the Cartan
decomposition

zg = zp ⊕ zk, ZG = exp(zp)(ZG ∩K).(3.6)

Let gC = g ⊗R C be the complexification of g and let u =
√
−1p ⊕ k be the compact

form of g. Let GC and U be the connected group of complex matrices associated with the
Lie algebras gC and u. By [K86, Propositions 5.3 and 5.6], if G has compact center, i.e.,
its center ZG is compact, then GC is a linear connected complex reductive group with
maximal compact subgroup U .
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Let U(g) be the enveloping algebra of g, and let Z(g) ⊂ U(g) be the center of U(g).
Let Cg ∈ U(g) be the Casimir element. If e1, · · · , em is an orthonormal basis of p, and if
em+1, · · · , em+n is an orthonormal basis of k, then

Cg = −
m∑

i=1

e2i +
n+m∑

i=m+1

e2i .(3.7)

Classically, Cg ∈ Z(g).
We define Ck similarly. Let τ be a finite dimensional representation of K on V . We

denote by Ck,V or Ck,τ ∈ End(V ) the corresponding Casimir operator acting on V , so that

Ck,V = Ck,τ =

m+n∑

i=m+1

τ(ei)
2.(3.8)

3.2. Semisimple elements. If γ ∈ G, we denote by Z(γ) ⊂ G the centralizer of γ in G,
and by z(γ) ⊂ g its Lie algebra. If a ∈ g, let Z(a) ⊂ G be the stabilizer of a in G, and let
z(a) ⊂ g be its Lie algebra.

An element γ ∈ G is said to be semisimple if γ can be conjugated to eak−1 such that

a ∈ p, k ∈ K, Ad(k)a = a.(3.9)

Let γ = eak−1 such that (3.9) holds. By [B11, eq. (3.3.4), (3.3.6)], we have

Z(γ) = Z(a) ∩ Z(k), z(γ) = z(a) ∩ z(k).(3.10)

Set

p(γ) = z(γ) ∩ p, k(γ) = z(γ) ∩ k.(3.11)

From (3.10) and (3.11), we get

z(γ) = p(γ)⊕ k(γ).(3.12)

By [K02, Proposition 7.25], Z(γ) is a reductive subgroup of G with maximal compact
subgroup K(γ) = Z(γ) ∩ K, and with Cartan decomposition (3.12). Let Z0(γ) be the
connected component of the identity in Z(γ). Then Z0(γ) is a reductive subgroup of G,
with maximal compact subgroup Z0(γ) ∩K. Also, Z0(γ) ∩K coincides with K0(γ), the
connected component of the identity in K(γ).

An element γ ∈ G is said to be elliptic if γ is conjugated to an element of K. Let γ ∈ G

be semisimple and nonelliptic. Up to conjugation, we can assume γ = eak−1 such that
(3.9) holds and that a 6= 0. By (3.10), a ∈ p(γ). Let za,⊥(γ), pa,⊥(γ) be respectively the
orthogonal spaces to a in z(γ), p(γ), so that

za,⊥(γ) = pa,⊥(γ)⊕ k(γ).(3.13)

Moreover, za,⊥(γ) is a Lie algebra. Let Za,⊥,0(γ) be the connected subgroup of Z0(γ) that
is associated with the Lie algebra za,⊥(γ). By [B11, eq. (3.3.11)], Za,⊥,0(γ) is reductive
with maximal compact subgroup K0(γ) with Cartan decomposition (3.13), and

Z0(γ) = R× Za,⊥,0(γ),(3.14)

so that eta maps into t|a|.
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3.3. Cartan subgroups. A Cartan subalgebra of g is a maximal abelian subalgebra of g.
A Cartan subgroup of G is the centralizer of a Cartan subalgebra.

By [K86, Theorem 5.22], there is only a finite number of nonconjugate (via K) θ-stable
Cartan subalgebras h1, · · · , hl0 . Let H1, · · · , Hl0 be the corresponding Cartan subgroup.
Clearly, the Lie algebra of Hi is hi. Set

hip = hi ∩ p, hik = hi ∩ k.(3.15)

We call dim hip the noncompact dimension of hi. By [K86, Theorem 5.22 (c)] and [K02,
Proposition 7.25], Hi is an abelian reductive group with maximal compact subgroup
Hi ∩K, and with Cartan decomposition

hi = hip ⊕ hik, Hi = exp(hip)(Hi ∩K).(3.16)

Note that in general, Hi is not necessarily connected.
Let W (Hi, G) be the Weyl group. If NK(hi) ⊂ K and ZK(hi) ⊂ K are the normalizer

and centralizer of hi in K, then

W (Hi, G) = NK(hi)/ZK(hi).(3.17)

In the whole paper, we fix a maximal torus T of K. Let t ⊂ k be the Lie algebra of T .
Set

b = {Y ∈ p : [Y, t] = 0}.(3.18)

By (3.5) and (3.18), we have

zp ⊂ b.(3.19)

Put

h = b⊕ t.(3.20)

By [K86, Theorem 5.22 (b)], h is the θ-stable Cartan subalgebra of g with minimal non-
compact dimension. Also, every θ-stable Cartan subalgebra with minimal noncompact
dimension is conjugated to h by an element of K. Moreover, the corresponding Cartan
subgroup H ⊂ G of G is connected, so that

H = exp(b)T.(3.21)

We may assume that h1 = h and H1 = H.
Note that the complexification hiC = hi⊗RC of hi is a Cartan subalgebra of gC. All the

hiC are conjugated by inner automorphisms of gC. Their common complex dimension
dimC hiC is called the complex rank rkC(G) of G.

Definition 3.1. Put

δ(G) = rkC(G)− rkC(K) ∈ N.(3.22)

By (3.18) and (3.22), we have

δ(G) = dim b.(3.23)

Note that m− δ(G) is even. We will see that δ(G) plays an important role in our article.
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Remark 3.2. If g is a real reductive Lie algebra, then δ(g) ∈ N can be defined in the same
way as in (3.23). Since g is reductive, by [K02, Corolary 1.56], we have

g = zg ⊕ [g, g],(3.24)

where [g, g] is a semisimple Lie algebra. By (3.6) and (3.24), we have

δ(g) = dim zp + δ([g, g]).(3.25)

Proposition 3.3. The element γ ∈ G is semisimple if and only if γ can be conjugated into

∪l0
i=1Hi. In this case,

δ(G) 6 δ
(
Z0(γ)

)
.(3.26)

The two sides of (3.26) are equal if and only if γ can be conjugated into H.

Proof. If γ ∈ Hi, by the Cartan decomposition (3.16), there exist a ∈ hip and k ∈ K ∩Hi

such that γ = eak−1. Since Hi is the centralizer of hi, we have Ad(γ)a = a. Therefore,
Ad(k)a = a, so that γ is semisimple.

Assume that γ ∈ G is semisimple and such that (3.9) holds. We claim that

rkC(G) = rkC
(
Z0(γ)

)
.(3.27)

Indeed, let h′ ⊂ g be a θ-invariant Cartan subalgebra of g containing a. Then, h′ ⊂ z(a).
It implies

rkC(G) = rkC
(
Z0(a)

)
.(3.28)

By choosing a maximal torus T containing k, by (3.20), we have h ⊂ z(k). Then

rkC(G) = rkC
(
Z0(k)

)
.(3.29)

If we replace G by Z0(a) in (3.29), by (3.10), we get

rkC(Z
0(a)) = rkC

(
Z0(γ)

)
.(3.30)

By (3.28) and (3.30), we get (3.27).
Let h(γ) ⊂ z(γ) be the θ-invariant Cartan subalgebra defined as in (3.20) when G is

replaced by Z0(γ). By (3.27), h(γ) is also a Cartan subalgebra of g. Moreover, γ is an
element of the Cartan subgroup of G associated to h(γ). In particular, γ can be conjugated
into some Hi.

By the minimality of noncompact dimension of h, we have

δ(G) = dim h ∩ p 6 dim h(γ) ∩ p = δ
(
Z0(γ)

)
,(3.31)

which completes the proof of (3.26).
It is obvious that if γ can be conjugated into H, the equality in (3.31) holds. If the

equality holds in (3.31), by the uniqueness of the Cartan subalgebra with minimal non-
compact dimension, there is k′ ∈ K such that

Ad(k′)h(γ) = h,(3.32)

which implies that k′γk′,−1 ∈ H. The proof of our proposition is completed. �
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Now we recall the Weyl integral formula on G, which will be used in Section 8. Let
dvHi

and dvHi\G be respectively the Riemannian volumes on Hi and Hi\G induced by
−B(·, θ·). By [K02, Theorem 8.64], for a nonnegative measurable function f on G, we
have

(3.33)
∫

g∈G
f(g)dvG =

l0∑

i=1

1

|W (Hi, G)|
∫

γ∈Hi

(∫

g∈Hi\G
f(g−1γg)dvHi\G

) ∣∣det
(
1− Ad(γ)

)
|g/hi

∣∣ dvHi
.

3.4. Regular elements. For 0 6 j 6 m+ n− rkC(G), let Dj be the analytic function on
G such that for t ∈ R and γ ∈ G, we have

det
(
t+ 1− Ad(γ)

)
|g = trkC(G)

(m+n−rkC(G)∑

j=0

Dj(γ)t
j

)
.(3.34)

If γ ∈ Hi, then

D0(γ) = det
(
1−Ad(γ)

)
|g/hi .(3.35)

We call γ ∈ G regular if D0(γ) 6= 0. Let G′ ⊂ G be the subset of regular elements of G.
Then G′ is open in G, such that G−G′ has zero measure with respect to the Riemannian
volume dvG on G induced by −B(·, θ·). For 1 6 i 6 l0, set

H ′
i = Hi ∩G′, G′

i =
⋃

g∈G
g−1H ′

ig.(3.36)

By [K86, Theorem 5.22 (d)], G′
i is open, and we have the disjoint union

G′ =
∐

16i6l0

G′
i.(3.37)

4. ORBITAL INTEGRALS AND SELBERG TRACE FORMULA

The purpose of this section is to recall Bismut’s semisimple orbital integral formula
[B11, Theorem 6.1.1] and the Selberg trace formula.

This section is organized as follows. In Subsections 4.1, we introduce the Riemannian
symmetric space X = G/K, and we give a formula for its Euler form.

In Subsection 4.2, we recall the definition of semisimple orbital integrals.
In Subsection 4.3, we recall Bismut’s explicit formula for the semisimple orbital inte-

grals associated to the heat operator of the Casimir element.
In Subsection 4.4, we introduce a discrete torsion-free cocompact subgroup Γ of G.

We state the Selberg trace formula.
Finally, in Subsection 4.5, we recall Bismut’s proof of a vanishing result on the analytic

torsion in the case δ(G) 6= 1, which is originally due to Moscovici-Stanton [MoSt91].

4.1. The symmetric space. We use the notation of Section 3. Let ωg be the canonical
left-invariant 1-form on G with values in g, and let ωp, ωk be its components in p, k, so
that

ωg = ωp + ωk.(4.1)



ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS, AND THE FRIED CONJECTURE 17

Let X = G/K be the associated symmetric space. Then

p : G → X = G/K(4.2)

is a K-principle bundle, equipped with the connection form ωk. By (3.2) and (4.1), the
curvature of ωk is given by

Ωk = −1

2
[ωp, ωp] .(4.3)

Let τ be a finite dimensional orthogonal representation of K on the real Euclidean
space Eτ . Then Eτ = G×K Eτ is a real Euclidean vector bundle on X, which is naturally
equipped with a Euclidean connection ∇Eτ . The space of smooth sections C∞(X, Eτ )
on X can be identified with the K-invariant subspace C∞(G,Eτ )

K of smooth Eτ -valued
functions on G. Let Cg,X,τ be the Casimir element of G acting on C∞(X, Eτ ). Then Cg,X,τ

is a formally self-adjoint second order elliptic differential operator which is bounded from
below.

Observe that K acts isometrically on p. Using the above construction, the tangent bun-
dle TX = G ×K p is equipped with a Euclidean metric gTX and a Euclidean connection
∇TX . Also, ∇TX is the Levi-Civita connection on (TX, gTX) with curvature RTX . Classi-
cally, (X, gTX) is a Riemannian manifold of nonpositive sectional curvature. For x, y ∈ X,
we denote by dX(x, y) the Riemannian distance on X.

If Eτ = Λ·(p∗), then C∞(X, Eτ) = Ω·(X). In this case, we write Cg,X = Cg,X,τ . By [B11,
Proposition 7.8.1], Cg,X coincides with the Hodge Laplacian acting on Ω·(X).

Let us state a formula for e
(
TX,∇TX

)
. Let o(TX) be the orientation line of TX. Let

dvX be the G-invariant Riemnnian volume form on X. If α ∈ Ω·(X, o(TX)
)

is of maximal
degree and G-invariant, set [α]max ∈ R such that

α = [α]maxdvX .(4.4)

Recall that if G has compact center, then U is the compact form of G. If δ(G) = 0, by
(3.25), G has compact center. In this case, T are maximal torus of both U and K. Let
W (T, U),W (T,K) be respectively the Weyl group. Let vol(U/K) be the volume of U/K
with respecte to the volume form induced by −B.

Proposition 4.1. If δ(G) 6= 0,
[
e
(
TX,∇TX

)]max
= 0. If δ(G) = 0,

[
e
(
TX,∇TX

)]max
= (−1)

m
2
|W (T, U)|/|W (T,K)|

vol(U/K)
.(4.5)

Proof. If G has noncompact center (thus δ(G) 6= 0), it is trivial that
[
e
(
TX,∇TX

)]max
= 0.

Assume now, G has compact center. By Hirzebruch proportionality (c.f. [Hi66, Theorem
22.3.1] for a proof for Hermitian symmetric spaces, and the proof for general case is
identical), we have

[
e
(
TX,∇TX

)]max
= (−1)

m
2
χ(U/K)

vol(U/K)
.(4.6)

Proposition 4.1 is a consequence of (4.6), [Bot65, Theorem II] and Bott’s formula [Bot65,
p. 175] and of the fact that δ(G) = rkC(U)− rkC(K). �

Let γ ∈ G be a semisimple element as in (3.9). Let

X(γ) = Z(γ)/K(γ)(4.7)
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be the associated symmetric space. Clearly,

X(γ) = Z0(γ)/K0(γ).(4.8)

Suppose that γ is nonelliptic. Set

Xa,⊥(γ) = Za,⊥,0(γ)/K0(γ).(4.9)

By (3.14), (4.8) and (4.9), we have

X(γ) = R×Xa,⊥(γ),(4.10)

so that the action eta on X(γ) is just the translation by t|a| on R.

4.2. The semisimple orbital integrals. Recall that τ is a finite dimensional orthogonal
representation of K on the real Euclidean space Eτ , and that Cg,X,τ is the Casimir element
of G acting on C∞(X, Eτ ).

Let pX,τ
t (x, x′) be the smooth kernel of exp(−tCg,X,τ/2) with respect to the Riemannian

volume dvX on X. Classically, for t > 0, there exist c > 0 and C > 0 such that for
x, x′ ∈ X, ∣∣∣pX,τ

t (x, x′)
∣∣∣ 6 C exp

(
−c d2X(x, x

′)
)
.(4.11)

Set

pX,τ
t (g) = pX,τ

t (p1, pg).(4.12)

For g ∈ G and k, k′ ∈ K, we have

pX,τ
t (kgk′) = τ(k)pX,τ

t (g)τ(k′).(4.13)

Also, we can recover pX,τ
t (x, x′) by

pX,τ
t (x, x′) = pX,τ

t (g−1g′),(4.14)

where g, g′ ∈ G are such that pg = x, pg′ = x′.
In the sequel, we do not distinguish pX,τ

t (x, x′) and pX,τ
t (g). We refer to both of them

as being the smooth kernel of exp(−tCg,X,τ/2).
Let dvK0(γ)\K and dvZ0(γ)\G be the Riemannian volumes on K0(γ)\K and Z0(γ)\G

induced by −B(·, θ·). Let vol(K0(γ)\K) be the volume of K0(γ)\K with respect to
dvK0(γ)\K .

Definition 4.2. Let γ ∈ G be semisimple. The orbital integral of exp(−tCg,X,τ/2) is
defined by

Tr[γ]
[
exp

(
−tCg,X,τ/2

)]
=

1

vol(K0(γ)\K)

∫

g∈Z0(γ)\G
TrEτ

[
pX,τ
t (g−1γg)

]
dvZ0(γ)\G.(4.15)

Remark 4.3. Definition 4.2 is equivalent to [B11, Definition 4.2.2], where the volume
forms are normalized such that vol(K0(γ)\K) = 1.

Remark 4.4. As the notation Tr[γ] indicates, the orbital integral only depends on the
conjugacy class of γ in G. However, the notation [γ] (c.f. Subsection 4.4) will be used
later for the conjugacy class in the discrete group Γ.

Remark 4.5. We will also consider the case where Eτ is a Z2-graded or virtual represen-
tation of K. We will use the notation Trs

[γ][q] when the trace on the right-hand side of
(4.15) is replaced by the supertrace on Eτ .
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4.3. Bismut’s formula for semisimple orbital integrals. Let us recall the explicit for-
mula for Tr[γ]

[
exp(−tCg,X,τ/2)

]
, for any semisimple element γ ∈ G, obtained by Bismut

[B11, Theorem 6.1.1].
Let γ = eak−1 ∈ G be semisimple as in (3.9). Set

z0 = z(a), p0 = z(a) ∩ p, k0 = z(a) ∩ k.(4.16)

Then

z0 = p0 ⊕ k0.(4.17)

By (3.10), (3.11) and (4.16), we have p(γ) ⊂ p0 and k(γ) ⊂ k0. Let p⊥0 (γ), k
⊥
0 (γ), z

⊥
0 (γ)

be the orthogonal spaces of p(γ), k(γ), z(γ) in p0, k0, z0. Let p⊥0 , k⊥0 , z⊥0 be the orthogonal
spaces of p0, k0, z0 in p, k, z. Then we have

p = p(γ)⊕ p⊥0 (γ)⊕ p⊥0 , k = k(γ)⊕ k⊥0 (γ)⊕ k⊥0 .(4.18)

Recall that Â is the function defined in (2.2).

Definition 4.6. For Y ∈ k(γ), put

(4.19) Jγ(Y ) =
1

∣∣∣det
(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

Â
(
i ad(Y )|p(γ)

)

Â
(
i ad(Y )|k(γ)

)

[
1

det
(
1− Ad(k−1)

)
|z⊥0 (γ)

det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|k⊥0 (γ)

det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|p⊥0 (γ)

]1/2
.

As explained in [B11, Section 5.5], there is a natural choice for the square root in
(4.19). Moreover, Jγ is an Ad

(
K0(γ)

)
-invariant analytic function on k(γ), and there

exist cγ > 0, Cγ > 0, such that for Y ∈ k(γ),

|Jγ(Y )| 6 Cγ exp (cγ |Y |).(4.20)

By (4.19), we have

J1(Y ) =
Â(i ad(Y )|p)
Â(i ad(Y )|k)

.(4.21)

For Y ∈ k(γ), let dY be the Lebesgue measure on k(γ) induced by −B. Recall that Ck,p

and Ck,k are defined in (3.8). The main result of [B11, Theorem 6.1.1] is the following.

Theorem 4.7. For t > 0, we have

(4.22)

Tr[γ]
[
exp

(
−tCg,X,τ/2

)]
=

1

(2πt)dim z(γ)/2
exp

(
−|a|2

2t
+

t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

∫

Y ∈k(γ)
Jγ(Y ) TrEτ

[
τ
(
k−1
)
exp(−iτ(Y ))

]
exp

(
−|Y |2/2t

)
dY.
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4.4. A discrete subgroup of G. Let Γ ⊂ G be a discrete torsion-free cocompact sub-
group of G. By [Sel60, Lemma 1], Γ contains the identity element and nonelliptic
semisimple elements. Also, Γ acts isometrically on the left on X. This action lifts to
all the homogeneous Euclidean vector bundles Eτ constructed in Subsection 4.1, and
preserves the corresponding connections.

Take Z = Γ\X = Γ\G/K. Then Z is a connected closed orientable Riemannian
locally symmetric manifold with nonpositive sectional curvature. Since X is contractible,
π1(Z) = Γ and X is the universal cover of Z. We denote by p̂ : Γ\G → Z and π̂ : X → Z

the natural projections, so that the diagram

G

p

��

// Γ\G
p̂
��

X
π̂

// Z

(4.23)

commutes.
The Euclidean vector bundle Eτ descends to a Euclidean vector bundle Fτ = Γ\Eτ on

Z. Take r ∈ N∗. Let ρ : Γ → U(r) be a unitary representation of Γ. Let (F,∇F , gF ) be
the unitarily flat vector bundle on Z associated to ρ. Let Cg,Z,τ,ρ be the Casimir element
of G acting on C∞(Z,Fτ ⊗C F ). As in Subsection 4.1, when Eτ = Λ·(p∗), we write
Cg,Z,ρ = Cg,Z,τ,ρ. Then,

�Z = Cg,Z,ρ.(4.24)

Recall that pX,τ
t (x, x′) is the smooth kernel of exp(−tCg,X,τ/2) with respect to dvX .

Proposition 4.8. There exist c > 0, C > 0 such that for t > 0 and x ∈ X, we have
∑

γ∈Γ−{1}

∣∣∣pX,τ
t (x, γx)

∣∣∣ 6 C exp
(
−c

t
+ Ct

)
.(4.25)

Proof. By [Mi68b, Remark p.1, Lemma 2] or [MaMar15, eq. (3.19)], there is C > 0 such
that for all r > 0, x ∈ X, we have

∣∣{γ ∈ Γ : dX(x, γx) 6 r
}∣∣ 6 CeCr.(4.26)

We claim that there exist c > 0, C > 0 and N ∈ N such that for t > 0 and x, x′ ∈ X, we
have

∣∣∣pX,τ
t (x, x′)

∣∣∣ 6 C

tN
exp

(
−c

d2X(x, x
′)

t
+ Ct

)
.(4.27)

Indeed, if τ = 1, pX,1
t (x, x′) is the heat kernel for the Laplace-Beltrami operator. In this

case, (4.27) is a consequence of the Li-Yau estimate [LiY86, Corollary 3.1] and of the
fact that X is a symmetric space. For general τ , using the Itô formula as in [BZ92, eq.
(12.30)]), we can show that there is C > 0 such that

∣∣∣pX,τ
t (x, x′)

∣∣∣ 6 CeCtpX,1
t (x, x′),(4.28)

from which we get (4.27)2.

2See [MaMar15, Theorem 4] for another proof of (4.27) using finite propagation speed of solutions of
hyperbolic equations.
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Note that there exists c0 > 0 such that for all γ ∈ Γ− {1} and x ∈ X,

dX(x, γx) > c0.(4.29)

By (4.27) and (4.29), there exist c1 > 0, c2 > 0 and C > 0 such that for t > 0, x ∈ X and
γ ∈ Γ− {1}, we have

∣∣∣pX,τ
t (x, γx)

∣∣∣ 6 C exp

(
−c1

t
− c2

d2X(x, γx)

t
+ Ct

)
.(4.30)

By (4.26) and(4.30), for t > 0 and x ∈ X, we have

∑

γ∈Γ−{1}

∣∣∣pX,τ
t (x, γx)

∣∣∣ 6 C
∑

γ∈Γ
exp

(
−c1

t
− c2

d2X(x, γx)

t
+ Ct

)

= c2C exp
(
−c1

t
+ Ct

)∑

γ∈Γ

∫ ∞

d2X (x,γx)/t

exp(−c2r)dr

= c2C exp
(
−c1

t
+ Ct

)∫ ∞

0

∣∣{γ ∈ Γ : dX(x, γx) 6
√
rt
}∣∣ exp(−c2r)dr

6 C ′ exp
(
−c1

t
+ Ct

)∫ ∞

0

exp
(
−c2r + C

√
rt
)
dr.

(4.31)

From (4.31), we get (4.25). The proof of our proposition is completed. �

For γ ∈ Γ, set

Γ(γ) = Z(γ) ∩ Γ.(4.32)

Let [γ] be the conjugacy class of γ in Γ. Let [Γ] be the set of all the conjugacy classes of Γ.
The following proposition is [Sel60, Lemma 2]. We include a proof for the sake of

completeness.

Proposition 4.9. If γ ∈ Γ, then Γ(γ) is cocompact in Z(γ).

Proof. Since Γ is discrete, [γ] is closed in G. The inverse image of [γ] by the continuous
map g ∈ G → gγg−1 ∈ G is Γ · Z(γ). Then Γ · Z(γ) is closed in G. Since Γ\G is compact,
the closed subset Γ\Γ · Z(γ) ⊂ Γ\G is then compact.

The group Z(γ) acts transitively on the right on Γ\Γ · Z(γ). The stabilizer at [1] ∈
Γ\Γ·Z(γ) is Γ(γ). Hence Γ(γ)\Z(γ) ≃ Γ\Γ·Z(γ) is compact. The proof of our proposition
is completed. �

Let vol
(
Γ(γ)\X(γ)

)
be the volume of Γ(γ)\X(γ) with respect to the volume form

induced by dvX(γ). Clearly, vol
(
Γ(γ)\X(γ)

)
depends only on the conjugacy class [γ] ∈ [Γ].

By the property of heat kernels on compact manifolds, the operator exp
(
−tCg,Z,τ,ρ/2

)

is trace class. Its trace is given by the Selberg trace formula:

Theorem 4.10. There exist c > 0, C > 0 such that for t > 0, we have
∑

[γ]∈[Γ]−{1}
vol
(
Γ(γ)\X(γ)

) ∣∣∣Tr[γ]
[
exp

(
−tCg,X,τ/2

)]∣∣∣ 6 C exp
(
−c

t
+ Ct

)
.(4.33)

For t > 0, the following identity holds:

Tr
[
exp

(
−tCg,Z,τ,ρ/2

)]
=
∑

[γ]∈[Γ]
vol
(
Γ(γ)\X(γ)

)
Tr[ρ(γ)] Tr[γ]

[
exp(−tCg,X,τ/2)

]
.(4.34)
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Proof. Let F ⊂ X be a fundamental domain of Z in X. By [B11, eq. (4.8.11), (4.8.15)],
we have

∑

γ′∈[γ]

∫

x∈F
TrEτ

[
pX,τ
t (x, γ′x)

]
dx = vol

(
Γ(γ)\X(γ)

)
Tr[γ]

[
exp(−tCg,X,τ/2)

]
.(4.35)

By (4.25) and (4.35), we get (4.33). The proof of (4.34) is well known (c.f. [B11,
Section 4.8]). �

4.5. A formula for Trs
[γ]
[
NΛ·(T ∗X) exp

(
−tCg,X/2

)]
. Let γ = eak−1 ∈ G be semisimple

such that (3.9) holds. Let t(γ) ⊂ k(γ) be a Cartan subalgebra of k(γ). Set

b(γ) = {Y ∈ p : Ad(k)Y = Y, [Y, t(γ)] = 0}.(4.36)

Then,

a ∈ b(γ).(4.37)

By definition, dim p− dim b(γ) is even.
Since k centralizes t(γ), by [K86, Theorem 4.21], there is k′ ∈ K such that

k′t(γ)k′−1 ⊂ t, k′kk′−1 ∈ T.(4.38)

Up to a conjugation on γ, we can assume directly that γ = eak−1 with

t(γ) ⊂ t, k ∈ T.(4.39)

By (3.18), (4.36), and (4.39), we have

b ⊂ b(γ).(4.40)

Proposition 4.11. A semisimple element γ ∈ G can be conjugated into H if and only if

dim b = dim b(γ).(4.41)

Proof. If γ ∈ H, then t(γ) = t. By (4.36), we get b = b(γ), which implies (4.41).
Recall that h(γ) ⊂ z(γ) is defined as in (3.20), when G is replaced by Z0(γ) and t is

replaced by t(γ). It is a θ-invariant Cartan subalgebra of both g and z(γ). Let h(γ) =

h(γ)p ⊕ h(γ)k be the Cartan decomposition. Then,

h(γ)p = {Y ∈ p(γ) : [Y, t(γ)] = 0} = b(γ) ∩ p(γ), h(γ)k = t(γ).(4.42)

From (3.26) and (4.42), we get

dim b 6 dim h(γ)p 6 dim b(γ).(4.43)

By (4.43), if dim b = dim b(γ), then dim b = dim h(γ)p. By Proposition 3.3, γ can be
conjugated into H. The proof of our proposition is completed. �

The following Proposition extends [B11, Theorem 7.9.1].

Theorem 4.12. Let γ ∈ G be semisimple such that dim b(γ) > 2. For Y ∈ k(γ), we have

Trs
Λ·(p∗)

[
NΛ·(p∗)Ad(k−1) exp(−i ad(Y ))

]
= 0.(4.44)

In particular, for t > 0, we have

Trs
[γ]
[
NΛ·(T ∗X) exp

(
−tCg,X/2

)]
= 0.(4.45)
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Proof. Since the left-hand side of (4.44) is Ad
(
K0(γ)

)
-invariant, it is enough to show

(4.44) for Y ∈ t(γ). If Y ∈ t(γ), by [B11, eq. (7.9.1)], we have

Trs
Λ·(p∗)

[
NΛ·(p∗)Ad(k−1) exp(−i ad(Y ))

]
=

∂

∂b

∣∣∣
b=0

det
(
1− eb Ad(k) exp(i ad(Y ))

)
|p.

(4.46)

Since dim b(γ) > 2, by (4.46), we get (4.44) for Y ∈ t(γ).
By (4.22) and (4.44), we get (4.45). The proof of our theorem is completed. �

In this way, Bismut [B11, Theorem 7.9.3] recover [MoSt91, Corollary 2.2].

Corollary 4.13. Let F be a unitarily flat vector bundle on Z. Assume that dimZ is odd and

δ(G) 6= 1. Then for any t > 0, we have

Trs
[
NΛ·(T ∗Z) exp

(
−t�Z/2

)]
= 0.(4.47)

In particular,

T (F ) = 1.(4.48)

Proof. Since dimZ is odd, δ(G) is odd. Since δ(G) 6= 1, δ(G) > 3. By (4.40), dim b(γ) >

δ(G) > 3, so (4.47) is a consequence of (4.24), (4.34) and (4.45). �

Suppose that δ(G) = 1. Up to sign, we fix an element a1 ∈ b such that B(a1, a1) = 1.
As in Subsection 3.2, set

M = Za1,⊥,0(ea1), KM = K0(ea1),(4.49)

and

m = za1,⊥(ea1), pm = pa1,⊥(ea1), km = k(ea1).(4.50)

As in Subsection 3.2, M is a connected reductive group with Lie algebra m, with maximal
compact subgroup KM , and with Cartan decomposition m = pm ⊕ km. Let

XM = M/KM(4.51)

be the corresponding symmetric space. By definition, T ⊂ M is a compact Cartan sub-
group. Therefore δ(M) = 0, and dim pm is even.

Assume that δ(G) = 1 and that G has noncompact center, so that dim zp > 1. By (3.19),
we find that a1 ∈ zp, so that Z0(a1) = G. By (3.14) and (4.10), we have

G = R×M, K = KM , X = R×XM .(4.52)

Let γ ∈ G be a semisimple element such that dim b(γ) = 1. By Proposition 4.11, we
may assume that γ = eak−1 with a ∈ b and k ∈ T .

Proposition 4.14. We have

Trs
[1]
[
NΛ·(T ∗X) exp

(
−tCg,X/2

)]
= − 1√

2πt

[
e
(
TXM ,∇TXM

)]max
.(4.53)

If γ = eak−1 with a ∈ b, a 6= 0, and k ∈ T , then

Tr[γ]
[
NΛ·(T ∗X) exp

(
−tCg,X/2

)]
= − 1√

2πt
e−|a|2/2t

[
e
(
TXa,⊥(γ),∇TXa,⊥(γ)

)]max

.(4.54)
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Proof. By (4.52), for γ = eak−1 with a ∈ b and k ∈ T , we have

Tr[γ]s

[
NΛ·(T ∗X) exp(−tCg,X/2)

]
= −Tr[e

a]
[
exp(t∆R/2)

]
Tr[k

−1]
s

[
exp(−tCm,XM/2)

]
,

(4.55)

where ∆R is the Laplace-Beltrami operator acting on C∞(R).
Clearly,

Tr[e
a]
[
exp(t∆R/2)

]
=

1√
2πt

e−|a|2/2t.(4.56)

By [B11, Theorem 7.8.13], we have

Tr[1]s

[
exp(−tCm,XM/2)

]
=
[
e
(
TXM ,∇TXM

)]max
.(4.57)

and

Tr[k
−1]

s

[
exp(−tCm,XM/2)

]
=
[
e
(
TXa,⊥(γ),∇TXa,⊥(γ)

)]max

.(4.58)

By (4.55)-(4.58), we get (4.53) and (4.54), which completes the proof of our proposi-
tion. �

5. THE SOLUTION TO FRIED CONJECTURE

We use the notation in Sections 3 and 4. Also, we assume that dim p is odd. The
purpose of this section is to introduce the Ruelle dynamical zeta function on Z and to
state our main result, which contains the solution of the Fried conjecture in the case of
locally symmetric spaces.

This section is organized as follows. In Subsection 5.1, we describe the closed geodesics
on Z.

In Subsection 5.2, we define the dynamical zeta function and state Theorem 5.5, which
is the main result of the article.

Finally, in Subsection 5.3, we establish Theorem 5.5 when G has noncompact center
and δ(G) = 1.

5.1. The space of closed geodesics. By [DKoVa79, Proposition 5.15], the set of non-
trivial closed geodesics on Z consists of a disjoint union of smooth connected closed
submanifolds

∐

[γ]∈[Γ]−[1]

B[γ].(5.1)

Moreover, B[γ] is diffeomorphic to Γ(γ)\X(γ). All the elements of B[γ] have the same
length |a| > 0, if γ can be conjugated to eak−1 as in (3.9). Also, the geodesic flow
induces a canonical locally free action of S1 on B[γ], so that S1\B[γ] is a closed orbifold.
The S

1-action is not necessarily effective. Let

m[γ] =
∣∣ker

(
S
1 → Diff(B[γ])

)∣∣ ∈ N∗(5.2)

be the generic multiplicity.
Following [Sa57], if S is a closed Riemannian orbifold with Levi-Civita connection

∇TS, then e
(
TS,∇TS

)
∈ ΩdimS

(
S, o(TS)

)
is still well define, and the Euler characteristic

χorb(S) ∈ Q is given by

χorb(S) =

∫

S

e
(
TS,∇TS

)
.(5.3)
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Proposition 5.1. For γ ∈ Γ− {1}, the following identity holds:

χorb(S
1\B[γ])

m[γ]

=
vol
(
Γ(γ)\X(γ)

)

|a|
[
e
(
TXa,⊥(γ),∇TXa,⊥(γ)

)]max

.(5.4)

Proof. Take γ ∈ Γ− {1}. We can assume that γ = eak−1 as in (3.9) with a 6= 0. By (3.10)
and (4.32), for t ∈ R, eta commutes with elements of Γ(γ). Thus, eta acts on the left
on Γ(γ)\X(γ). Since ea = γk, γ ∈ Γ(γ), k ∈ K(γ) and k commutes with elements of
Z(γ), we see that ea acts as identity on Γ(γ)\X(γ). This induces an R/Z ≃ S

1 action on
Γ(γ)\X(γ) which coincides with the S

1-action on B[γ]. Therefore,

χorb(S
1\B[γ]) = vol(S1\B[γ])

[
e
(
TXa,⊥(γ),∇TXa,⊥(γ)

)]max

(5.5)

and
vol(S1\B[γ])

m[γ]

=
vol
(
Γ(γ)\X(γ)

)

|a| .(5.6)

By (5.5) and (5.6), we get (5.4). The proof of our proposition is completed. �

Corollary 5.2. Let γ ∈ Γ− {1}. If dim b(γ) > 2, then

χorb

(
S
1\B[γ]

)
= 0.(5.7)

Proof. By Propositions 4.1 and 5.1, it is enough to show that

δ(Za,⊥,0(γ)) > 1.(5.8)

By (3.14) and (3.26), we have

δ(Za,⊥,0(γ)) = δ(Z0(γ))− 1 > δ(G)− 1.(5.9)

Recall dim p is odd, therefore δ(G) is odd. If δ(G) > 3, by (5.9), we get (5.8). If δ(G) = 1,
then dim b(γ) > 2 > δ(G). By Propositions 3.3 and 4.11, the inequality in (5.9) is strict,
which implies (5.8). The proof of our corollary is completed. �

Remark 5.3. By Theorem 4.12 and Corollary 5.2, both Trs
[γ]
[
NΛ·(T ∗X) exp

(
−tCg,X/2

)]

and χorb

(
S
1\B[γ]

)
vanish when dim b(γ) > 2.

5.2. Statement of the main result. Recall that ρ : Γ → U(r) is a unitary representation
of Γ and that (F,∇F , gF ) is the unitarily flat vector bundle on Z associated with ρ.

Definition 5.4. The Ruelle dynamical zeta function Rρ(σ) is said to be well defined, if
the following properties hold:

(1) For σ ∈ C,Re (σ) ≫ 1, the sum

Ξρ(σ) =
∑

[γ]∈[Γ]−{1}

χorb

(
S
1\B[γ]

)

m[γ]

Tr[ρ(γ)]e−σ|a|(5.10)

converges to a holomorphic function.
(2) The function Rρ(σ) = exp

(
Ξρ(σ)

)
has a meromorphic extension to σ ∈ C.

If δ(G) 6= 1, by Corollary 5.2,

Rρ(σ) ≡ 1.(5.11)

The main result of this article is the solution of the Fried conjecture. We restate Theo-
rem 1.1 as follows.
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Theorem 5.5. The dynamical zeta function Rρ(σ) is well defined. There exist explicit con-

stants Cρ ∈ R∗ and rρ ∈ Z (c.f. (7.75)) such that, when σ → 0, we have

Rρ(σ) = CρT (F )2σrρ +O
(
σrρ+1

)
.(5.12)

If H ·(Z, F ) = 0, then

Cρ = 1, rρ = 0,(5.13)

so that

Rρ(0) = T (F )2.(5.14)

Proof. When δ(G) 6= 1, Theorem 5.5 is a consequence of (4.48) and (5.11). When δ(G) =

1 and when G has noncompact center, we will show Theorem 5.5 in Subsection 5.3.
When δ(G) = 1 and when G has compact center, we will show that Rρ(σ) is well defined
such that (5.12) holds in Section 7, and we will show (5.13) in Section 8. �

5.3. Proof of Theorem 5.5 when G has noncompact center and δ(G) = 1. We assume
that δ(G) = 1 and that G has noncompact center. Let us show the following refined
version of Theorem 5.5.

Theorem 5.6. There is σ0 > 0 such that

∑

[γ]∈[Γ]−{1}

∣∣χorb

(
S
1\B[γ]

)∣∣
m[γ]

e−σ0|a| < ∞.(5.15)

The dynamical zeta function Rρ(σ) extends meromorphically to σ ∈ C such that

Rρ(σ) = exp
(
r vol(Z)

[
e
(
TXM ,∇TXM

)]max
σ
)
T
(
σ2
)
.(5.16)

If χ′(Z, F ) = 0, then Rρ(σ) is holomorphic at σ = 0 and

Rρ(0) = T (F )2.(5.17)

Proof. Following (2.5), for (s, σ) ∈ C×R such that Re (s) > m/2 and σ > 0, put

(5.18) θρ(s, σ) = −Tr
[
NΛ·(T ∗Z)

(
Cg,Z,ρ + σ

)−s
]

= − 1

Γ(s)

∫ ∞

0

Trs
[
NΛ·(T ∗Z) exp

(
− t(Cg,Z,ρ + σ)

)]
ts−1dt.

Let us show that there is σ0 > 0 such that (5.15) holds true and that for σ > σ0, we have

Ξρ(σ) =
∂

∂s
θρ(0, σ

2) + r vol(Z)
[
e
(
TXM ,∇TXM

)]max
σ.(5.19)

By (4.53), for (s, σ) ∈ C×R such that Re (s) > 1/2 and σ > 0, the function

θρ,1(s, σ) =− r vol(Z)

Γ(s)

∫ ∞

0

Trs
[1]
[
NΛ·(T ∗X) exp

(
−t
(
Cg,X + σ

))]
ts−1dt(5.20)

is well defined so that

θρ,1(s, σ) =
r vol(Z)

2
√
π

[
e
(
TXM ,∇TXM

)]max Γ(s− 1/2)

Γ(s)
σ1/2−s.(5.21)

Therefore, for σ > 0 fixed, the function s → θρ,1(s, σ) has a meromorphic extension to
s ∈ C which is holomorphic at s = 0 so that

∂

∂s
θρ,1 (0, σ) = −r vol(Z)

[
e
(
TXM ,∇TXM

)]max
σ1/2.(5.22)
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For (s, σ) ∈ C×R such that Re (s) > m/2 and σ > 0, set

θρ,2(s, σ) = θρ(s, σ)− θρ,1(s, σ).(5.23)

By (4.45), (4.54), (5.4), and (5.7), for [γ] ∈ [Γ]− {1}, we have

(5.24) vol
(
Γ(γ)\X(γ)

)
Trs

[γ]
[
NΛ·(T ∗X) exp

(
−tCg,X

)]

= − 1

2
√
πt

χorb

(
S
1\B[γ]

)

m[γ]
|a| exp

(
−|a|2

4t

)
.

By (4.33) and (5.24), there exist C1 > 0, C2 > 0, and C3 > 0 such that for t > 0, we have

∑

[γ]∈[Γ]−{1}

∣∣χorb

(
S
1\B[γ]

)∣∣
m[γ]

|a| exp
(
−|a|2

4t

)
6 C1 exp

(
−C2

t
+ C3t

)
.(5.25)

Take σ0 =
√
2C3. Since ρ is unitary, by (4.34), (5.18), (5.23), and (5.25), for (s, σ) ∈

C×R such that Re (s) > m/2 and σ > σ0, we have

(5.26)

θρ,2
(
s, σ2

)
=

1

2
√
πΓ(s)

∫ ∞

0

∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb

(
S
1\B[γ]

)

m[γ]

|a| exp
(
−|a|2

4t
− σ2t

)
ts−3/2dt.

Moreover, for σ > σ0 fixed, the function s → θρ,2(s, σ
2) extends holomorphically to C, so

that

∂

∂s
θρ,2(0, σ

2) =
1

2
√
π

∫ ∞

0

∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb

(
S
1\B[γ]

)

m[γ]
|a| exp

(
−|a|2

4t
− σ2t

)
dt

t3/2
.

(5.27)

Using the formula3 that for B1 > 0, B2 > 0,
∫ ∞

0

exp

(
−B1

t
− B2t

)
dt

t3/2
=

√
π

B1

exp
(
− 2
√

B1B2

)
,(5.28)

by (5.25), (5.27), and by Fubini Theorem, we get (5.15). Also, for σ > σ0, we have

∂

∂s
θρ,2(0, σ

2) = Ξρ(σ).(5.29)

By (5.22), (5.23), and (5.29), we get (5.19). By taking the exponentials, we get (5.16)
for σ > σ0. Since the right-hand side of (5.16) is meromorphic on σ ∈ C, then Rρ has
a meromorphic extension to C. By (2.15) and (5.16), we get (5.17). The proof of our
theorem is completed. �

3We give a proof of (5.28) when B1 = B2 = 1. Indeed, we have
∫ ∞

0

exp

(
−1

t
− t

)
dt

t3/2
=

1

2

∫ ∞

0

exp

(
−1

t
− t

)(
1

t3/2
+

1

t1/2

)
dt.

Using the change of variables u = t1/2 − t−1/2, we get (5.28).
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6. REDUCTIVE GROUPS G WITH COMPACT CENTER AND δ(G) = 1

In this section, we assume that δ(G) = 1 and that G has compact center. The purpose
of this section is to introduce some geometric objects associated with G. Their proprieties
are proved by algebraic arguments based on the classification of real simple Lie algebras
g with δ(g) = 1. The results of this section will be used in Section 7, in order to evaluate
certain orbital integrals.

This section is organized as follows. In Subsection 6.1, we introduce a splitting g =

b⊕m⊕ n⊕ n, associated with the action of b on g.
In Subsection 6.2, we construct a natural compact Hermitian symmetric space Yb,

which will be used in the calculation of orbital integrals in Subection 7.1.
In Subsection 6.3, we state one key result, which says that the action of KM on n lift

to K. The purpose of the following subsections is to prove this result.
In Subsection 6.4, we state a classification result of real simple Lie algebras g with

δ(g) = 1, which asserts that they just contain sl3(R) and so(p, q) with pq > 1 odd. This
result has already been used by Moscovici-Stanton [MoSt91].

In Subsections 6.5 and 6.6, we study the Lie groups SL3(R) and SO0(p, q) with pq > 1

odd, and the structure of the associated Lie groups M , KM .
In Subsection 6.7, we study the connected component G∗ of the identity of the isometry

group of X = G/K. We show that G∗ has a factor SL3(R) or SO0(p, q) with pq > 1 odd.
Finally, in Subsections 6.8-6.12, we show several unproven results stated in Subsec-

tions 6.1-6.3. Most of the results are shown case by case for the group SL3(R) and
SO0(p, q) with pq > 1 odd. We prove the corresponding results for general G using a
natural morphism iG : G → G∗.

6.1. A splitting of g. We use the notation in (4.49)-(4.51). Let Z(b) ⊂ G be the stabi-
lizer of b in G, and let z(b) ⊂ g be its Lie algebra.

We define p(b), k(b), p⊥(b), k⊥(b), z⊥(b) in an obvious way as in Subsection 3.2. By
(4.50), we have

p(b) = b⊕ pm, k(b) = km.(6.1)

Also,

p = b⊕ pm ⊕ p⊥(b), k = km ⊕ k⊥(b).(6.2)

Let Z0(b) be the connected component of the identity in Z(b). By (3.14), we have

Z0(b) = R×M.(6.3)

The group KM acts trivially on b. It also acts on pm, p⊥(b), km and k⊥(b), and preserves
the splittings (6.2).

Recall that we have fixed a1 ∈ b such that B(a1, a1) = 1. The choice of a1 fixes an
orientation of b. Let n ⊂ z⊥(b) be the direct sum of the eigenspaces of ad(a1) with the
positive eigenvalues. Set n = θn. Then n is the direct sum of the eigenspaces with
negative eigenvalues, and

z⊥(b) = n⊕ n.(6.4)
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Clearly, Z0(b) acts on n and n by adjoint action. Since KM is fixed by θ, we have isomor-
phisms of representations of KM ,

X ∈ n → X − θX ∈ p⊥(b), X ∈ n → X + θX ∈ k⊥(b).(6.5)

In the sequel, if f ∈ n, we denote f = θf ∈ n.
By (6.2) and (6.5), we have dim n = dim p − dim pm − 1. Since dim p is odd and since

dim pm is even, dim n is even. Set

l =
1

2
dim n.(6.6)

Note that since G has compact center, we have b 6⊂ zg. Therefore, z⊥(b) 6= 0 and l > 0.

Remark 6.1. Let q ⊂ g be the direct sum of the eigenspaces of ad(a1) with nonnegative
eigenvalues. Then q is a proper parabolic subalgebra of g, with Langlands decomposition
q = m⊕ b⊕ n [K02, Section VII.7]. Let Q ⊂ G be the corresponding parabolic subgroup
of G, and let Q = MQAQNQ be the corresponding Langlands decomposition. Then M is
the connected component of the identity in MQ, and b, n are the Lie algebras of AQ and
NQ.

Proposition 6.2. Any element of b acts on n and n as a scalar, i.e., there exists α ∈ b∗ such

that for a ∈ b, f ∈ n, we have

[a, f ] = 〈α, a〉f, [a, f ] = −〈α, a〉f.(6.7)

Proof. The proof of Proposition 6.2, based on the classification theory of real simple Lie
algebras, will be given in Subsection 6.8. �

Let a0 ∈ b be such that

〈α, a0〉 = 1.(6.8)

Proposition 6.3. We have

[n, n] ⊂ z(b), [n, n] = [n, n] = 0.(6.9)

Also,

B|n×n=0, B|n×n = 0.(6.10)

Proof. By (6.7), a ∈ b acts on [n, n], [n, n], and [n, n] by multiplication by 0, 2〈α, a〉, and
−2〈α, a〉. Equation (6.9) follows.

If f1, f2 ∈ n, by (6.7) and (6.8), we have

B(f1, f2) = B([a0, f1], f2) = −B(f1, [a0, f2]) = −B(f1, f2).(6.11)

From (6.11), we get the first equation of (6.10). We obtain the second equation of (6.10)
by the same argument. The proof of our proposition is completed. �

Remark 6.4. Clearly, we have

[z(b), z(b)] ⊂ z(b).(6.12)

Since z(b) preserves B and since z⊥(b) is the orthogonal space to z(b) in g with respect to
B, we have

[
z(b), z⊥(b)

]
⊂ z⊥(b)(6.13)
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By (6.4) and (6.9), we get
[
z⊥(b), z⊥(b)

]
⊂ z(b).(6.14)

We note the similarity between (3.2) and equations (6.12)-(6.14). In the sequel, We call
such a pair (z, z(b)) a symmetric pair.

For k ∈ KM , let M(k) ⊂ M be the centralizer of k in M , and let m(k) be its Lie algebra.
Let M0(k) be the connected component of the identity in M(k). Let pm(k) and km(k) be
the analogues of p(γ) and k(γ) in (3.11), so that

m(k) = pm(k)⊕ km(k).(6.15)

Since k is elliptic in M , M0(k) is reductive with maximal compact subgroup K0
M(k) =

M0(k) ∩K and with Cartan decomposition (6.15). Let

XM(k) = M0(k)/K0
M(k)(6.16)

be the corresponding symmetric space. Note that δ
(
M0(k)

)
= 0 and dimXM(k) is even.

Clearly, if γ = eak−1 ∈ H with a ∈ b, a 6= 0, k ∈ T , then

p(γ) = pm(k), k(γ) = km(k), Za,⊥,0(γ) = M(k), K0(γ) = K0
M(k).(6.17)

Proposition 6.5. For γ = eak−1 ∈ H with a ∈ b, a 6= 0, k ∈ T , we have

∣∣∣det
(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

=

2l∑

j=0

(−1)j TrΛ
j(n∗)

[
Ad
(
k−1
)]

e(l−j)〈α,a〉

=

2l∑

j=0

(−1)j TrΛ
j(n∗)

[
Ad
(
k−1
)]

e(l−j)|α||a|.

(6.18)

Proof. We claim that
∣∣∣det

(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

= el〈α,a〉det
(
1− Ad(γ)

)
|n.(6.19)

Indeed, since dim n is even, the right-hand side of (6.19) is positive. By (6.4), we have

det
(
1−Ad(γ)

)
|z⊥0 = det

(
1− Ad(γ)

)
|ndet

(
1−Ad(γ)

)
|n.(6.20)

Since n = θn, we have

det
(
1−Ad(γ)

)
|n = det

(
1− Ad(θγ)

)
|n = det

(
Ad(θγ)

)
|ndet

(
Ad(θγ)−1 − 1

)
|n.(6.21)

Since dim n = 2l is even, and since (θγ)−1 = eak and k acts unitarily on n, by (6.7) and
(6.21), we have

det
(
1−Ad(γ)

)
|n = e2l〈α,a〉det

(
1− Ad(eak)

)
|n = e2l〈α,a〉det

(
1− Ad(γ)

)
|n.(6.22)

By (6.20) and (6.22), we get (6.19).
Classically,

det
(
1− Ad(γ)

)
|n =

2l∑

j=0

(−1)j TrΛ
j(n)
[
Ad
(
k−1
)]

e−j〈α,a〉.(6.23)

Using the isomorphism of KM -representations n∗ ≃ n, by (6.19), (6.23), we get the first
equation of (6.18) and the second equation of (6.18) if a is positive in b. For the case a is
negative in b, it is enough to remark that replacing γ by θγ does not change the left-hand
side of (6.18). The proof of our proposition is completed. �
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6.2. A compact Hermitian symmetric space Yb. Let u(b) ⊂ u and um ⊂ u be the com-
pact form of z(b) and m. Then,

u(b) =
√
−1b⊕ um, um =

√
−1pm ⊕ km.(6.24)

Since δ(M) = 0, M has compact center. By [K86, Proposition 5.3], let UM be the compact
form of M .

Let U(b) ⊂ U,A0 ⊂ U be the connected subgroups of U associated with Lie algebras
u(b),

√
−1b. By (6.24), A0 is in the center of U(b), and

U(b) = A0UM .(6.25)

By [K02, Corollaire 4.51], the stabilizer of b in U is a closed connected subgroup of U ,
and so it coincides with U(b).

Proposition 6.6. The group A0 is closed in U , and is diffeomorphic to a circle S
1.

Proof. The proof of Proposition 6.6, based on the classification theory of real simple Lie
algebras, will be given in Subsection 6.8. �

Set

Yb = U/U(b).(6.26)

We will see that Yb is a compact Hermitian symmetric space.
Recall that the bilinear form −B induces an Ad(U)-invariant metric on u. Let u⊥(b) be

the orthogonal space to u(b) in u, such that

u = u(b)⊕ u⊥(b).(6.27)

Also, we have

u⊥(b) =
√
−1p⊥(b)⊕ k⊥(b)(6.28)

By (6.12)-(6.14), we have

[u(b), u(b)] ⊂ u(b),
[
u(b), u⊥(b)

]
⊂ u⊥(b),

[
u⊥(b), u⊥(b)

]
⊂ u(b).(6.29)

Thus, (u, u(b)) is a symmetric pair.
Set

J =
√
−1 ad(a0)|u⊥(b) ∈ End

(
u⊥(b)

)
.(6.30)

By (6.7)-(6.10), J is a U(b)-invariant complex structure on u⊥(b), which preserves the
restriction B|u⊥(b). Moreover, nC = n ⊗R C and nC = n ⊗R C are the eigenspaces of J
associated with the eigenvalues

√
−1 and −

√
−1, such that

u⊥(b)⊗R C = nC ⊕ nC.(6.31)

The bilinear form −B induces a Hermitian metric on nC such that for f1, f2 ∈ nC,

〈f1, f2〉nC = −B(f1, f2).(6.32)

Since J commutes with the action of U(b), U(b) preserves the splitting (6.31). There-
fore, U(b) acts on nC and nC. In particular, U(b) acts on Λ·(n∗

C
). If Su⊥(b) is the spinor of

(u⊥(b),−B), by [H74], we have the isomorphism of representations of U(b),

Λ·(n∗
C
) ≃ Su⊥(b) ⊗ det(nC)

1/2.(6.33)
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Note that M has compact center ZM . By [K86, Proposition 5.5], M is a product of a
connected semisimple Lie group and the connected component of the identity in ZM .
Since both of these two groups act trivially on det(n), the same is true for M . Since the
action of UM on nC can be obtained by the restriction of the induced action of MC on nC,
UM acts trivially on det(nC). By (6.33), we have the isomorphism of representations of
UM ,

Λ·(n∗
C
) ≃ Su⊥(b).(6.34)

As in Subsection 4.1, let ωu be the canonical left invariant 1-form on U with values in
u, and let ωu(b) and ωu⊥(b) be the u(b) and u⊥(b) components of ωu, so that

ωu = ωu(b) + ωu⊥(b).(6.35)

Then, U → Yb is a U(b)-principle bundle, equipped with a connection form ωu(b). Let
Ωu(b) be the curvature form. As in (4.3), we have

Ωu(b) = −1

2

[
ωu⊥(b), ωu⊥(b)

]
.(6.36)

The real tangent bundle

TYb = U ×U(b) u
⊥(b)(6.37)

is equipped with a Euclidean metric and a Euclidean connection ∇TYb , which coincides
with the Levi-Civita connection. By (6.30), J induces an almost complex structure on
TYb. Let T (1,0)Yb and T (0,1)Yb be the holomorphic and anti-holomorphic tangent bundles.
Then

T (1,0)Yb = U ×U(b) nC, T (0,1)Yb = U ×U(b) nC.(6.38)

By (6.9) and (6.38), J is integrable.
The form −B(·, J ·) induces a Kähler form ωYb ∈ Ω2(Yb) on Yb. Clearly, ωYb is closed,

therefore (Yb, ω
Yb) is a Kähler manifold. Let f1, . . . , f2l ∈ n be such that

−B(fi, f j) = δij .(6.39)

Then f1, . . . , f2l is an orthogonal basis of nC with respect to 〈·, ·〉nC. Let f 1, . . . , f 2l be the
dual base of n∗

C
. The Kähler form ωYb on Yb is given by

ωYb = −
∑

16i,j62l

B(fi, Jf j)f
if

j
= −

√
−1

∑

16i62l

f if
i
.(6.40)

Let us give a more explicit description of Yb, although this description will not be
needed in the following sections.

Proposition 6.7. The homogenous space Yb is an irreducible compact Hermitian symmetric

space of the type AIII or BDI.

Proof. The proof of Proposition 6.7, based on the classification theory of real simple Lie
algebras, will be given in Subsection 6.10. �

Since Um acts on um and A0 acts trivially on um, by (6.25), then U(b) acts on um. Put

Nb = U ×U(b) um.(6.41)
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Then, Nb is a Euclidean vector bundle on Yb equipped with a metric connection ∇Nb . We
equip the trivial connection ∇

√
−1b on the trivial line bundle

√
−1b on Yb. Since U(b)

preserves the first splitting in (6.24), we have
√
−1b⊕Nb = U ×Ub

U(b).(6.42)

Moreover, the induced connection is given by

∇
√
−1b⊕Nb = ∇

√
−1b ⊕∇Nb .(6.43)

By (6.27), (6.37), and (6.42), we have

TYb ⊕
√
−1b⊕Nb = u,(6.44)

where u stands for the corresponding trivial bundle on Yb.

Proposition 6.8. The following identity of closed forms holds on Yb:

Â
(
TYb,∇TYb

)
Â
(
Nb,∇Nb

)
= 1.(6.45)

Proof. Proceeding as in [B11, Proposition 7.1.1], by (6.27), (6.37), and (6.42), we have

Â
(
TYb,∇TYb

)
Â
(√

−1b⊕Nb,∇
√
−1b⊕Nb

)
= 1.(6.46)

By (6.43), we have

Â
(√

−1b⊕Nb,∇
√
−1b⊕Nb

)
= Â

(
Nb,∇Nb

)
.(6.47)

By (6.46) and (6.47), we get (6.45). The proof of our proposition is completed. �

Recall that the curvature form Ωu(b) is a 2-form on Yb with values in U×U(b) u(b). Recall
that a0 ∈ b is defined in (6.8). Let Ωum be the um-component of Ωu(b). By (6.8), (6.36)
and (6.40), we have

Ωu(b) =
√
−1

a0
|a0|2

⊗ ωYb + Ωum .(6.48)

By (6.48), the curvature of (Nb,∇Nb) is given by

RNb = ad
(
Ωu(b)

) ∣∣
um

= ad (Ωum)
∣∣
um
.(6.49)

Also, B
(
Ωu(b),Ωu(b)

)
and B (Ωum ,Ωum) are well defined 4-forms on Yb. We have an ana-

logue of [B11, eq. (7.5.19)].

Proposition 6.9. The following identities hold:

B
(
Ωu(b),Ωu(b)

)
= 0, B (Ωum ,Ωum) =

ωYb,2

|a0|2
.(6.50)

Proof. If e1, · · · , e4l is an orthogonal basis of u⊥(b), by (6.36), we have

(6.51) B
(
Ωu(b),Ωu(b)

)
=

1

4

∑

16i,j,i′,j′64l

B
(
[ei, ej ], [ei′, ej′]

)
eiejei

′

ej
′

=
1

4

∑

16i,j,i′,j′64l

B
(
[[ei, ej], ei′ ], ej′

)
eiejei

′

ej
′

.

Using the Jacobi identity and (6.51), we get the first equation of (6.50).
The second equation of (6.50) is a consequence of (6.48) and the first equation of

(6.50). The proof of our proposition is completed. �
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6.3. Auxiliary virtual representations of K. Let RO(KM) and RO(K) be the real rep-
resentation rings of KM and K. Let ι : KM → K be the injection. We denote by

ι∗ : RO(K) → RO(KM)(6.52)

the induced morphism of rings. Since KM and K have the same maximal torus T , ι∗ is
injective.

Proposition 6.10. The following identity in RO(KM) holds:

ι∗

(
m∑

i=1

(−1)i−1iΛi(p∗)

)
=

dim pm∑

i=0

2l∑

j=0

(−1)i+jΛi(p∗m)⊗ Λj(n∗).(6.53)

Proof. For a representation V of KM , we use the multiplication notation introduced by
Hirzebruch. Put

Λy(V ) =
∑

i

yiΛi(V )(6.54)

a polynomial of y with coefficients in RO(KM). In particular,

Λ−1(V ) =
∑

i

(−1)iΛi(V ), Λ′
−1(V ) =

∑

i

(−1)i−1iΛi(V ).(6.55)

Denote by 1 the trivial representation. Since Λ1(1) = 0,Λ′
−1(1) = 1, we get

Λ′
−1(V ⊕ 1) = Λ−1(V ).(6.56)

By (6.2), (6.5), and by the fact that KM acts trivially on b, we have the isomorphism
of KM -representations

p ≃ 1⊕ pm ⊕ n.(6.57)

Taking V = pm ⊕ n, by (6.56) and (6.57), we get (6.53). The proof of our proposition is
completed. �

The following theorem is crucial.

Theorem 6.11. The adjoint representations of KM on n has a unique lift in RO(K).

Proof. The injectivity of ι∗ implies the uniqueness. The proof of the existence of the
lifting of n, based on the classification theorem of real simple Lie algebras, will be given
in Subsection 6.9. �

Corollary 6.12. For i, j ∈ N, the adjoint representations of KM on Λi(p∗m) and Λj(n∗) have

unique lifts in RO(K).

Proof. As before, it is enough to show the existence of lifts. Since the representation of
KM on n lifts to K, the same is true for the Λj(n∗). By (6.57), this extends to the Λi(p∗m).
The proof of our corollary is completed. �

Denote by ηj the adjoint representation of M on Λj(n∗). Recall that by (6.31), U(b)

acts on nC. Recall also that Cum,ηj ∈ End
(
Λj(n∗

C
)
)
, Cu(b),u⊥(b) ∈ End(u⊥(b)) are defined in

(3.8).

Proposition 6.13. For 0 6 j 6 2l, Cum,ηj is a scalar so that

Cum,ηj =
1

8
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
+ (j − l)2|α|2.(6.58)
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Proof. Equation (6.58) was proved in [MoSt91, Lemma 2.5]. We give here a more con-
ceptual proof.

Recall that (u, u(b)) is a compact symmetric pair. Let Su⊥(b) be the u⊥(b)-spinors [B11,

Section 7.2]. Let Cu(b),Su⊥(b)
be the Casimir element of u(b) acting on Su⊥(b) defined as in

(3.8). By [B11, eq. (7.8.6)], Cu(b),Su⊥(b)
is a scalar such that

Cu(b),Su⊥(b)

=
1

8
Tr
[
Cu(b),u⊥(b)

]
.(6.59)

Let Cum,Λ·(n∗
C
) be the Casimir element of um acting on Λ·(n∗

C
). By (3.7), (6.33) and

(6.34), we have

Cu(b),Su⊥(b)

= Cum,Λ·(n∗
C
) −
(
Ad(a1)|Λ·(n∗

C
)⊗det−1/2(nC)

)2
.(6.60)

By (6.7), we have

Ad(a1)|Λj(n∗
C
)⊗det−1/2(nC) = (j − l)|α|.(6.61)

By (6.59)-(6.61), we get (6.58). The proof of our proposition is completed. �

Let γ = eak−1 ∈ G be such that (3.9) holds. Since Λ·(p∗m) ∈ RO(K), for Y ∈ k(γ),
Trs

Λ·(p∗m) [k−1 exp(−iY )] is well defined. We have an analogue of (4.44).

Proposition 6.14. If dim b(γ) > 2, then for Y ∈ k(γ), we have

Trs
Λ·(p∗m)

[
k−1 exp(−iY )

]
= 0.(6.62)

Proof. The proof of Proposition 6.14, based on the classification theory of real simple Lie
algebras, will be given in Subsection 6.12. �

6.4. A classification of real reductive Lie algebra g with δ(g) = 1. Recall that G is a
real reductive group with compact center, such that δ(G) = 1.

Theorem 6.15. We have a decomposition of Lie algebras

g = g1 ⊕ g2,(6.63)

where

g1 = sl3(R) or so(p, q),(6.64)

with pq > 1 odd, and g2 is real reductive with δ(g2) = 0.

Proof. Since G has compact center, by (3.6), zp = 0. By (3.25), we have

δ([g, g]) = 1.(6.65)

As in [B11, Remark 7.9.2], by the classification theory of real simple Lie algebras, we
have

[g, g] = g1 ⊕ g′2,(6.66)

where

g1 = sl3(R) or so(p, q),(6.67)

with pq > 1 odd, and where g′2 is semisimple with δ(g′2) = 0. Take

g2 = zk ⊕ g′2.(6.68)

By (3.24), (6.66)-(6.68), we get (6.63). The proof of our theorem is completed. �
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6.5. The group SL3(R). In this subsection, we assume that G = SL3(R), so that K =

SO(3). We have

p =








x a1 a2
a1 y a3
a2 a3 −x− y


 : x, y, a1, a2, a3 ∈ R



 ,

k =








0 a1 a2
−a1 0 a3
−a2 −a3 0


 : a1, a2, a3 ∈ R



 .

(6.69)

Let

T =

{(
A 0

0 1

)
: A ∈ SO(2)

}
⊂ K(6.70)

be a maximal torus of K.
By (3.18), (6.69) and (6.70), we have

b =








x 0 0

0 x 0

0 0 −2x


 : x ∈ R



 ⊂ p.(6.71)

By (6.71), we get

pm =








x a1 0

a1 −x 0

0 0 0


 : x, a1 ∈ R



 , p⊥(b) =








0 0 a2
0 0 a3
a2 a3 0


 : a2, a3 ∈ R



 .

(6.72)

Also,

km = t, KM = T, M =

{(
A 0

0 1

)
: A ∈ SL2(R)

}
.(6.73)

By (6.71), we can orient b by x > 0. Thus,

n =








0 0 a2
0 0 a3
0 0 0


 : a2, a3 ∈ R



 .(6.74)

By (6.71) and (6.74), since for x ∈ R, a2 ∈ R, a3 ∈ R,





x 0 0

0 x 0

0 0 −2x


 ,




0 0 a2
0 0 a3
0 0 0




 = 3x




0 0 a2
0 0 a3
0 0 0


 ,(6.75)

we find that b acts on n as a scalar.
Denote by Isom0(G/K) the connected component of the identity of the isometric group

of X = G/K. Since G acts isometrically on G/K, we have the morphism of groups

iG : G → Isom0(G/K).(6.76)

Proposition 6.16. The morphism iG is an isomrphism, i.e.,

SL3(R) ≃ Isom0
(
SL3(R)/ SO(3)

)
.(6.77)
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Proof. By [He78, Theorem V.4.1], it is enough to show that K acts on p effectively. As-
sume that k ∈ K acts on p as the identity. Thus, k fixes the elements of b. As in (6.73),
there is A ∈ GL2(R) such that

k =

(
A 0

0 det−1(A)

)
.(6.78)

Since k fixes also the elements of p⊥(b), by (6.72) and (6.78), we get A = 1. Therefore,
k = 1. The proof of our proposition is completed. �

6.6. The group G = SO0(p, q) with pq > 1 odd. In this subsection, we assume that
G = SO0(p, q), so that K = SO(p)× SO(q), with pq > 1 odd.

In the sequel, if l, l′ ∈ N∗, let Matl,l′(R) be the space of real matrices of l raws and l′

columns. If L ⊂ Matl,l(R) is a matrix group, we denote by σl the standard representation
of L on Rl. We have

p =

{(
0 B

Bt 0

)
: B ∈ Matp,q(R)

}
, k =

{(
A 0

0 D

)
: A ∈ so(p), D ∈ so(q)

}
.

(6.79)

Let

Tp−1 =








A1 0 0

0
. . . 0

0 0 A(p−1)/2


 : A1, . . . , A(p−1)/2 ∈ SO(2)





⊂ SO(p− 1)(6.80)

be a maximal torus of SO(p− 1). Then,

T =








A 0 0

0

(
1 0

0 1

)
0

0 0 B


 ∈ K : A ∈ Tp−1, B ∈ Tq−1





⊂ K(6.81)

is a maximal torus of K.
By (3.18) and (6.81), we have

b =








0 0 0

0

(
0 x

x 0

)
0

0 0 0


 ∈ p : x ∈ R





,

pm =








0 0 B

0

(
0 0

0 0

)
0

Bt 0 0


 ∈ p : B ∈ Matp−1,q−1(R)





,(6.82)

p⊥(b) =








0 0 v1 0

0

vt1

(
0 0

0 0

)
vt2
0

0 v2 0 0


 ∈ p : v1 ∈ Rp−1, v2 ∈ Rq−1





,
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where v1, v2 are considered as column vectors. Also,

km =








A 0 0

0

(
0 0

0 0

)
0

0 0 D


 ∈ k : A ∈ so(p− 1), D ∈ so(q − 1)





.(6.83)

By (6.82) and (6.83), we get

M =








A 0 B

0

(
1 0

0 1

)
0

C 0 D


 ∈ G :

(
A B

C D

)
∈ SO0(p− 1, q − 1)





,

KM =








A 0 0

0

(
1 0

0 1

)
0

0 0 D


 ∈ K : A ∈ SO(p− 1), D ∈ SO(q − 1)





.

(6.84)

By (6.82), we can orient b by x > 0. Then,

n =








0 −v1 v1 0

vt1
vt1

(
0 0

0 0

)
vt2
vt2

0 v2 −v2 0


 ∈ g : v1 ∈ Rp−1, v2 ∈ Rq−1





.(6.85)

By (6.82) and (6.85), since for x ∈ R, v1 ∈ Rp−1, v2 ∈ Rq−1,







0 0 0

0

(
0 x

x 0

)
0

0 0 0


 ,




0 −v1 v1 0

vt1
vt1

(
0 0

0 0

)
vt2
vt2

0 v2 −v2 0





 = x




0 −v1 v1 0

vt1
vt1

(
0 0

0 0

)
vt2
vt2

0 v2 −v2 0


 ,

(6.86)

we find that b acts on n as a scalar.

Proposition 6.17. We have an isomorphism of Lie groups

SO0(p, q) ≃ Isom0
(
SO0(p, q)/SO(p)× SO(q)

)
,(6.87)

where pq > 1 is odd.

Proof. As in the proof of Proposition 6.16, it enough to show that K acts effectively on
p. The representation of K ≃ SO(p) × SO(q) on p is equivalent to σp ⊠ σq. Assume that
(k1, k2) ∈ SO(p)× SO(q) acts on Rp ⊠Rq as the identity. If λ is any eigenvalue of k1 and
if µ is any eigenvalue of k2, then

λµ = 1.(6.88)

By (6.88), both k1 and k2 are scalars. Using the fact that det(k1) = det(k2) = 1 and that
p, q are odd, we deduce k1 = 1 and k2 = 1. The proof of our proposition is completed. �
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6.7. The isometry group of X. We return to the general case, where G is only supposed
to be such that δ(G) = 1 and have compact center.

Proposition 6.18. The symmetric space G/K is of the noncompact type.

Proof. Let Z0
G be the connected component of the identity in ZG, and let Gss ⊂ G be

the connected subgroup of G associated with the Lie algebra [g, g]. By [K86, Proposition
5.5], Gss is closed in G, such that

G = Z0
GGss.(6.89)

Moreover, Gss is semisimple with finite center, with maximal compact subgroup Kss =

Gss ∩K. Also, the imbedding Gss → G induces a diffeomorphism

Gss/Kss ≃ G/K.(6.90)

Therefore, X is a symmetric space of the noncompact type. �

Put

G∗ = Isom0(X),(6.91)

and let K∗ ⊂ G∗ be the stablizer of p1 ∈ X fixed. Then G∗ is a semisimple Lie group with
trivial center, and with maximal compact subgroup K∗. We denote by g∗ and k∗ the Lie
algebras of G∗ and K∗. Let

g∗ = p∗ ⊕ k∗(6.92)

be the corresponding Cartan decomposition. Clearly,

G∗/K∗ ≃ X.(6.93)

The morphism iG : G → G∗ defined in (6.76) induces a morphism ig : g → g∗ of Lie
algebras. By (3.4) and (6.93), ig induces an isomorphism of vector spaces

p ≃ p∗.(6.94)

By the property of k∗ and by (6.94), we have

k∗ = [p∗, p∗] = ig[p, p] ⊂ igk.(6.95)

Thus iG, ig are surjective.

Proposition 6.19. We have

G∗ = G1 ×G2(6.96)

where G1 = SL3(R) or G1 = SO0(p, q) with pq > 1 odd, and where G2 is a semisimple Lie

group with trivial center with δ(G2) = 0.

Proof. By [KobN63, Theorem IV.6.2], let X =
∏l1

i=1Xl be the de Rham decomposition of
(X, gTX). Then every Xi is an irreducible symmetric space of the noncompact type. By
[KobN63, Theorem VI.3.5], we have

G∗ =

l1∏

i=1

Isom0(Xi),(6.97)

By Theorem 6.15, (6.77), (6.87) and (6.97), Proposition 6.19 follows. �
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6.8. Proof of Proposition 6.2. By (6.63) and by the definition of b and n, we have

b, n ⊂ g1.(6.98)

Proposition 6.2 follows from (6.75) and (6.86). �

6.9. Proof of Theorem 6.11.

The case G = SL3(R). By (6.73) and (6.74), the representation of KM ≃ SO(2) on n is
just σ2. Note that K = SO(3). We have the identity in RO(KM):

ι∗ (σ3 − 1) = σ2,(6.99)

which says n lifts to K.
The case G = SO0(p, q) with pq > 1 odd. By (6.84) and (6.85), the representation of

KM ≃ SO(p−1)×SO(q−1) on n is just σp−1⊠1⊕1⊠σq−1. Note that K = SO(p)×SO(q).
We have the identity in RO(KM):

ι∗
(
(σp − 1)⊠ 1⊕ 1⊠ (σq − 1)

)
= σp−1 ⊠ 1⊕ 1⊠ σq−1,(6.100)

which says n lifts to K.
The case for G∗. This is a consequence of Proposition 6.19, (6.98)-(6.100).
The general case. Recall that iG : G → G∗ is a surjective morphism of Lie groups.

Therefore, the restriction iK : K → K∗ of iG to K is surjective. By (6.94), we have the
identity in RO(K):

p = i∗K(p∗).(6.101)

Set

t∗ = ig(t) ⊂ k∗.(6.102)

Since iK is surjective, by [BrDi85, Theorem IV.2.9], t∗ is a Cartan subalgebra of k∗.
Let b∗ ⊂ p∗ be the analogue of b defined by t∗. Thus,

dim b∗ = 1, b∗ = ig(b).(6.103)

We denote by K∗,M , p⊥∗ (b∗), n∗ the analogues of KM , p⊥(b), n. By (6.94), ig induces an
isomorphism of vector spaces

p⊥(b) ≃ p⊥∗ (b∗).(6.104)

Let iKM
: KM → K∗,M be the restriction of iG to KM . We have the identity in RO(KM):

p⊥(b) = i∗KM

(
p⊥∗ (b∗)

)
.(6.105)

Let ι′ : K∗,M → K∗ be the embedding. Then the following diagram

KM

iKM

��

ι
// K

iK
��

K∗,M
ι′

// K∗

(6.106)

commutes. It was proved in the previous step that there is E ∈ RO(K∗) such that the
following identity in RO(K∗,M) holds:

ι′∗(E) = n∗.(6.107)
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By (6.5), (6.105)-(6.107), we have the identity in RO(KM),

n = p⊥(b) = i∗KM

(
p⊥∗ (b∗)

)
= i∗KM

(n∗) = i∗KM
ι′∗(E) = ι∗i∗K(E),(6.108)

which completes the proof of our theorem. �

6.10. Proof of Proposition 6.7. If n ∈ N, consider the following closed subgroups:

A ∈ U(2) →
(

A 0

0 det−1(A)

)
∈ SU(3),

(A,B) ∈ SO(n)× SO(2) →
(

A 0

0 B

)
∈ SO(n+ 2).

(6.109)

We state Proposition 6.7 in a more exact way.

Proposition 6.20. We have the isomorphism of symmetric spaces

Yb ≃ SU(3)/U(2) or SO(p+ q)/ SO(p+ q − 2)× SO(2),(6.110)

with pq > 1 odd.

Proof. Let U∗ and U∗(b∗) be the analogues of U and U(b) when G and b are replaced by
G∗ and b∗. It is enough to show that

Yb ≃ U∗/U∗(b∗).(6.111)

Indeed, by the explicit constructions given in Subsections 6.5 and 6.6, by Proposition
6.19, and by (6.109), (6.111), we get (6.110).

Let ZU ⊂ U be the center of U , and let Z0
U be the connected component of the identity

in ZU . Let Uss ⊂ U be the connected subgroup of U associated to the Lie algebra [u, u] ⊂
u. By [K86, Proposition 4.32], Uss is compact, and U = UssZ

0
U .

Let Uss(b) be the analogue of U(b) when U is replaced by Uss. Then U(b) = Uss(b)Z
0
U ,

and the imbedding Uss → U induces an isomorphism of homogenous spaces

Uss/Uss(b) ≃ U/U(b).(6.112)

Let Ũss be the universal cover of Uss. Since Uss is semisimple, Ũss is compact. We
define Ũss(b) similarly. The canonical projection Ũss → Uss induces an isomorphism of
homogenous spaces

Ũss/Ũss(b) ≃ Uss/Uss(b).(6.113)

Similarly, since U∗ is semisimple, if Ũ∗ is a universal cover of U∗, and if we define Ũ∗(b)

in the same way, we have

Ũ∗/Ũ∗(b) ≃ U∗/U∗(b).(6.114)

The surjective morphism of Lie algebras ig : g → g∗ induces a surjective morphism of
the compact forms iu : u → u∗. Since u∗ is semisimple, the restriction of iu to [u, u] is still
surjective. It lifts to a surjective morphism of simply connected Lie groups

Ũss → Ũ∗.(6.115)

Since any connected, simply connected, semisimple compact Lie group can be written as
a product of connected, simply connected, simple compact Lie groups, we can assume
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that there is a connected and simply connected semisimple compact Lie group U ′ such
that Ũss = Ũ∗×U ′, and that the morphism (6.115) is the canonical projection. Therefore,

Ũss/Ũss(b) ≃ Ũ∗/Ũ∗(b∗).(6.116)

From (6.26), (6.112)-(6.114) and (6.116), we get (6.111). The proof of our proposi-
tion is completed. �

Remark 6.21. The Hermitian symmetric spaces on the right-hand side of (6.110) are
irreducible and respectively of the type AIII and the type BDI in the classification of
Cartan [He78, p. 518 Table V].

6.11. Proof of Proposition 6.6. We use the notation in Subsection 6.10. By definition,
A0 ⊂ Uss. Let Ã0 ⊂ Ũss and A∗0 ⊂ U∗ be the analogues of A0 when U is replaced by Ũss

and U∗. As in the proof of Proposition 6.7, we can show that Ã0 is a finite cover of A0

and A∗0.
On the other hand, by the explicit constructions given in Subsections 6.5, 6.6, and by

Proposition 6.19, A∗0 is a circle S
1. Therefore, both Ã0, A0 are circles.

6.12. Proof of Proposition 6.14. We use the notation in Subsection 4.5. Let γ ∈ G be
such that dim b(γ) > 2. As in (4.39), we assume that γ = eak−1 is such that

t(γ) ⊂ t, k ∈ T.(6.117)

It is enough to show (6.62) for Y ∈ t(γ).
For Y ∈ t(γ), since k−1 exp(−iY ) ∈ T and T ⊂ KM , we have

Trs
Λ·(pm)

[
k−1 exp(−iY )

]
= det

(
1− Ad(k) exp(i ad(Y ))

)
|pm .(6.118)

It is enough to show

dim b(γ) ∩ pm > 1.(6.119)

Note that a 6= 0, otherwise dim b(γ) = 1. Let

a = a1 + a2 + a3 ∈ b⊕ pm ⊕ p⊥(b).(6.120)

Since the decomposition b⊕pm⊕p⊥(b) is preserved by ad(t) and Ad(T ), it is also preserved
by ad(t(γ)) and Ad(k). Since a ∈ b(γ), the ai, 1 6 i 6 3, all lie in b(γ). If a2 6= 0, we
get (6.119). If a2 = 0 and a3 = 0, we have a ∈ b. Since a 6= 0, then b(γ) = b, which is
impossible since dim b(γ) > 2.

It remains to consider the case

a2 = 0, a3 6= 0.(6.121)

We will follow the steps in the proof of Theorem 6.11.
The case G = SL3(R). By (6.70) and (6.72), the representation of T ≃ SO(2) on p⊥(b)

is equivalent to σ2. A nontrivial element of T never fixes a3. Therefore,

k = 1.(6.122)

Since a /∈ b, a does not commute with all the elements of t. From (6.117), we get

dim t(γ) < dim t = 1.(6.123)

Therefore,

t(γ) = 0.(6.124)
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By (4.36), (6.122) and (6.124), we see that b(γ) = p. Therefore,

dim b(γ) ∩ pm = dim pm.(6.125)

By (6.72) and (6.125), we get (6.119).
The case G = SO0(p, q) with pq > 1 odd. By (6.82) and (6.84), the representations of

KM ≃ SO(p − 1) × SO(q − 1) on pm and p⊥(b) are equivalent to σp−1 ⊠ σq−1 and σp−1 ⊠

1⊕ 1⊠ σq−1. We identify a3 ∈ p⊥(b) with

v1 + v2 ∈ Rp−1 ⊕Rq−1.(6.126)

Then v1 and v2 are fixed by Ad(k) and commute with t(γ).
If v1 6= 0 and v2 6= 0, by (4.36), the nonzero element v1 ⊠ v2 ∈ Rp−1 ⊠Rq−1 ≃ pm is in

b(γ). It implies (6.119).
If v2 = 0, we will show that γ can be conjugated into H by an element of K, which

implies dim b(γ) = 1 and contradicts dim b(γ) > 2. (The proof for the case v1 = 0 is
similar.) Without loss of generality, assume that there exist s ∈ N with 1 6 s 6 (p− 1)/2

and λs, · · · , λ(p−1)/2 ∈ C nonzero complex numbers such that,

v1 =
(
0, · · · , 0, λs, · · · , λ(p−1)/2

)
∈ C(p−1)/2 ≃ Rp−1.(6.127)

Then there exists x ∈ R such that

a =




0 0 v1 0

0

v1t

(
0 x

x 0

)
0

0

0 0 0 0


 ∈ p.(6.128)

By (6.81) and (6.117), there exist A ∈ Tp−1 and D ∈ Tq−1 such that

k =




A 0 0

0

(
1 0

0 1

)
0

0 0 D


 ∈ T.(6.129)

If we identify Tp−1 ≃ U(1)(p−1)/2, there are θ1, · · · , θ(p−1)/2 ∈ R such that

A =
(
e2iπθ1 , · · · , e2iπθ(p−1)/2

)
.(6.130)

Since k fixes a, by (6.127)-(6.130), for i = s, · · · , (p− 1)/2, we have

e2iπθi = 1.(6.131)

If W ∈ so(p− 2s+ 2), set

l(W ) =




p col.︷︸︸︷
0 0 0

0 W 0

0 0 0


 ∈ k.(6.132)

By (6.129)-(6.132), we have

kl(W ) = l(W )k.(6.133)

Put w = (λs, · · · , λ(p−1)/2, x) ∈ C(p−2s+1)/2⊕R ≃ Rp−2s+2. There exists W ∈ so(p−2s+

2) such that

exp(W )w = (0, · · · , 0, |w|),(6.134)

where |w| is the Euclidean norm of w.
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Put

k′ = exp(l(W )) ∈ K.(6.135)

By (6.82), (6.133) and (6.134), we have

Ad(k′)a ∈ b, k′kk′−1 = k.(6.136)

Thus, γ is conjugated by k′ into H.
The general case. By (6.63), g = g1 ⊕ g2 with g1 = sl3(R) or g1 = so(p, q) with pq > 1

odd. By (6.98) and (6.121), we have a ∈ g1. The arguments in (6.122)-(6.126) extend
directly. We only need to take care of the case g1 = so(p, q) and a2 = 0, v1 6= 0 and v2 = 0.
In this case, the arguments in (6.128)-(6.134) extend to the group of isometries G∗. In
particular, there is W∗ ∈ k∗ such that

Ad (exp(W∗)) ig(a) ∈ b∗, Ad(iG(k))W∗ = W∗.(6.137)

By (6.94), ker(ig) ⊂ k. Let ker(ig)⊥ be the orthogonal space of ker(ig) in k. Then,

k = ker(ig)⊕ ker(ig)
⊥, ker(ig)

⊥ ≃ k∗.(6.138)

Take W = (0,W∗) ∈ k. Put

k′ = exp(W ) ∈ K.(6.139)

By (6.94), (6.137) and (6.139), we get (6.136). Thus, γ is conjugate by k′ into H. The
proof of (6.62) is completed. �

7. SELBERG AND RUELLE ZETA FUNCTIONS

In this section, we assume that δ(G) = 1 and that G has compact center. The purpose
of this section is to establish the first part of our main Theorem 5.5.

In Subsection 7.1, we introduce a class of representations η of M , so that η|KM
lifts as

an element of RO(K). In particular, ηj is in this class. Take η̂ = Λ·(p∗m) ⊗ η ∈ RO(K).
Using the explicit formulas for orbital integrals of Theorem 4.7, we give an explicit geo-
metric formula for Trs[γ]

[
exp(−tCg,X,η̂/2)

]
, whose proof is given in Subsection 7.2.

In Subsection 7.3, we introduce a Selberg zeta function Zη,ρ associated with η and ρ.
Using the result in Subsection 7.1, we express Zη,ρ in terms of the regularized determi-
nant of the resolvent of Cg,Z,η̂,ρ, and we prove that Zη,ρ is meromorphic and satisfies a
functional equation.

Finally, in Subsection 7.4, we show that the dynamical zeta function Rρ(σ) is equal to
an alternating product of Zηj ,ρ, from which we deduce the first part of Theorem 5.5.

7.1. An explicit formula for Trs
[γ]
[
exp

(
−tCg,X,η̂/2

)]
. Now we introduce a class of rep-

resentations of M .

Assumption 7.1. Let η be a real finite dimensional representation of M such that

(1) The restriction η|KM
on KM can be lifted into RO(K);

(2) The action of the Lie algebra um ⊂ m⊗RC on Eη⊗RC, induced by complexification,

can be lifted to an action of Lie group UM ;

(3) The Casimir element Cum of um acts on Eη ⊗R C as the scalar Cum,η ∈ R.
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By Corollary 6.12, let η̂ = η̂+ − η̂− ∈ RO(K) be the virtual real finite dimensional
representation of K on Eη̂ = E+

η̂ −E−
η̂ such that the following identity in RO(KM) holds:

Eη̂|KM
=

dim pm∑

i=0

(−1)iΛi(p∗m)⊗Eη|KM
.(7.1)

By Corollary 6.12 and by Proposition 6.13, ηj satisfies Assumption 7.1, so that the
following identity in RO(K) holds

dim p∑

i=1

(−1)i−1iΛi(p∗) =

2l∑

j=0

(−1)jEη̂i .(7.2)

As in Subsection 4.1, let Eη̂ = G×K Eη̂ be the induced virtual vector bundle on X. Let
Cg,X,η̂ be the corresponding Casimir element of G acting on C∞(X, Eη̂). We will state an
explicit formula for Trs[γ]

[
exp(−tCg,X,η̂/2)

]
.

By (6.25), the complex representation of UM on Eη ⊗R C extends to a complex repre-
sentation of U(b) such that A0 acts trivially. Set

Fb,η = U ×U(b) (Eη ⊗R C) .(7.3)

Then Fb,η is a complex vector bundle on Yb. It is equipped with a connection ∇Fb,η ,
induced by ωu(b), with curvature RFb,η .

Remark 7.2. When η = ηj , the above action of U(b) on Λj(n∗
C
) is different from the

adjoint action of U(b) on Λj(n∗
C
) induced by (6.31).

Recall that T is the maximal torus of both K and UM . Put

cG = (−1)
m−1

2
|W (T, UM)|
|W (T,K)|

vol(K/KM)

vol(UM/KM)
.(7.4)

Recall that XM = M/KM . By Bott’s formula [Bot65, p. 175],

χ(K/KM) =
|W (T,K)|
|W (T,KM)| ,(7.5)

and by (4.5), (7.4), we have a more geometric expression

cG = (−1)l
[
e
(
TXM ,∇TXM

)]max

[e (T (K/KM),∇T (K/KM))]
max .(7.6)

Note that dim u⊥(b) = 2 dim n = 4l. If β ∈ Λ·(u⊥,∗(b)), let [β]max ∈ R be such that

β − [β]maxω
Yb,2l

(2l)!
(7.7)

is of degree smaller than 4l.

Theorem 7.3. For t > 0, we have

(7.8) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]
=

cG√
2πt

exp

(
t

16
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
− t

2
Cum,η

)

[
exp

(
− ωYb,2

8π2|a0|2t

)
Â
(
TYb,∇TYb

)
ch
(
Fb,η,∇Fb,η

)]max

.
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If γ = eak−1 ∈ H with a ∈ b, a 6= 0, k ∈ T , for t > 0, we have

(7.9) Trs
[γ]
[
exp

(
−tCg,X,η̂/2

)]
=

1√
2πt

[
e
(
TXM(k),∇TXM (k)

)]max

exp

(
−|a|2

2t
+

t

16
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
− t

2
Cum,η

)
TrEη [η(k−1)]

∣∣∣det
(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

.

If dim b(γ) > 2, for t > 0, we have

Trs
[γ]
[
exp

(
−tCg,X,η̂/2

)]
= 0.(7.10)

Proof. The proof of (7.8) and (7.9) will be given in Subsection 7.2. Equation (7.10) is a
consequence of (4.22), (6.62), and (7.1). �

7.2. The proof of Equations (7.8) and (7.9). Let us recall some facts on Lie algebra.
Let ∆(t, k) ⊂ t∗ be the real root system [BrDi85, Definition V.1.3]. We fix a set of positive
roots ∆+(t, k) ⊂ ∆(t, k). Set

ρk =
1

2

∑

α∈∆+(t,k)

α.(7.11)

By Kostant’s strange formula [Ko76] or [B11, Proposition 7.5.1], we have

4π2|ρk|2 = − 1

24
Trk
[
Ck,k
]
.(7.12)

Let πk : t → C be the polynomial function such that for Y ∈ t,

πk(Y ) =
∏

α∈∆+(t,k)

2iπ〈α, Y 〉.(7.13)

Let σk : t → C be the denominator in the Weyl character formula. For Y ∈ t, we have

σk(Y ) =
∏

α∈∆+(t,k)

(
eiπ〈α,Y 〉 − e−iπ〈α,Y 〉) .(7.14)

The Weyl group W (T,K) acts isometrically on t. For w ∈ W (T,K), set ǫw = det(w)|t.
The Weyl denominator formula asserts for Y ∈ t, we have

σk(Y ) =
∑

w∈W (T,K)

ǫw exp
(
2iπ〈ρk, wY 〉

)
.(7.15)

Let K̂ be the set of equivalence classes of complex irreducible representations of K.
There is a bijection between K̂ and the set of dominant and analytic integral elements in
t∗ [BrDi85, Section VI (1.7)]. If λ ∈ t∗ is dominant and analytic integral, the character χλ

of the corresponding complex irreducible representation is given by the Weyl character
formula: for Y ∈ t,

σk

(
Y
)
χλ

(
exp(Y )

)
=

∑

w∈W (T,K)

ǫw exp
(
2iπ〈ρk + λ, wY 〉

)
.(7.16)

Let us recall the Weyl integral formula for Lie algebras. Let dvK/T be the Riemannian
volume on K/T induced by −B, and let dY be the Lebesgue measure on k or t induced
by −B. By [K86, Lemma 11.4], if f ∈ Cc(k), we have

∫

Y ∈k
f(Y )dY =

1

|W (T,K)|

∫

Y ∈t
|πk(Y )|2

(∫

k∈K/T

f
(
Ad(k)Y

)
dvK/T

)
dY.(7.17)
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Clearly, the formula (7.17) extends to L1(k).

Proof of (7.8). By (3.3), (4.22) and (7.17), we have

(7.18) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]
=

1

(2πt)(m+n)/2
exp

(
t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

vol(K/T )

|W (T,K)|

∫

Y ∈t
|πk(Y )|2J1(Y ) Trs

Eη̂ [exp(−iη̂(Y ))] exp(−|Y |2/2t)dY.

As δ(M) = 0, t is also a Cartan subalgebra of um. We will use (7.17) again to write the
integral on the second line of (7.18) as an integral over um.

By (6.5), we have the isomorphism of representations of KM ,

p⊥(b) ≃ k⊥(b).(7.19)

By (4.21) and (7.19), for Y ∈ t, we have

J1(Y ) =
Â(i ad(Y )|pm)
Â(i ad(Y )|km)

.(7.20)

By (7.1), for Y ∈ t, we have

Trs
Eη̂ [exp(−iη̂(Y ))] = det

(
1− exp(i ad(Y ))

)
|pm TrEη [exp(−iη(Y ))] .(7.21)

By (7.13), (7.20) and (7.21), for Y ∈ t, we have

(7.22)
|πk(Y )|2
|πum(Y )|2J1(Y ) Trs

Eη̂
[
exp

(
− iη̂(Y )

)]

= (−1)
dim pm

2 det
(
ad(Y )

)
|k⊥(b)Â

−1
(
i ad(Y )|um

)
TrEη

[
exp

(
− iη(Y )

)]
.

Using (6.5), for Y ∈ t, we have

det
(
ad(Y )

)
|k⊥(b) = det

(
ad(Y )

)
|nC .(7.23)

By the second condition of Assumption 7.1 and by (7.23), the function on the right-hand
side of (7.22) extends naturally to an Ad(UM)-invariant function defined on um. By (7.4),
(7.17), (7.18), (7.22) and (7.23), we have

(7.24) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]
=

(−1)lcG
(2πt)(m+n)/2

exp

(
t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

∫

Y ∈um
det
(
ad(Y )

)
|nCÂ−1

(
i ad(Y )|um

)
TrEη [exp(−iη(Y ))] exp

(
−|Y |2/2t

)
dY.

It remains to evaluate the integral on the second line of (7.24). We use the method in
[B11, Section 7.5]. For Y ∈ um, we have

|Y |2 = −B(Y, Y ).(7.25)

By (6.32), (6.36) and (6.48), for Y ∈ um, we have

B (Y,Ωum) = −
∑

16i,j62l

B
(
ad(Y )fi, f j

)
f i ∧ f

j
=

∑

16i,j62l

〈ad(Y )fi, fj〉nCf i ∧ f
j
.(7.26)

By (6.40), (7.7) and (7.26), for Y ∈ um, we have

det(ad(Y ))|nC
(2πt)2l

= (−1)l
[
exp

(
1

t
B

(
Y,

Ωum

2π

))]max

.(7.27)
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As dim um = dimm = m+ n− 2l − 1, from (7.24) and (7.27), we get

(7.28) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]
=

cG√
2πt

exp

(
t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

exp

(
t

2
∆um

){
Â−1

(
i ad(Y )|um

)
TrEη

[
exp(−iη(Y ))

]
exp

(
1

t
B

(
Y,

Ωum

2π

))}max ∣∣∣∣
Y=0

.

Using

B

(
Y,

Ωum

2π

)
+

1

2
B(Y, Y ) =

1

2
B

(
Y +

Ωum

2π
, Y +

Ωum

2π

)
− 1

2
B

(
Ωum

2π
,
Ωum

2π

)
,(7.29)

by (6.50) and (7.28), we have

(7.30) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]
=

cG√
2πt

exp

(
t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

{
exp

(
− ωYb,2

8π2|a0|2t

)
exp

(
t

2
∆um

)(
Â−1

(
i ad(Y )|um

)
TrEη [exp(−iη(Y ))]

)}max ∣∣∣∣
Y=−Ωum

2π

.

We claim that the Ad
(
UM

)
-invariant function

Y ∈ um → Â−1
(
i ad(Y )|um

)
TrEη [exp(−iη(Y ))](7.31)

is an eigenfunction of ∆um with eigenvalue

−Cum,η − 1

24
Trum [Cum,um ] .(7.32)

Indeed, if f is an Ad(UM)-invariant function on um, when restricted to t, it is well known,
for example [B11, eq. (7.5.22)], that

∆umf =
1

πum

∆tπumf.(7.33)

Therefore, it is enough to show that the function

Y ∈ t → πum(Y )Â−1
(
i ad(Y )

)
|umTrEη [exp(−iη(Y ))](7.34)

is an eigenfunction of ∆t with eigenvalue (7.32). For Y ∈ t, we have

Â−1
(
i ad(Y )

)
|um =

σum(iY )

πum(iY )
(7.35)

By (7.35), for Y ∈ t, we have

πum(Y )Â−1 (i ad(Y )) |um = i|∆
+(t,um)|σum(−iY ).(7.36)

If Eη ⊗R C is an irreducible representation of UM with the highest weight λ ∈ t∗, by the
Weyl character formula (7.16), we have

σum(−iY ) Trs
Eη [exp(−iη(Y ))] =

∑

w∈W (T,UM)

ǫw exp(2π〈ρum + λ, wY 〉).(7.37)

By (7.36) and (7.37), the function (7.34) is an eigenfunction of ∆t with eigenvalue

4π2|ρum + λ|2.(7.38)

By Assumption 7.1, the Casimir of um acts as the scalar Cum,η. Therefore,

−Cum,η = 4π2
(
|ρum + λ|2 − |ρum |2

)
.(7.39)
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By (7.12) and (7.39), the eigenvalue (7.38) is equal to (7.32). If Eη ⊗R C is not irre-
ducible, it is enough to decompose Eη ⊗R C as a sum of irreducible representations of
UM .

Since the function (7.34) and its derivations of any orders satisfy estimations similar
to (4.20), by (6.49) and (7.30), we get

(7.40) Trs
[1]
[
exp

(
−tCg,X,η̂/2

)]

=
cG√
2πt

exp

(
t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
]
− t

48
Trum [Cum,um]− t

2
Cum,η

)

{
exp

(
− ωYb,2

8π2|a0|2t

)
Â−1

(
RNb

2iπ

)
TrEη

[
exp

(
−RFb,η

2iπ

)]}max

.

Since Â is an even function, by (2.3), we have

Â

(
RNb

2iπ

)
= Â

(
Nb,∇Nb

)
.(7.41)

We claim that

Trp
[
Ck,p

]
+

1

3
Trk
[
Ck,k
]
− 1

3
Trum [Cum,um ] = Tru

⊥(b)
[
Cu(b),u⊥(b)

]
.(7.42)

Indeed, by [B11, Proposition 2.6.1], we have

Trp
[
Ck,p

]
+

1

3
Trk
[
Ck,k
]
=

1

3
Tru [Cu,u] ,

Tru
⊥(b)

[
Cu(b),u⊥(b)

]
+

1

3
Tru(b)

[
Cu(b),u(b)

]
=

1

3
Tru [Cu,u] .

(7.43)

By (6.24), it is trivial that

Tru(b)
[
Cu(b),u(b)

]
= Trum [Cum,um] .(7.44)

From (7.43) and (7.44), we get (7.42)
By (2.4), (6.45), (7.40)-(7.42), we get (7.8). �

Let UM (k) be the centralizer of k in UM , and let um(k) be its Lie algebra. Then

um(k) =
√
−1pm(k)⊕ km(k).(7.45)

Let U0
M(k) be the connected component of the identity in UM(k). Clearly, U0

M(k) is the
compact form of M0(k).

Proof of (7.9). Since γ ∈ H, t ⊂ k(γ) is a Cartan subalgebra of k(γ). By (4.22), (6.17)
and (7.17), we have

(7.46)

Trs
[γ]
[
exp

(
−tCg,X,η̂/2

)]
=

1

(2πt)dim z(γ)/2
exp

(
−|a|2

2t
+

t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

vol(K0
M(k)/T )

|W (T,K0
M(k))|

∫

Y ∈t
|πkm(k)(Y )|2Jγ(Y ) Trs

Eη̂
[
η̂
(
k−1
)
exp(−iη̂(Y ))

]
exp

(
−|Y |2/2t

)
dY.

Since t is also a Cartan subalgebra of um(k), as in the proof of (7.8), we will write the
integral on the second line of (7.46) as an integral over um(k).
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As k ∈ T and T ⊂ KM , by (7.1), for Y ∈ t, we have

(7.47) Trs
Eη̂
[
η̂
(
k−1
)
exp(−iη̂(Y ))

]

= det
(
1− Ad(k) exp(i ad(Y ))

)
|pm TrEη

[
η
(
k−1
)
exp(−iη(Y ))

]
.

By (4.19), (7.13) and (7.47), for Y ∈ t, we have

(7.48)
|πkm(k)(Y )|2
|πum(k)(Y )|2Jγ(Y ) Trs

Eη̂
[
η̂
(
k−1
)
exp(−iη̂(Y ))

]
=

(−1)
dim pm(k)

2

∣∣∣det
(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

Â−1
(
i ad(Y )|um(k)

)
[
det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|z⊥0 (γ)

det
(
1−Ad(k−1)

)
|z⊥0 (γ)

]1/2
TrEη

[
η
(
k−1
)
exp(−iη(Y ))

]
.

Let u⊥m(k) be the orthogonal space to um(k) in um. Then

u⊥m(k) =
√
−1p⊥0 (γ)⊕ k⊥0 (γ).(7.49)

By (7.49), for Y ∈ t, we have

det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|z⊥0 (γ)

det
(
1− Ad(k−1)

)
|z⊥0 (γ)

=
det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|u⊥m(k)

det
(
1− Ad(k−1)

)
|u⊥m(k)

.(7.50)

By Assumption 7.1 and (7.50), the right-hand side of (7.48) extends naturally to an
Ad(U0

M(k))-invariant function defined on um(k). By (4.5), (7.17), (7.46) and (7.48), we
have

(7.51) Trs
[γ]
[
exp

(
−tCg,X,η̂/2

)]

=
1√
2πt

[
e
(
TXM(k),∇TXM (k)

)]max

∣∣∣det
(
1−Ad(γ)

)
|z⊥0
∣∣∣
1/2

exp

(
−|a|2

2t
+

t

16
Trp[Ck,p] +

t

48
Trk
[
Ck,k
])

exp

(
t

2
∆um(k)

){
Â−1

(
i ad(Y )|um(k)

)
[
det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|u⊥m (k)

det
(
1−Ad(k−1)

)
|u⊥m (k)

]1/2

TrEη
[
η
(
k−1
)
exp(−iη(Y ))

]
}∣∣∣∣∣

Y=0

.

As before, we claim that the function

(7.52) Y ∈ um(k) → Â−1
(
i ad(Y )|um(k)

)
[
det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|u⊥m(k)

det
(
1− Ad(k−1)

)
|u⊥m(k)

]1/2

TrEη
[
η
(
k−1
)
exp(−iη(Y ))

]

is an eigenfunction of ∆um(k) with eigenvalue (7.32). Indeed, it is enough to remark that,
as in (7.37), up to a sign, if k = exp(θ1) for some θ1 ∈ t, we have

(7.53) πum(k)
(Y )Â−1

(
i ad(Y )|um(k)

) [
det
(
1− exp(−i ad(Y )) Ad(k−1)

)
|u⊥m(k)

]1/2

= ±i|∆
+(t,um)|σu(−iY − θ1).
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Also, if Eη ⊗R C is an irreducible representation of UM with the highest weight λ ∈ t∗,

σum(−iY − θ1) Trs
Eη
[
η
(
k−1
)
exp(−iη(Y ))

]
=

∑

w∈W (T,UM)

ǫw exp(2π〈ρum + λ, w(Y − iθ1)〉).
(7.54)

Proceeding as in the proof of (7.8), we get (7.9). �

7.3. Selberg zeta functions. Recall that ρ : Γ → U(r) is a unitary representation of Γ
and that (F,∇F , gF ) is the unitarily flat vector bundle on Z associated with ρ.

Definition 7.4. For σ ∈ C, we define a formal sum

Ξη,ρ(σ) = −
∑

[γ]∈[Γ]−{1}
Tr[ρ(γ)]

χorb

(
S
1\B[γ]

)

m[γ]

TrEη [η(k−1)]
∣∣∣det

(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

e−σ|a|(7.55)

and a formal Selberg zeta function

Zη,ρ(σ) = exp
(
Ξη,ρ(σ)

)
.(7.56)

The formal Selberg zeta function is said to be well defined if the same conditions as in
Definition 5.4 hold.

Remark 7.5. When G = SO0(p, 1) with p > 3 odd, up to a shift on σ, Zη,ρ coincides with
Selberg zeta function in [F86, Section 3].

Recall that the Casimir operator Cg,Z,η̂,ρ acting on C∞(Z,Fη̂ ⊗C F ) is a formally self-
adjoint second order elliptic operator, which is bounded from below. For λ ∈ C, set

mη,ρ(λ) = dimC ker
(
Cg,Z,η̂+,ρ − λ

)
− dimC ker

(
Cg,Z,η̂−,ρ − λ

)
.(7.57)

Write

rη,ρ = mη,ρ(0).(7.58)

As in Subsection 2.2, for σ ∈ R and σ ≫ 1, set

detgr
(
Cg,Z,η̂,ρ + σ

)
=

det(Cg,Z,η̂+,ρ + σ)

det(Cg,Z,η̂−,ρ + σ)
.(7.59)

Then, detgr
(
Cg,Z,η̂,ρ + σ

)
extends meromorphically to σ ∈ C. Its zeros and poles belong

to the set {−λ : λ ∈ Sp(Cg,Z,η̂,ρ)}. If λ ∈ Sp(Cg,Z,η̂,ρ), the order of the zero at σ = −λ is
mη,ρ(λ).

Set

ση =
1

8
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
− Cum,η.(7.60)

Set

Pη(σ) = cG

l∑

j=0

(−1)j
Γ(−j − 1

2
)

j!(4π)2j+
1
2 |a0|2j

[
ωYb,2jÂ

(
TYb,∇TYb

)
ch
(
Fb,η,∇Fb,η

)]max

σ2j+1.

(7.61)

Then Pη(σ) is an odd polynomial function of σ. As the notation indicates, ση and Pη(σ)

do not depend on Γ or ρ.
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Theorem 7.6. There is σ0 > 0 such that

∑

[γ]∈[Γ]−{1}

∣∣χorb

(
S
1\B[γ]

)∣∣
m[γ]

1
∣∣∣det

(
1−Ad(γ)

)
|z⊥0
∣∣∣
1/2

e−σ0|a| < ∞.(7.62)

The Selberg zeta function Zη,ρ(σ) has a meromorphic extension to σ ∈ C such that the

following identity of meromorphic functions on C holds:

Zη,ρ(σ) = detgr
(
Cg,Z,η̂,ρ + ση + σ2

)
exp

(
r vol(Z)Pη(σ)

)
.(7.63)

The zeros and poles of Zη,ρ(σ) belong to the set {±i
√

λ+ ση : λ ∈ Sp(Cg,Z,η̂,ρ)}. If λ ∈
Sp(Cg,Z,η̂,ρ) and λ 6= −ση, the order of zero at σ = ±i

√
λ+ ση is mη,ρ(λ). The order of zero

at σ = 0 is 2mη,ρ(−ση). Also,

Zη,ρ(σ) = Zη,ρ(−σ) exp
(
2r vol(Z)Pη(σ)

)
.(7.64)

Proof. Proceeding as in the proof of Theorem 5.6, by Proposition 5.1, Corollary 5.2, and
Theorem 7.3, we get the first two statements of our theorem. By (7.63), the zeros and
poles of Zη,ρ(σ) coincide with that of detgr

(
Cg,Z,η̂,ρ + ση + σ2

)
, from which we deduce the

third statement of our theorem. Equation (7.64) is a consequence of (7.63) and of the
fact that Pη(σ) is an odd polynomial. The proof of our theorem is completed. �

7.4. The Ruelle dynamical zeta function. We turn our attention to the Ruelle dynami-
cal zeta function Rρ(σ).

Theorem 7.7. The dynamical zeta function Rρ(σ) is holomorphic for Re (σ) ≫ 1, and

extends meromorphically to σ ∈ C such that

Rρ(σ) =
2l∏

j=0

Zηj ,ρ

(
σ + (j − l)|α|

)(−1)j−1

.(7.65)

Proof. Clearly, there is C > 0 such that for all γ ∈ Γ,
∣∣∣det

(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

6 C exp(C|a|).(7.66)

By (7.62) and (7.66), for σ ∈ C and Re (σ) > σ0 + C, the sum in (5.10) converges
absolutely to a holomorphic function. By (5.4), (5.7), (5.10), (6.18) and (7.55), for
σ ∈ C and Re (σ) > σ0 + C, we have

Ξρ(σ) =

2l∑

j=0

(−1)j−1Ξηj ,ρ(σ + (j − l)|α|).(7.67)

By taking exponentials, we get (7.65) for Re (σ) > σ0 + C. Since the right-hand side of
(7.65) is meromorphic, Rρ(σ) has a meromorphic extension to C, such that (7.65) holds.
The proof of our theorem is completed. �

Remark that for 0 6 j 6 2l, we have the isomorphism of KM -representations of ηj ≃
η2l−j . By (7.1), we have the isomorphism of K-representations,

η̂j ≃ η̂2l−j(7.68)

Note that by (6.58) and (7.60), we have

σηj = −(j − l)2|α|2.(7.69)
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By (7.63), (7.68) and (7.69), we have

(7.70) Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
Zη2l−j ,ρ

(√
σ2 + (l − j)2|α|2

)

= Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
Zηj ,ρ

(√
σ2 + (l − j)2|α|2

)

= detgr
(
Cg,Z,η̂j ,ρ + σ2

)2
= detgr

(
Cg,Z,η̂j ,ρ + σ2

)
detgr

(
Cg,Z,η̂2l−j ,ρ + σ2

)
.

Recall that T (σ) is defined in (2.14).

Theorem 7.8. The following identity of meromorphic functions on C holds:

(7.71) Rρ(σ) = T (σ2) exp
(
(−1)l−1r vol(Z)Pηl(σ)

)

l−1∏

j=0

(
Zηj ,ρ

(
σ + (j − l)|α|

)
Zη2l−j ,ρ

(
σ + (l − j)|α|

)

Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
Zη2l−j ,ρ

(√
σ2 + (l − j)2|α|2

)
)(−1)j−1

.

Proof. By (2.14), (4.24), and (7.59), we have the identity of meromorphic functions,

T (σ) =

2l∏

j=0

detgr
(
Cg,Z,η̂j ,ρ + σ

)(−1)j−1

.(7.72)

By (7.63), (7.70), and (7.72), we have

(7.73) T (σ2) = Zηl,ρ(σ)
(−1)l−1

exp
(
(−1)lr vol(Z)Pηl(σ)

)

l−1∏

j=0

(
Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
Zη2l−j ,ρ

(√
σ2 + (l − j)2|α|2

))(−1)j−1

.

By (7.65) and (7.73), we get (7.71). The proof of our theorem is completed. �

For 0 6 j 6 2l, as in (7.58), we write rj = rηj ,ρ. By (7.68) and (7.72), we have

χ′(Z, F ) = 2

l−1∑

j=0

(−1)j−1rj + (−1)l−1rl.(7.74)

Set

Cρ =

l−1∏

j=0

(
− 4(l − j)2|α|2

)(−1)j−1rj , rρ = 2

l∑

j=0

(−1)j−1rj .(7.75)

Proof of (5.12). By Proposition 6.13 and Theorem 7.6, for 0 6 j 6 l − 1, the orders of
the zero at σ = 0 of the functions Zηj ,ρ

(
σ+(j− l)|α|

)
and Zη2l−j ,ρ

(
σ+(l− j)|α|

)
are equal

to rj. Therefore, for 0 6 j 6 l − 1, there are Aj 6= 0, Bj 6= 0 such that as σ → 0,

Zηj ,ρ

(
σ + (j − l)|α|

)
= Ajσ

rj +O
(
σrj+1

)
,

Zη2l−j ,ρ

(
σ + (l − j)|α|

)
= Bjσ

rj +O
(
σrj+1

)
,

(7.76)

and

Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
= Aj

( −σ2

2(l − j)|α|

)rj

+O
(
σ2rj+2

)

Zη2l−j ,ρ

(√
σ2 + (l − j)2|α|2

)
= Bj

(
σ2

2(l − j)|α|

)rj

+O
(
σ2rj+2

)
.

(7.77)
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By (7.76) and (7.77), as σ → 0,

(7.78)
Zηj ,ρ

(
σ + (j − l)|α|

)
Zη2l−j ,ρ

(
σ + (l − j)|α|

)

Zηj ,ρ

(
−
√

σ2 + (l − j)2|α|2
)
Zη2l−j ,ρ

(√
σ2 + (l − j)2|α|2

)

→
(
−4(l − j)2|α|2

)rj σ−2rj +O(σ−2rj+1).

By (7.61), (7.71), (7.74), (7.75), and (7.78), we get (5.12). �

Remark 7.9. When G = SO0(p, 1) with p > 3 odd, we recover [F86, Theorem 3].

Remark 7.10. If we scale the form B with the factor a > 0, Rρ(σ) is replaced by Rρ(
√
aσ).

By (5.12), as σ → 0,

Rρ(
√
aσ) = arρ/2CρT (F )2σrρ +O(σrρ+1).(7.79)

On the other hand, Cρ should become a
∑l−1

j=0(−1)jrjCρ , and T (F ) should scale by aχ
′(Z,F )/2.

This is only possible if

rρ = 2
l−1∑

j=0

(−1)jrj + 2χ′(Z, F ),(7.80)

which just (7.74).

8. A COHOMOLOGICAL FORMULA FOR rj

The purpose of this section is to establish (5.13) when G is such that δ(G) = 1 and has
compact center. We rely on some deep results from the representation theory of reductive
Lie groups.

This section is organized as follows. In Subsection 8.1, we recall the constructions of
the infinitesimal and global characters of Harish-Chandra modules. We also recall some
properties of (g, K)-cohomology and n-homology of Harish-Chandra modules.

In Subsection 8.2, we give a formula relating rj with an alternating sum of the dimen-
sions of Lie algebra cohomologies of certain Harish-Chandra modules, and we establish
Equation (5.13).

8.1. Some results from representation theory. In this Subsection, we do not assume
that δ(G) = 1. We use the notation in Section 3 and the convention of real root systems
introduced in Subsection 7.2.

8.1.1. Infinitesimal characters. Let Z(gC) be the center of the enveloping algebra U(gC)

of the complexification gC of g. A morphism of algebras χ : Z(gC) → C will be called a
character of Z(gC).

Recall that h1, · · · , hl0 form all the nonconjugated θ-stable Cartan subalgebras of g. Let
hiC = hi ⊗R C and hiR =

√
−1hip ⊕ hik are the complexfication and real form of hi. For

α ∈ h∗iR, we extend α to a C-linear form on hiC by C-linearity. In this way, we identify
h∗iR to a subset of h∗iC.

For 1 6 i 6 l0, let S(hiC) be the symmetric algebra of hiC. The algebraic Weyl group
W (hiR, u) acts isometrically on hiR. By C-linearity, W (hiR, u) acts on hiC. Therefore,
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W (hiR, u) acts on S(hiC). Let S(hiC)W (hiR,u) ⊂ S(hiC) be the W (hiR, u)-invariant subalge-
bra of S(hiC). Let

γi : Z(gC) ≃ S(hiC)
W (hiR,u)(8.1)

be the Harish-Chandra isomorphism [K02, Section V.5]. For Λ ∈ h∗iC, we can associate to
it a character χΛ of Z(gC) as follows: for z ∈ Z(gC),

χΛ(z) = 〈γi(z), 2
√
−1πΛ〉.(8.2)

By [K02, Theorem 5.62], every character of Z(gC) is of the form χΛ, for some Λ ∈ h∗iC.
Also, Λ is uniquely determined up to an action of W (hiR, u). Such an element Λ ∈ h∗iC is
called the Harish-Chandra parameter of the character. In particular, χΛ = 0 if and only if
there is w ∈ W (hiR, u) such that

wΛ = ρui ,(8.3)

where ρui is defined as in (7.11) with respect to (hiR, u).

Definition 8.1. A complex representation of gC is said to have infinitesimal character χ,
if z ∈ Z(gC) acts as a scalar χ(z) ∈ C.

A complex representation of gC is said to have generalized infinitesimal character χ, if
z − χ(z) acts nilpotently for all z ∈ Z(gC), i.e., (z − χ(z))i acts like 0 for i ≫ 1.

If λ ∈ h∗iR is algebraically integral and dominant, let Vλ be the complex finite dimen-
sional irreducible representation of the Lie algebra gC with the highest weight λ. Then
Vλ possesses an infinitesimal character with Harish-Chandra parameter λ+ ρui ∈ h∗iR.

8.1.2. Harish-Chandra (gC, K)-modules and admissible representations of G. We follow
[HeSc83, p. 54-55] and [K86, p. 207].

Definition 8.2. We will say that a complex U(gC)-module V , equipped with an action of
K, is a Harish-Chandra (gC, K)-module, if the following conditions hold:

(1) The space V is finitely generated as a U(gC)-module;
(2) Every v ∈ V lies in a finite dimensional, kC-invariant subspace;
(3) The action of gC and K are compatible;
(4) Each irreducible K-module occurs only finitely many times in V .

Let V be a Harish-Chandra (gC, K)-module. For a character χ of Z(gC), let Vχ ⊂ V be
the largest submodule of V on which z − χ(z) acts nilpotently for all z ∈ Z(gC). Then
Vχ is a Harish-Chandra (gC, K)-submodule of V with generalized infinitesimal character
χ. By [HeSc83, eq. (2.4)], we can decompose V as a finite sum of Harish-Chandra
(gC, K)-submodules

V =
⊕

χ

Vχ.(8.4)

Any Harish-Chandra (gC, K)-module V has a finite composition series in the following
sense: there exist finitely many Harish-Chandra (gC, K)-submodules

V = Vn1 ⊃ Vn1−1 ⊃ · · · ⊃ V0 ⊃ V−1 = 0(8.5)

such that each quotient Vi/Vi−1, for 0 6 i 6 n1, is an irreducible Harish-Chandra (gC, K)-
module. Moreover, the set of all irreducible quotients and their multiplicities are the
same for all the composition series.
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Definition 8.3. We say that a representation π of G on a Hilbert space is admissible if
the followings hold:

(1) when restricted to K, π|K is unitary;
(2) each τ ∈ K̂ occurs with only finite multiplicity in π|K .

Let π be a finitely generated admissible representation of G on the Hilbert space Vπ. If
τ ∈ K̂, let Vπ(τ) ⊂ Vπ be the τ -isotopic subspace of Vπ. Then Vπ(τ) is the image of the
evaluation map

(f, v) ∈ HomK(Vτ , Vπ)⊗ Vτ → f(v) ∈ Vπ.(8.6)

Let

Vπ,K =
⊕

τ∈K̂

Vπ(τ) ⊂ Vπ(8.7)

be the algebraic sum of representations of K. By [K86, Proposition 8.5], Vπ,K is a Harish-
Chandra (gC, K)-module. It is explained in [V08, Section4] that, by results of Casselman,
Harish-Chandra, Lepowsky and Wallach, any Harish-Chandra (gC, K)-module V can be
constructed in this way and the corresponding Vπ is called a Hilbert globalization of V .
Moreover, V is an irreducible Harish-Chandra (gC, K)-module if and only if Vπ is an
irreducible admissible representation of G. In this case, V or Vπ has an infinitesimal
character.

We note that a Hilbert globalization of a Harish-Chandra (gC, K)-module is not unique.

8.1.3. Global characters. We recall the definition of the space of rapidly decreasing func-
tions S(G) on G [W88, Section 7.1.2].

For z ∈ U(g), we denote by zL and zR respectively the corresponding left and right
invariant differential operators on G. For r > 0, z1 ∈ U(g), z2 ∈ U(g), and f ∈ C∞(G),
put

‖f‖r,z1,z2 = sup
g∈G

erdX(p1,pg)|z1Lz2Rf(g)|.(8.8)

Let S(G) be the space of all f ∈ C∞(G) such that, for all r > 0, z1 ∈ U(g), z2 ∈ U(g),
‖f‖r,z1,z2 < ∞. We endow S(G) with the topology given by the above semi-norms.
By [W88, Theorem 7.1.1], S(G) is a Fréchet space which contains C∞

c (G) as a dense
subspace.

Let π be a finitely generated admissible representation of G on the Hilbert space Vπ.
By [W88, Lemma 2.A.2.2], there exists C > 0 such that for g ∈ G, we have

‖π(g)‖ 6 CeCdX (p1,pg),(8.9)

where ‖ · ‖ is the operator norm. By (8.9), if f ∈ S(G),

π(f) =

∫

G

f(g)π(g)dg(8.10)

is a bounded operator on Vπ. By [W88, Lemma 8.1.1], π(f) is trace class. The global
character ΘG

π of π is a continuous linear functional on S(G) such that for f ∈ S(G),

Tr[π(f)] = 〈ΘG
π , f〉.(8.11)
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If V is a Harish-Chandra (gC, K)-module, we can define the global character ΘG
V of V by

the global character of its Hilbert globalization. We note that the global character does
not depend on the choice of Hilbert globalization [HeSc83, p.56].

By Harish-Chandra’s regularity theorem [K86, Theorems 10.25], there is an L1
loc and

Ad(G)-invariant function ΘG
π (g) on G, whose restriction to the regular set G′ is analytic,

such that for f ∈ C∞
c (G), we have

〈
ΘG

π , f
〉
=

∫

g∈G
ΘG

π (g)f(g)dvG.(8.12)

Proposition 8.4. If f ∈ S(G), then ΘG
π (g)f(g) ∈ L1(G) such that

〈
ΘG

π , f
〉
=

∫

g∈G
ΘG

π (g)f(g)dvG.(8.13)

Proof. It is enough to show that there exist C > 0 and a seminorm ‖ · ‖ on S(G) such that
∫

G

|ΘG
π (g)f(g)|dg 6 C‖f‖.(8.14)

Recall that H ′ is defined in (3.36). By (3.33), we need to show that there exist C > 0

and a semi-norm ‖ · ‖ on S(G) such that for 1 6 i 6 l0, we have
∫

γ∈H′

i

∣∣ΘG
π (γ)

∣∣
(∫

g∈Hi\G
|f(g−1γg)|dvHi\G

) ∣∣det
(
1−Ad(γ)

)
|g/hi

∣∣ dvHi
6 C‖f‖.(8.15)

By [K86, Theorem 10.35], there exist C > 0 and r0 > 0 such that, for γ = eak−1 ∈ H ′
i

with a ∈ hip, k ∈ Hi ∩K, we have

|ΘG
π (γ)|

∣∣det
(
1− Ad(γ)

)
|g/hi

∣∣1/2 6 Cer0|a|.(8.16)

We claim that there exist r1 > 0 and C > 0, such that for γ ∈ H ′
i, we have

∣∣det
(
1−Ad(γ)

)
|g/hi

∣∣1/2
∫

g∈Hi\G
exp

(
−r1dX(p1, g

−1γg · p1)
)
dvHi\G 6 C.(8.17)

Indeed, let Ξ(g) be the Harish-Chandra’s Ξ-function [Va77, Section II.8.5]. By [Va77,
Section II.12.2, Corollary 5], there exist r2 > 0 and C > 0, such that for γ ∈ H ′

i, we have
∣∣det

(
1−Ad(γ)

)
|g/hi

∣∣1/2
∫

g∈Hi\G
Ξ(g−1γg)

(
1 + dX(p1, g

−1γg · p1)
)−r2 dvHi\G 6 C.(8.18)

By [K86, Proposition 7.15 (c)] and by (8.18), we get (8.17).
By [B11, (3.1.10)], for g ∈ G and γ = eak−1 ∈ Hi, we have

dX
(
p1, g−1γg · p1

)
> |a|.(8.19)

Take r = 2r0 + r1, z1 = z2 = 1 ∈ U(g). Since f ∈ S(G), by (8.8) and (8.19), for
γ = eak−1 ∈ H ′

i, we have

(8.20) |f(g−1γg)| 6 ‖f‖r,z1,z2 exp
(
−rdX(p1, g

−1γg · p1)
)

6 ‖f‖r,z1,z2 exp(−2r0|a|) exp
(
−r1dX(p1, g

−1γg · p1)
)
.

By (8.16), (8.17), and (8.20), for γ ∈ H ′
i, we have

∣∣ΘG
π (γ)

∣∣
(∫

g∈Hi\G
|f(g−1γg)|dvHi\G

) ∣∣det
(
1−Ad(γ)

)
|g/hi

∣∣ 6 C‖f‖r,z1,z2 exp(−r0|a|).

(8.21)
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By (8.21), we get (8.15). The proof of our proposition is completed. �

Let V be a Harish-Chandra (gC, K)-module, and let τ be a real finite dimensional
orthogonal representation of K on the real Euclidean space Eτ . Then the invariant sub-
space (V ⊗REτ )

K ⊂ V ⊗REτ has a finite dimension. We will describe an integral formula
for dimC(V ⊗R Eτ )

K , which extends [BaMo83, Corollary 2.2].
Recall that pX,τ

t (g) is the smooth integral kernel of exp
(
−tCX,τ/2

)
. By the estimation

on the heat kernel or by [BaMo83, Proposition 2.4], pX,τ
t (g) ∈ S(G) ⊗ End(Eτ ). Recall

that dvG is the Riemannian volume on G induced by −B(·, θ·).

Proposition 8.5. Let f ∈ C∞(G,Eτ )
K . Assume that there exist C > 0 and r > 0 such that

|f(g)| 6 C exp
(
rdX(p1, pg)

)
.(8.22)

The integral
∫

g∈G
pX,τ
t (g)f(g)dvG ∈ Eτ(8.23)

is well defined such that

∂

∂t

∫

g∈G
pX,τ
t (g)f(g)dvG = −1

2

∫

g∈G
CgpX,τ

t (g)f(g)dvG,

1

vol(K)
lim
t→0

∫

g∈G
pX,τ
t (g)f(g)dvG = f(1).

(8.24)

Proof. By (8.22), by the property of S(G) and by ∂
∂t
pX,τ
t (g) = −1

2
CgpX,τ

t (g), the left-hand
side of (8.23) and the right-hand side of the first equation of (8.24) are well defined such
that the first equation of (8.24) holds true.

It remains to show the second equation of (8.24). Let φ1 ∈ C∞
c (G)K such that 0 6

φ1(g) 6 1 and that

φ1(g) =

{
1, dX(p1, pg) 6 1,

0, dX(p1, pg) > 2.
(8.25)

Set φ2 = 1− φ1.
Since φ1f has compact support, it descends to an L2-section on X with values in G×K

Eτ . We have

1

vol(K)
lim
t→0

∫

g∈G
pX,τ
t (g)φ1(g)f(g)dvG = f(1).(8.26)

By (4.27), there exist c > 0 and C > 0 such that for g ∈ G with dX(p1, pg) > 1 and for
t ∈ (0, 1], we have

∣∣∣pX,τ
t (g)

∣∣∣ 6 C exp

(
−c

d2X(p1, pg)

t

)
6 Ce−c/2t exp

(
−c

d2X(p1, pg)

2t

)
.(8.27)

By (8.22) and (8.27), there exist c > 0 and C > 0 such that for t ∈ (0, 1], we have
∫

g∈G

∣∣∣pX,τ
t (g)φ2(g)f(g)dvG

∣∣∣ 6 Ce−c/2t.(8.28)

By (8.26) and (8.28), we get the second equation of (8.24). The proof of our proposi-
tion is completed. �
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Proposition 8.6. Let V be a Harish-Chandra (gC, K)-module with generalized infinitesimal

character χ. For t > 0, we have

dimC (V ⊗R Eτ )
K = vol(K)−1etχ(C

g)/2

∫

g∈G
ΘG

V (g) Tr
[
pX,τ
t (g)

]
dvG.(8.29)

Proof. Let Vπ be a Hilbert globalization of V . Then,

(V ⊗R Eτ )
K = (Vπ ⊗R Eτ )

K .(8.30)

As in (8.10), set

π
(
pX,τ
t

)
=

1

vol(K)

∫

g∈G
π(g)⊗R pX,τ

t (g)dvG.(8.31)

Then, π
(
pX,τ
t

)
is a bounded operator acting on Vπ ⊗R Eτ .

We follow [BaMo83, p. 160-161]. Let (Vπ ⊗R Eτ )
K,⊥ be the orthogonal space to

(Vπ ⊗R Eτ )
K in Vπ ⊗R Eτ , such that

Vπ ⊗R Eτ = (Vπ ⊗R Eτ )
K ⊕ (Vπ ⊗R Eτ )

K,⊥ .(8.32)

Let Qπ,τ be the orthogonal projection from Vπ ⊗R Eτ to (Vπ ⊗R Eτ )
K . Then,

Qπ,τ =
1

vol(K)

∫

k∈K
π ⊗ τ(k)dvK .(8.33)

By (4.13), (8.31) and (8.33), we get

Qπ,τπ
(
pX,τ
t

)
Qπ,τ = π

(
pX,τ
t

)
.(8.34)

In particular, π(pX,τ
t ) is of finite rank.

Take u ∈ (Vπ ⊗R Eτ )
K and v ∈ Vπ. Define 〈u, v〉 ∈ Eτ be such that for any w ∈ Eτ ,

〈
〈u, v〉, w

〉
= 〈u, v ⊗R w〉.(8.35)

By (8.9), the function g ∈ G → 〈π(g)⊗R id · u, v〉 ∈ Eτ is of class C∞(G,Eτ )
K such that

(8.22) holds. By (8.31), we have
〈
π
(
pX,τ
t

)
u, v
〉
=

1

vol(K)

∫

g∈G
pX,τ
t (g)〈π(g)⊗R id · u, v〉dvG.(8.36)

By Proposition 8.5 and (8.36), we have

∂

∂t

〈
π
(
pX,τ
t

)
u, v
〉
= −1

2

〈
π (Cg)π

(
pX,τ
t

)
u, v
〉
, lim

t→0

〈
π
(
pX,τ
t

)
u, v
〉
= 〈u, v〉(8.37)

Since Cg ∈ Z(g) and since π(Cg) preserves the splitting (8.32), by (8.34) and (8.37),
under the splitting (8.32), we have

π
(
pX,τ
t

)
=

(
e−tπ(Cg)/2 0

0 0

)
.(8.38)

Since V has a generalized infinitesimal character χ, by (8.38), we have

Tr
[
π
(
pX,τ
t

)]
= e−tχ(Cg)/2 dimC (Vπ ⊗R Eτ )

K .(8.39)
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Let (ξi)∞i=1 and (ηj)
dimEτ
j=1 be orthogonal basis of Vπ and Eτ . Then

Tr
[
π
(
pX,τ
t

)]
=

1

vol(K)

∞∑

i=1

dimEτ∑

j=1

∫

g∈G
〈pX,τ

t (g)ηj, ηj〉〈π(g)ξi, ξi〉dvG

=
1

vol(K)

∞∑

i=1

∫

g∈G
Tr
[
pX,τ
t (g)

]
〈π(g)ξi, ξi〉dvG.

(8.40)

Since Tr
[
pX,τ
t (g)

]
∈ S(G), by (8.13) and (8.40), we have

Tr
[
π
(
pX,τ
t

)]
=

1

vol(K)

∫

g∈G
Tr
[
pX,τ
t (g)

]
ΘG

π (g)dvG.(8.41)

From (8.30), (8.39) and (8.41), we get (8.29). The proof of our proposition is com-
pleted. �

Proposition 8.7. For 1 6 i 6 l0, the function

γ ∈ H ′
i → Tr[γ]

[
exp

(
−tCg,X,τ/2

)]
ΘG

π (γ)
∣∣det

(
1− Ad(γ)

)
|g/hi

∣∣(8.42)

is almost everywhere well defined and integrable on H ′
i, so that

(8.43)
∫

g∈G
Tr
[
pX,τ
t (g)

]
ΘG

π (g)dvG =
l0∑

i=1

vol(K ∩Hi\K)

|W (Hi, G)|
∫

γ∈H′

i

Tr[γ]
[
exp

(
−tCg,X,τ/2

)]
ΘG

π (g)
∣∣det

(
1− Ad(γ)

)
|g/hi

∣∣ dvHi
.

Proof. Since Tr
[
pX,τ
t (g)

]
ΘG

π (g) ∈ L1(G), by (3.33) and by Fubini Theorem, the function

γ ∈ Hi →
(∫

g∈Hi\G
TrEτ

[
pX,τ
t

(
g−1γg

)]
dvHi\G

)
ΘG

π (γ)
∣∣det(1− Ad(γ))|g/hi

∣∣(8.44)

is almost everywhere well defined and integrable on Hi.
Take γ ∈ H ′

i. Since Hi is abelian, we have

Z0(γ) = H0
i ⊂ Hi ⊂ Z(γ).(8.45)

We have a finite covering space H0
i \G → Hi\G. Note that

[
Hi : H

0
i

]
=
[
K ∩Hi : K ∩H0

i

]
.(8.46)

By (4.15), (8.45) and (8.46), if γ ∈ H ′
i, we have

(8.47)
∫

Hi\G
TrEτ

[
pX,τ
t (g−1γg)

]
dvHi\G =

vol(K0(γ)\K)

[Hi : H
0
i ]

Tr[γ]
[
exp

(
−tCg,X,τ/2

)]

= vol(K ∩Hi\K) Tr[γ]
[
exp

(
−tCg,X,τ/2

)]
.

Since Hi−H ′
i has zero measure, and by (8.44) and (8.47), the function (8.42) defines

an L1-function on H ′
i. By (3.33) and (8.47), we get (8.43). The proof of our proposition

is completed. �



ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS, AND THE FRIED CONJECTURE 61

8.1.4. The (g, K)-cohomology. If V is a Harish-Chandra (gC, K)-module, let H ·(g, K;V )

be the (g, K)-cohomology of V [BoW00, Section I.1.2]. The following two theorems are
the essential algebraic ingredients in our proof of (5.13).

Theorem 8.8. Let V be a Harish-Chandra (gC, K)-module with generalized infinitesimal

character χ. Let W be a finite dimensional gC-module with infinitesimal character. Let χW ∗

be the infinitesimal character of W ∗. If χ 6= χW ∗

, then

H ·(g, K;V ⊗W ) = 0.(8.48)

Proof. If χ is the infinitesimal character of V , then (8.48) is a consequence of [BoW00,
Theorem I.5.3 (ii)].

In general, let

V = Vn1 ⊃ Vn1−1 ⊃ · · · ⊃ V0 ⊃ V−1 = 0(8.49)

be the composition series of V . Then for 0 6 i 6 n1, Vi/Vi−1 is an irreducible Harish-
Chandra (gC, K)-module with infinitesimal character χ. Therefore, for all 0 6 i 6 n1, we
have

H ·(g, K; (Vi/Vi−1)⊗W ) = 0.(8.50)

We will show by induction that, for all 0 6 i 6 n1,

H ·(g, K;Vi ⊗W ) = 0.(8.51)

By (8.50), Equation (8.51) holds for i = 0. Assume that (8.51) holds for some i with
0 6 i 6 n1. Using the short exact sequence of Harish-Chandra (gC, K)-modules

0 → Vi → Vi+1 → Vi+1/Vi → 0,(8.52)

we get the long exact sequence of cohomologies

· · · → Hj(g, K;Vi ⊗W ) → Hj(g, K;Vi+1 ⊗W ) → Hj(g, K; (Vi+1/Vi)⊗W ) → · · · .
(8.53)

By (8.50), (8.53) and by the induction hypotheses, Equation (8.51) holds for i+1, which
completes the proof of (8.51). The proof of our theorem is completed. �

We denote by Ĝu the unitary dual of G, that is the set of equivalence classes of complex
irreducible unitary representations π of G on Hilbert spaces Vπ. If (π, Vπ) ∈ Ĝu, by [K86,
Theorem 8.1], π is irreducible admissible. Let χπ be the corresponding infinitesimal
character.

Theorem 8.9. If (π, Vπ) ∈ Ĝu, then

χπ 6= 0 ⇐⇒ H ·(g, K;Vπ,K) = 0.(8.54)

Proof. The direction =⇒ of (8.54) is (8.48). The direction ⇐= of (8.54) is a con-
sequence of Vogan-Zuckerman [VZu84], Vogan [V84] and Salamanca-Riba [SR99]. In-
deed, the irreducible unitary representations with nonvanishing (g, K)-cohomology are
classified and constructed in [VZu84, V84]. By [SR99], the irreducible unitary repre-
sentations with vanishing infinitesimal character is in the class specified by Vogan and
Zuckerman, which implies that their (g, K)-cohomology are nonvanishing. �

Remark 8.10. The condition that π is unitary is crucial in the (8.54). See [W88, Section
9.8.3] for a counterexample.
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8.1.5. The Hecht-Schmid character formula. Let us recall the main result of [HeSc83].
Let Q ⊂ G be a standard parabolic subgroup of G with Lie algebra q ⊂ g. Let

Q = MQAQNQ, q = mq ⊕ aq ⊕ nq(8.55)

be the corresponding Langlands decompositions [K86, Section V.5].
Put ∆+(aq, nq) to be the set of all linear forms α ∈ a∗q such that there exists a nonzero

element Y ∈ nq such that for all a ∈ aq,

ad(a)Y = 〈α, a〉Y.(8.56)

Set

a−q = {a ∈ aq : 〈α, a〉 < 0, for all α ∈ ∆+(a, n)}.(8.57)

Put (MQAQ)
− to be the interior in MQAQ of the set

{g ∈ MQAQ : det
(
1− Ad(gea)

)
|nq > 0 for all a ∈ a−q }.(8.58)

If V is a Harish-Chandra (gC, K)-module, let H·(nq, V ) be the nq-homology of V . By
[HeSc83, Proposition 2.24], H·(nq, V ) is a Harish-Chandra (mqC ⊕ aqC, K ∩MQ)-module.
We denote by Θ

MQAQ

H·(nq,V ) the corresponding global character. Also, MQAQ acts on nq. We

denote by Θ
MQAQ

Λ·(nq)
the character of Λ·(nq). By [HeSc83, Theorem 3.6], the following

identity of analytic functions on (MQAQ)
− ∩G′ holds:

ΘG
V |(MQAQ)

−∩G′
=

∑dim nq
i=0 (−1)iΘ

MQAQ

Hi(nq,V )∑dim nq
i=0 (−1)iΘ

MQAQ

Λi(nq)

∣∣∣∣
(MQAQ)

−∩G′

.(8.59)

Take a θ-stable Cartan subalgebra hmq of mq. Set hq = hmq ⊕ aq. Then hq is a θ-stable
Cartan subalgebra of both mq ⊕ aq and g. Put uq to be the compact form of mq ⊕ aq. Then
hqR, the real form of hq, is a Cartan subalgebra of both uq and u. The real root system
of ∆(hqR, uq) is a subset of ∆(hqR, u) consisting of the elements whose restriction to aq
vanish. The set of positive real roots ∆+(hqR, u) ⊂ ∆(hqR, u) determines a set of positive
real roots ∆+(hqR, uq) ⊂ ∆(hqR, uq). Let ρuq and ρ

uq
q be the corresponding half sums of

positive real roots.
If V possesses an infinitesimal character with Harich-Chandra parameter Λ ∈ h∗qC, by

[HeSc83, Corollary 3.32], H·(nq, V ) can be decomposed in the sense of (8.4), where the
generalized infinitesimal characters are given by

χwΛ+ρuq−ρ
uq
q
,(8.60)

for some w ∈ W (hqR, u).
Also, H·(n, V ) is a Harish-Chandra (mqC, K ∩MQ)-module. For ν ∈ a∗qC, let H·(n, V )[ν]

be the largest submodule of H·(n, V ) on which z − 〈2
√
−1πν, z〉 acts nilpotently for all

z ∈ aqC. Then,

H·(n, V ) =
⊕

ν

H·(n, V )[ν],(8.61)

where ν = (wΛ+ ρuq − ρ
uq
q )|aqC , for some w ∈ W (hqR, u). Let ΘMQ

H·(n,V ) and Θ
MQ

H·(n,V )[ν]
be the

corresponding global characters. We have the identities of L1
loc-functions: for m ∈ MQ
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and a ∈ aq,

Θ
MQAQ

H·(n,V ) (mea) =
∑

ν

e2
√
−1π〈ν,a〉Θ

MQ

H·(n,V )[ν]
(m), Θ

MQ

H·(n,V ) (m) =
∑

ν

Θ
MQ

H·(n,V )[ν]
(m),(8.62)

where ν = (wΛ+ ρuq − ρ
uq
q )|aqC , for some w ∈ W (hqR, u).

Consider now G is such that δ(G) = 1 and has compact center. Use the notation in
Subsection 6.1. Take q = m ⊕ b ⊕ n, and let Q = MQAQNQ ⊂ G be the corresponding
parabolic subgroup. Then M is the connected component of the identity in MQ. Since
K ∩MQ has a finite number of connected components, H·(n, V ) is still a Harish-Chandra
(mC ⊕ bC, KM)-module. Also, it is a Harish-Chandra (mC, KM)-module. Let ΘMAQ

H·(n,V ) and
ΘM

H·(n,V ) be the respective global characters.
Recall that H = exp(b)T ⊂ MAQ is the Cartan subgroup of MAQ.

Proposition 8.11. We have
⋃

g∈MAQ

gH ′g−1 ⊂ (MQAQ)
− ∩G′.(8.63)

Proof. Put L′ =
⋃

g∈MAQ
gH ′g−1 ⊂ MAQ ∩ G′. Then L′ is an open subset of MAQ. It is

enough to show that L′ is a subset of (8.58).
By (6.19) and (6.22), for γ = eak−1 ∈ H with a ∈ b and k ∈ T , we have det

(
1 −

Ad(γ)
)
|n > 0. Therefore, L′ is a subset of (8.58). The proof of our proposition is com-

pleted. �

8.2. Formulas for rη,ρ and rj. Recall that p̂ : Γ\G → Z is the natural projection. The
group G acts unitarily on the right on L2(Γ\G, p̂∗F ). By [GeGrPS69, p.23, Theorem], we
can decompose L2(Γ\G, p̂∗F ) into a direct sum of unitary representations of G,

L2 (Γ\G, p̂∗F ) =
Hil⊕

π∈Ĝu

nρ(π)Vπ,(8.64)

with nρ(π) < ∞.
Recall that τ is a real finite dimensional orthogonal representation of K on the real

Euclidean space Eτ , and that Cg,Z,τ,ρ is the Casimir element of G acting on C∞(Z,Fτ ⊗C

F ). By (8.64), we have

kerCg,Z,τ,ρ =
⊕

π∈Ĝu,χπ(Cg)=0

nρ(π)
(
Vπ,K ⊗R Eτ

)K
.(8.65)

By the properties of elliptic operators, the sum on right-hand side of (8.65) is finite.
We will give two applications of (8.65). In our first application, we take Eτ = Λ·(p∗).

Proposition 8.12. We have

H ·(Z, F ) =
⊕

π∈Ĝu,χπ=0

nρ(π)H
·(g, K;Vπ,K).(8.66)

If H ·(Z, F ) = 0, then for any π ∈ Ĝu such that χπ = 0, we have

nρ(π) = 0.(8.67)
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Proof. By Hodge theory, and by (4.24), (8.65), we have

H ·(Z, F ) =
⊕

π∈Ĝu,χπ(Cg)=0

nρ(π)
(
Vπ,K ⊗R Λ·(p∗)

)K
.(8.68)

By Hodge theory for Lie algebras [BoW00, Proposition II.3.1], if χπ(C
g) = 0, we have

(
Vπ,K ⊗R Λ·(p∗)

)K
= H ·(g, K;Vπ,K).(8.69)

From (8.68) and (8.69), we get

H ·(Z, F ) =
⊕

π∈Ĝu,χπ(Cg)=0

nρ(π)H
·(g, K;Vπ,K).(8.70)

By (8.48) and (8.70), we get (8.66).
By Theorem 8.9, and by (8.66), we get (8.67). The proof of our proposition is com-

pleted. �

Remark 8.13. Equation (8.66) is [BoW00, Proposition VII.3.2]. When ρ is a trivial repre-
sentation, (8.70) is originally due to Matsushima [Mat67].

In the rest of this section, G is supposed to be δ(G) = 1 and has compact center. Recall
that η is a real finite dimensional representation of M satisfying Assumption 7.1, and
that η̂ is defined in (7.1). In our second application of (8.65), we take τ = η̂.

Theorem 8.14. If (π, Vπ) ∈ Ĝu, then

(8.71) dimC

(
Vπ,K ⊗R η̂+

)K − dimC

(
Vπ,K ⊗R η̂−

)K

=
1

χ(K/KM)

dim pm∑

i=0

2l∑

j=0

(−1)i+j dimC H i
(
m, KM ;Hj(n, Vπ,K)⊗R Eη

)
.

Proof. Let Λ(π) ∈ h∗
C

be the Harish-Chandra parameter of the infinitesimal character of
π. By (8.29), for t > 0, we have

(8.72) dimC

(
Vπ,K ⊗R η̂+

)K − dimC

(
Vπ,K ⊗R η̂−

)K

= vol(K)−1etχπ(Cg)/2

∫

g∈G
ΘG

π (g) Trs

[
pX,η̂
t (g)

]
dvG.

By (7.10), by Proposition 8.7 and by H ∩K = T , we have

(8.73)
∫

G

ΘG
π (g) Trs

[
pX,η̂
t (g)

]
dvG =

vol(T\K)

|W (H,G)|∫

γ∈H′

ΘG
π (γ) Trs

[γ]
[
exp(−tCg,X,η̂/2)

] ∣∣det
(
1− Ad(γ)

)
|g/h
∣∣ dvH .

Since γ = eak−1 ∈ H ′ implies T = KM(k) = M0(k), by (7.9), (8.72) and (8.73), we have

(8.74) dimC

(
Vπ,K ⊗R η̂+

)K − dimC

(
Vπ,K ⊗R η̂−

)K
=

1

|W (H,G)| vol(T )
1√
2πt

exp

(
t

16
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
− t

2
Cum,η +

t

2
χπ(C

g)

)

∫

γ=eak−1∈H′

ΘG
π (γ) exp

(
−|a|2/2t

)
TrEη

[
η
(
k−1
)]
∣∣det

(
1− Ad(γ)

)
|g/h
∣∣

∣∣∣det
(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

dvH .
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By (6.19), for γ = eak−1 ∈ H ′, we have
∣∣det

(
1−Ad(γ)

)
|g/h
∣∣

det
(
1− Ad(γ)

)
|n
∣∣∣det

(
1− Ad(γ)

)
|z⊥0
∣∣∣
1/2

= e−l〈α,a〉 ∣∣det
(
1− Ad(k−1)

)
|m/t

∣∣ .(8.75)

By (8.59), (8.63), (8.74), and (8.75), we have

(8.76) dimC

(
Vπ,K ⊗R η̂+

)K − dimC

(
Vπ,K ⊗R η̂−

)K
=

1

|W (H,G)| vol(T )
1√
2πt

exp

(
t

16
Tru

⊥(b)
[
Cu(b),u⊥(b)

]
− t

2
Cum,η +

t

2
χπ(C

g)

)

2l∑

j=0

(−1)j
∫

γ=eak−1∈H′

Θ
MAQ

Hj(n,Vπ,K)(γ) exp
(
−|a|2/2t− l〈α, a〉

)

TrEη
[
η
(
k−1
)] ∣∣det

(
1−Ad(k−1)

)
|m/t

∣∣ dvH .

By (8.16), there exist C > 0 and c > 0 such that for γ = eak−1 ∈ H ′, we have
∣∣∣ΘMAQ

Hj(n,Vπ,K)(γ)
∣∣∣
∣∣det

(
1−Ad(k−1)

)
|m/t

∣∣1/2 6 Cec|a|.(8.77)

By (8.62), (8.76), (8.77), and by letting t → 0, we get

(8.78) dimC

(
Vπ,K ⊗R η̂+

)K − dimC

(
Vπ,K ⊗R η̂−

)K
=

1

|W (H,G)| vol(T )
2l∑

j=0

(−1)j
∫

γ∈T ′

ΘM
Hj(n,Vπ,K)(γ) Tr

Eη [η(γ)]
∣∣det

(
1− Ad(γ)

)
|m/t

∣∣ dvT ,

where T ′ is the set of the regular elements of M in T .
We claim that, for 0 6 j 6 2l, we have

(8.79)
dim pm∑

i=0

(−1)i dimC

(
Hj(n, Vπ,K)⊗R Λi(p∗m)⊗R Eη

)KM

=
1

|W (T,M)| vol(T )

∫

γ∈T ′

ΘM
Hj(n,Vπ,K)(γ) Tr

Eη [η (γ)]
∣∣det

(
1− Ad(γ)

)
|m/t

∣∣ dvT .

Indeed, consider Hj(n, Vπ,K) as a Harish-Chandra (mC, KM)-module. We can decompose
Hj(n, Vπ,K) in the sense of (8.4), where the generalized infinitesimal characters are given
by

χ(wΛ(π)+ρu−ρu(b))|tC ,(8.80)

for some w ∈ W (hR, u). Therefore, it is enough to show (8.79) when Hj(n, Vπ,K) is re-
placed by any Harish-Chandra (mC, KM)-module with generalized infinitesimal charac-
ter χ(wΛ(π)+ρu−ρu(b))|tC . Let (πM , VπM ) be a Hilbert globalization of such a Harish-Chandra
(mC, KM)-module. As before, let Cm,XM ,Λ·(pm)⊗Eη be the Casimir element of M acting
on C∞(M,Λ·(pm) ⊗ Eη)

KM , and let p
XM ,Λ·(pm)⊗Eη

t (g) be the smooth integral kernel of
the heat operator exp(−tCm,XM ,Λ·(pm)⊗Eη/2). Remark that by [BMaZ17, Proposition 8.4],
Cm,XM ,Λ·(pm)⊗Eη − Cm,Eη is the Hodge Laplacian on XM acting on the differential forms
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with values in the homogenous flat vector bundle M ×KM
Eη. Proceeding as in [B11,

Theorem 7.8.2], if γ ∈ M is semisimple and nonelliptic, we have

Tr[γ]
[
exp

(
−t(Cm,XM ,Λ·(pm)⊗Eη − Cm,Eη)/2

)]
= 0.(8.81)

Also, if γ = k−1 ∈ KM , then

Tr[γ]
[
exp

(
−t(Cm,XM ,Λ·(pm)⊗Eη − Cm,Eη)/2

)]
= TrEη

[
η
(
k−1
)]

e
(
XM(k),∇TXM (k)

)
.

(8.82)

Using (8.81), proceeding as in (8.72) and (8.73), we have

dim pm∑

i=0

(−1)i dimC

(
VπM ⊗R Λi(p∗m)⊗R Eη

)KM

= vol(KM)−1 exp
(
tχπM (Cm)/2

) ∫

g∈M
ΘM

πM (g) Trs

[
p
XM ,Λ·(p∗m)⊗Eη

t (g)
]
dvM(8.83)

=
exp

(
tχπM (Cm)/2

)

|W (T,M)| vol(T )

∫

γ∈T ′

ΘM
πM (γ) Trs

[γ]
[
exp(−tCm,XM ,Λ·(pm)⊗Eη/2)

]

∣∣det
(
1− Ad(γ)

)
|m/t

∣∣ dvT .

By (8.82), (8.83), proceeding as in (8.74), and letting t → 0, we get the desired equality
(8.79).

The Euler formula asserts

(8.84)
dim pm∑

i=0

(−1)i dimC

(
Hj(n, Vπ,K)⊗R Λi(p∗m)⊗R Eη

)KM

=

dim pm∑

i=0

(−1)i dimC H i
(
m, KM ;Hj(n, Vπ,K)⊗R Eη

)
.

By (3.17), we have

W (H,G) = W (T,K), W (T,M) = W (T,KM).(8.85)

By (7.5), (8.78), (8.79), (8.84)-(8.85), we get (8.71). The proof of our theorem is
completed. �

Corollary 8.15. The following identity holds:

rη,ρ =
1

χ(K/KM)

∑

π∈Ĝu,χπ(Cg)=0

nρ(π)

dim pm∑

i=0

2l∑

j=0

(−1)i+j dimCH i
(
m, KM ;Hj(n, Vπ,K)⊗R Eη

)
.

(8.86)

Proof. This is a consequence of (7.58), (8.65), and (8.71). �

Remark 8.16. When G = SO0(p, 1) with p > 3 odd, the formula (8.86) is compatible with
[J01, Theorem 3.11].

We will apply (8.86) to ηj . The following proposition allows us to reduce the first sum
in (8.86) to the one over π ∈ Ĝu with χπ = 0.
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Proposition 8.17. Let (π, Vπ) ∈ Ĝu. Assume χπ(C
g) = 0 and

H ·(m, KM ;H·(n, Vπ)⊗R Λj(n∗)
)
6= 0.(8.87)

Then the infinitesimal character χπ vanishes.

Proof. Recall that Λ(π) ∈ h∗
C

is a Harish-Chandra parameter of π. We need to show that
there is w ∈ W (hR, u) such that

wΛ(π) = ρu.(8.88)

Let B∗ be the bilinear form on g∗ induced by B. It extends to g∗
C

and u∗ in an obvious
way. Since χπ(C

g,π) = 0, we have

B∗(Λ(π),Λ(π)) = B∗(ρu, ρu).(8.89)

We identify h∗
R
=

√
−1b∗ ⊕ t∗. By definition,

ρu =

(
lα

2
√
−1π

, ρum
)

∈
√
−1b∗ ⊕ t∗ and ρu(b) = (0, ρum) ∈

√
−1b∗ ⊕ t∗.(8.90)

By (8.48), (8.80) and (8.87), there exist w ∈ W (hR, u), w′ ∈ W (t, um) ⊂ W (hR, u) and the
highest real weight µj ∈ t∗ of an irreducible subrepresentation of mC on Λj(nC) ≃ Λj(n∗

C
)

such that

wΛ(π)|tC = w′(µj + ρum).(8.91)

By (6.58), (8.89) and (8.91), there exists w′′ ∈ W (hR, u) such that

w′′Λ(π) =

(
±(l − j)α

2
√
−1π

, µj + ρum
)

=

(
±(l − j)α

2
√
−1π

, µj

)
+ ρu(b).(8.92)

In particular, w′′Λ(π) ∈ h∗
R

.
Clearly,

(
(j − l)α/2

√
−1π, µj

)
∈ h∗

R
is the highest real weight of an irreducible subrep-

resentation of mC⊕bC on Λj(n∗
C
)⊗C (det(nC))

−1/2. By (6.33),
(
(j− l)α/2

√
−1π, µj

)
∈ h∗

R

is the highest real weight of an irreducible subrepresentation of mC ⊕ bC on Su⊥(b). By
[BoW00, Lemma II.6.9], there exists w1 ∈ W (hR, u) such that

(
(j − l)α

2
√
−1π

, µj

)
= w1ρ

u − ρu(b).(8.93)

Similarly,
(
(l − j)α/2

√
−1π, µj

)
∈ h∗

R
is the highest real weight of an irreducible subrep-

resentation of mC ⊕ bC on both Λ2l−j(n∗
C
) ⊗C (det(nC))

−1/2 and Su⊥(b). Therefore, there
exists w2 ∈ W (hR, u) such that

(
(l − j)α

2
√
−1π

, µj

)
= w2ρ

u − ρu(b).(8.94)

By (8.92)-(8.94), we get (8.88). The proof of our proposition is completed. �

Corollary 8.18. For 0 6 j 6 2l, we have

rj =
1

χ(K/KM)

∑

π∈Ĝu,χπ=0

nρ(π)

dim pm∑

i=0

2l∑

k=0

(−1)i+k dimC H i
(
m, KM ;Hk(n, Vπ,K)⊗R Λj(n∗)

)
.

(8.95)

If H ·(Z, F ) = 0, then for all 0 6 j 6 2l,

rj = 0.(8.96)
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Proof. This is a consequence of Proposition 8.12, Corollary 8.15 and Proposition 8.17. �

Remark 8.19. By (7.75) and (8.96), we get (5.13) when G has compact center and
δ(G) = 1.
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H ′

i, 16
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ι, 34
iG, 36

J , 31
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K∗, 39
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km, 23

71



ANALYTIC TORSION, DYNAMICAL ZETA FUNCTIONS, AND THE FRIED CONJECTURE 72

k(γ), 13
k0, 19

l, 29
l0, 14
l[γ], 4

M , 23
M(k),M0(k), 30
m, 23
m(k), 30
m, 11, 12
mP (λ), 10
m[γ], 4, 24
mη,ρ(λ), 51

NΛ·(T∗Z), 3
Nb, 32
n, n, 28
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p⊥0 (γ), 19
pm(k), 30
pm, 23
p(γ), 13
p0, 19
πk(Y ), 46
p̂, π̂, 20
p
X,τ
t (g), 18

p
X,τ
t (x, x′), 18

P , 16

q, 29

RO(KM ), RO(K), 7, 34
RFb,η , 45
RNb , 33
Rρ(σ), 4, 25
rkC, 14
ρ, 6, 11, 20

ρk, 46
r, 11, 20
rρ, 53
rj , 53
rη,ρ, 51

Su⊥(b), 31
S(G), 56
σ0, 26, 52
ση, 51
σk(Y ), 46

T , 14
T (F ), 3, 11
T (σ), 8, 11
ΘG

π , 56
Tr[γ][·], 18
Trs

[γ][·], 18
t(γ), 22
t∗, 40
τ , 13, 17
θ(s), 3
θP (s), 10
θ, 6, 12

U , 12
U(b), UM , 31
U(g), 13
U(gC), 54
UM (k), U0

M (k), 49
u, 12
u(b), u(m), 31
u⊥(b), 31
um(k), 49

vol(·), 17, 18

W (Hi, G), 14
W (T,K), 17

X , 6, 16
X(γ), 17
Xa,⊥(γ), 18
XM (k), 30
XM , 23
Ξ(g), 57
Ξρ, 25

Yb, 31

Z, 3, 11, 20
Z(γ), 13
Z(a), 13
Z0(b), 28
Z0(γ), 13
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ZG, 12
Z(gC), 54
z(γ), 13
z(a), 13
za,⊥(γ), 13
z⊥0 , 19
z⊥0 (γ), 19
zg, 12
Z(g), 13
z0, 19
zp, zk, 12
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