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Analytical algorithm of weighted 3D datum
transformation using the constraint of
orthonormal matrix

Huaien Zeng1,2
Abstract

Based on the Lagrangian extremum law with the constraint that rotation matrix is an orthonormal matrix, the paper
presents a new analytical algorithm of weighted 3D datum transformation. It is a stepwise algorithm. Firstly, the
rotation matrix is computed using eigenvalue-eigenvector decomposition. Then, the scale parameter is computed
with computed rotation matrix. Lastly, the translation parameters are computed with computed rotation matrix and
scale parameter. The paper investigates the stability of the presented algorithm in the cases that the common points
are distributed in 3D, 2D, and 1D spaces including the approximate 2D and 1D spaces, and gives the corresponding
modified formula of rotation matrix. The comparison of the presented algorithm and classic Procrustes algorithm is
investigated, and an improved Procrustes algorithm is presented since that the classic Procrustes algorithm may yield
a reflection rather than a rotation in the cases that the common points are distributed in 2D space. A simulative
numerical case and a practical case are illustrated.

Keywords: Weighted 3D datum transformation; Analytical algorithm; Lagrangian extremum; Constraint of orthonormal
matrix; Procrustes algorithm
Background
Three-dimensional datum transformation is a frequently
used work in geodesy, engineering surveying, photo-
grammetry, mapping, geographical information science
(GIS), machine vision, etc., e.g., Aktuğ (2009), Akyilmaz
(2007), El-Mowafy et al (2009), Ge et al (2013), Han and
Van Gelder (2006), Horn (1986), Kashani (2006), Neitzel
(2010), Paláncz et al (2013), Soler (1998), Soler and Snay
(2004), Soycan and Soycan (2008), Zeng (2014). Usually,
in order to compute the transformed coordinate, the
transformation parameters in the transformation model
(e.g., seven-parameter similarity transformation, see
Aktuğ 2012, Leick 2004, Leick and van Gelder 1975,)
need to be solved with several control points in advance.
So far, a large number of algorithms for recovering the
parameters have been presented, which can be divided
into two classes. One is the numerical iterative
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algorithm, and the other one is analytical algorithm. The
former needs the initial parameter values, linearization,
and iterative computation, e.g., Zeng and Tao (2003),
Chen et al. (2004), Zeng and Huang (2008), El-Habiby
et al. (2009), Zeng and Yi (2011), etc. In the case that
the rotation angle is large, the initial values are difficult
even never to be obtained in advance, and consequently,
it leads to the failure of solution (see Zeng and Yi 2011).
We should note that if global optimization algorithms
are used, then no initial values are required (see, e.g., Xu
2003a, Xu 2003b, Xu 2002). In contrast, the latter does
not involve the initial parameter values, linearization,
and iterative computation, and can give the exact solu-
tion quickly. However, because of the complexity of
mathematical derivation, only several analytical algo-
rithms have been put forward. Grafarend and Awange
(2003) presented the Procrustes algorithm which utilized
the singular value decomposition technique. Shen et al.
(2006) presented a quaternion-based algorithm which uti-
lized the quaternion property and eigenvalue-eigenvector
decomposition. Han (2010) presented a stepwise approach
to individually calculate the transformation parameters by
stributed under the terms of the Creative Commons Attribution License (http://
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the physical interpretation of similarity transformation.
Zeng and Yi (2010) presented a new analytical algorithm
based on the good properties of Rodrigues matrix and
Gibbs vector.
The present study is organized as follows. In the

Methods section, a new analytical algorithm to weighted
3D datum transformation is derived in detail, based on
the Lagrangian extremum law with the constraint that
the rotation matrix is an orthonormal matrix. In the
meanwhile, its stability is discussed when the distribu-
tion of 3D control points degenerates into 2D (planar)
or even 1D (collinear). The presented algorithm and
classic Procrustes algorithm are compared, and an im-
proved Procrustes algorithm is presented since that the
classic Procrustes algorithm may yield a reflection rather
than a rotation in the cases that the common points are
distributed in 2D space. In the Results and discussion
section, a simulative numerical case and a practical case
are given to demonstrate the presented algorithm, classic
Procrustes algorithm, and improved Procrustes algo-
rithm. Lastly, conclusions are made in the Conclusions
section.

Methods
Presentation of the basic algorithm
The seven-parameter similarity transformation model
can be expressed as

ai ¼ λRbi þ t; ð1Þ

subject to

RTR ¼ I3; det Rð Þ ¼ þ1; ð2Þ

where ai ¼ Xi Y i Zi½ �T and bi ¼ xi yi zi½ �T i = 1,
2,⋯, n are the 3D coordinates of a common point in
target and source coordinate systems of transform-
ation, tagged as system A and system B, respectively.
Superscript T stands for transpose, I3 denotes a 3 × 3
identity matrix, and det means computing the deter-
minant of matrix. λ denotes the scale parameter,
t ¼ ΔX ΔY ΔZ½ �T denotes the three translation pa-
rameters, and R denotes the 3 × 3 rotation matrix,
which contains the three rotation angles. Supposing R
is formed by rotating angles α, β, and γ counterclock-
wise around the Cartesian X, Y, and Z axes, respect-
ively, then R can be expressed by rotation angles as

R ¼
cosγ cosβ sinγ cosαþ cosγ sinβ sinα sinγ sinα− cosγ sinβ cosα
− sinγ cosβ cosγ cosα− sinγ sinβ sinα cosγ sinαþ sinγ sinβ cosα

sinβ − cosβ sinα cosβ cosα

2
4

3
5:

ð3Þ

Using (3), the rotation angles α, β, and γ can be com-
puted if R is recovered as
α ¼ − tan−1
R32

R33
; β ¼ sin−1 R31ð Þ; γ ¼ − tan−1

R21

R11
;

ð4Þ
where Rij is the element of R in the ith row and jth
column.
Introducing the following matrix form of the coordi-

nates as

A ¼ a1 a2 ⋯ an½ �; B ¼ b1 b2 ⋯ bn½ �;
ð5Þ

then Eq. (1) is rewritten as

A ¼ λRBþ t1n; ð6Þ
where 1n ¼ 1 ⋯ 1½ �|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

n

, i.e., a row vector with n ele-

ments and all elements are 1. It is obvious that in order
to determine the seven parameters, the number n of
common points must be greater than or equal to 3.
Considering the coordinates include errors, Eq. (7) is

transformed as

A ¼ λRBþ t1n þ E; ð7Þ
where E is the transformation error matrix. The criterion
of the least squares can be constructed by the Lagrangian
extremum law with the constraint of Eq. (2), i.e., ortho-
normal matrix as follows. It is worthy of note that the
constraint det(R) = + 1 is not imposed, since it can be sep-
arately treated at some extra computation as in the Stabil-
ity of the basic algorithm and its modification section.

L λ; t;R;Λð Þ ¼ tr EPET
� �þ tr Λ RTR−I3

� �� � ¼ min;

ð8Þ
where tr denotes trace operation of matrix, Λ is a sym-
metric Lagrangian multiplier matrix, and P represents
the weight matrix that every point has an isotropic
weight and is independent of each other. Substituting
the expression of E easily obtained from Eq. (7) into Eq.
(8), one can obtain

L λ; t;R;Λð Þ ¼ tr EPET
� �þ tr Λ RTR−I3

� �� �
¼ tr A−λRB−t1nð ÞP A−λRB−t1nð ÞT

� �
þ tr Λ RTR−I3

� �� �
¼ min:

ð9Þ
If and only if the following conditions are satisfied, the

Lagrangian extremum exists.

∂L
∂t

¼ 0; ð10Þ

∂L
∂λ

¼ 0; ð11Þ
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∂L
∂R

¼ 0; ð12Þ

∂L
∂Λ

¼ 0: ð13Þ

By Eqs. (9) and (10), one gets

L λ; t;R;Λð Þ ¼ tr A−λRB−t1nð ÞP AT−λBTRT−1nTtT
� �� �

þ tr Λ RTR−I3
� �� �

¼ tr
�
A−λRBð ÞP AT−λBTRT

� �
− A−λRBð ÞP1nTtT

−t1nP AT−λBTRT
� �þ t1nP1nTtT

�
þ tr Λ RTR−I3

� �� �
;

ð14Þ

∂L
∂t

¼ − A−λRBð ÞP1nT− A−λRBð ÞP1nT þ 2⋅1nP1nTt

¼ −2 A−λRBð ÞP1nT þ 2⋅1nP1nTt ¼ 0;

ð15Þ

and thus,

t ¼ 1nP1nT
� �−1

A−λRBð ÞP1nT: ð16Þ

Obviously, t is the function form of λ and R.
Substituting Eq. (16) into Eq. (7), one gets

E ¼ A−λRB− 1nP1nT
� �−1

A−λRBð ÞP1nT1n
¼ A−λRBð Þ In− 1nP1nT

� �−1
P1nT1n

� �
;

ð17Þ

where In − (1nP1n
T)− 1P1n

T1n is the centering matrix.
Let ΔA =A(In − (1nP1n

T)− 1P1n
T1n), ΔB = B(In − (1nP1n

T)− 1

P1n
T1n), and thus, they are the centralized coordinate

matrix, and then, Eq. (17) is written as

E ¼ ΔA−λRΔB: ð18Þ

Substituting Eq. (18) into Eq. (8), one gets

L λ;R;Λð Þ ¼ tr ΔA−λRΔBð ÞP ΔA−λRΔBð ÞT
� �

þ tr Λ RTR−I3
� �� �

¼ tr ΔA−λRΔBð ÞP ΔAT−λΔBTRT
� �� �þ tr Λ RTR−I3

� �� �
¼ trðΔAPΔAT−λΔAPΔBTRT−λRΔBPΔAT

þ λ2RΔBPΔBTRTÞ þ tr Λ RTR−I3
� �� �

¼ trðΔATPΔA−2λΔAPΔBTRT þ λ2RΔBPΔBTRTÞ

þ tr Λ RTR−I3
� �� �

:

ð19Þ

Derivation of Eq. (19) makes use of the properties of
trace operation, i.e.,
tr ΔAPΔBTRT
� � ¼ tr ΔAPΔBTRT

� �T� �
¼ tr RΔBPΔAT

� �
:

ð20Þ
Substituting Eq. (19) into Eq. (11), one gets

∂L
∂λ

¼ −2tr ΔAPΔBTRT
� �þ 2λtr RΔBPΔBTRT

� �
¼ −2tr ΔAPΔBTRT

� �þ 2λtr ΔBPΔBTRTR
� �

¼ −2tr ΔAPΔBTRT
� �þ 2λtr ΔBPΔBT

� �
¼ 0;

ð21Þ

λ ¼ tr ΔAPΔBTRT
� �
tr ΔBPΔBT
� � : ð22Þ

Obviously, λ is the function form of R.
Substituting Eq. (19) into Eq. (12), one gets

∂L
∂R

¼ 2 ΔA−λRΔBð ÞP −λΔBT
� �þ R Λþ ΛT

� �
¼ −2λΔAPΔBT þ 2λ2RΔBPΔBT þ 2RΛ ¼ 0;

ð23Þ

and thus,

R ¼ λΔAPΔBT λ2ΔBPΔBT þ Λ
� �−1

: ð24Þ
Substituting Eq. (19) into Eq. (13), one gets the follow-

ing equation and the derivation process is given in the
Appendix.

RTR−I3 ¼ 0; ð25Þ
further substituting Eq. (24) into Eq. (25), one gets

λ2 λ2ΔBPΔBT þ Λ
� �−1

ΔBPΔATΔAPΔBT λ2ΔBPΔBT þ Λ
� �−1 ¼ I3;

ð26Þ
so

λ2ΔBPΔBT þ Λ ¼ λ ΔBPΔATΔAPΔBT
� �1

2; ð27Þ
and substituting Eq. (27) into Eq. (24), one gets

R ¼ ΔAPΔBT ΔBPΔATΔAPΔBT
� �−1

2: ð28Þ
Let

D ¼ ΔAPΔBT; ð29Þ
then Eq. (28) can be rewritten as

R ¼ D DTD
� �−1

2: ð30Þ
Note that DTD is symmetric, non-negative definitive

and so has non-negative real eigenvalues. The inverse of
the square root of DTD can thus be computed using
eigenvalue-eigenvector decomposition.

DTD
� �−1

2 ¼ v1v1Tffiffiffiffiffi
d1

p þ v2v2Tffiffiffiffiffi
d2

p þ v3v3Tffiffiffiffiffi
d3

p ; ð31Þ



Table 1 Simulative true coordinates of control points in system B

Point number Set 1 (m) Set 2 (m) Set 3 (m)

x y z x y z x y z

1 10.000 30.000 5.000 10.000 30.000 5.000 10.000 30.000 57.000

2 20.000 30.000 12.500 20.000 30.000 12.500 20.000 30.000 67.000

3 30.000 30.000 15.000 30.000 30.000 15.000 30.000 30.000 77.000

4 10.000 20.000 9.500 10.000 20.000 42.000

5 20.000 20.000 11.000 20.000 20.000 52.000

6 30.000 20.000 10.000 30.000 20.000 62.000

7 10.000 10.000 14.500 10.000 10.000 27.000

8 20.000 10.000 4.500 20.000 10.000 37.000

9 30.000 10.000 4.000 30.000 10.000 47.000

Point number Set 4(m) Set 5 (m) Set 6 (m)

x y z x y z x y z

1 10.000 30.000 15.000 10.000 10.000 10.000 10.000 0.000 0.000

2 20.000 30.000 15.000 20.000 20.000 20.000 20.000 0.000 0.000

3 30.000 30.000 15.000 30.000 30.000 30.000 30.000 0.000 0.000

4 10.000 20.000 15.000 40.000 40.000 40.000

5 20.000 20.000 15.000 50.000 50.000 50.000

6 30.000 20.000 15.000 60.000 60.000 60.000

7 10.000 10.000 15.000 70.000 70.000 70.000

8 20.000 10.000 15.000 80.000 80.000 80.000

9 30.000 10.000 15.000 90.000 90.000 90.000

Fig. 1 The distribution of control point in system B. a Set 1. b Set 2. c Set 3. d Set 4. e Set 5. f Set 6
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Table 2 Simulative theoretical values of transformation
parameters

ΔX (m) ΔY (m) ΔZ (m) α β γ λ

30 30 10 71° 78° 73° 1.000016
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where di and vi for i = 1, 2, 3 are the eigenvalues and cor-
responding eigenvectors of the matrix DTD. So, Eq. (30)
can be written as

R ¼ D
v1v1Tffiffiffiffiffi

d1
p þ v2v2Tffiffiffiffiffi

d2
p þ v3v3Tffiffiffiffiffi

d3
p

� 	
ð32Þ

Stability of the basic algorithm and its modification
Obviously, the construction of the inverse of the square
root of DTD, i.e., Eq. (31), fails if one or two of di for i =
1, 2, 3 equals to 0. Assume that the eigenvalues of the
matrix DTD satisfies the following condition.

d1≤d2≤d3: ð33Þ

When the common points are distributed in a plane,
i.e., 2D space, the matrix DTD is singular and of rank 2,
and thus,
Table 3 Simulative true coordinates of control points in system A

Point number Set 1 (m) Set 2 (m)

X Y Z X

1 52.116 7.239 14.222 52.116

2 58.807 9.608 24.512 58.807

3 61.443 9.072 34.463 61.443

4 49.949 17.746 16.493

5 51.773 16.629 26.376

6 51.570 14.060 36.090

7 48.187 28.543 18.797

8 40.683 20.745 27.902

9 40.886 18.466 37.650

Point number Set 4(m) Set 5 (m)

X Y Z X

1 60.227 13.048 14.899 44.537

2 60.835 11.060 24.681 59.073

3 61.443 9.072 34.463 73.610

4 54.410 20.941 16.865 88.146

5 55.017 18.953 26.647 102.683

6 55.625 16.965 36.429 117.219

7 48.592 28.834 18.831 131.756

8 49.200 26.846 28.613 146.292

9 49.808 24.857 38.394 160.829
d1 ¼ 0; d3≥d2 > 0: ð34Þ
One can compute the rotation matrix as follows.

D1 ¼ v2v2Tffiffiffiffiffi
d2

p þ v3v3Tffiffiffiffiffi
d3

p
� 	

; ð35Þ

D2 ¼ DD1 DD1ð ÞT−I3
� �

v1v1
T; ð36Þ

R ¼ DD1 � D2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr D2ð Þj jp ; ð37Þ

where the sign ± is chosen so that det(R) = + 1 is
satisfied.
The above case is the ideal one, but in the case that

the common points are distributed in an approximate
plane, although

d3≥d2 > d1 > 0; ð38Þ
and the order of magnitude of di for i = 1, 2, 3 differs
greatly from each other. In other words, the matrix DTD
is approximately singular, and the condition number of
matrix DTD is very big (usually the threshold is set to
100). The Eq. (31) is ill-conditioned and leads to a biased
solution. At this time, one can also obtain the exact so-
lution by Eqs. (35)–(37).
Set 3 (m)

Y Z X Y Z

7.239 14.222 94.294 37.450 17.742

9.608 24.512 103.013 41.272 28.201

9.072 34.463 111.732 45.093 38.659

76.310 36.628 18.693

85.029 40.450 29.151

93.748 44.271 39.610

58.325 35.806 19.643

67.044 39.627 30.102

75.763 43.449 40.560

Set 6 (m)

Y Z X Y Z

25.929 18.493 30.608 28.012 19.782

21.858 26.985 31.216 26.023 29.563

17.787 35.478 31.824 24.035 39.345

13.716 43.971

9.645 52.463

5.573 60.956

1.502 69.449

−2.569 77.941

−6.640 86.434



Table 4 Calculated transformation parameters and mean error

Parameters Set 1 Set 2 Set 3

PA CPA IPA PA CPA IPA PA CPA IPA

ΔX (m) 30.000215 30.000215 30.000215 29.997125 64.907810 29.997125 29.999564 29.884451 29.999564

ΔY (m) 30.000014 30.000014 30.000014 29.999418 −17.354508 29.999418 30.000156 31.848392 30.000156

ΔZ (m) 9.999992 9.999992 9.999992 10.000804 −1.797635 10.000804 9.999562 9.420190 9.999562

α (°) 70.998025 70.998025 70.998025 70.994443 −70.994443 70.994443 70.999494 60.478813 70.999494

β (°) 77.999873 77.999873 77.999873 77.996704 77.996704 77.996704 77.999588 43.508921 77.999588

γ (°) 73.001648 73.001648 73.001648 73.000253 73.000253 73.000253 73.000571 −89.744632 73.000571

λ 1.000012 1.000012 1.000012 1.000049 1.000049 1.000049 1.000025 1.000025 1.000025

ME (m) 0.000315 0.000315 0.000315 0.000197 0.000197 0.000197 0.000313 0.000313 0.000313

Parameters Set 4 Set 5 Set 6

PA CPA IPA PA CPA IPA PA CPA IPA

ΔX (m) 29.999778 29.999778 29.999778 30.000278 30.000278 30.000278 30.000000 30.000000 30.000000

ΔY (m) 30.000191 30.000191 30.000191 30.000389 30.000389 30.000389 30.000333 30.000333 30.000333

ΔZ (m) 9.999647 9.999647 9.999647 10.000083 10.000083 10.000083 10.000333 10.000333 10.000333

α (°) 71.000802 71.000802 71.000802 −45.000000 −35.145218 −54.854782 unsolved −61.858215 −61.858215

β (°) 78.000742 78.000742 78.000742 16.444350 −24.651859 −24.651859 77.998588 77.998588 77.998588

γ (°) 72.999769 72.999769 72.999769 15.645706 6.418995 6.418995 72.998563 72.998563 72.998563

λ 1.000028 1.000028 1.000028 1.000016 1.000016 1.000016 1.000008 1.000008 1.000008

ME (m) 0.000294 0.000294 0.000294 0.000296 0.000296 0.000296 0.000407 0.000407 0.000407
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When the common points are distributed in a line, i.e.,
1D space, the matrix DTD is singular and of rank 1, and
thus,

d2 ¼ d1 ¼ 0; d3 > 0: ð39Þ
The rotation matrix is impossible to recover in a

whole; however, one can recover at most two rotation
angles by the following formula.

R ¼ v3v3Tffiffiffiffiffi
d3

p ; ð40Þ

and the utilization of Eq. (40) make it feasible to com-
pute the translation parameter and scale parameter.
The above case is the ideal one, but in the case that

the common points are distributed in an approximate
line, although

d3 > d2 > d1 ¼ 0; ð41Þ
Table 5 Number of solvable transformation parameters

Space PA CPA

Translation Angle Scale Total Translation A

3D 3 3 1 7 3 3

2D 3 3 1 7 0–3 0

1D 3 0–2 1 4–6 3 0
and the order of magnitude of di for i = 2, 3 differs
greatly from each other (e.g., d3 > 100d2). The computa-
tion by Eqs. (35)–(37) is biased, and no exact solution
can be found like the case that the common points are
distributed in a line space. At this time, one can carry
out the computation by Eq. (40).

Comparison to classic Procrustes algorithm and
improvement of the classic Procrustes algorithm
The classic Procrustes algorithm presented by Grafarend
and Awange (2003) is a well-known analytical algorithm
of 3D datum transformation. It is also based on the
Lagrangian extremum law, similarly to the presented al-
gorithm in this paper. But differently, it does not con-
strain the orthonormal matrix condition. For the
Procrustes algorithm, due to utilization of the singular
value decomposition technique, the computed rotation
matrix always satisfies the constraint condition RTR = I3;
however, in the cases that the common points are
IPA

ngle Scale Total Translation Angle Scale Total

1 7 3 3 1 7

–3 1 1–7 3 3 1 7

–2 1 4–6 3 0–2 1 4–6



Table 6 Coordinates of control points in systems B and A

Station name System B (local system) (m) System A (WGS-84) (m)

x y z X Y Z

Solitude 4,157,222.543 664,789.307 4,774,952.099 4,157,870.237 664,818.678 4,775,416.524

Buoch Zeil 4,149,043.336 688,836.443 4,778,632.188 4,149,691.049 688,865.785 4,779,096.588

Hohenneuffen 4,172,803.511 690,340.078 4,758,129.701 4,173,451.354 690,369.375 4,758,594.075

Kuehlenberg 4,177,148.376 642,997.635 4,760,764.800 4,177,796.064 643,026.700 4,761,228.899

Ex Mergelaec 4,137,012.190 671,808.029 4,791,128.215 4,137,659.549 671,837.337 4,791,592.531

Ex Hof Asperg 4,146,292.729 666,952.887 4,783,859.856 4,146,940.228 666,982.151 4,784,324.099

Ex Kaisersbach 4,138,759.902 702,670.738 4,785,552.196 4,139,407.506 702,700.227 4,786,016.645

4.14
4.15

4.16
4.17

x 10
6

6.5

6.6

6.7

6.8

6.9

7

x 10
5

4.76

4.77

4.78

4.79

x 10
6

x
y

z

Fig. 2 The distribution of seven control points in local system
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distributed in a rigid or approximate plane, this situation
that det(R) = − 1 rather than det(R) = + 1 usually hap-
pens. This means the computed R is a reflection instead
of a rotation. For the presented algorithm in this paper,
the constraint condition RTR = I3 is imposed in the com-
putation, and thus, it is always satisfied. And in the cases
that the common points are distributed in a rigid or ap-
proximate plane, the sign ± in Eq. (36) is properly
chosen so that det(R) = + 1 is satisfied.
To recover the exact rotation matrix by Procrustes al-

gorithm when det(R) = − 1, the computation formula of
R, i.e., Eq. (22) in Grafarend and Awange (2003) should
be improved as

X3l ¼ U ~V T; ð42Þ
where ~V ¼ V 1 V 2 −V 3½ �, V1, V2, and V3 are the col-
umn matrix of V, and V3 is the column matrix that cor-
responds to the singular value that is 0.
Therefore, the general improved computation formula

of R, i.e., Eq. (22) in Grafarend and Awange (2003) is

X3l ¼ U
1 0 0
0 1 0
0 0 det UVT

� �
2
4

3
5VT; ð43Þ

which is stable for the cases that the common points are
distributed in 3D and 2D spaces including approximate
2D space. In the case that the common points are dis-
tributed in 1D space, Eq. (43) can recover at most two
rotation angles and be used to compute the translation
parameter and scale parameter.

Results and discussion
Simulative case
The case data is simulated as follows. In order to investi-
gate the stability performance of the presented algorithm
(PA) in this paper, the classic Procrustes algorithm
(CPA) and improved Procrustes algorithm (IPA) in the
cases that the control points are distributed in 3D, 2D,
and 1D spaces, six sets of control point in system B is
first given in Table 1, of which set 1 is distributed in 3D
space, sets 2, 3, and 4 are distributed in 2D space, and
sets 5 and 6 are distributed in 1D space. The distribution
of six sets of control point is depicted intuitively in Fig. 1.
Set 2 has only three control points, and it is necessary
for the least point number to solve the seven parameters.
Secondly, the theoretical seven parameters are given in
Table 2. For the sake of an efficient test of the algo-
rithms, the rotation angles are designed to be big angles.
Thirdly, the coordinates of control points in system A
are computed by Eq. (1), and the result is listed in
Table 3. In this case, the stability of the three algorithms
is focused, so the weight matrix is designated to identity
matrix for easy demonstration.
Next, the transformation seven parameters are recov-

ered by the three algorithms, and the result is listed in
Table 4. ME in Table 4 is the mean error and computed
by

ME ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr ETPE
� �
3n−7

s
: ð44Þ



Table 7 Calculated transformation parameters (identity weight matrix)

PA CPA

Rotation matrix

R 1.0000000000 0.0000048146 −0.0000043328 1.0000000000 0.0000048146 −0.0000043328

−0.0000048146 1.0000000000 −0.0000048408 −0.0000048146 1.0000000000 −0.0000048408

0.0000043327 0.0000048408 1.0000000000 0.0000043327 0.0000048408 1.0000000000

Rotation angles (″)

α −0.998496121 −0.998496121

β 0.893693325 0.893693325

γ 0.993086229 0.993086229

Translation (m)

ΔX 641.8805 641.8805

ΔY 68.6551 68.6551

ΔZ 416.3982 416.3982

Scale

λ 1.000005583 1.000005583

ME (m) 0.0773 0.0773
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It is seen from Table 4 that the results of seven param-
eters are identical and accurate for the three algorithms
in the case of set 1, i.e., the case that the control points
are distributed in 3D space. For the cases that the con-
trol points are distributed in 2D space, PA and IPA have
the identical and accurate results of seven parameters,
but CPA has one correct result of seven parameters for
set 4 and two wrong results of rotation angles for sets 2
and 3, because reflections rather than rotations are
found, and all translation and scale parameters are cor-
rect. For the cases that the control points are distributed
in 1D space, i.e., sets 5 and 6, the three algorithms all re-
cover the correct translation and scale parameters and at
most recover two rotation angles. The number of solv-
able transformation parameters for the three algorithms
is counted and listed in Table 5.
Table 8 Point-wise weight matrix

Values

2.170137 0 0 0 0 0 0

0 2.097755 0 0 0 0 0

0 0 2.208968 0 0 0 0

0 0 0 2.201671 0 0 0

0 0 0 0 2.182928 0 0

0 0 0 0 0 2.268808 0

0 0 0 0 0 0 2.643404
Actual case
The case data is from Grafarend and Awange (2003).
The coordinates of control points in system B (local sys-
tem) and A (WGS-84 system) is listed in Table 6. The
distribution of seven control points in local system is
depicted in Fig. 2. From this figure, it is seen that the
distribution of control points are in an approximate
plane. In the process of PA computation, condition
number of matrix DTD is 2.5 × 1011, so Eq. (32) is ser-
iously ill-conditioned and yields a biased solution if not
processed. When the weight matrix is an identity matrix,
the computed results of seven parameters with PA and
CPA are listed in Table 7. For the situation that the
weight matrix is a point-wise matrix, i.e., every point has
isotropic weight and is independent of each other, the
point-wise matrix is generated by the way introduced in
Grafarend and Awange (2003) and is listed in Table 8.
The computed results of seven parameters with PA and
CPA are listed in Table 9.
It is seen from Tables 7 and 9 that the results of PA

and CPA are identical if the bias caused by decimal
rounding is ignored. Hence, the PA is comparable with
CPA.
Conclusions
The numerical case study shows that the presented new
algorithm and improved Procrustes algorithm are both
stable and reliable for the cases that the control points
are distributed in 3D, and 2D including approximate 2D
space, and can recover at most two angles as well as all
translation and scale parameters for the cases that the
control points are distributed in 1D space. The classic
Procrustes algorithm also can compute all translation
and scale parameters for all the cases that the control



Table 9 Calculated transformation parameters (point-wise weight matrix)

PA CPA

Rotation matrix

R 1.0000000000 0.0000047797 −0.0000043444 1.0000000000 0.0000047797 −0.0000043444

−0.0000047797 1.0000000000 −0.0000048370 −0.0000047797 1.0000000000 −0.0000048370

0.0000043443 0.0000048371 1.0000000000 0.0000043443 0.0000048371 1.0000000000

Rotation angles (″)

α −0.997716185 −0.997716186

β 0.896085615 0.896085615

γ 0.985885069 0.985885070

Translation (m)

ΔX 641.8395 641.8395

ΔY 68.4729 68.4729

ΔZ 416.2156 416.2156

Scale

λ 1.000005611 1.000005611

Mean error (m) 0.1140 0.1140
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points are distributed in 3D, 2D, and 1D spaces; how-
ever, it may yield a reflection rather than a rotation in
the cases that the common points are distributed in 2D
space. The numerical case study also shows the pre-
sented algorithm in this paper, and improved Procrustes
algorithm is both stable and reliable when the rotation
angles are big. And the presented algorithm in this paper
is comparable with the classic Procrustes algorithm
when the point-wise weight matrix is involved.
Appendix
Let

Κ ¼ RTR−I3; ð45Þ

ΚT ¼ RTR−I3 ¼ Κ ; ð46Þ

then Κ is a symmetric matrix. Since that Λ is a symmet-
ric Lagrangian multiplier matrix, Λ and Κ can be de-
scribed as follows.

Λ ¼
λ1 λ2 λ3
λ2 λ4 λ5
λ3 λ5 λ6

2
4

3
5; ð47Þ

Κ ¼
κ1 κ2 κ3
κ2 κ4 κ5
κ3 κ5 κ6

2
4

3
5: ð48Þ
tr ΛΚð Þ ¼ λ1κ1 þ λ2κ2 þ λ3κ3 þ λ2κ2 þ λ4κ4 þ λ5κ5

þ λ3κ3 þ λ5κ5 þ λ6κ6

¼ λ1κ1 þ 2λ2κ2 þ 2λ3κ3 þ λ4κ4 þ 2λ5κ5 þ λ6κ6;

ð49Þ

δtr ΛΚð Þ
δΛ ¼

δtr ΛΚð Þ
δλ1

δtr ΛΚð Þ
δλ2

δtr ΛΚð Þ
δλ3

δtr ΛΚð Þ
δλ2

δtr ΛΚð Þ
δλ4

δtr ΛΚð Þ
δλ5

δtr ΛΚð Þ
δλ3

δtr ΛΚð Þ
δλ5

δtr ΛΚð Þ
δλ6

2
6666664

3
7777775

¼
κ1 2κ2 2κ3
2κ2 κ4 2κ5
2κ3 2κ5 κ6

2
4

3
5:

ð50Þ

By Eqs. (19) and (13), one gets

δL
δΛ

¼ δtr ΛΚð Þ
δΛ

¼ 0; ð51Þ

and then,

κ1 2κ2 2κ3
2κ2 κ4 2κ5
2κ3 2κ5 κ6

2
4

3
5 ¼ 0: ð52Þ

Further,

κi ¼ 0 i ¼ 1; 2;⋯; 6ð Þ: ð53Þ
So,

Κ ¼ RTR−I3 ¼ 0: ð54Þ
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