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ANALYTIC WAVE FRONT SETS FOR SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS OF PRINCIPAL TYPE

BY

KARL GUSTAV ANDERSSON

ABSTRACT. The propagation of analyticity for solutions u of P(x, D)u = f
is studied, in terms of wave front sets, for a large class of differential operators
P = P(x, D) of principal type. In view of a theorem by L. Hérmander [9], the re-
sults obtained imply rather precise results about the surjectivity of the mapping

P: C™(a) — C™(Q).

Introduction. Let P = P(x, D) be a linear differential operator with C*-coef-
ficients in an open set {} C R™. When P is elliptic, then the classical regularity
theorem for elliptic equations says that the distribution « is infinitely differen-
tiable whenever Pu is and, if the coefficients of P are analytic, then # is ana-
lytic where Pu is analytic. The corresponding question, for more general opera-
tors, of describing the set of singularities of # when that of Pu is given has
been much studied lately (see [10] and the references there). The introduction
of the concept of wave front sets (see [7] and [14]) has added precision to the
statements and has also simplifiéd many proofs. For operators with real principal

part P_(x, D), such that the Hamilton field

Hp = 2 WP (x, §/0¢)3/dx, ~ (P (x, &)/9x)d/3¢E))
m 1<j<n

is nondegenerate when & € R” = R"\{O}, and for some operators with complex
coefficients, very complete results for the C™-case are obtained by Duistermaat
and Hérmander in [5] (see also [17]). Corresponding results, concerning analy-
ticity, are proved in [1] (operators with constant coefficients), [9] and [11],
under the assumption that P_ is real and dg P (x, &)= (0P _(x, f)/afl, cee,
OP, (x,£)/3€ ) £0 in Q x R™. The purpose of this paper is to extend the results
in the analytic case to certain operators with complex coefficients. In doing so,
we shall also give new proofs for operators with real principal part. The argument
is modeled on the very elegant proof, in the C™-case, which Hérmander gave in

his Congress lecture (8] for operators with real principal part. The main results
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2 K. G. ANDERSSON March

are stated in $1, and in $2 we define certain sequences of pseudo-differential
operators used to localize the problem in T*(Q). $3 contains a proof of the non-
characteristic regularity theorem and two lemmas about the existence of sequences
of pseudo-differential operators suitable for the localization. To obtain the local
regularity theorem, we use a variant of a classical inequality of Calderdn (4],
proved in $4, and in $5 the proofs of the theorems stated in S1 are completed.

The results of this paper have been announced in [2].

1. Statement of the main results. Let K be a compact subset of the open set
Q C R™, Then it is well known (see e.g. [1] and the references there) that there
are functions ¢y € C7(Q) which are equal to 1 on K and, for some constant C,

satisfy
(1.1) D%, ()] < CCM) ¥, when ] <N

It is easy to see (compare [9]) that a distribution u is analytic in a neigh-
borhood of x, €  if and only if there is such a sequence ($y) with all ¢ =1

on a neighborhood of % and

AN
(1.2) (O] < N + |E/N) N,

This motivates the following definition of the analytic wave front set, WF (), of
a distribution .

Definition 1.1. Let z € D'(Q) and (x gs fo) € Q x R™. We say that (xq9, &) £
WF () if and only if there is a neighborhood U of x, and a sequence uy € &1Q)

=u in U and

such that uy =

(1.3) l2y(&] < N1+ |l/M N

where & belongs to some fixed conic neighborhood of fo.

Remark 1.1. Definition 2.1 is readily seen to be equivalent to the definition
of WF (u) given in [9). There is also available the set supp sp  (see [16])
whose definition, for a hyperfunction u, was indicated by M. Sato in [14] (see
also [15]). Probably WFa(u) = supp sp #, when u is a distribution, but so far
this has not been proved.

WF («) is thus a subset of { x R™ or, if one wants to emphasize the behavior
under coordinate transformations, T *(Q), where the dot indicates that the zero-
section is removed. More precisely, it is proved in [9] that, if y = x(x) is an
analytic change of coordinates in Q, and 8 denotes the map on ) x R™ defined
by Blx, &) = (klx), (k'(x))" 1)), then WF #o =1 = BWF _(«)). This also fol-
lows directly from Theorem 2.3 and the alternative characterization of WF ()
which is given in §3. Denote by # the projection T*(Q) — Q and by a.s. u the

complement of the largest open subset of { on which # is analytic. Then
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1973] ANALYTIC WAVE FRONT SETS 3
(1.4) ﬂ(WFa(u)) =a.s. u

(for a proof, see [9]). Now let P = P(x, D) be linear differential operator in
with analytic coefficients and denote by Z(P_)® the set {(x, &) € Q x R™;
P_(x, £) = 0}. Then we have the following generalization of the elliptic regular-

ity theorem.
Theorem 1.1 (Sato {14], Hérmander [9]). WF («) CWF (Pu)u Z(P ).

Note that if P is elliptic and Pz analytic, then the right-hand side is empty,
so (1.4) implies that « is analytic. In $3 we shall prove a result, Lemma 3.1,
which is slightly stronger than Theorem 1.1.

The more precise results about propagation of singularities inside Z(Pm)
will depend on the properties of the bicharacteristics of P. If P_ is real and
HPm is nondegenerate, then Z(P_) is a manifold and Hpm is tangent to Z(P_).
The integral curves in Z(Pm) corresponding to HPm are called the bicharacter-
istic strips of P and their projections on ) are called bicharacteristic curves.
If, in addition, d§ P, # 0 on a bicharacteristic strip, then the corresponding bi-

characteristic curve is regular. We denote by N,(P ) the sec {(x, &) € Z(P )
df Pm(x, f)# O}.

Theorem 1.2. If P = P(x, D) has analytic coefficients and real principal
part Pm(x, D), then

WFa(u) is invariant under HPm in Nl(Pm)\WFa(Pu).

When P is principal type, i.e., N (P ) = Z(P ), and has real principal part,
then Theorem 1.1 and Theorem 1.2 together with (1 .4) immediately imply the fol-
lowing resule.

Suppose that the distribution u is analytic in {; C Q. Then u is analytic in
a neighborhood of any point x; such that, for every bicharacteristic curve /
through x, the component of (Q N I)\(a.s. Pu) which contains x4 also contains
some point in {},.

This result was proved for operators with constant coefficients in [1]. For
general operators with analytic coefficients the more precise Theorem 1.2 has
been proved by Hérmander [9] and, for hyperfunctions and Sato’s wave front sets,
by Kawai-Kashiwara (see [11]). We shall give another proof of Theorem 1.2,

When P has complex coefficients, then Z(Pm) is a manifold of codimension
2, provided that the vector-fields Heo P, and H are linearly independent. If,
in addition, the Poisson bracket {Re P,ImP }_ Re P,, (Im P ) vanishes in
Z(P ) then the vector fields HR P, and Hy p,, arc tangent to Z(P ) and, be-

cause of the Frobenius mtegtab1hty theorem, they define a 2-dxmensmnal foliation
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4 K. G. ANDERSSON [March

of Z(P_). This foliation is called the bicharacteristic foliation and its leaves are
called the bicharacteristic strips of P. If d§ Re P_ and dg Im P_ are linearly

m m
independent on a bicharacteristic strip, then its projection on { is a regular 2-di-

mensional manifold. We put
N,(P_)=NyP )nNJP ),
where
NZI (Pm) ={x, O € Z(Pm); d.f Re Pm(x, &) and df Im Pm(x, &) are

linearly independent}.

N;’(Pm) = {(xo, fo) € Z(Pm); {Re P_, Im P x, &) = 0 in a neighborhood,
in Z(P ), of (xg, &P

Theorem 1.3. If P = P(x, D) has analytic coefficients, then WF (u) is in-
variant under the bicharacteristic foliation in Nz(Pm)\WFa(Pu).

Remark 1.2. T. Kawai has announced (private communication) that, by extend-
ing the theory of Fourier integral operators to the analytic category, he and
M. Kashiwara have proved Theorem 1.3 for hyperfunctions. The proof we shall give
has quite a different character, since only pseudo-differential operators are used.

A third case which we shall consider is when P = P(D) has constant coeffi-
cients. Then

Hp = lsén (0P, (£)/3¢ )9/ dx,

is a differential operator in (! with constant coefficients depending on the param-

eter £, If

(s €)) €N (P/)=Q x{E € R™ P (&) =0 and d, P (&) £ 0}

then this operator is nondegenerate and the bicharacteristic strip through (x, ‘fo)
is defined to be {(x  + df (sz)(rfO), fo); z € C}. These bicharacteristic strips
define a foliation, the bicharacteristic foliation of Nl(Pm). Note that the dimen-
sion of the leaves may vary between 1 and 2 depending on whether d, Re P and

dg Im P are linearly dependent or not.
Theorem 1.4. If P = P(D) has constant coefficients, then WF (u) is invariant
under the bicharacteristic foliation in Nl(Pm)\WFa(Pu).

Theorems 1.1-1.3 supplement the results of Duistermaat-Hérmander (5] for
operators with analytic coefficients, provided that the projections of the

bicharacteristic strips are regular. Then it follows directly from Theorems 1.1—
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1973] ANALYTIC WAVE FRONT SETS 5

1.3 that the conditions imposed on P and Q in [5] to prove that P maps
PQ)/C™Q) onto itself actually give that PC™(Q) = C(Q) and thus PD'(Q) = D'(Q).
However, for operators with analytic coefficients, PC™(Q) = C*(Q) under much
weaker assumptions. In fact, Hérmander [9] observed that results about propaga-
tion of analyticity for wave front sets can be used to derive very precise unique-

ness theorems. He proved the following general result.

Theorem 1.5 (Hormander [91). Suppose that Q, is an open subset of Q with
C! boundary dQ . Denote by N, the normal of 0, at x, € QO and let F be a
_conic neighborhood of (x,, * N ). Then there is a neighborbood Q' of x, such
tbal,t any u € D'(Q), with WFa(u) N F = @, which vanishes in Q, must also van-
ish in Q.

To be brief, we just state what this theorem together with Theorem 1.4 implies

for operators with constant coefficients.

Theorem 1.6. Let Q C R™ be an open set with C! boundary dQ such that all
points x € I, characteristic with respect to P(D), are simply characteristic,
e, dg P (N,)£0 for the normal Ny of 0Q at x. DenotAe by on the projec-
tion of the bicharacteristic strip through (x,, N,) and by K the convex hull of a
compact set K. If, for any characteristic x € ) and any compact set K C Q, the
component of B, N CK containing x, also contains some point in C(@ N K) then

P(DYC™(Q) = C*Q) and, what is equivalent, P(D).(DI;(Q) = .(D;:(Q)
This result improves Theorem 1.3.7 of [10].

2. A space of sequences of pseudo-differential operators. Functions ¢y sat-
isfying (1.1) are suitable for the localization of problems concerning analytic
functions in ). We shall now define certain sequences of symbols which will fill
the same purpose in the cotangent space T*(Q2).

Definition 2.1. A sequence (ay(x, £)) is said to belong to 77(Q) if, for every
compact set K CQ, there are positive constants 8 and C such that, if N > 872,
ay € CBVIK « R™) and
(2.1) sup IDEDfay(x, &) < c¥alel(r 4 1g/m7-18') when |a + B < 8N.

X €

Remark 2:1. The reason for the presence of the constant & in Definition 2.1
is purely technical. For example, the right-hand side of (2.6) will in general
admit fewer derivatives than ay and b,. However, by putting al(, =da

N.s-2]41°
we can always obtain a sequence for which & = 1.

Example 2.1. Let P(x, D) be a linear differential operator of order 7 with

analytic coefficients in @ and put ay(x, §) = P(x, £). Then (ay) € 7(Q).
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6 K. G. ANDERSSON [March

Example 2.2. Suppose that the functions ¢, (x) satisfy (1.1) in Q and that
(&) are homogeneous functions of degree r, satisfying (1.1) when |€] =L If
Xy vanishes when |€] <1, equals 1 when |£] >2 and satisfies (1.1) then
(¢N(x)x/1N(¢f )XN(rf/N)) € (). For convenience, we shall introduce a special
notation for sequences of this type. Let F and F' be two open cones in { x R”,
i.e., open subsets of £ x R™ which are invariant under multiplication of the &
coordinate with a positive number. Suppose that F C F' and denote by 7%(F, F')
the set of sequences (aN) e 7°(Q) such that, for some C >0, aN(x, £) vanishes
in CFYUilx, &) |E] <CNYand aylx, £)=1 in F nilx,§); [£] > 2CN).

Example 2.3. Suppose that F' C Q x R™ is an open cone such that n(F') =
{x; x, &) e F'lccQ,i.e., (F") is a compact subset of (2, and let p be an ana-
lytic symbol of order 7 in F', in the sense of Boutet de Monvel and Krée [3]. This

means that p is a formal sum p= 3 pk with the property that for every

- —oo<ksxr
cone F, with FC F', there is a constant C > 0 such that

(2.2) [D:Dg.pk(x, f)]§C|“+5l+lk|+1|k|!|a|!|3||§|k—|ﬁl, when (x,£)€F,

Moreover, it is assumed that pk(x, £) is homogeneous of degree & with respect
to & If (uy(x, £)) € r%F, F') for some open cone F, with F C F', then
(onle, E) = (5_ycps, 56, Euylx, €)) € 77(Q). Note that it follows from (2.2)
that pk(x, £) is an analytic function in F'. In order to obtain nontrivial symbols
with support in a compactly generated cone, we therefore have to consider the
sequences in 77(Q).

If (ay) € (@), Q'CCQ and &=05(Q) is small enough, then a, defines a
mapping C5(Q') — C[SN](Q') by means of the formula

2.3y Ayl D) = @7 fei % Dayx, Eul€)dE,  u e CT@.

By duality this mapping extends to a mapping g['SN](Q') — 9D'(Q"). We shall now
give conditions on the symbol sequence (aN(x, £)) which will ensure that the
sequence of operators defined by (2.3) is regularizing in the following sense. For
any u € &'(Q) and any ' CCQ there are constants 8 and C such that
ay(x, D)ulx) € C[SN](Q'),when N>582 and
(2.4) sup |D2ay (e, D)l < Y1, when [of <8N,
xeQ

Definition 2.2. We say that the sequence (a,(x, §)) is in 7,(Q) if, for every
compact set K C {, there are positive constants 0 and C such that, if N > 5-2,
ay € PNk x R7) and

(2.5) sup ID2DBay(x, O < VNI 4 18/M*-18, when ax Bl + R < ON.
x €K
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1973] ANALYTIC WAVE FRONT SETS 7

If (aN), (bN) € 7"(Q) and (aN - bN) € 7,(Q), we write (aN) ~ (bN).

Remark 2.2. Obviously 7,(Q) Cnr 77(Q). However, much more information is
provided by (2.3). In particular it is clear that 7,(Q) is a proper subset of
N, Q.

Example 2.4. Let (x(€)) be a sequence of functions satisfying (1.1) and
vanishing when |£| > C > 0. Then (x,(£/N)) € 7o(R™).

We shall now give a calculus for the sequences of pseudo-differential opera-
tors associated with the spaces 77({)). The treatment will contain nothing essen-
tially new beyond ‘‘classical’’ expositions of the calculus of pseudo-differential
operators. We shall, therefore, be brief at some points and refer to [6], [7], and

[13] for the calculus of pseudo-differential operators.

Theorem 2.1. Let (aN) € "(Q) and (bN) € r°(Q). Suppose that bN(x, &) van-
ishes when x is outside a fixed compact set K C). Then there is a sequence
(éN ° bN) € "Y5(Q) such that when u € C;"(Q) and N is large, then
(aN o by)(x, Du = a},(x, D)(bN(x, D). If € is small enough, we bave

(2:6)  (ay 0 by)x, ) ~ (HZ 4D ay(x, OXDTE (5, O)/a).

alseN
Proof. Put

oy (®) = by, Dulx) = )7 fei = 61 (x, D& .

If N is large, ay(x, D)vy(x) is well defined and we may operate with a, (x, D)
under the sign of integration. Therefore, (aN o bN)(x, £) = aN(x, D+ f)bN(x, £)

and we only have to prove that

(ry) = (aN oby - MEN illp2 a D2y ar )

belongs to 7,(Q). If I;N denotes the Fourier transform of b, with respect to x,

then Taylor’s formula gives that

iy & = @77 fr (e, & mdn,

where

e &= X il merg G, &7y
l7|=lenlst

'py _plvl-1 )
. <jOD§aN(x,§+tn)(l 1) dt
When x belongs to a compact set K and 2|5| < ||, then (2.1) implies

(2.7) |§\k|Ds'D§’+'yaN(x, E+ml< CTNla'Iw‘k(l + |§|/N)r+k—l'yl_lﬁ‘l

and
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8 K. G. ANDERSSON [March

@2.8) 5" D8, O/y!] < SN /1N s (g
Thus if |a|=|a| +|a"|, |81 = |B"|+|B"| and 7+ k< |y| = [eN], we have
2.9 |EMDEDEry(x, & | < (CYNlel /(1 1 /MBI gD+ 1 !>y

when 2|n| < |£|. On the other hand (2.1) implies the following inequalities when
5 € Kand |E] <207

(2.10) ]DaIDB'*"ya (x, &+ tn)l < C’;’Nla,l;

@11 & D E By, O] < I Y g/ s iy,

By choosing j =k + |8’ | “and j = k we see that (2.9) is valid also when |£] <
2|n|, perhaps with another constant. This proves Theorem 2.1, if we also note
chae N1”|/y1 < NN/NY < CN,

Suppose now that (a,) € 7"(Q) and let a,(x, D) be the mapping defined by
(2.3). The distribution kernel of this mapping is defined by

(2.12) Ky(w) = (27" He“x'f’aN(x, Oilx, Odxdé, w e CTAx D),

where ¥ denotes Fourier transform with respect to the second variable. For any
compact set M in  x §}, which does not intersect the diagonal, there are posi-
. N -

tive constants 8 and C such that K € C[8 ](M),when N>0o 2 and

213)  sup 1D2DEKy (e, Y| < CVNIHAL whea Jal 1 18] <N,

x,y eM
For sequences (ay) € 74(Q) the kernel K belongs to C[SN](M) and satisfies
(2.13) for any compact set MCQ x Q, if N> 8=% = 8(M)~2. Conversely, suppose
that (Ky(x, y)) is a sequence such that, for every compact set M CQ x Q, there
are positive constants 0 and C such that Ky e clNI(M) and satisfies (2.13)
when N > 8~ 2. If in addition the functions K (x, y) vanish when y is outside a
fixed compact set, then the sequence (a,(x, f))— (e—itx: &) JKy y)ei(y: f)a’y)
belongs to 7,(Q) and

aN(x, D)ulx) = J.KN(x, Vuly) dy.

However, even if there is no compact set L C{) such that all KN(x, y) vanish:

when y ¢ L, the mapping C3(Q)— D'(Q") given by
u fKN(-, Vulyldy, ueCHQ"),

is well defined for any Q' CCQ if N is large enough. We denote by T () the
set of such mappings. More generally we make the following definition.

Definition 2.3. Suppose that (A,) is a sequence such that if Q' CCQ then

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1973] ANALYTIC WAVE FRONT SETS 9

Ay is a linear mapping from Cy@") to D'Q"), for large N. Let (¢y) be a se-
quence of functions in C{(Q) with support in a fixed compact set and satisfying
(1.1). Assume now that for every such sequence (QSN) there is a sequence (aN) €
7(Q) such that, if u € CJ(Q) and N is large, A\ ($yu)(x) = ay(x, D)ulx). We then
say that (4,) € T"(Q).

The formula (2.12) extends to define a sequence of kernels (K (x, y)) for
any sequence (A,) € T7(Q). We only have to suppose that ¢y (y) =1 when (x, y)
belongs to the support of w. Clearly T (Q)C T7(Q) for every 7. We shall now de-
fine another subclass of T7(€).

Definition 2.4. A sequence (4,) € T7(Q) is called properly supported if the
corresponding kernels K, (x, y) have support in a set M CQ x  such that both
projections M — () are proper.

Every sequence (4) € T7(Q) can now be written as a sum (Ay + Ay) where
(AI:,) is properly supported and (A:,) € To@). In fact, let M be a neighborhood
of the diagonal in Q such that both projections M — ) are proper. Choose func-
tions Xy € C™(Q x Q) such that x,(x, y) =1 in a fixed neighborhood of the
diagonal, X, has support in M and satisfies (1.1) on compact subsets of {} x (.
Let (K ) be the sequence of kernels corresponding to (A ) and denote by (A )
the sequence “of operators corresponding to ({1 — x5 )}Ky). Then (4 ") eT (Q) and
(Ag) = (Ay — Ay) is properly supported.

If (By) € T7(Q) is properly supported, it is easy to see that there is a se-
quence (b,) € 77(Q) such that (By) = (by(x, D)). Therefore, every sequence (ay)
€ T"(Q) has a symbol in the sense of the following definition.

Definition 2.5. The sequence (aN) € 77(Q) is called a symbol of (AN) e T(Q)
if (Ay -aylx, D)) e TyQ).

The symbol of a sequence (4,) € T7(Q) is uniquely determined modulo 7o(Q).
In fact, we have already shown that if the kernels K (x, y) corresponding to
(th(X, D)) € T,(Q) vanish when y is outside a fixed compact subset of (1, then
(ay) € 75(Q). In the general case one just has to multiply Ky(x, y) with a se-
quence qSN(y) satisfying (1.1), with support in a fixed compact set, and apply
Theorem 2.1.

Theorem 2.1 immediately extends to give the symbol of the composition of
two sequences (Ay) € T'(Q) and (By) € T°(Q), provided that one of them is
properly supported. We are now going to study the effect on the symbol, modulo
TO(Q), of transposing the sequence of operators and of making an analytic change
of coordinates in (). The space T(Q) is invariant under these operations, so we
may suppose that the sequence of operators (A.N) is properly supported. Given a
properly supported sequence (4,) € T"(Q) there is a sequence (ay) € 7'(Q) such
that, if « € C7(Q) and N is large, then
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10 K. G. ANDERSSON [Macch

(ANu)(x) = (2n)’"fei<x' 5)aN(x, (&) d¢
= (27)-"I<Iei(x’y'§>aN(x, Euly) dy) dé.

Since (A ) is properly supported, there are functions Xy € C™(Q x Q) satisfying
(1.1) on compact subsets and having support in a set M, for which both projec-
tions M — Q are proper, such that if a,\',(x, ¥, €)= xpnx, Ydaylx, &) then

(2.14) (4 y)) = 2m) [ ( feix=»Day (s, y, Su(y)dy) dé.

This representation of (AN) is particularly useful for the study of the transposed
sequence and the sequence obtained after a change of variables. Suppose more
generally that bl\ll(x' y, &) are functions such that for every compact set L CQ x
there are positive constants & and C such that bg, € CUNX(L x R™), when N »
5-2, and

sup 1DEDED b, (x, v, OF < CYNIHB(L 4 (g/ny =17,
(2.15) x,y €L Y ’

when [a] + |B]+ |y <BN.

Then (2.14) defines a sequence of operators (By). We shall show that this se-
quence still belongs to T7(Q). Clearly we may suppose that by (x, y, §) vanishes
when (%, y) is outside a set M C Q x Q, such that both projections M —  are
proper. In fact, every sequence. (BN) may be written as a sum of a sequence of

this type and a sequence in TO(Q). Now put bN(x, &)= e~ itx & BN(ei(x' 5)), i.e.

bylx, & = (h)‘"f(fb,'\,(x, x4y, E+ e ’”dy>dn,

and operate with By under the sign of integration in u(x) = @m)~" fettx Oou(E)dt.
This gives that (Byu)(x) = by(x, D)u(x), so we have to show that (bN) €
7(Q). Put dy(x, y, €)= bl\'l(x, x +y, £) and denote by a7N the Fourier transform
of dy with respect to y. Then

byt &) = @m " [d (s, 7, €+ 7).

For sufficiently small ¢, Taylor expansion gives

dye,m Evm= X D) dylx, n, EmYal + rylx, s €,
a|seN
where

TN(X, 7 &)= Z (iT])'yJ.(I)DZQN(x, 7, &+ )1 ~ t)‘yl—ldt/y!.
l')’lz[EN]+l

Because of the Fourier inversion formula we have
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1973] ANALYTIC WAVE FRONT SETS 11

bylx, &) = l 2 D) D (x, y, O/l +ry(x, O

als eN

It remains to show that (ry(x, £)) = (@)™ [r(x, 1, £)dn) € 7(Q). Like in the proof
of Theorem 2.1 we consider two cases. When 2|n| < |£| we note that (2.15) im-

plies that

|n7D$D'§+7a7N(x, 7, € + |/ y!

(2.16) < c’;’Nl“|(1 + €+ m]/N)"l“/"lBlU + |n1)'"'1N|71/y!
< cleqy jg/mr=1r =18 gy -nm1,

And when |£| <2|n| we get from (2.15)
(2.17) |§1f|n“/050§+“/2N(x, 2 &+ mpl/yt < VNl 4 (gt

It follows immediately from (2.16) and (2.17) that (ry(x, £)) € 7,(Q) and we have
proved that

(2.18) (b5 )~ ( T ()DL, 5, «9/a~'lx=y>-

als eN

From this result one proves the following two theorems in exactly the same way

as the corresponding results are proved on pp. 105—109 of {71.

Theorem 2.2. Suppose that (Ay) € T'(Q). Then the sequence of transposed
operators (‘AN) also belongs to T™(Q). If (aN), (‘aN) are symbols of (AN) and
(‘,AN) respectively, we bave

(2.19) (fay (x, g))~< > ilalpgpgaN(x,_g)/ax>,

|a|<en
provided that ¢ is small enough.
If : Q —Q is an analytic diffeomorphism and (4,) € T7(Q) we put
(2.20) (A'Iflu)(x) = AN(u o )k~ Hx).

Theorem 2.3. Suppose that (Ay) € T(Q) and that k: Q@ — Q is an analytic
diffeomorphism. Then the sequence (Allfl)’ defined by (2.20), also belongs to
T"(Q). Denote by Y (x, &) the following polynomial, of degree < lal/2, in &

(2.21) g (%, &) = D; exp (i{k(y) = «(x) - &"(x)y - ), f)lx___y.

If (aN)’ (aﬁ) are symbols of (AN) and (Aﬁ) respectively, we have
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12 K. G. ANDERSSON [March

(2.22) (X (), g))~< T 0@, WO .f)/a!),

alseN

provided that ¢ is small enough. Here al(va)({c, n) = (z'Dn)aaN(x, 7).

3. Analytic wave front sets and sequences of pseudo-differential operators.
For (C*-) wave front sets there is, besides a definition corresponding to Defini-
tion 1.1, an alternative description of WF(#) based on the elliptic regularity
theorem for pseudo-differential operators (see [7] and [8]). We shall now give a
similar characterization of WF («) using the sequences of pseudo-differential
operators introduced in the previous section.

Definition 3.1. (xo, tfo) is called noncharacteristic with respect to (aN) €
7"(Q1) if and only if there is a conic neighborhood F of (xo, ‘50) and a decomposi-
tion a4, =aj + a;\,"l, with (al’v'l) € 7~ 1(Q), such that

(3.1) lay(x, )] > |]/C,  when (x, &) € F and |€]| > CN,
for some constant C > 0,

Lemma 3.1. Suppose that u € &'(Q). Then (xg, fo) ¢ WFa(u) if and only if
there are positive constants & and C and a sequence (aN) € M(Q), for some 1,

such that (xo, rfo) is noncharacteristic with respect to (aN) and
(3.2) lD:aN(x, D)ulx)| < cNAI al, when |a| <8N and N> 672,

Proof. We shall construct a ‘‘local parametrix’’ (eN(x, D)) € T7"(Q), such
that (ey o 2y )(x, £)~1 in a conic neighborhood F, of (xo, &) with F) CF.
To do this we put ey’ =1/a} in F N{&; |§] > CN}. When & < 8'N, |€| > CN and
(x, &) € F, we then recursively define eE'_k by

(3.3) ek - Z ila'nge;J"j . D:al’v'l e’

N N
lal+l=k-7’>0
Finally put

eN(x, &) = Z e” "k (x, 3K uN(X, 8,

k<3N

for some sequence (uy) € ro(Fl, F), which vanishes when |£] < CN. To check
that (ey) € 777(Q), we have to prove that

(3.4) |D§D§e;,'—k(x, Hl<cha+ l&l/nyk=lasBl Ghen ot Bl < &"N.
For k=0 we note that D:Dg (ey” - ap) =0, if |a+ B| #0. Therefore (3.4) fol-
lows from Leibniz’ formula and (3.3). Choose now sequencdes (¢N(x)), (l/IN(f)) €

7%(Q) such that é5(*) =1 in a neighborhood of x;, ¥y(€)=1 in a conic neigh-
borhood of fo, when |£] > CN, and ¢'N(x)¢N({:) vanishes outside F;. Then
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1973] ANALYTIC WAVE FRONT SETS 13

W (D) \(x)ey 0 ay)x, DY = (D) (x)) € T (@)

Because of (3.2), this implies that

ID§¢N(D)¢N(x)u(x)| < CNNlal, when |a] < 8N.

If we put ¢y = ¢[N .5~ 1]4p» then up(x) = py(x)ulx) satisfies (1.3).

For a linear differential operator P(x, D) with analytic coefficients, Lemma
3.1 implies Theorem 1.1. We shall now give two lemmas about the existence of

~ suitable cut-off functions in TO(Q), which will be used in the proofs of Theorem
1.2 and Theorem 1.3. Suppose that F and F' are two open cones in @ x R such
thac F C F' and let (#N) e 1%F, F'). If p= E_OKkSka is an analytic symbol
of order 1 in F', we put
pylxs €)= > p(x, Oy lx, &)
~Nskx<l

Lemma 3.2. Suppose that pl(x, &) is real and that d§ pl(x, EYLO in F'.
Let & be a bicharacteristic for pl in F'. If F'is sufficiently small and F" is an
arbitrary conic neighborhood of 8, then there is a sequence (ay) € Q) such
that aN(x, &) vanishes in F\F", the points on & NF are noncharacteristic with
respect to (aN) and ([pN(x, D), aN(x, D)) € T (@(F)). Here m denotes the pro-
jection T*(Q) — Q.

Proof. We shall choose aN(x, £) as a sum E—Nskso a,’f,(x, f)xN(f/N),
where a,’fl is homogeneous of degree * and XN(f) are functions which satisfy
(1.1), vanish when |€| < CN and are equal to 1 when |£| >2CN. We want the
symbol sequence of ([pN(x, D), aN(x, D)) to be in TO(W(F)). Since aN(x, &) will
vanish when pN(x, EY£1 and since, in view of Example 2.4, it is irrelevant how
the symbol looks for || < CN, it will, because of Theorem 2.1, be sufficient to
find solutions ag to the equations

(3.5) Hp 1(ag) = (I)k(pl, e, pRH al, .-, a§+1), k< &'N,

where
Q" ey af = 3 i(lal'l)(D,;Pij“fv - D%l D%/ al
]—l a.| =k -1>0
with the following properties:
(3.6) a,’fl(x, £) is homogeneous of degree & and vanishes in F\F";
(3.7) a,?,(x, &) =1 in a fixed conic neighborhood of £ N F;
(3.8) |D:D'§a§(x, &)< CNNI®HBI*k Ghen |a + B + & < 8N, on compact sub-

]
sets of F .
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14 K. G. ANDERSSON [March

Because of the homogeneity of tlf,, (3.8) shows that (ay) € °(Q). Moreover,
since a:, satisfies (3.5), we will have ([pN(x, D), aN(x, D)) € T y(#(F)). Now
pl(x, &) is a first order real symbol of principal type. If F'is small enough, we
can therefore find an analytic change of coordinates (y, 7]) - (x(y, 7), ‘f(y, 7))
such that x(y, 7) and &(y, n) are homogeneous of degree 0 and 1 respectively
and H .. is transformed to 3/3)/"- Denote allfl(x(y, 7, &(y, 7)) by b;’fl()” 7). For
k =0, (3.5) reduces to 8bg/8yn =0, If y' = (yl, cee, yn_l) we choose bg =
bg(yl, 1) independent of y_ and so that (3.6)~(3.8) are satisfied by a,?,. For
any function gly, 7) = EOS!-CI.(}'I, n)y;, which is analytic in ¥ ,» We put

(3.9) Uy, p) = 2 e fy', pyitl/G + ),

0<i
Denotihg <I>k(p1, cee, a,’f;”)(:f(y, 7]). f(y, 7])) by g,’f,(y, 7]), we now solve the
equations (3.5) recursively by putting bf\, = Ig:,. Clearly the functions a,’f, ob-
tained in this way, satisfy (3.6) and (3.7). It remains to prove the estimates
(3.8). If we put D = (Dyl’ ceey Dyn)’ it follows from (3.5) that bg is a sum of
less that C* terms b,’fl of the form

I3 0.1 a al
(3.10) bN=(Io(Bm1D )oIo(Bsz 2)0---010(Bm10 Nop),

where 2, _._,(m +]a|)<k+1<2k and
(m_+|B1)
(3.11) sup IDBBm y, P <C i+l Al (m )1B1.
(v, m)eM i !

Here M is compact and C = C(M) is independent of 7 and k. In particular each

Bm, is an analytic function. To prove (3.8), we have to prove that, on compact
; ;

sets lDyb:',(y, 7 < CNN"yIHe, when |y| + £ < ON. Now all derivatives except

a/ay" commute with I, and a/ayn ol is the identity. If the differentiations are

carried out, then Dybllfl may be written as a sum of less than CN terms of the

form

(3.12) uIE,:(zoB;n,loloB;n,zo.-- oloBy, DY),

where |B| + 2, ,m <k+l+]y| and the functions By, n) satisfy esti-

21< 1

mates of the type (3.11). To estimate (3.12), we note that

(.13)  |Uofyolofyoceolofy yol)< IT Guplfbly Y

1si<!
Therefore

vk < CN< [1 (’"i'!)> N‘BVI’! < cNNRHY,

1=sisl’
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This proves (3.9) and completes the proof of Lemma 3.2.

Lemma 3.3. Suppose that a’§ Re pl(x, £) and df Im pl(x, &) are linearly
independent and that the Poisson bracket {Re pl, Im p}(x, &) vanishes in F',
Let & be a bicharacteristic strip for p' in F'. If F'is sufficiently small and
F" is an arbitrary conic neighborhood of B, then there is a sequence (ay) € 2(Q)
such that ay vanishes in F\F", the points on h N F are noncharacteristic with
respect to (ay) and ([py(x, D), ay(x, D)) € T (a(F)).

The proof of this lemma parallels the proof of the preceding one. Because
of the Frobenius integrability theorem, there is an analytic change of coordinates
(y,n) o xy, ), £, 7)) such that x(y, ) and &(y, 1) are homogeneous of
degree 0 and 1 respectively and H , is transformed to (9/dy, + i9/dy, _,)/2.
Again we denote az(x(y, ), €ly, 7)) by bﬁ(y, 7). bg is taken to be independent
of y, and y _, so the right-hand side of (3.5) will in the new coordinates be a

convergent power series

gly's =z, z, ) = Z cl.(y", z, q)Ei,
0<i
whete z =y +iy _,,Z=y -iy,_jand y'=(,,. -,y _,) Finally the
operator [ is, in this case, defined by
UG 2, F, ) = 2 ey, z pzi* /G + 1.

0<i
With these modifications exactly the same proof as for Lemma 3.2 works for

Lemma 3.3.
4. An inequality. We start with the following simple lemma:

Lemma 4.1. Suppose that the functions bN(x, &) € C*(R™ x R™) vanish when

x is outside a fixed compact set and satisfy
(4.1) \D;l)ng(x, Ol <Cyt+ |§|)"|Bl, when |a| <n+ 1+j, |B] <]

Put BNu(x) = (277)_”fei <x‘f)bN(x, EVa(&)dE. If (4.1) is satisfied for j=0, then
BN is a bounded operator on L2(R™) with norm < MCN, for some constant M in-
dependent of N. Moreover, if (4.1) is satisfied with j =1 and bN(x, &) is real,

then By o A-Ao Bf] is a bounded operator on L2(R™) with norm < MCN. Here

A=+ |D|D%,

Proof.” Parseval’s formula gives
Jo - Byuta)ax = 2m)=22 [ 3 (n - €, OO dé dn.
Because of (4.1), we have IEN(T] -§,8)< M, Cy+ |n~ &))"=, Therefore

ol - By dx| < M- Cylul - ol
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This proves the first part of the lemma. For the second part we observe that the
adjoint BY of By is given by

AN ) _
(B u)n) = fe"’""mbN(x, ulx) dx.
Thus, if aN(x, &)= bN(x, EXa + ]f]z)%, we have

Ty (2 5
Ao BNu)(n) = (2n) ”fa N('q - ¢ n)u(f) d¢
and

P
By o Al = (2m) " [y = €, DAL d.
Now a, is real and, because of (4.1),
(= & 1) = (g = & O <M, - Cyll+ 1€ g1,

The same argument as for the first part of the lemma now finishes the proof.
Before we state the main result of this section we have to introduce some

notation. Let { be a neighborhood of the origin in R" and I' an open cone in

R"1, Suppose that Sk(x, £, k= 1,0,-1,..., are analytic functions in @ x I',

homogeneous of degree %, such that, for some constant C; independent of %,

IDEDE.SHx, €] < C Lo 2k rlangprier -1,

“.2) when (x, £') e Q x I,

Let F be a closed cone with F CQ x ' xR and pur L(x, &) = €+ Sslx, €.
We shall assume that L! is principally normal in some conic neighborhood F of
F, i.e. there exists a function Alx, &), analytic in F, and homogeneous of degree

zero, such that

(4.3) ALY, LY(x, & =Re (LYx, ONx, &), when (x, &) € F .

Now choose functions ¢y € CF(Q), ¥, € C®(R"~!) and Xy € C(R™ ) such
that i is homogeneous. of degree zero and has support in T, ¢N(X)¢N(§') =1
on F, Xy vanishes when |£'| <2C and equals 1 when |£'| >3C. Puc

pnx, £ = qSN(x)l,er(f')xN(f'/N). If ¢y, ¥y>and x5 are suitably chosen, we

will have

44 D2DEpy e, &) < clesflainla g1, Ghen jar B <N,

and

@5)  p2DEp e, N < U+ €D, when ll <2n+s, Bl < 2.
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We define
LN(x, & = z'fn + SN(x, £,
where Sp(x, &)= 2 Sh(x, &)p,lx, ).

-N=zsk<l

(4.6)

Ly =Ly, D)=9/dx_+ Sy(x, D') is, strictly speaking, not a pseudo-differen-
tial operator in ). It is the sum of a differential operator in x and a pseudo-
differential operator in x' with ‘‘coefficients’’ depending on x . Finally we
assume that (ay) is a sequence in 7°(Q) such that each ay has support in F,
Put A} =Q+ ID'|2/N2)s2, golx,) = (- 0)2/2 - 6%/4) and denote by |- |
the LZ-norm in x'-space.

Theorem 4.1. Let L, and a, be as above. Suppose that the functions
oy € ColQ) satisfy (1.1) and put uy(x) = ¢y(x)ay(x, DYulx). Then there are
positive constants C and o such that, if the functions ¢N(x) vanish when
|x | >0 and if N> C, then

Ng (x )

NflIAy o " ugl?dx,

(4.7)
Ng_(x ) 00
< CﬁlAN §o%n LNuN]lzdxn + CNf"unzdxn, ueCy.

The constant ¢ does only depend on Co and F.

Proof. Put v, (x) = Azgo(x")uN(x). Then
Ne (x )
Lyvy =My Lyty + (N(x_— 0)log Avy + Ryuy,
(4.8)

Ng (x )
where RN = [SN(x, D"), AN o n,

Denote by R,:,(x, £') the sum

Ng_(x )2
2 ddpga+ 12N T DS (x, £ al
1s|alsonN
and let SN(x, ¢') be a sequence of functions that satisfies (4.4), (4.5) and van-
ishes when (x, {"', fn) [4 Fl for all fn" Suppose also that BN(x, f') =1in F,

when |€’| >2C(N. We may then write

(4.9) Ry = Ry + R} +R2,

where

(4.10) Ry, € = 8(x, EMRY(x, €1,
(@10 RZ(x, £ = (1= 8,(x, ENRY(x, £,
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(4.12) Ry, &) = [l (', x, €)dn
and

RS TP VR C DL NC PR

lal=lon]41
. ,[(I)Dcé,(Z + 1€+ tTl'IZ/NZ)Ng”(x")/Z(l - t)!al—ldt/a“"

Here §N denotes the Fourier transform of Sy with respect to x'. Now
D22 + |€17/ND/2) < (ol 2 + 1112w 2)ts-lal 2,

(4.13)
if |s| < No and |d| < 2Ne.

Therefore, if max, | crgaxn) = 70%/4 is less than o0, we immediately get from

(4.12) and Lemma 4.1

(4.14) fuR;uNuzdxn < CNflluNuzdxn < c'jfuuuzdxn.

The last inequality follows from Lemma 4.1 applied to by(x, D) = ¢y (x)ay(x, D).

<

The same estimate holds for the LZ-norm of RI%JUN’ i.e.,
(4.15) fIRZuyl?ax, < ™ fllul ?dx,.

In fact, since Rj(x, £") vanishes in the support of by(x, £), we have
RY(x, D'} 0 by (x, DYu = R (x, D)u, where

Rite, = X dVlfeiem@h (g, &/y)
lyl=lonlsr
(4.16)

. (I;D:‘/:Rﬁ(x, &+ 1 - t)‘7|’1d1> dy.

Because IDng: RAG, €N < CN when |a| <7 +1 and |y| = [oN] +1, Lemma
4.1 applies to give (4.15). We now put

(4.17) R} = Rﬁ, oA;,NgU(Xn),

Since SN(x, EN= E_NskslSk(x, rf')xN(f'/N) in the support of 8 (x, £') and
XN(E') vanishes when |€'] <2C, it follows from (4.2) and (4.13) that

418)  DYR3Ge, &N <N. X (€04, when [yl <n+ 1.

15[ alsoN

Here the constant C, only depends on C and the constant C in (4.13). If o

is small enough, we get from (4.18) and Lemma 4.1

(4.19). fIRuyll2dx, < C 0w Nflloyl?dx .
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In view of (4.8), (4.9), (4.14), (4.15), (4.17), and (4.19) it will be sufficient to
prove

(4.20) Nf“lelzdxn < CsfliLNvN - (N(x_ - o) log AN)UNHden + CNJ.Uqudxn,

for some constant C; which stays bounded as ¢ tends to zero. Put Sy = Ay +
iBy, where Ay and By are real and denote by (, ) the scalar product in Li ‘.
Then

,["LN”N - (N(x_ ~ 0log A vyl ?dx

(4.21) = fllovy/ax,, + iByvyl2dx,
+ [l4ygvy - e, = Olog Aoyl Pdx, + 1y + 15 + 1,
where
IIIV ==~ 2Ref(3vN/8xn, (N(xn ~ o)log AN)UN) dx_
=N|w,, (log A v, )dx_,

11%, =~ 2Re f(iBNUN, (N(xn ~ o)log AN)UN) dx_, and
II?J = 2Re f(avN/ax" +iByvy, Ayvp)dx .
If we denote (log AN)V’UN by wy, we have

2Re (iByvy» (log Aylv ) = 2Re (illlog A%, B Juy, wy) + By - BYwy, w

NYN? N

Because of (4.2), (4.5), (4.8), and the fact that xN(f') vanishes when lf’l <
2C, it foilows from Lemma 4.1 that ||[(log UN)%' BN;UN I < Cllugll and
”(BN - BN}‘UN” < Cllwyll. Since |lvy) <2 - (log 2)77% .« Jlwyll, we get
(4.23) 12i<c,-o- Nfulelzdxn.
To estimate 113\',, we observe that
3 . *
Ig = f(avN/axn +iByvy, (AN - AN)UN)dxn

(4.24)
+ f([AN’ a/axn + iBN]vN, UN) dxn.

Let now vy (x, &) be a sequence of functions which satisfy (4.4) and (4.5), with
&' replaced by £. Suppose also that vy has support in F, and equals 1 in F,
when |£] > 2C(N. We then write

(4.25) [An» /0% +iBy1=EY + EXL + E},

where
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Elb(x, &)= vN(x, f){tfn + BN(X, &, AN(X’ &N,
Eg,(x, & =(1-vylx, ORE + BN(x, &, A (x, &N,
iwx!,miy_t 1 Y '
EI%J(x, &)= !3{2 fe 7%y )7<f0fy(x, 7', &, N1 - t)dt) dn/Z, and
[l s €5 0 = A, x s EVDYLBGE, €+ 1)
- Byla's %, €00y & 1)

Since xy(€") vanishes when |£'] <2C, (4.2), (4.5), and (4.6) imply that
12 E3(x, ") < C when |a} <7 +1 Thus Lemma 4.1 gives

(4.26) IEZvpll < llwgll-

Moreover, because of (4.3), there are functions p, and p, homogeneous of degree

zero and analytic in a neighborhood of the support of ¥y such that
{En + B;J(x, &, Agl(x, £} = py f)(z’fn + z'Blf,(x, N+ #z(x, f)AI}J(x, &n

1 2
Put vy =vy - p; and vy =vy - ft,. Then

(4.27) EIEJ = V;J(x, D)o (a/c?xn + iBN) + V[%J(x, D)o AN + E:,,
where
(4.28) fIEfvyldx, < € fllvgl? ds,.

We now have

f([AN, 8/d, + iByluy, vy)dx,
=f(VI{J(X, D)o (a/axn + iBN)UN, UN) a’xn

+ J020 D) oAy - N(x, - llog Ayuy, vy)dx,
(4.29)
+ N ([, D), (log A x, - Oy, vy)dx,
4 .
+ Nf(vlfl(x, D)(xn - o)wN, wN) dx" + 22 (E;va, UN).
Exactly as for (4.15) it follows that
(4.30) JiEZo 17 dx, < N flufdx,,

Since (4, — A;}), v!(x, D), W?(x, D), (log AN)%], E;, and Eg, are bounded
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operators on Lz, it follows from (4.24), (4.29), and (4.30) that, for any ¢ >0

pe x y ’
< c (ffuav /0x_+ iB, v l|%dx + cﬂlz‘\ vy —~ (N(x_ - 0ollog A v 12 dx
NP =5 N n N“N n NN n NN n

(4.31) +e lfquuzdxn +N ..af”wN"Z dxn),
o O [ Nu) 2 .

Here C5 only depends on C, and F, while C depends on bN(x, D)=
¢nx)ay(x, D) and thus on . To prove (4.20) itinow only remains to combine
(4.21), (4.22), (4.23), and (4.31). First choose € sothat C5 . €<1. Then the
first two terms in (4.31) are absorbed by the first two terms in (4.21). After that,
choose ¢ so that 2(C, + CS) - 0<1. Then, if N is large enough,

- C36'1f|luNN2dxn - N(C, + Cs)oflleHza’xn
> CN [llwy 12 dx,, - €™ [l 2ax,.

Since |jv, || <2(log 2)"%||wN|| this completes the proof.

Remark 4.1. We have actually proved a slightly stronger inequality that (4.7).
On the left-hand side ANgo ) could be multiplied by (log A )/z

Remark 4.2. The proof of Theorem 4.1 is modelled on the proof of Th€oréme 1
in [12}. Except for technicalities, the main difference is that the norm of RISV has
to be estimated as in (4.19).

Remark 4. 3. It was assumed in Theorem 4.1 that u € C§. However, the proof
works without change for any u € C such that ay(x, D)u € CE ] (Q) for some
8> max1xnlsoga(xﬂ) ~70%/4.

5. Completion of the proofs of Theorems 1.2—1.4, The proofs of the three
theorems are similar but, since there are some differences, we give them one by
one.

Proof of Theorem 1.2. Clearly it will be sufficient to prove the following
“semilocal” statement. Suppose that (x,, ;) € Nl(Pm)\WF ,#) and denote by
£ the bicharacteristic strip through (x,, 50) Then there is a closed conic neigh-
borhood F of (x, ‘fo) such that if 4 N F n CWF (u) £& then &N FNAWE, () =
We shall prove that there is a positive constant y, independent of (x, rf )€
Fn Bnilx, &) |€] =1, such that if (xo,f ) ¢ WF,(u) then 8N B (xo,fo) n
WF () = &. Here B (xo,;f) {(x, f) (& —xg, &= €Nl <y4. Since dg P, (x, )40 in
N (Pm) we may assume that aPm/afn £0 at (xo, fo) According to a factoriza-
tion lemma of Hérmander [9, Proposition 6.1] there is a closed conic neighbor-
hood F, of (xo, fo) such that

(s.1) P(x, &) = Qlx, &) 0 ¢+ S(x, ;ﬁ"')),
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in a conic neighborhood of F' Here S(x, £ ) is an analytic symbol in (x, £*) and
Ox, €)= 0<]<m_1 ]q(x ¢! )f’ for some analytic symbols q(x &'Y of order

m~1 —~j. The r1ght~hand side of (5.1) stands for the formal composition of the
symbols. Suppose that F C F, and that (%, «fo) € £ N F N CWF _(x). Then
(UxT) NWF (&) = &, for some conic neighborhood U x " of (xo, fo) We may
assume that U is of the form U’ x I, where I={x_; |x_-X, |<é¢. In view of
Lemma 3.2, there is a sequence (a )€ 7%(Q) such that supp a CF,, (supp a )ﬁ
(R"~Y x I x R") C U x T, the points on & NF are noncharactenstxc with respect
to (ay) and

(5.2) ([A1=™ o P(x, D), ay(x, D)) € T (a(F)).

As before, 7 denotes the projection T*(Q) — 0 and Ak = (1+ |D|)*/2. Choose
functions py(x, £') satisfying (4.4) and (4.5) with support in a set where

S(x, &) and q(x £') are defined such that p,(x, £Y=1in F, when |€'] > CN.

Put
g V= X gt Oyl O,

-N<ksm-1-j

QN(x’ f): Z ]-qN(X, f,)‘f;y

0Sj<m=-2

Syl = L shx, Epy(x, ) and Ly(x, &) =i, + S (s, &)

~-N<gk<l]

Since py = 1in F,, when |€] > CN, it follows from (5.1) and (5.2) that

(5.3) (Qy(x, D)o Lylx, DYoaylx, D) =A™~ oay o A1"™ o Plx, D) € T y(m(F))

We may assume that F| N WF_(z) = & and that the points in F, are noncharac-

teristic with respect to (QN\. Then it follows from (5.3) and Lemma 3.1 that

(5.4) D% Lyy(x, D) o ayle, Diul)| < €N, when |of <8N and x & n(F).

Moreover, since (supp a\,\ AR xIx RN CUxT, we have

(5.5) ID}ay(x, D)ulx)| < cNnlal

when |a| < 8N and x ¢ alsupp a,) N (R*~1x D

We are now in the position to apply Theorem 4.1. First of all it is clear that we
may suppose that x j = 0. Then I=1x ; |x,| <ei. Let o be the constant in
Theorem 4.1 and Iet the functions ¢,V(x ) satisfy (1.1), vanish outside - /2 <
x <0 and be equal to 1 when 0<x < 0/2. Put bylx, &) = ¢\ (x Jay(x, £).
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Then all assumptions in Theorem 4.1 are fulfilled, ex~ept that we do not know
that » € C(Q). However, it follows from the results of (5] thac uy = bylx, Du €
C[8 N](Q) In fact this, and the corresponding resuits needed for Theorem 1.3 and
Theorem 1.4, could be proved directly using the methods of this paper. If ¢ € Co
and equals 1 in n(Fl), then v = dA™ 2Ry © C, if & is large enough, and

Po A%y~ in ﬂ(FI)- Therefore we may assume that u € C and Remark 4.3
applies. If supp a, is close enough to &, it follows from (5.5) that (5.4), with
ay replaced by b, is valid when x < 0/2. Since go(xn) <~ 0°%/8 when 0/2<
x, < 0, it follows that the right-hand side of (4.7) is bounded by CN. Thus

5.0 ) IANu2dx <N, where A= min g (x)=0%/32.
0<x,x0/4 O<x,s0/4

Because of Euler’s identity, ((dg Pm)(xo. fo), (fo) = um(xo, fo) = 0. We may
therefore assume that [£ | < €l€'] in the support of b, and it follows from (5.0)
together with Sobolev’s embedding theorem that

(5.7)  |D%ay(x, Dhulx)| < VN, when lal <AN and 0<x <o/s.

Lemma 3.1 now gives that {(x, £) € £; 0 < x 0/8} ﬁWFa(u) = @. It follows in
the same way that the points on 8, with — 0/8 < x, <0, are in the complement of
WFa(u). Since o does not depend on X, this completes the proof of Theorem 1.2.

Proof of Theorem 1.3. Let (x,, £)) ¢ N (P N\WF o). Then there is an ana-

lytic function Alx, £) homogeneous of degree m-— 1, in f, such that

(5.8) (P, P Yx & =Ax, OP, (x, &) = Nx, O _(x, &),

in a conic neighborhood of (xo, fo). We shall multiply P with a nonvanishing

analytic function glx, £) homogeneous of degree 1 — m in &, such that

(5.9) tgP, . gP Yx, &)=0

in a full conic neighborhood of (xo, «fo). Because of (5.8), we have
lgP,, 8P 1 =2ilm(P (glP_, gl ~Agg + P _lg g¥/ 2

It will therefore be sufficient to solve the following nonlinear equation

(5.10) P gl-Ag+P lg gl/2g=0.

Since the last term vanishes at (xo, fo), we can employ the Cauchy-Kovalevsky

Theorem and solve (5.10) in a conic neighborhood of (xo, f ) with data given on
any hyperplane with normal N, provided that ((d.f Pm)(xo, 50) N) # 0. Moreover
it follows directly from the uniqueness of the solution that, if we give data homo-

geneous of degree &, then g is homogeneous of degree k. Denote by & the
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(2-dimensional) bicharacteristic strip through (x, £). Since (x(, &)} € N,(P ),
we may suppose that there is an open conic neighborhood F of (x;, &) such
that

(5.11) aPm(x, f)/afk #0, when k=n-17n and (x, &) € F..

We shall also assume that (5.9) is satisfied in a conic neighborhood Fl' of ﬁl.
For some (;LN) € TO(FI, FI') we put gN(x, &) =glx, &) . “N(x’ ). If Fl' N
WF(Pu) = &, then

(5.12) ID 2gn{x, D) o P(x, D)u(x)| < calel, when lof < 8N.

Let F and F, be open conic neighborhoods of (xo, r’fo\ such that the F C F,C
F CF, and denote by F, any conic neighborhood of £. According to Lemma 3.3
there is a sequence (a,) C 7%(Q) such that supp ay CF; NF,, the points on &N

F., are noncharacteristic with respect to (aN) and
(5.13) ([gN(x, D) o P(x, D), aN(x, D)) € TO(”(FZ))‘

Since we may assume that the points in supp a, are noncharacteristic with re-
spect to (g,), it follows from (5.12) and (5.13) that

(5.14)  [DSP(x, D)o aylx, Dulx)| < VNI, when |a] <8N and x e nl(F ).

To prove Theorem 1.3, we shall prove that there is a constant y > 0, independent
of (€9, £)) € FN &N, £); |£] = 1} such thac if (7, £,) # WF_() then

(5.15) anB(k‘,E)nWF(u)=¢

In fact we shall prove that (5.15) is true for any y such that B (xo, {" ) C F,.
Suppose that B,},(xo, SO) has distance >¢> 0 to CF and denote by S, the
boundary of B . We shall then prove that there is a constant ¢ >0, mdependent
of y, such that if 6, €)Y ¢ 8 NS (xo, «f ) then & N B (%, &) NWF(2) = &. Be-
cause of (5.11) the normal of § (xo, &) at (=7, £) is not perpendicular to the
(xn_ "y xn)-plane Suppose that it is not perpendicular to the x -axis and that

x = 0. Then there are constants ¢ and M such that ¢” depends on F and tends

to zero as the neighborhood F; of £ becomes smaller, M depends ;ust on
B (xo, f ) and

D%a(x, D)ulx)| < CVn'el,

16
(5.16) when |a| < SN and —I/ngng—e"—Mlx'Iz.

We now make the following change of coordinates:

(5.17) ) yn = xn + ZMlxllz’ yl = xl.
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(5.16) is then transformed to
(5.18) |DjaN(y, D)y(y)| < CNNla|, when |a| < 8N and y € G(¢", M).

Here G(e", MY =1{y; — 1/M + 2M|y'|? < Y, S- ¢" + M|y'|?} and we have kept the
notation @, for the operator in the new coordinates. The rest of the proof now
parallels the proof of Theorem 1.2. By means of the factorization lemma of Hérman-
der, which works also in the complex case, we obtain an operator LN(y, D) =
/3y + Syly, D) such that

(5.19) lD;LN(y, D) o ay(y, D)uly)} < CNNlal, when |a] < 8N

and y belongs to a fixed neighborhood of the origin. The results of [5] give that
8/

aN(y, D)u € C[-) N]

X, it follows from Theorem 4.1 that (5.18) is actually satisfied in a neighborhood

and since the constant ¢ in Theorem 4.1 does not depend on

of y = 0. Observe that, because of (5.8), L satisfies the hypothesis in Theorem
4.1. Theorem 1.3 now follows from Lemma 3.1.

Proof of Theorem 1.4. Suppose that (x, £/) € -Nl(Pm)\WFa(Pu)- Because of
Theorem 1.3, we just have to consider the case when the bicharacteristic strip &
through (xo, f ) is 1-dimensional. Let Uy x F be a conic neighborhood of
(xys &) such that Z(P_) N (U xT o) C N (P )\WF o#). Again we shall prove
that there is a constant y > 0, mdependent of (x 0’ ‘fo) e WyxT) Nk nix, &)
|€] = 1}, such that if (¥, tf ) £ WF_(«) then 8 NB (xo, rf ) ﬂWF &) = 7. By mak-
ing a linear change of coordinates and d1v1d1ng by a complex constant we can always
reduce to the situation that X, = 0 and d, P (rfo) =(0,.-.,0,1) i.e., & is the
x _-axis. Since (0, f )¢ WF, (u) there is a conic nelghborhood UxT of (0, rf)
such that (UxT)n WFa(u) =& . We suppose that U is of the form {x; |x | <e
and |x'| <el. Let 44(£) be homogeneous functions of degree 0 with support in
I' and satisfying (1.1) when |£] = 1. Suppose also that ¢ (£) =1 in a conic
neighborhood of rfo and put x//N(f) = gb[:](f)x(f/N), where the functions XN(f)
satisfy (1.1), vanish when |£] <1 and are equal to 1 when |£] > 2. Then

(5.20) D2 (D)) < VN9, when laf <8N and x € U.

We can always assume that Ux T C U, x ro so, since {P(D), l//N(D)] = 0, it fol-
lows that

(5.21) ID2P(DY \(DYulx)] < V!9, when |a] <8N and x € U.

Assume, for simplicity, that U = {x; Ixn\ <1 and |x’| <1t Using (5.20) and
(5.21), we shall prove that if 0 <a < 1/2 then (5.20) is valid in a neighborhood
of (0, -+, 0, a). To do this we employ the change of coordinates (5.17). In the
new coordinates l,ZlN(D) has a symbol~aN(y, 7]) given by (2.2). From (5.20) it
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follows that
(5.22) ]D;"aN(y, D)uly)| < CNNM, when |a| <ON and y € G (e, M)

Here G (e, M) =1y; |y'] <e 2Mly'1? —e< ¥, < 2M|y'|? + €}. We assume that M is
so large that 2a + € < 2M¢* and put Gz(e, M) =ty; 2M]y' |2 — e < ¥, <2a}. Then it
follows from (5.22) that

(5.23) ]D;P(y, D) o ay(y, D)uly)] < el Ghen la| <8N and y € G,le, M)

Since d, P (£)=1(0,---,0,1) it follows that if the support of Yn(€) is small

enough, depending on M, then

(5.24) aPm(y, 7])/317" #£0, when (y, n) € (supp aN) N (Gz(e, M) x R™).,

We can now apply the factorization lemma of Hérmander to obtain operators
Qnly, D) and Ly(y, DY =d/8y,_ + Sy(y, D) such that

(5.25)  (Quly, D)o L\{y, D)o ayly, D)= Ply, D) o ayly, D)) € T (G (e, M),

and the points in supp ay are noncharacteristic with respect to (QN)- From (5.23)
and (5.25) we get

(5.26) ID;ILN(y. D) o ap(y, D)uly)| < CNNI‘I{, when |a| <8N and y € Gz(" M).

It follows from Theorem 1.6.5 of [10] that aN(y, D € C%SIN]. Moreover, since
P(D) has constant coefficients, L, satisfies the hypothesis of Theorem 4.1. We
therefore conclude from Theorem 4.1, in a finite number of steps, that (5.22) is
actually satisfied in Gz(f, M). Finally £ is invariant under the coordinate trans-
{ormation so (5.20) is valid in a neighborhood of (0, -+, 0, ). In view of Lemma

3.1, this completes the proof of Theorem 1.4.
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