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ANALYTIC WAVE FRONT SETS FOR SOLUTIONS OF LINEAR
DIFFERENTIAL EQUATIONS OF PRINCIPAL TYPE

BY

KARL GUSTAV ANDERSSON

ABSTRACT. The propagation of analyticity for solutions u of P(x, D)u = f

is studied, in terms of wave front sets, for a large class of differential operators

P = P(x, D) of principal type. In view of a theorem by L. Hó'rmander [9J, the re-

sults obtained imply rather precise results about the surjectivity of the mapping
P: c°°(0) — c°°(n).

Introduction.  Let  P = P(x, D) be a linear differential operator with  C°°-coef-

ficients in an open set ß C R". When  P is elliptic, then the classical regularity

theorem for elliptic equations says that the distribution u is infinitely differen-

tiable whenever  Pu is and, if the coefficients of  P are analytic, then  u is ana-

lytic where  Pu is analytic. The corresponding question, for more general opera-

tors, of describing the set of singularities of  u when that of  Pu is given has

been much studied lately (see [10] and the references there). The introduction

of the concept of wave front sets  (see [7] and   [14]) has added precision to the

statements and has also simplified many proofs.  For operators with real principal

part   P   (x, D), such that the Hamilton field

Hp    =     Z   [(dPm(x,d/d{)d/dx.   -    {dPm(x,&/dx.)d/d£.]
m       \&jzn

is nondegenerate when  £ £ R" = P"\{0j, and for some operators with complex

coefficients, very complete results for the   C   -case are obtained by Duistermaat

and Hó'rmander in  [5] (see also  [17]). Corresponding results, concerning analy-

ticity, are  proved  in  [l] (operators with constant coefficients),  [9] and   [11],
under the assumption that   P     is real and  d¿ P   (x, £) = (dP   (x, ¿¡)/d£., • • • ,

<?Pm(x, €)/d£n) ¿ 0 in  ß x Rn.  The purpose of this paper is to extend the results

in the analytic case to certain operators with complex coefficients.  In doing so,

we shall also give new proofs for operators with real principal part. The argument

is  modeled on the very elegant proof, in the  C°°-case, which Hó'rmander gave in

his Congress lecture   [8] for operators with real principal part. The main results
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2 K. G. ANDERSSON [March

are stated in   §1, and in  §2 we define certain sequences of pseudo-differential

operators  used to localize the problem in  T*(fi). §3 contains a proof of the non-

characteristic regularity theorem and two lemmas about the existence of sequences

of pseudo-differential operators suitable for the localization. To obtain the local

regularity theorem, we use a variant of a classical inequality of Calderón  [4],

proved  in  §4, and in §5 the proofs of the theorems stated in  §1 are completed.

The results of this paper have been announced in  [2].

1. Statement of the main results. Let K be a compact subset of the open set

fi C Rn. Then it is well known (see e.g. [l] and the references there) that there

are functions <pN e C~(fl) which are equal to 1 on K and, for some constant C,

satisfy

(1.1) \Da<f>N(x)\ <C(C/V)K    when    |a| < N.

It is easy to see (compare [9]) that a distribution u is analytic in a neigh-

borhood of xQ £ Í1 if and only if there is such a sequence i<f>N) with all <f>N = 1

on a neighborhood of xQ and

(1.2) iw^xai < cNd + ifi//v)-N.
This motivates the following definition of the analytic wave front set, WF   (zz), of

a distribution  u.
Definition 1.1.  Let  zz 6 3)'(íí) and   (xQ, f0) e Ü x Rn. We say that  (xQ, <fQ) £

WF   (zz) if and only if there is a neighborhood   U of xQ and a sequence   zz,,  6 fe'(0)

such that  uN = u in  U and

(1.3) |iN(ai<CN(l+|f|/N)-N

where   ç belongs to some fixed conic neighborhood of ç„.

Remark 1.1.  Definition  2.1   is readily seen to be equivalent to the definition

of  WF   (zz) given in   [9].  There is also available the set  supp sp u (see [16])

whose definition, for a hyperfunction  u, was indicated by M. Sato in  [14] (see

also   [15]).  Probably WFa(zz) = supp sp zz, when  zz is a distribution, but so far

this has not been proved.

WF   (zz) is thus a subset of fi x R" or, if one wants to emphasize the behavior

under coordinate transformations,  T*(0), where the dot indicates that the zero-

section is removed. More precisely, it is proved in  [9] that, if y = k(x) is an

analytic change of coordinates in fi, and  ß denotes the map on  Q x R" defined

by   ß(x,<n = U(x), (Vix))"1^)), then WFa(zz o k~ *) = ß(WFa(u)). This also fol-
lows directly from Theorem 2.3 and the alternative characterization of WF   (zz)

which is given in   §3.  Denote by   n the projection   T*(Q) —> Û and by  a.s.   u the

complement of the largest open subset of  Í2 on which   u is analytic.  Then
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1973] ANALYTIC WAVE FRONT SETS 3

(1.4) ff(WFaU)) = a.s.   u

(for a proof, see [9]). Now let  P = P(x, D) be linear differential operator in ß

with analytic coefficients and denote by  Z(P   )a the set {(x, ç) £ Ox Rn;

P   (x, ç) = 0\. Then we have the following generalization of the elliptic regular-

ity theorem.

Theorem 1.1   (Sato [14], Hó'rmander [9])- WFa(«) C WFfl(P«) U Z(Pm).

Note that if  P is elliptic and  Pu analytic, then the right-hand side is empty,

so (1.4) implies that  u is analytic.  In   §3  we shall prove a result, Lemma 3.1,

which is slightly stronger than Theorem 1.1.

The more precise results about propagation of singularities inside Z(P   )

will depend on the properties of the bicharacteristics of   P.  If   P     is real and

Hp     is nondegenerate, then Z{P   ) is a manifold and  Hp     is tangent to Z(P   ).

The integral curves in Z(P   ) corresponding to Hp     are called the  bicharacter-m r m
istic strips of P and their projections on ß are called bicharacteristic curves.

If, in addition, d¿ P ^ 0 on a bicharacteristic strip, then the corresponding bi-

characteristic curve is regular. We denote by /Vj(P ) the set í(x, f ) £ Z{P );

dcPm(x,£)¿0\.

Theorem 1.2.  If P = P(x, D) has analytic coefficients and real principal

part  P   (x, D), then

WF  (k) is invariant under Hp     in NAP   )\WF {Pu),a rimam

When P is principal type, i.e., N,(P ) = Z{P ), and has real principal part,

then Theorem 1.1 and Theorem 1.2 together with (1.4) immediately imply the fol-

lowing result.

Suppose that the distribution  u is analytic in ßQ C ß. Then   u is analytic in

a neighborhood of any point  xQ such that., for every bicharacteristic curve /

through  xQ, the component of (ß O Z)\(a.s. Pu) which contains  xQ also contains

some point in  ßQ.

This result was proved for operators with constant coefficients in  [l]. For

general operators with analytic coefficients the more precise Theorem 1.2 has

been proved by Hó'rmander [9] and, for hyperfunctions and Sato's wave front sets,

by Kawai-Kashiwara (see [ll]). We shall give another proof of Theorem 1.2.

When  P     has complex coefficients, then Z{P   ) is a manifold of codimensionm * ' m
2, provided that the vector-fields  H     p    and  H     p    are linearly independent. If,

Ke rm Im rm
in addition, the Poisson bracket  [Re P  , Im P   | = H„   D   (im P  ) vanishes in' m ' m Re rm m
Z{-P  ) then the vector fields   H      p    and  H.   D    are taneent to Z(P   ) and, be-

m Re "m an rm ° m
cause of the Frobenius integrability theorem, they define a 2-dimensional foliation
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4 K. G. ANDERSSON LMarch

of Z(P   ). This foliation is called the bicharacteristic foliation and its leaves are

called the bicharacteristic strips of  P.  If d ¿ Re P    and d r Im P    are linearly

independent on a bicharacteristic strip, then its projection on ß is a regular 2-di-

mensional manifold.  We put

nAp  ) = n'{p  ) nN"(p ),2      m 2      m 2      m

where

N'AP   ) = Kx, 0 e Z(P   ); de Re P   (x, 0 and d c \m P   (x, 0 are

linearly independent!.

N"{P   ) = i(xn, A) e Z(P   )•  ÍRe P   , Im P   !(x, $ = 0 in a neighborhood,2      m 0    30 m ' m' m = °

in   Z(Pm),  of  (x0, £Q)}.

Theorem 1.3.  If P - P(x, D) has analytic coefficients, then WF   (zz) is in-

variant under the bicharacteristic foliation in N,(P   )\WF   (Pzz).' ¿ma

Remark 1.2.  T. Kawai has announced  (private communication) that, by extend-

ing the theory of Fourier integral operators to the analytic category, he and

M. Kashiwara have proved Theorem 1.3 for hyperfunctions. The proof we shall give

has quite a different character, since only pseudo-differential operators are used.

A third case which we shall consider is when   P = P{D) has constant coeffi-

cients.  Then

nP  =  L {dp¿&/d€)d/dx
m        l£j<n

is a differential operator in  fi with constant coefficients depending on the param-

eter  f.  If

(x0, Q e N t(Pm) =Ûxlfe Rn; Pjd = 0 and d? P ¿$ ¿ 0}

then this operator is nondegenerate and the bicharacteristic strip through   (xQ, f.)

is defined to be  \{xQ + dp {zP   )(f0), f0); z e Cj. These bicharacteristic strips

define a foliation, the bicharacteristic foliation of N,{P   ). Note that the dimen-' 1 7B

sion of the leaves may vary between 1 and 2 depending on whether d ? Re P    and

de Im P    are linearly dependent or not.

Theorem 1.4.  If P = P{D) has constant coefficients, then WFa(zz) is invariant

under the bicharacteristic foliation in  /V,(P   )\WF_(Pzz).1 i     m a

Theorems 1.1-1.3  supplement the results of Duistermaat-Ho'rmander [5] for

operators  with analytic coefficients,   provided that the  projections  of the

bicharacteristic strips are regular.  Then it follows directly from Theorems 1.1—
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1.3 that the conditions imposed on  P and  ß in  [5] to prove that  P maps

3)'(ß)/C°°(ß) onto itself actually give that PC°°{Q) = C°°(ß) and thus   P®'(ß) = 3)'(ß).
However, for operators with analytic coefficients, PC°°{Q,) = C°°(ß) under much

weaker assumptions.  In fact, Hó'rmander   [9] observed that results about propaga-

tion of analyticity for wave front sets can be used to derive very precise unique-

ness theorems. He proved the following general result.

Theorem 1.5 (Hó'rmander  [9]). Suppose that ßQ  is an open subset of ß with

C    boundary (?ß0.  Denote by NQ the normal of dß„ at xn £ ß and let F be a

conic neighborhood of (xQ, ± NQ).  Then there is a neighborhood ß   of xn such

that any  u £ 5)'(ß), with WF   {u) P F =  0, which vanishes in flQ  must also van-

ish in ß .

To be brief, we just state what this theorem together with Theorem 1.4 implies

foj: operators with constant coefficients.

Theorem 1.6.   Let ß C R"  be an open set with C    boundary du such that all

points x„ £ (9ß, characteristic with respect to P{D), are simply characteristic,

i.e.   d cP (N 0) ^ 0 for the normal NQ  of dQ, at x Q.  Denote by B       the projec-
tion of the bicharacteristic strip through  (x0, Nn) and by  K the convex hull of a

compact set  K.   If, for any characteristic xQ £ dQ, and any compact set KCÍ1, the

component of B      P CK containing x„   also contains some point in  C(ß P K.) then

P(D)C°°(ti) = C°°(fl) and, what is equivalent, P(D)$p(ß) = ®¿(fi).

This result improves Theorem 1.3-7   of  [10].

2.  A space of sequences of pseudo-differential operators.  Functions   cf>N sat-

isfying  (1.1) are suitable for the localization of problems concerning analytic

functions in  ß.  We shall now define certain sequences of symbols which will fill

the same purpose in the cotangent space T*(ß).

Definition 2.1.  A sequence   («N(x, f )) is said to belong to  rr(ß) if, for every

compact set  K C ß, there are positive constants  8 and  C such that, if N > 8~   ,

aN £ C[SN](K x Rn) and

(2.1)      sup |DxaD|*N(*, ai<CN/vM(l + |£|/A;Hß!,    when   \a + ß\<8N.
x eK

Remark 2;1. The reason for the presence of the constant 8 in Definition 2.1

is purely technical.  For example, the right-hand side of (2.6) will in general

admit fewer derivatives than a^ and  b^. However, by putting a^ = flr 21   ,'

we can always obtain a sequence for which  8 = 1.
Example 2.1.  Let  P(x, D) be a linear differential operator of order r with

analytic coefficients in ß and put  «N(x, £) = P(x, £). Then  («N) £ f(ü).
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6 K. G. ANDERSSON [March

Example 2.2. Suppose that the functions  ^^(x) satisfy (1.1) in il and that

4>k¡{C ) are homogeneous functions of degree  r, satisfying (1.1) when   |f| = 1.  If

XN vanishes when   ¡f | < 1, equals  1  when   |f | >2 and satisfies  (1.1) then

{(f>N{x)if/N{¿; )xN{¿; /N)) € rr(íi). For convenience, we shall introduce a special

notation for sequences of this type.  Let  F and  F   be two open cones in 0 x R",

i.e., open subsets of Q, x R" which are invariant under multiplication of the  <f-

coordinate with a positive number. Suppose that  F C F   and denote by  t {F, F )

the set of sequences   (a„) e r (Q) such that, for some  C > 0, a^{x, zf ) vanishes

in  (CF')U !(*,£); |f | <C/V! and «w(x,£)-l  in F n {(*, £); |£ | > 2CN\.
Example 2.3. Suppose that  F   C 0 x R" is an open cone such that  it{F ) =

jx; (x, f ) e F'! CC 0, i.e.,  tt(F ) is a compact subset of fi, and let  p be an ana-

lytic symbol of order  r in   F , in the sense of Boutet de Monvel and Kre'e [3]. This

means that  p is a formal sum p = 'ï._oa<k<rp    with the property that for every

cone  F, with  FC F , there is a constant C > 0 such that

(2.2)       |DxaD|p*(x, 0l<cla+^Mfcl+1|A|!|a|!|0||£|*-|/3|,    when  (x,£)eF.

Moreover, it is assumed that p (x, <f ) is homogeneous of degree  k with respect

to f. If  (^N(x, <f )) e r (F, F ) for some open cone  F, with  F C F , then

(pN(*, f )) = ^-N<kir Pk{?ci f VN(*. £)) e rr(°)- Note that it follows from (2.2)
that p  (x, ç) is an analytic function in   F .  In order to obtain nontrivial symbols

with support in a compactly generated cone, we therefore have to consider the

sequences in  rr(fl).

If  {aN) 6 Tr{Q,), Í2   CC Q, and ¿5 = 8{Çï ) is small enough, then a., defines a
mapping   C^(ii') —» CL     J(fl ) by means of the formula

(2.3) aN{x, D)zz(x) = (2ff)-"/«'<*■ i)aN(x, £ )a(£ )#,       « 6 C~(G').

By duality this mapping extends to a mapping  fe|"gNi(íí ) —► JJ (Q ). We shall now

give conditions on the symbol sequence   {a^{x, f)) which will ensure that the

sequence of operators defined by (2.3) is regularizing in the following sense. For

any  zz e fe (0) and any fi' CC ii there are constants  8 and  C such that

aN{x, D)u{x) 6 C^Oî'), when N>8~2, and

(2.4) sup   |£>NGc, D)u{x)\ < CN/vK       when  |a| < S/V.
xeQ'

Definition 2.2. We say that the sequence («w(x, f )) is in !"0(fi) if, for every

compact set KC f!, there are positive constants ¿5 and C such that, if N > 8~ ,

aN  e C[SN](iCx R") and

(2.5) sup |DaD^   (x, aiS^Nl^d+lfl/N)"^!^,      when  |a+ j8| + k < 8N.
xeK     X
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1973] ANALYTIC WAVE FRONT SETS 7

If  (aN), {bN) £ rr(ü) and  (aN - bN) £ rQ(fi), we write   («N) ~ (&N).

Remark 2.2.  Obviously  rQ(ß) C|)  rr(ß). However, much more information is

provided by (2.3).  In particular it is clear that rn(fi) is a proper subset of

rvm
Example 2.4.  Let  (x»(í)) be a sequence of functions satisfying (1.1) and

vanishing when   |£ | > C > 0. Then  (xN(f/N)) e r0(R").
We shall now give a calculus for the sequences of pseudo-differential opera-

tors associated with the spaces  7"r(ß).  The treatment will contain nothing essen-

tially new beyond  "classical"  expositions of the calculus of pseudo-differential

operators.  We shall, therefore, be brief at some points and refer to  [6], [7], and

[13] for the calculus of pseudo-differential operators.

Theorem 2.1.   Let  {aN) £ rr(Çl) and  (bN) £ rs(ti). Suppose that b   (x, f ) van-

ishes when x  is outside a fixed compact set  K C ß.   Then there is a sequence

(a     o bN) £ rr+s(Q,) such   that    when  u £ C^°(ß) and N  is large, then

(a    o bN){x, D)u = a„(x, D){b„(x, D)u). If e is small enough, we have

(2.6)     ((aN o bN)(x, £)) -v.   (JE       iW{D*aN{x,mDZbN{x,0)/ai).
Proof.  Put

vN(x) = ¿>N(x, D)«U) = (277)-"/e¿U'^&N(x, OúX&dC.

If  A/ is large, aN(x, D)vN{x) is well defined and we may operate with a   (x, D)

under the sign of integration.  Therefore,   (a^ o bN){x, £) - a   (x, D + ¿;)bN(x, £)

and we only have to prove that

V=   (VV,   £    ¿^D«aN)(D«bN)/al

belongs to rQ(ß). If i>N denotes the Fourier transform of  bN with respect to x,

then Taylor's formula gives that

rNix, £) = (2n)'n jrN(x, £ 77) ¿77,

where

rN(x, £ 77) =       L      ,-lr|ei<x.»»(,*.?(,, a/yO
|r|=l«N]+i

.  (j"¿D¡fljv(x, É+íijXl-í)lrl-1rfl).

When x belongs to a compact set  K and 21771 < |£|, then (2.1) implies

(2.7)        \t\kK' D¡,+yaN(X, Ç+ trj)\ < C?A/M+*(i + \$/Ny «A-| y\ -\P\

and
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8 K. G. ANDERSSON [March

(2.8) \va"+yDfbN{r,, f)/y!| < C?A/la"l+H/(l + \C\/N)\ß"\{l + \W+ly\.

Thus if   |a| = |a'| + |a"|, \ß\ = \ß'\ + \ß"\ and r + k < \y\ = [e/V], we have

(2.9) |e|fe|DxaD|rN(x, f, ,)| < (C^/vM+Vü + |£l//V)löl(l + |q|)"+l(wM/y!)

when 2|rj| < |ç|. On the other hand (2.1) implies the following inequalities when

x e K and   |£ | <2|jj|:

(2.10) |Dxa'D|'^«N(x, £ + trj)\ < CN4N\a'\;

(2.11) \mva"+yDfbN{V, f)| < C^M+'+M/Q + |£|/N)I*"I(1 + l,!)«*1^.
By choosing / = A + |j8 | and ; = i we see that (2.9) is valid also when |<f | <

2\r¡\, perhaps with another constant. This proves Theorem 2.1, if we also note

that /vM/y!</VN//V!<CN.
Suppose now that  («w) £ r'Xfi) and let #»,(x, £>) be the mapping defined by

(2.3). The distribution kernel of this mapping is defined by

(2.12) kn{w) = (2/r)-" ¡feilx- í>aAfU, 0w(x, £) ¿x ¿£       u; e C~(iî x fi),

where  w denotes Fourier transform with respect to the second variable. For any

compact set  M in  fi x fi, which does not intersect the diagonal, there are posi-

tive constants  5 and  C such that  K^ € CL      (M), when N > S~   , and

(2.13) sup    \DaxDßKN{x, y)\ <CNNlal+l/?l,    when   |a| + \ß\ <8N.
x,y €M

For sequences   («»>) e ?"0(iî) the kernel  K„ belongs to  CL     J(M) and satisfies

(2.13) for any compact set M C fi x fi, if N > S~    = §(M)~  . Conversely, suppose

that   (/C„(x, y)) is a sequence such that, for every compact set  AI C fi x fi, there

are positive constants  8 and  C such that  KN e CL     J(M) and satisfies (2.13)

when N > 8~   .  If in addition the functions K„{x, y) vanish when y is outside a

fixed compact set, then the sequence   («N(x,f ))= {e~l(x- ?>/KN(x, y)el{y' ^}dy)

belongs to 7"0(fi) and

«N(x, D)zz(x) =   \K-N{x, y)u{y)dy.

However, even if there is no compact set L C fi such that all K^{x, y) vanish

when y £ L, the mapping  C~(fi')--» ÍP'(fi') given by

u h-» Jkn(-, y)u{y)dy,       u e C~(fi'),

is well defined for any fi   CC fi if N is large enough. We denote by  T0(fi) the
set of such mappings.  More generally we make the following definition.

Definition 2.3. Suppose that  (A.,) is a sequence such that if fi  CC fi then
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1973] ANALYTIC WAVE FRONT SETS 9

A„  is a linear mapping from  C^"(ß  ) to i) (ß ), for large  N.  Let  (</>N) be a se-

quence of functions in  C^°(ß) with support in a fixed compact set and satisfying

(1.1). Assume now that for every such sequence  (</0 there is a sequence  (a„) £

Tr{ti) such that, if  u £ C~(ß) and  N is large, AN(r/iN«)(x) = aN{x, D)u(x). We then

say that   {A N) £  TT(Ü).
The formula  (2.12) extends to define a sequence of kernels   (K.,(x, y)) for

any sequence  (AN) £ Tr(ß). We only have to suppose that  tf>N(y) = 1 when  (x, y)

belongs to the support of w. Clearly  TQ(ß) C Tr(ß) for every r. We shall now de-

fine another subclass of  Tr(ß).

Definition 2.4. A sequence  (AN) £ Tr(ß) is called properly supported if the

corresponding kernels   KN(x, y) have support in a set M Cß x ß such that both

projections  M —> ß are proper.

Every sequence  (AN) € Tr(ß) can now be written as a sum (A „ + AN) where

(AN) is properly supported and  (AN) £ TQ(ß). In fact, let M be a neighborhood

of the diagonal in ß such that both projections  M —>ß are proper. Choose func-

tions  Xn e C°°{Çl x ß) such that Xn^x> y) = 1 in a fixed neighborhood of the

diagonal, Xn nas suPPort ln ^ and satisfies  (1.1) on compact subsets of iîxû.

Let  (KN) be the sequence of kernels corresponding to (AN) and denote by (AN)

the sequence of operators corresponding to  ((1 - Xw^iv^' ''"ben  (AN) £ TQ(ß) and

(AN) = (AN - AN) is properly supported.
If  {BN) £ Tr(ß) is properly supported, it is easy to see that there is a se-

quence  (bN) £ rr(ß) such that  (ßN) = (^N(x, D)).  Therefore, every sequence {AN)

£ Tr(ß) has a symbol in the sense of the following definition.

Definition 2.5. The sequence  («N) £ rr{Q,) is called a symbol of (A^) £ Tr(Q)

if  (AN -aN(x, D)) £ TQ(ß).
The symbol of a sequence   (A    ) £  Tr(ß) is uniquely determined modulo  r.(ß).

In fact, we have already shown that if the kernels   KN(x, y) corresponding to

{aN(x, D)) £ TQ(ß) vanish when y is outside a fixed compact subset of ß, then

(aN) £ rQ(ß). In the general case one just has to multiply  KN{x, y) with a se-

quence   4>Niy) satisfying  (1.1), with support in a fixed compact set, and apply

Theorem 2.1.
Theorem 2.1   immediately extends to give the symbol of the composition of

two sequences  (A*,) £ Tr(ß) and  (B^) S Ts(ß), provided that one of them is

properly supported. We are now going to study the effect on the symbol, modulo

?"0(ß), of transposing the sequence of operators and of making an analytic change

of coordinates in ß. The space TQ(ß) is invariant under these operations, so we

may suppose that the sequence of operators   (A.,) is properly supported. Given a

properly supported sequence   (A^) £ Tr(ß) there is a sequence   (fl^) £ rr(ß) such

that, if u £ C^(fl) and  N is large, then
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UNu){x) = {2n)-" fei{x- ̂ aN(x, $&0dÇ
= (2ir)-"j(p<*-y'f >«,/*• ¿)«(y)¿y) rfff.

Since   (AN) is properly supported, there are functions   x^ £ ^°°(^ x ß) satisfying

n.l) on compact subsets and having support in a set  M, for which both projec-

tions  M —► ß are proper, such that if aN(x, y, ¿;) = X/y(x- y)0^*- ^ tnen

(2.14) {ANu){x) = (27r)-"J(Je/(x-y^><(x, y, Ou(y)d¿) #•

This representation of (^m) is particularly useful for the study of the transposed

sequence and the sequence obtained after a change of variables. Suppose more

generally that   bN{x, y, ¿;) ate functions such that for every compact set L C ß x ß

there are positive constants  5 and  C such that  bN £ CLS   J(L x R"), when  N >

8~2, and

sup     \D°VyAb'N(x,  y,  rf)| < CW,VM+1*1(1 + ¡tl/NY-W,
(2.15) ï.yfL

when  |a| + |/3! + \y\ < 8N.

Then (2.14) defines a sequence of operators   (B^)- We shall show that this se-

quence still belongs to  Tr(ß). Clearly we may suppose that bN(x, y, ¿;) vanishes

when   (x, y) is outside a set  M C fl x ß, such that both projections   M —► ß are

proper.  In fact, every sequence   (B „) may be written as a sum of a sequence of

this type and a sequence in   7"0(ß). Now put  b   {x, £) = e_ï<*' *' ß   (e'  x' ■='), i.e.

¿>N(x, a = (2fr)-nf(fb'N(x, x + y, £ + ,)e-'"<y-  ^¿y)^,

and operate with  B^  under the sign of integration in  u(x) = {2tt)~" ¡el(x' ^}u(¿;)d¿;.

This   gives   that   (BNu)(x) = bN(x, D)u{x), so we have to show that (bN)  £

rr(Q).  Put  dN(x, y, ç) = b'N(x, x + y, ¿;) and denote by  c¡N the Fourier transform

of dN with respect to y.  Then

fcw(x, a = (27r)-"pN(x, 77, f + 77W77.

For sufficiently small  e, Taylor expansion gives

Vx' ^ f + 7) -     21     {iD¿)adN(x, 77, ̂777a! + rN(x, 77, 0,
I a| <, €N

where

r/v(x,r7,a=        £        {ir,)-yflDy3N(xtr,,€+tr,)(l-t)\y\-ldt/yl.
|y|=[eN] + l

Because of the Fourier inversion formula we have
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bN{x, o =   L (¿opaD>N{*' y> ̂ /^Ix-v+ rN(x' 0-
|a|seN

It remains to show that {rN{x, f )) = {{27r)~nfrN{x, 77, C)drf) e rQ(fi). Like in the proof

of Theorem 2.1    we consider two cases. When 2|ry| < |ç| we note that (2.15) im-

plies that

(2.16) < C^/vMd + |f + tr,\/NY-\^-\ß\{l + \tj\)-*-ltt\y\/yl

< C^N\a\{l + \^\/N)r-^\-\ßkl + \V\)-n-\

And when   |ç|<2|r/|  we get from (2.15)

(2.17) |f|'|^DxaDf ^dN{x, ,, £+ fi^/y! < CNN\a\«{l + hi)"""1.

It follows immediately from (2.16) and (2.17) that  (r„(x,f )) e r0(fi) and we have

proved that

(2.18) {bN{x,0)~(    E    {iD()aD*b'N{x,y,e/al\\.
\\a\<£N )

From this result one proves the following two theorems in exactly the same way

as the corresponding results are proved on pp. 105 — 109 of   [7].

Theorem 2.2.  Suppose that {A N) e Tr(fi). Then the sequence of transposed

operators ('A,.) also belongs to Tr(fi). // («N), {taN) o-re symbols of (A.,) and

{[A   ) respectively, we have

(2.19) {'aN{x, 0) - (    E    z'alDxaD-zzN(x,-f)/aA
\|a|seN I

provided that e is small enough.

If  k: fi —► fi is an analytic diffeomorphism and   (A..) £ Tr{il) we put

(2.20) (A^)(x) = A/v(zzok)(k-1(x)).

Theorem 2.3.  Suppose that {AN) e Tr(fi) and that k: fi —>fi  is an analytic

diffeomorphism.   Then the sequence  (AÍJ), defined by (2.20), zz/so belongs to

Tr(fi). Denote by if/Ax, f ) ¿¿e following polynomial, of degree < | ex|/2 , ¿» f:

(2.21) tAa(x, 0 = Dy0exp(z(K(y) - k(x) - fc'UXy - x), f)|x=y.

V (fl/v^' ^ÖN^ are symbols of {AN) and (A*) respectively, we have
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12 K. G. ANDERSSON [March

(2.22) U£U(x), 0) - (    Z     aj*\x, V(x)^a(x, 0/cdY
\\a\seN I

provided that ( is small enough.  Here a\. '{x, 77) = {iD   ) aN(x, 77).

3.  Analytic wave front sets and sequences of pseudo-differential operators.

For (C°°-) wave front sets there is, besides a definition corresponding to Defini-

tion 1.1, an alternative description of WF(z¿) based on the elliptic regularity

theorem for pseud o-differential operators  (see  [7] and   fe]). We shall now give a

similar characterization of WF  («) using the sequences of pseudo-differential

operators introduced in the previous section.

Definition 3.1.   (xQ, ¿;Q) is called noncharacteristic with respect to  (aN) e

rr(ß) if and only if there is a conic neighborhood  F of  (xQ, ç0) and a decomposi-

tion  aN = arN + ar~  , with  {arN~  ) £ rr~  (ß), such that

(3.1) \arN(x, 0\ > IflVC,       when (x, 0 £ F   and   |f| > CN,

for some constant  C > 0.

Lemma 3.1. Suppose that  u £ & (ß).  Then (xQ, ^0) i WF   (ft) if and only if
there are positive constants 8 and C and a sequence  (a„) £ rr(ß), for some r,

such that  (xQ, ç0) is noncharacteristic with respect to (flN) and

(3.2) \DaaM(x, D)u(x)\ < CNNlal,    when   \a\ < 8N and N > 8~2.

Proof.  We shall construct a   "local parametrix" (eN(x, D)) £ T~r(ß), such

that   (eN o aN)(x, cf ) ~ 1   in a conic neighborhood  Fj  of  (xQ, £Q) with   Fj C F.
To do this we put  e~r = 1/fl^  in  F O (£ |f | > C/Vj. When  ¿ < S'Ai, |f | > CN and
(x, f) e F, we then recursively define   e~T~     by

(3.3) e~T-k= Z fla'lDÎe-r-' - Daar~l . e~r.
N .i ¿f    N x   N NI a| + /=fe-/>0

Finally put

eNix,£)=    £    e-*-Hx, 0 • fiNU, a,
£<S'N

for some sequence  (/*w) e r (Fj, F), which vanishes when   |£| < CN.  To check

that  {eN) £ r_r(fl), we have to prove that

(3.4) \D*D¡e-r-Hx, 0\ < C?0 + I^i//V>~-~^~I °+*l,    when   |a+ /3| < S"/V.

For  k = 0 we note that  D*£>f (e~r . aj,) = 0, if   |a + ß\ ¿ 0. Therefore  (3.4) fol-
lows from Leibniz' formula and (3-3). Choose now sequences   ((fiN(x)), (fiN(ç)) £

T (ß) such that  <r>N(x) = 1 in a neighborhood of xQ,   "AN(£) = 1 in a conic neigh-

borhood of <f0,when   \¿¡\ > CAÍ, and  4>N(x)if/N(^) vanishes outside F^  Then
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(<J>N(D)<PN(*)(eN o aN){x, D) - $ „{D) <f> ¿x)) e T Q{Q).

Because of  (3-2), this implies that

\D*ifjN{D)cpN{x)u{x)\ < CN/vlal,    when   |a| < S/V.

If we put (¡>'N = <f>r      g_ i-i    , then  zzN(x) = (f>'N{x)u(x) satisfies  (1.3).

For a linear differential operator  P{x, D) with analytic coefficients, Lemma

3.1 implies Theorem 1.1. We shall now give two lemmas about the existence of

suitable cut-off functions in t (fi), which will be used in the proofs of Theorem

1.2 and Theorem 1.3. Suppose that  F and  F   are two open cones in A x Rn such

that  F C F' and let  (/x^) e T (F, F'). If p = ^■_00<k<iP    iS an analytic symbol
of order 1 in F , we put

pN{x, f) =       £     pk{x, &nN{x, f).
-Nsfesl

Lemma 3.2.  Suppose that p (x,f) is real and that dcp (x, f ) ^ 0  in F .

Let í. be a bicharacteristic for p    in F .  If F   is sufficiently small and F' is an

arbitrary conic neighborhood of &, then there is a sequence («N) £ t (fi) such

that aN{x, f ) vanishes in F\F", the points on £ n F are noncharacteristic with

respect to (a,,) aW ([pN(x, D), «N(x, D)]) e Tq{tt{F)). Here n denotes the pro-

jection  T*(fi) — fi.

Proof. We shall choose  <*N{x, f ) as a sum 2_N</.<o aN^' ^)x^/N^

where   zrl   is homogeneous of degree   k and  X^(f ) are functions which satisfy

(1.1), vanish when   |f | < C/V and are equal to 1  when   |ç | > 2CAÍ. We want the

symbol sequence of {[pN(x, D), tzN(x, D)]) to be in r0U(F)). Since  «N(x, f ) will

vanish when  ¡J-N{x, f ) ?¿ 1 and since, in view of Example 2.4, it is irrelevant how

the symbol looks for   |f | < CN, it will, because of Theorem 2.1, be sufficient to

find solutions  aN to the equations

(3.5) H   l{akN) = <S>k{p\..,pk+l,a°N,..,akN*1),       k<8'N,

where

•à(p1,...,a*+l)= £ ^l-'^^X-^W^!
;-| a|=jfe-¡>0

with the following properties:

(3-6) a^(x, f ) is homogeneous of degree  k and vanishes in  F\F';

(3.7) aN(x, f ) = 1 in a fixed conic neighborhood of ínF;
(3.8) |DxDf 4(x, f )| < CNN\a+ß\+k, when   |a + ß\ + k < 8N, on compact sub-

sets of F .
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Because of the homogeneity of aN, (3-8) shows that  (fl^) £ r (ß). Moreover,

since  a^ satisfies  (3-5), we will have  ([pN{x, D), aN{x, D)]) £ T0{7t{F)). Now

p (x, £) is a first order real symbol of principal type. If  F   is small enough, we

can therefore find an analytic change of coordinates   (y, 77) h» (x(y, 77), ¿; (y, 77))

such that x(y, 77)  and ç(y, r¡) are homogeneous of degree  0 and  1   respectively

and  H  j.   is transformed to d/dy^. Denote  a*(x(y, 77), f (y, 77)) by  ¿^(y, '?)■ For

k = 0, (3.5) reduces to dbN/dy    =0.  If  y' = (j/j, ... ,y  _j) we choose   ¿^ =
bNiy , 77) independent of y    and so that  (3-6)—(3.8) are satisfied by  ß...  For
any function g(y, r¡) = %q<íc (y > '?)y!, which is analytic in  y  , we put

(3-9) (Ig){y, 77) = Z c V, i/V'+VG + l).

Denotihg ^(p1, • • • , fl^+1)(x(y, 77), £ (y, 77)) by gN(y, r/), we now solve the

equations  (3.5) recursively by putting  bN = lgN. Clearly the functions  aN  ob-

tained in this way, satisfy (3.6) and  (3.7). It remains to prove the estimates

(3-8). If we put D = (D     , • • • , D     ), it follows from (3.5) that bN is a sum of
less that   C    terms   hN  of the form

(3.10) A*=(/o(B     Dai)o/o(B     D°2) o-..0/0(6    D "'))(&£),
A' m . m j m, N

where   2. , .   Am. + la.!) < k + I < 2k andlstsi      z      1    1'   — —

(3.11) sup      \D/3Bm(y,r,)\<C(m^ßl\m.)lß\.
(y,T7)£/Vf i

Here   M is compact and   C = C(M) is independent of  i and  A.  In particular each

B       is an analytic function.  To prove   (3.8), we have to prove that, on compact

sets   |DrA* (y, rj)\ < C^Ai7'"1"  , when     \y\ + k < 8N. Now all derivatives except

d/dy    commute with  /, and  d/dyn o / is the identity.  If the differentiations are

carried out, then C   ^m may be written as a sum of less than  C     terms of the

form

(3.12) „* = (/ oB'. o / o ß' , o .. - o / o B' , )(Dßbi),N m . m j m ,1 N

where   |j8| + 2js fs ,# w/ < * + l + \y\  and the functions  B ' , ly, rç) satisfy esti-

mates of the type  (3.11).  To estimate  (3.12), we note that

(3.13) |(/o/1o/o/2o-..o/o//_1o/)(//)|<     II    (sup|/.|)|yJZ//!.
l<.i<l

Therefore

\vN\<CN(   Il   (m;\)\N\ß\/l'\<CNNkM.
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This proves (3-9) and completes the proof of Lemma 3.2.

Lemma 3.3.  Suppose that dp Re p (x, f ) and dp Im p  (x, f ) are linearly

independent and that the Poisson bracket [Re p , Im p  !(x, f ) vanishes in  F1.

Let £  be a bicharacteristic strip ¡or p     in  F1.   If F' is sufficiently small and

F" is an arbitrary conic neighborhood of &, then there is a sequence  (a.,) e r (fi)

such that aN  vanishes in  F\f", the points on IL n F are noncharacteristic with

respect to  (a^) and {[pN{x, D), aN{x, D)]) € TQ{n{F)).

The proof of this lemma parallels  the proof of the preceding one.  Because

of the Frobenius integrability theorem, there is an analytic change of coordinates

(y , 77) h> (x(y, 77), f (y, 77)) such that x(y, 77) and f (y, 77) are homogeneous of
degree  0 and 1   respectively and  H  , is transformed to  {d/dy   + id/dy     , )/2.

Again we denote  zzN(x(y, 77), f(y, 77)1 by  b^{y, 77). bN is taken to be independent

of yn and yn_l  so the right-hand side of (3-5) will in the new coordinates be a

convergent power series

g{y", z, F, 77) =  2l c.{y", z, 77)5"',
OSz

where  z =y„ + *>„_!> F = >„ " ^„-x  and /'= ^l' " - ' ^«-2^* Finally the
operator / is, in this case, defined by

{lg){y", z, z, 77) =  Z c.{y", z, T,)z^l/{i + l).

With these modifications exactly the same proof as for Lemma 3.2 works for

Lemma 3-3.

4.   An inequality.  We start with the following simple lemma:

Lemma 4.1.  Suppose that the functions  ¿>»,(x, f ) e C°°{R" x R") vanish when

x   is outside a fixed compact set and satisfy

(4.1) \D*DßbN{x,0\<CN{l+\C\)~\ß\,       when \a\ < n + 1 + ;,   \ß\ < j.

Put BNu{x) = (27rr"/e!' <x,Î>èN(x, f )zî(f )d£.  If (4.1)  is satisfied for j = 0, then
BN   is a bounded operator on   L {Rn) with norm < MCN, for some constant M  in-

dependent of N.  Moreover, if (4.1)  is satisfied with / = 1   and bN{x, f ) is real,

then B N o A - A o B*   is a bounded operator on  L  {R") with norm < MC... Here

A = U+|D|2)*.

Proof.   Parseval's formula gives

jvU) ■ BNu{x)dx = {2rr)-2nfjv{r,)bN{r, - f, f)2(f)z/f drj.

Because of (4.1 ), we have   ^(77 - f, f)| < My C N(l + \r¡ - f |)~"- '.  Therefore

I/'v(x) • BNu{x)dx <M- CN\\u\\
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This proves the first part of the lemma.  For the second part we observe that the

adjoint Bjy  of BN is given by

(B*h)(t/)=  \e-i(x-^bN(x, 7))u(x)dx.

Thus, if aN(x, f ) = bN(x, <f)(1 +  |f |2)H, we have

(A o B*Nu)(r,) = (2n)-nßN(V - £ i,)a(0#

and

(BN o AaX,) = (277)-"JSn(t7 - f, $&&<%>

Now fl., is real and, because of (4.1),

\3Nb - 6 *) - aN(v - £ i)! < M2 • CN(l + |£- ij|)-»-1.

The same argument as for the first part of the lemma now finishes the proof.

Before we state the main result of this section we have to introduce some

notation.  Let ß be a neighborhood of the origin in  R"   and  T an open cone in

Rn~  . Suppose that S (x, ¿j ), k = 1, 0, - 1, • • • , are analytic functions in ß x T,

homogeneous of degree   k> such that, for some constant  C0 independent of  ky

\DaxDl,Sk{x, 0\ < C\a^-k+2\k\\\a\]\ß\l\^\k-\ß\,
(4-2) ».     (    #\    o    rwhen \x, ç ) £ U x 1 ■•

Let  F be a closed cone with  F C ß x F x R and put  L  (x, f ) = it;   + S1(x, £ ').
We shall assume that   L    is principally normal in some conic neighborhood   F. of

F, i.e. there exists a function  X(x, ç), analytic in  F.   and homogeneous of degree

zero, such that

(4.3) i\Ll, LM(x, ¿0 = Re(LHx, f)A(x, Ç)),      when (x, Ç) eF,,

Now choose functions xf>N £ C~(ß), ijj N £ C00^""1) and  xN e C^iR"'1) such
that ifi„ is homogeneous, of degree zero and has support in  Y,  (f>N(x)if/N(^ ) = 1

on  ^i' Xn vanishes when   |f | < 2CQ and equals 1 when   \£'\ > 3CQ.  Put

PN(x,^')= (ß^xyf/^^x^'/N). If  <pN, iffN, and   X/v  are suitably chosen, we
will have

(4.4) |DxaD|PA,U,f)|<GlM+lNl«l(i + |f|/W)-|ö|,      when |a+/S|<A,

and

(4.5) |Z)^d|Pn(x, ,f )| < C(l + \e|)-t 8I,       when  |a| < 2* + 5,   |/8| < 2.
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We define

where  *„(*, f) =       Z      Sk{x, f')pN(x, f).
-N<fe<l

LN = LN{x, D) = <9/(9x   + SN{x, D ) is, strictly speaking, not a pseudo-differen-

tial operator in A.  It is the sum of a differential operator in  x    and a pseudo-

differential operator in x   with "coefficients" depending on x .  Finally we

assume that (a^) is a sequence in r (fi) such that each «N has support in  F.

Put  A* = (2 + \D'\2/N2)s/2, ga{xn) = ((xn - a)2/2 - a2/4) and denote by   || . ||
the   L -norm in  x -space.

Theorem 4.1.  Let  L„ and aN  be as above.  Suppose that the functions

4>N e C^(fi) satisfy (1.1) and put zz^(x) = <f>N{x)aN{x, D)zz(x).  Then there are

positive constants  C and a such that, if the functions <ßN{x) vanish when

|x  I > a and if N > C, then

NjK"-'""'»»!2'*.
(4.7) J

< CJ\\A^°(X»)LNuN\\2dxn + CNj\\u\\2dxn,

The constant a does only depend on  C„  and F.

,-00u eC0,

Proof.   Put vN{x) = ANNe^xn]uN{x). Then

N g    (x   )
LNVN = AN " LNUN + (/V(x« - a)l°g A/V)vN + RNMN'

where  R„ = [^(x, D'), A/ct    » ].

Denote by  #N(x, f ) the sum

£       z^D?, (2 + \e\2/N2)Necr(X»)/2D«,SN{x,Ç')/a!
ls|a|so-AÍ

and let 8N(x, f ) be a sequence of functions that satisfies  (4.4), (4.5) and van-

ishes when  (x, f ',£„) < Fj  for all f . Suppose also that ¿>N(x, f) = 1 in  F,
when   |f | > 2CqN. We may then write

(4-9) RN = R1N + R2N+R3N,

where

(4.10) «¿(x, f) = 5N(x, f')P;(x, f),

(4.H) R2N{x,e)={i-8N{x,e))R^{x,n

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



18 K. G. ANDERSSON [March

(4.12) R¿(*, 0=felix'-V'>fNW, xn, Odr,'

and

|a|J.crNj+l

• ¡yp,{2 + |f + Í77'|2//V2)NSct(X")/2(1 - i)1"1-1*/«!.

Here   S.,  denotes the Fourier transform of  S., with respect to x . Now

\DU2 + |f'| 2/rV2)s/2| < (Ca)l al(2 + If'l 2//v2)<s-M >A
(4.13)

if |s| < Na and  |a| < 2No.

Therefore, if max i     i       gj,x  ) = la /4 is less than  a, we immediately get from

(4.12) and Lemma 4.1

(4.14) J>kv«2^ < ̂ Jll^ll2^« < ct¡Sh\\2dxn.
The last inequality follows from Lemma 4.1 applied to  bN{x, D) = cf>N{x)aN(x, D).

The same estimate holds for the   L -norm of  ^m"m> i-e.>

(4.15) j\\R2^N\\2dxn<CNj\\u\\2dxri.

In  fact,  since   RN{x, f )   vanishes   in  the  support  of   b^{x, f ),   we  have

R2N(x, D') o bN{x, D)u = R^{x, D)u, where

R*(x, f) = £ i^fe^-^{vnN{r,, f)/y!)
|-y|=[<r/Vj + l

(4.16)
(poDy,R2N{x,e + tr,'){l-t)\y\-ldi\dy.

Because   \D* DJp, R^{x, f ')| < CN when   |a|</z+l  and   |y| = M] + 1, Lemma
4.1   applies to give  (4.15).  We now put

(4.17) Rl = RlNo\-NgJx"\

Since  SN{x,Ç')=Z_N&k<.lSk{x,Ç')xN{Ç'/N) in the support of 8N{x, f ') and
XN(f') vanishes when   If'| <2CQ) it follows from (4.2) and (4.13) that

(4.18) |Dj,R¿(x, f')| </V • L      {C2o)\a\,       when \y\ < n + 1.
l<|a|<<7N

Here the constant  C2  only depends on  CQ and the constant  C in (4.13).  If a

is small enough, we get from (4.18) and Lemma 4.1

(4.19). JllR^JI2^ < C .a.NJ\\vJ2dxn.
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In view of (4.8), (4.9), (4.14), (4.15), (4.17), and (4.19) it will be sufficient to
prove

(4.20) Nf\\vN\\2dxn < Cif\\LNvN - (N{xn - a) log A>NI|2^„ + CN f\\u\\ 2dxn,

for some constant C    which stays bounded as  a tends to zero.  Put SN = AN +

iBN, where  AN and  BN are real and denote by ( , ) the scalar product in  L   ,.

Then

i^NvN - {N{xn ~ ff)l°H AN)vnW 2 dx„

(4.21) =j\\dvN/dxn + iBNvN\\2dxn

+ fll Vn - (N(xn - a)log hN)vN\\2dxn + /» + í¿ + /J,
where J

llN=- 2RefidvN/dxn, [N{xn - cOlog \N\vN)dxn

= n({v   , (log A   )v   )dx  ,
(4.22) r

,2N=- 2Re J l*BNvN, {N(xn - o-)log AN)vN) dxn,    and

IN = 2Re ¡(dvN/dxn + iBNvN, ANvN)dxn.

If we denote   (log A^) 2vN by  mN, we have

2Re{iBNvN, (log AN)t;n) = 2Re (¿[(log A^ , BNhN, wN) + (i(BN - B*N)u>N, u>N).

Because of (4.2), (4.5), (4.6), and the fact that Xs^'^ vanishes when   |f | <

2C0, it follows from Lemma 4.1 that   ||[(log VN)   > ̂ N]vN\\ < C\\vN\\ and

l|(BN - Bp-Nll < C\\">Nl Since   ||^|| <2 . (log 2)~V> • \\w N\\, we get

(4.23) l>¿!<C4 -a./v/ll^ll2^.

To estimate  IN, we observe that

'n = S{dvN/dxn + iBNVN' {AN~ AN)vN)dXn
(4.24) -

+   j([AN,d/dxn+  iBN]vN, vN)dxn.

Let now vN(x, f) be a sequence of functions which satisfy (4.4) and (4.5), with

f replaced by  f. Suppose also that   uN has support in  Pj  and equals 1 in  F,

when   |f | > 2CQN. We then write

(4.25) [AN, d/dxn + tBN] = E¿ + F2 + E¿,

where
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EXN(x, e = vN(x, $\tn + BN(x, f ), AN(x, f )},

F2 (x, 0 = (1 - ^WU, a)if„ + BN(x, f), AN(x, f')!,

B'U, i) -    £   /«Í4X',T,,V)y(/¡/y0í. i'. Í*. «Kl - *Vi) ¿iïV^,    and

/y(x, 77', f, /) = Ân(t,'; xn, f')D|,BN(x, r + f,')

- B^G,', xn, ?)D-y,AN(x, e + tr,').

Since  X/v^f ^ vanishes when   |f | < 2CQ,  (4.2), (4.5), and  (4.6) imply that
\D  ,E^{x, f )| < C when   |a| < w + 1. Thus Lemma 4.1 gives

(4.26) \\ENvN\\<\\vN\\.

Moreover, because of (4.3), there are functions  p..  and /i~ homogeneous of degree

zero and analytic in a neighborhood of the support of  vN  such that

l€n + BlN(x, O, AlN(x, £')! = ftjU O0€k + iBlN(x, f')) + fi2U, fM¿(x, f".

Put vN = vN ■ pl  and  v2 = vN • f¿r Then

(4.27) B¿ = ^(x, D) o (d/dxn + iBN) + u2Nix, D)0AN + £*,

where

(4.28) j\\ENvN\\2dxn<cf\\vN\\2dxn.

We now have

j([AN,d/dn + iBN]vN, vN)dxn

= )(vN(x, D) oid/dxn + iBN)vN, vN)dxn

(4.29)
+ )(vN(x. D) o (AN - N{xn - a)log h-N)vN, vN)dxn

+ A/([^(x, D), (log AN)H]U„ - *)«> V\

+ Aj(i/2(x, D)(xb - a)wN, wN)dxn +  £ (B^N, «N).
4z

i = 2

Exactly as for (4.15)  it follows that

(4.30) /ll^Nll2^n<CNJ||«||2^xn.

Since   (AN - A*), vl(x, D), [v2(x, D), (log AN)H], E^ and  E¿ are bounded
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operators on  L2, it follows from (4.24), (4.29), and (4.30) that, for any e > 0,

\t.jl\ < C^fW^N/dxn + iBNVNW2dxn + efWANVN - {N{\ ~ ff)log VVrJ * rf\

(4.31) + e-1j\\vN\\2dxn + N -aflw^dx^

•+CNJ||«||2^xn.

Here  C    only depends on  CQ and  F, while  C depends on  bN{x, D) =
<fiN{x)aN{x, D) and thus on  ff. To prove  (4.20) it^now only remains to combine

(4.21), (4.22), (4.23), and (4.31). First choose e s>o that C; • e < 1. Then the
first two terms in (4.31) are absorbed by the first two terms in (4.21). After that,

choose  a so that 2(C4 + C  ) ■ a< 1. Then, if N is large enough,

ij - C3e-1J||I,N||2i/xn - N{C^ + C^ajH^H2^

Since   ||vj| <2(log 2)_/i ||«>N||, this completes the proof.

Remark 4.1. We have actually proved a slightly stronger inequality that (4.7).

On the left-hand side A^  °~   n    could be multiplied by  (log AN) ••
Remark 4.2. The proof of Theorem 4.1 is modelled on the proof of The'orème 1

in [12]. Except for technicalities, the main difference is that the norm of R^ has

to be estimated as in (4.19).
Remark 4. 3. It was assumed in Theorem 4 .1 that zz e CQ . However, the proof

works without change for any  zz £ CQ such that  aN(x, D)u £ Cq     J(fi) for some

5>maX|x„|<o-g(r(Xn) = 7CT2/4-

5.  Completion of the proofs of Theorems 1.2—1.4. The proofs of the three

theorems are similar but, since there are some differences, we give them one by

one.
Proof of Theorem 1.2. Clearly it will be sufficient to prove the following

"semilocal" statement. Suppose that  (xQ, f Q) £ Nj(P   )\WFa(a) and denote by

g the bicharacteristic strip through  (xQ, fQ). Then there is a closed conic neigh-

borhood  F of  (xn, fQ) such that if & n F O CWFfl(zz) ¿ 0 then g n FnWFfl(zz) =0.
We shall prove that there is a positive constant y, independent of  (x_, f ) e

Fn gn \{x, f ); |f | . 1!, such that if  (x"„, fQ) £ WF>) then g O By{xQ, fQ) n
WF>) = 0. Here By{xQ, fQ) = {(x , f );|(x - xQ, f - fQ)| < y). Since dp Pjx, f ) ¿ 0 in
Wj(Pm), we may assume that  <3P   /<9f   ¡¿0 at  (xQ, fQ). According to a factoriza-

tion lemma of Ho'rmander  [9, Proposition 6.1] there is a closed conic neighbor-

hood   Fj  of  (xQ, fQ) such that

(5.1) P(x, f) = Q{x, f) o ltfm + S{x, rf )),
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in a conic neighborhood of F.. Here S(x, f ') is an analytic symbol in  (x, f') and

Q{x, f ) = ^o<j<m-l fl^*' ^ ^=« ^or some analytic symbols   .q(x, f') of order

m -I  - j.  The right-hand side of (5.1 ) stands for the formal composition of the

symbols. Suppose that  FCF( and that  (xQ, fQ) £ Í p F P CWF  (u). Then
(U x D n WFa(a) = 0, for some conic neighborhood U x T of (xQ, f Q). We may

assume that  U is of the form  U   x /, where  / = jx  ; |x   - x Q     | < e\. In view of

Lemma 3.2, there is a sequence (aN) £ T (ß) such that supp a^C F     (supp a.,) P

(Rn      x I x R71) C U x r, the points on  £ O F are noncharacteristic with respect

to  (a^) and

(5.2) ([A 1~m o P(x, D), flN(x, D)]) £ T0{tt(F)).

As before, 77 denotes the projection  T*(fl) —» Q and Afe = (l + |D|2)fe/2. Choose
functions pN(x, f ') satisfying (4.4) and (4.5) with support in a set where

5(x, f') and   .^(x, f') are defined such that pN(x, f) = 1 in  Fj  when  |f'| > CA.
Put

;.-/:V(x, f) =     z    /u, rvNu, f),
-Nsk¿m- l~;

eN(*,£)=   Z ,*,/*, nf;,
OS/Cm - 2

SN(x, f) =      Z     5*(x, f'VNU, f)    and    Lv(x, f) = if  + S^Gc, f').
-NsfeSl

Since  p    = 1 in  F,, when   |f | > CN, it follows from  (5.1) and  (5.2) that

(5.3) (QN(x, D)oLN{x, D)0aN{x, D) -A""1 QaN „A1-"1 o P(x, D)) e T „Wf)).

We may assume that  F. n WF  (w) = 0 and that the points in  F    are noncharac-

teristic with respect to (CO- Then it follows from (5.3) and Lemma 3.1  that

(5.4) \D^LN(x, D) o aN(x, D)u{x)\ < CNNl a\,      when  |a| < 8N and x £ 77(F).

Moreover, since  (supp a^) P [Rn~l x I x f) C (I x T, we have

(5=5) K«N(*. DUx)\ < Cnn\°\,

when |a| < SA and x é 77(supp «N) Pi (Rn~ ^ x /).

We are now in the position to apply Theorem 4.1.  First of all it is clear that we

may suppose that  x    = 0.  Then  / = Ix^; jxj < ej.  Let  a be the constant in

Theorem 4.1   and let the functions  <pÁx ) satisfy  (1.1), vanish outside  - e/2 <

x   < a and be equal to 1 when  0 < x   < a/2.  Put h^(x, f ) = <fiN{x)aN(x, f ).
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Then all assumptions in Theorem 4.1 are fulfilled, except that we do not know

that  zz e C^(fi).  However, it follows from the results of  [5] that  zz^ = bN(x, D)u £

At, N\(çi^ jn fact thiS; and the corresponding results needed for Theorem 1.3 and

Theorem 1.4, could be proved directly using the methods of this paper.  If <f¡ £ C Q

and equals 1 in tKFj), then v = éh~     <j>u £ CQ, if k is large enough, and

P ° A2 v = / in  rr{FA.  Therefore we may assume that u £ C0 and Remark 4.3

applies.  If supp aN  is close enough to g, it follows from (5.5) that (5.4), with

aN replaced by ¿>N, is valid when x   < rj/2.   Since gCT(x ) < - a /8 when a/2 <

x   < a, it follows that the right-hand side of (4.7) is bounded by C   .  Thus

(5.6) /       \KNuN\\2dxn<C\      where   A =      min   ,   g^x) = a2/32.
0sx„ácr/4 0Zx„*o/4

Because of Euler's identity,  ({dp P   )(x0, fQ), f0) = mP^Ujj, fQ) = 0. We may
therefore assume that   |f | < e|f |  in the support of bN  and it follows from  (5.6)

together with Sobolev's embedding theorem that

(5.7) \Daa   {x, D)u(x)\ < CN/VI °!,      when   |a| < AN and 0 < x   < a/8.

Lemma 3.1 now gives that !(x, f ) £ g: 0 < x   < ct/8! nWF  {u) = 0.  It follows in° ' —    n — a
the same way that the points on g, with - a/8 < x   < 0, are in the complement of

WFa(zz). Since  a does not depend on  x., this completes the proof of Theorem 1.2.

Proof of Theorem 1.3.   Let (xn, f.) ¿ NAP   )\WF (zz).  Then there is an ana-

lytic function  \(x, ç) homogeneous of degree   m — 1, in  £, such that

(5.8) {Pm, Pj{x, f) = A(x, f)Pm(x, f) - X(x, f)Pm(x, f),

in a conic neighborhood of (xQ, fQ). We shall multiply P     with a nonvanishing

analytic function g(x, f ) homogeneous of degree I - m in f, such that

(5.9) \gPm, ¡PmKx,f)=0

in a full conic neighborhood of (x„, fQ).  Because of  (5.8), we have

\gPm, gTj = 2¿Im(Pm(g|Pm, g | - Agg + Pmig, g 1/2)).

It will therefore be sufficient to solve the following nonlinear equation

(5-10) lPw,g\-Tg + Pjg.g\/2g = 0.

Since the last term vanishes at (xQ, f.), we can employ the Cauchy-Kovalevsky

Theorem and solve (5.10) in a conic neighborhood of (x., f.) with data given on

any hyperplane with normal  N, provided that   {{dp P   Mx  , f ), N) ¿ 0. Moreover

it follows directly from the uniqueness of the solution that, if we give data homo-

geneous of degree  k, then g  is homogeneous of degree  k.  Denote by g   the
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(2-dimensional) bicharacteristic strip through (xQ, fQ). Since  (xQ, fQ) £ ^2^n)'

we may suppose that there is an open conic neighborhood  F^  of (xQ, fQ) such

that

(5.11) ¿Pm(x, f)/<5ffe ¿ 0,       when   k = n - 1, n and  (x, $ £ F y

We shall also assume that (5.9) is satisfied in a conic neighborhood  Fj  of F y

For some (^N) £ r°(Fj, F¿) we put gN(x, f) = g(x, f ) ■ pN(x, f). If Fj H
WF(Pa) = 0, then

(5.12) \DZgNb, D) o P(x, D)u(x)\ < CnaI "I,       when |a| < SA.

Let   F   and F2  be open conic neighborhoods of (xQ, fQ) such that the  FCF,C
F   C F.   and denote by F    any conic neighborhood of i. According to Lemma 3.3

there is a sequence (<?„ ) C t (ß) such that supp aN C F    O F,, the points on ¿H

F    are noncharacteristic with respect to (a„) and

(5.13) ([gN(x, D) o P(x, D), aN{x, D)]) £ Tq(jt{F.,)).

Since we may assume that the points in supp fl„ are noncharacteristic with re-

spect to  (gN)i it follows from  (5.12) and  (5.13) that

(5.14) \D*P(x, D) o aN(x,   D)u{x)\ < CNaH      when   |cx| < SA and x e tt(F .,).

To prove Theorem 1.3, we shall prove that there is a constant y > 0, independent

of  (x0, fQ) e F H g P Kx, f); |f | = 1} such that if (xQ, fQ) ¿ WFfl(a)  then

(5.15) ¿nBy(x0,f0)nWFaW= 0.

In fact we shall prove that  (5.15) is true for any  y such that  B   (x., f ) C F  .

Suppose that B   (xQ, f.) has distance > e > 0 to CF2  and denote by  S     the

boundary of  B   . We shall then prove that there is a constant  (  > 0, independent

of y, such that if (x, f ) ¿ & n^y(^0> f0)  then ¿ ° ße/(*, f) O WF(«) = 0. Be-
cause of (5.11) the normal of 5   (xQ, fQ) at (x, f) is not perpendicular to the

(x  _., x )-plane. Suppose that it is not perpendicular to the x -axis and that

x = 0. Then there are constants e  and M  such that e    depends on F    and tends

to zeio as the neighborhood F    of î becomes smaller, M depends just on

ßy(*0' £(? and

DaxaN{x, D)u{x)\<CNN]a\:

when   |a| < SA  and - l/M < xn < - <r" - M\x'\2.

We now make the following change of coordinates:

(5.17) y„ = x„ + 2M|x'|2,       y'=x'.
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(5.16) is then transformed to

(5-18)       \DaaN{y, D)u.{y)\ < CN/vK      when |a| < 8N and y e G(e", M).

Here  G{e", M) = \y; - \/M + 2M|y'| 2 < y   <-e" + M|y'|   ! and we have kept the
notation zz„  for the operator in the new coordinates.  The rest of the proof now

parallels the proof of Theorem 1.2.  By means of the factorization lemma of Hörman-

der, which works also in the complex case, we obtain an operator LN{y, D) =

d/dy    + S Ay, D )  such that

(5.19) \DaLAy, D) o a Ay, D)u{y)\ < CNnK       when  |o| < 8Ny
and y  belongs to a fixed neighborhood of the origin.  The results of  [5] give that

a Ay, D)u £ Ck        and since the constant a in Theorem 4.1 does not depend on

x, it follows from Theorem 4.1 that (5.18) is actually satisfied in a neighborhood

of y = 0.  Observe that, because of (5.8), L     satisfies the hypothesis in Theorem

4.1.  Theorem 1.3 now follows from Lemma 3.1.

Proof of Theorem 1.4.  Suppose that (x., f„) £-N,(P   )\WF (Pzz).  Because ofrr 0    30 1      m a

Theorem 1.3, we just have to consider the case when the bicharacteristic strip g

through (xQ, fQ) is 1-dimensional.  Let  UQ x Y Q be a conic neighborhood of

(x0, fQ) such that Z{PJ n (UQ x F0) C /Vj(Pm)\WFa(zz). Again we shall prove
that there is a constant y > 0, independent of (x Q, f ) £ (UQ x T.) O g O j(x, f );

If I = 11, such that if (x0, fQ) £ WFa(zz) then g n By{xQ, fQ) n WFa(zz) = 0. By mak-
ing a linear change of coordinates and dividing by a complex constant we can always

reduce to the situation that xQ = 0 and dp P   (f ) = (0, • • • , 0, l), i.e., g is the

x^-axis. Since (0, fQ) £ WFfl(zz), there is a conic neighborhood  U x Y of (0, fQ)

such that (U x D n WFa(zz) = 0 . We suppose that U is of the form fx; |x  | < f

and   |x   | < f !.   Let  ifjAÇ) be homogeneous functions of degree   0 with support in

F and satisfying  (1.1) when   |f | = 1.  Suppose also that  iA/y(f ) = 1  in a conic

neighborhood of fQ and put ^N(f ) = ^(f )y(f/W), where the functions X/v^^
satisfy (1.1), vanish when   |f | < 1 and are equal to  1  when   |f | > 2.   Then

.(5.20) |DxtIAN(D)zz(x)| < CNNlal,      when  |a| < 8N and x £ U.

We can always assume that   U x Y C U0 x V~  so, since  [P{D), <p AD)] = 0, it fol-

lows that

(5.21) |DxP(D)I/i/v(DWx)| < CN/vlal,      when   |a| < 8N and x £ U.

Assume, for simplicity, that U = fx; |x  | < 1  and  |x | < 1 !• Using (5.20) and

(5.21), we shall prove that if 0 < a < 1/2 then (5.20) is valid in a neighborhood
of (0, • •. • , 0, a).  To do this we employ the change of coordinates   (5.17).  In the

new coordinates  ftN{D) has a symbol aN{y, rj) given by  (2.2).  From (5.20) it
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follows that

(5.22)      \DaaNiy, D)u(y)\ < CnaH       when  |a| < SA and y £ G ¿e, M).

Here G (f, M) = \y\ \y'\ < e, 2M|y'|2 - t < y < 2M|y'|2 + ci. We assume that M is
so large that 2a + e < 2Me2 and put G (f, M) = \y; 2M|y'|2 - t < y^ < 2a\. Then it
follows from (5.22) that

i:5.23)     |DaP(y, D)oaN(y, D)u{y)\ < CNaH,      when  |a| < SN and y £ GA(, M).

Since dg P (f.) = (O, • • • , 0, l) it follows that if the support of ^(f) is small
enough, depending on  M, then

'(5.24)     dPjy, rj)/dr]n ¿ 0,      when (y, 77) e (supp aN) P {G¿t, M) x R").

We can now apply the factorization lemma of Hó'rmander to obtain operators

QN(y, D) and L^y, D) = d/dyn + SN(y, D') such that

(5.25) (QN(y, D) o LNiy, D) o aN(y, D) - P(y, D) o a^y, D)) £ TÁG2(f, M)),

and the points in  supp aN  are noncharacteristic with respect to  (QN)-   From (5.23)

and  (5.25) we get

(5.26) |DaLN(y, D)0aN(y, D)u(y)\ < CnaI a¡,       when |a| < SA and y eC^M).

It follows from Theorem 1.6.5 of [lO] that a Ay, D)u £ C^      ■". Moreover, since

PÍO) has constant coefficients,  LN  satisfies the hypothesis of Theorem 4.1. We

therefore conclude from Theorem 4.1, in a finite number of steps, that (5.22) is

actually satisfied in  GAe, M).  Finally £  is invariant under the coordinate trans-

formation so  (5.20) is valid in a neighborhood of  (0, ■ • • , 0, a).  In view of Lemma

3.1, this completes the proof of Theorem 1.4.
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