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Abstract
We investigate a general sequential hybrid class of fractional differential equations in
the Caputo and Atangana–Baleanu fractional senses of derivatives. We consider the
existence and uniqueness of solutions and the Hyers–Ulam (H-U) stability for a
general class. We use the Banach and Leray–Schauder alternative theorems for the
existence criteria. With the help of nonnegative Green’s functions, the fractional-order
class is turned intom-equivalent integral forms. As an application of our problem, a
fractional-order smoking model in terms of the Atangana–Baleanu derivative is
presented as a particular case.

1 Introduction
Mathematical modeling of dynamical systems and their numerical simulations are widely
studied in science and engineering. One of the useful and mostly studied approaches for
generalizing the classical models uses the fractional-order operators. The fractional-order
operators have a long history from local to nonlocal and from singular to nonsingular
kernels. These aspects were recently highlighted in some useful articles. For details, we
refer the readers to [1–4].

Fractional-order operators have recently been researched in engineering and science
for modeling system dynamics. In the literature, singular and nonsingular kernels are re-
cently well studied. It is difficult to say which one is the greatest right now, but academics
always examine several operators for new applications and features. For details, we refer
the researchers to [5–7].

The numerical techniques play an important role in the study of dynamical models. For
the fractional-order operators, recently, some numerical techniques were developed and
applied. For example, the readers can see [8–14]. Using various methodologies, a novel
class of mathematical modelings based on hybrid fractional differential equations with
hybrid or nonhybrid boundary value conditions has attracted the interest of numerous
academics. Nonhomogeneous physical phenomena that occur in their form can be mod-
eled and described using fractional hybrid differential equations. Hybrid differential equa-
tions are significant because they incorporate a variety of dynamical systems as special
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instances. The derivative of an unknown function hybrid with nonlinearity is included
in this family of differential equations. In addition, hybrid differential equations can be
found in several subjects of mathematics and physics, such as the deflection of a curved
beam with constant or varying cross-section, a three-layer beam, electromagnetic waves,
or gravity-driven flows, and so on. For details, we refer the readers to [15–25].

The general classes of the fractional-order differential equations (FDEs) were considered
by experts. This area is still open for sequential fractional differential equations, hybrid
FDEs, mixed fractional functional equations, and many more. Dhage [26–28] initiated
hybrid FDEs and divided them into two subclasses called the linear and quadratic differ-
ential equations. More relevant studies on the hybrid FDEs can be found in [29–36]. In
this paper, we present a system of hybrid sequential FDEs with two different fractional
operators, the Caputo and Atangana–Baleanu operators. Our presumed system of hybrid
sequential FDEs with initial and boundary conditions is

cDαi

[ABC

D�i ui(t) +
m∑
1

Fi
(
t, ui(t)

)]
= –λi

(
t, ui(t)

)
, t ∈ I = [0, 1],

ui(0) = 0, u∗
i (1) = �i, Fi

(
t, ui(t)

)|t=0 = 0,

(1)

where �i = 1–�i
B(�i)

(
∑m

i=1 Fi(t, ui(t)) + Iαiλi(t, u∗
i (t)))|t=1„ 0 < αi ≤ 1, 0 ≤ �i ≤ 1, the functions

ui : I → Re, i = 1, 2, . . . , m, are continuous, and λi,Fi : I × Re → Re, hi : I × Re → Re

(i = 1, 2, . . . , m) satisfy the Carathéodory conditions and are continuous functions. The
cDαi are in the Caputo sense, whereas ABCD�i , i = 1, 2, . . . , m, are in the ABC-sense of frac-
tional derivatives. This sort of general sequential hybrid problems have not been studied
in the literature. To know whether such problems can have solutions and applications, we
consider the existence, uniqueness, stability, and applications in the dynamical systems.
Dhage [26–28] and the references therein give more information to the readers on the
theory and applications of the problem. We use the fixed point approach for the theoret-
ical analysis and Euler discretization technique in application aspects. For details of the
nonlinear models and their simulations, we refer the readers to [37–54].

1.1 Basic definitions of fractional calculus
The concept of a nonsingular kernel was given by Caputo and Fabrizio [55] by replacing
the singular kernel by exponential function. This work was then studied for some essen-
tial properties in [56]. Later on, Atangana and Baleanu [57] modified the concept of a
nonsingular kernel with the replacement of the exponential kernel by the Mittag-Leffler-
kernel. They called the new fractional-order differential operator the Atangana–Baleanu
fractional derivative, which was recently well studied by many authors. We refer the read-
ers to some related work on these operators and its applications in [55–57] and the refer-
ences therein.

Definition 1.1 ([57]) The ABC-fractional differential operator on ψ ∈ H1(a, b), b > a, for
�1 ∈ [0, 1] is

ABC
aD�1

τ ψ(τ ) =
B(�1)
1 – �1

∫ τ

a
ψ ′(s)E�1

[
–�1(τ – s)�1

1 – �1

]
ds, (2)
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where B(�1) is a normalizer function satisfying B(0) = B(1) = 1. If the function does not
belong to H1(a, b), b > a, then the fractional-order derivative of order �1 ∈ [0, 1] has the
form

ABC
aD�1

τ ψ(τ ) =
�1B(�1)
1 – �1

∫ τ

a

(
ψ(τ ) – ψ(s)

)
E�1

[
–�1(τ – s)�1

1 – �1

]
ds, (3)

where H1(a, b) is the set of functions with continuous first derivatives.

Definition 1.2 ([57]) For ψ ∈ H1(a, b), b > a, �1 ∈ [0, 1], the ABR-fractional derivative is

ABR
aD�1

τ ψ(τ ) =
B(�1)
1 – �1

d
dτ

∫ τ

a
ψ(s)E�1

[
–�1(τ – s)�1

1 – �1

]
ds. (4)

Definition 1.3 ([57]) The AB-integral of ψ ∈ H1(a, b), b > a, 0 < �1 < 1, is given by

AB
aI�1

τ ψ(τ ) =
1 – �1

B(�1)
ψ(τ ) +

�1

B(�1)�(�1)

∫ τ

a
ψ(s)(τ – s)�1–1 ds. (5)

The ABC and ABR are related to each other by the following relation.

Theorem 1.4 ([57]) Let ψ ∈ H1(a, b), b > a. Then for a fractional-order �1 ∈ [0, 1], we have

ABC
0 D�1

t ψ(t) =ABR
0 D�1

t ψ(t) + H(t). (6)

In our results, we will need to the following result.

Lemma 1.5 ([58]) The AB fractional derivative and AB fractional integral of the function
ψ satisfy the Newton–Leibniz formula

AB
aI�1

τ

(ABC
aD�1

τ ψ(τ )
)

= ψ(τ ) – ψ(a). (7)

2 Existence of solution
In this section, we obtain the existence of a solution for the suggested hybrid FDE (1) with
the help of fixed point technique.

Lemma 2.1 The solution of the sequential hybrid system (1) is

ui = –
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)
, (8)

where

Gi(t, s) =
1

�(�i)

⎧⎨
⎩(1 – s)�i–1, t ≤ s,

(1 – s)�i–1 – (t – s)�i–1, t ≥ s,
(9)
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Hi(t, s) =
1

�(�i + αi)

⎧⎨
⎩(1 – s)�i+αi–1, t ≤ s,

(1 – s)�i+αi–1 – (t – s)�i+αi–1, t ≥ s,
(10)

for i = 1, 2, . . . , m.

Proof Applying (Iαi ) to system (1), we have

ABCD�i ui(t) +
m∑

i=1

Fi
(
t, ui(t)

)
= –Iαiλi

(
t, ui(t)

)
+ C1,i (11)

for i = 1, 2, . . . , m. Using the initial conditions ui(0) = 0, for i = 1, 2, . . . , m, we have C1,i = 0.
This implies

ABCD�i ui(t) = – Iαiλi
(
t, ui(t)

)
–

m∑
i=1

Fi
(
t, ui(t)

)
for i = 1, 2, . . . , m. (12)

With the help of ABC-fractional calculus and (12) we have

ui(t) = –
1 – �i

B(�i)

(
Iαiλi

(
t, ui(t)

)
+

m∑
1

Fi
(
t, ui(t)

))

– B(�i)I�i

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))
+ C2,i. (13)

Since of ui(1) = 0, by (13) we have C2,i = B(�i)I�i (
∑m

1 Fi(t, ui(t)) + Iαi+�iλi(t, ui(t)))|t=1 for
i = 1, 2, . . . , m. This leads to the following equivalent integral system:

ui(t) = –
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

– B(�i)I�i

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)I�i

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

)) ∣∣∣∣
t=1

= –
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

((
0I�i+αi

1 –0 I�i+αi
t

)
λi

(
t, ui(t)

)
+

(
0I�i

1 –0 I�i
t

) m∑
1

Fi
(
t, ui(t)

))

= B(�i)

(
1

�(�i)

∫ 1

0

(
(1 – s)�i–1 – (t – s)�i–1) m∑

1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0

(
(1 – s)�i–1+αi – (t – s)�i–1+αi

)
λi

(
s, ui(s)

)
ds

)

–
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))
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= –
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)
(14)

for i = 1, 2, . . . , m. The Gi(t, s) and Hi(t, s), i = 1, 2, . . . , m, are defined in (9) and (10), respec-
tively. �

In this paper, we consider the Banach space B = {ui(t) : ui(t) ∈ C([0, 1],Re) for t ∈ [0, 1]}
with norm ‖ui‖ = maxt∈[0,1] |ui(t)|, i = 1, 2, . . . , m.

Let Ti : C([0, 1],Re) → C([0, 1],R), i = 1, 2, . . . , m, be the operators defined by

Tiui(t) = –
1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
i=1

Fi
(
s, ui(s)

)
ds

+
1

�(αi + �i)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)
. (15)

The Gi(t, s) and Hi(t, s), i = 1, 2, . . . , m, are given in (9) and (10), respectively. By (15) the
fixed points of the operators Ti give the solutions of the hybrid system (1). By (9) and (10)
the functions Gi(s, t) and Hi(s, t) are clearly positive operators for both t ≤ s and t ≥ s, for
t, s ∈ (0, 1] and i = 1, 2, . . . , m.

Lemma 2.2 Assume that for some ζ 1
i , ζ 2

i ∈Re and ui, u∗
i ∈ C , t ∈ [0, k], we have

∣∣λi(t, ui) – λi(t, ūi)
∣∣ ≤ ζ 1

i |ui – ūi|, (16)∣∣Fi(t, ui) – Fi(t, ūi)
∣∣ ≤ ζ 2

i |ui – ūi|, (17)

and

ηi =
1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

2k�i

�(� + 1)
m

(
ζ 2

i ηi + ℘2
)

+
1

�(�i + αi)
2k�i+αi

�(� + αi + 1)
(
ζ 1

i ηi + ℘1
))

(18)

for ηi < 1, i = 1, 2, . . . , m. Then (1) has a unique solution.

Proof In this proof, the subscripts i = 1, 2, . . . , n. Assume that supt∈[0,k] |λi(t, 0)| = ℘1 < ∞,
supt∈[0,k] |Fi(t, 0)| = ℘2 < ∞, Sηi = {ui ∈ C([0, k],Re) : ‖ui‖ < ηi}, and k ≥ 1. For ui ∈ Sηi and
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t ∈ [0, k], we have

∣∣λi
(
t, ui(t)

)∣∣ =
∣∣λi

(
t, ui(t)

)
– λi(t, 0) + λi(t, 0)

∣∣
≤ ∣∣λi

(
t, ui(t)

)
– λi(t, 0)

∣∣ +
∣∣λi(t, 0)

∣∣
≤ ζ 1

i
∣∣ui(t)

∣∣ +
∣∣λi(t, 0)

∣∣
≤ ζ 1

i ηi + ℘1. (19)

Similarly, for vi ∈ Sηi and t ∈ [0, k], we have

∣∣Fi
(
t, vi(t)

)∣∣ =
∣∣Fi

(
t, vi(t)

)
– Fi(t, 0) + Fi(t, 0)

∣∣
≤ ∣∣Fi

(
t, vi(t)

)
– Fi(t, 0)

∣∣ +
∣∣Fi(t, 0)

∣∣
≤ ζ 2

i
∣∣vi(t)

∣∣ +
∣∣Fi(t, 0)

∣∣
≤ ζ 2

i ηi + ℘2. (20)

Furthermore, for t ≥ s, by (9) we have

∫ 1

0

∣∣Gi(t, s)
∣∣ds =

1
�(�)

∫ 1

0

∣∣(1 – s)�i–1 – (t – s)�i–1∣∣ds

≤ ((1 – s)�i + (t – s)�i )
�(� + 1)

≤ 2k�i

�(� + 1)
, (21)

and for t ≤ s, we have

∫ 1

0

∣∣Gi(t, s)
∣∣ds =

1
�(�)

∫ 1

0

∣∣(1 – s)�i–1∣∣ds ≤ k�i

�(� + 1)
. (22)

Now, consider the Green’s functions Hi(t, s) given by (10). For the case t ≥ s, we have

∫ 1

0

∣∣Hi(t, s)
∣∣ds =

1
�(� + αi)

∫ 1

0

∣∣(1 – s)�i+αi–1 – (t – s)�i+αi–1∣∣ds

≤ 1
�(� + αi + 1)

(
(1 – s)�i+αi + (t – s)�i+αi

) ≤ 2k�i+αi

�(� + αi + 1)
, (23)

and for t ≤ s, we have

∫ 1

0

∣∣Hi(t, s)
∣∣ds =

1
�(αi + �)

∫ 1

0

∣∣(1 – s)�i–1+αi
∣∣ds ≤ kαi+�i

�(αi + � + 1)
. (24)

With the help of (15), for t ≥ s, we have

∣∣Tiui(t)
∣∣ =

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds
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+
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

)∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i ηi + ℘2
))

ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i ηi + ℘1
))

ds
)

≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(1 + αi)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

2k�i

�(� + 1)
m

((
ζ 2

i ηi + ℘2
))

+
1

�(αi + �i)
2k�i+αi

�(� + αi + 1)
((

ζ 1
i ηi + ℘1

)))
, (25)

and for t ≤ s, we have

∣∣Tiui(t)
∣∣ =

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i ηi + ℘2
))

ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i ηi + ℘1
))

ds
)

≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

k�i

�(1 + �)
m

((
ζ 2

i ηi + ℘2
))

+
1

�(�i + αi)
k�i+αi

�(� + αi + 1)
((

ζ 1
i ηi + ℘1

)))
. (26)

This implies TiSηi ⊂ Sηi . Further, assuming that ul, uj ∈ C([0, k],Re) and k ≥ 1, for t ≥ s ∈
[0, k], we get

∣∣Tiul(t) – Tiuj(t)
∣∣ =

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ul(t)

)
+ Iαiλi

(
t, ul(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ul(s)

)
ds
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+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ul(s)

)
ds

)

–

[
B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, uj(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, uj(s)

)
ds

)

–
1 – �i

B(�i)

( m∑
1

Fi
(
t, uj(t)

)
+ Iαiλi

(
t, uj(t)

))]∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i |ul – uj|
)

+
1

�(αi + 1)
(
ζ 1

i |ul – uj|
))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i |ul – uj|
))

ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i |ul – uj|
))

ds
)

≤
[

1 – �i

B(�i)

(
mζ 2

i +
1

�(αi + 1)
ζ 1

i

)
+ B(�i)

(
1

�(�i)
2k�i

�(� + 1)
mζ 2

i

+
1

�(�i + αi)
2k�i+αi

�(� + αi + 1)
ζ 1

i

)]
|ul – uj|, (27)

and for t ≤ s ∈ [0, k], a calculation for i = 1, 2, . . . , m leads to

∣∣Tiul(t) – Tiuj(t)
∣∣ =

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ul(t)

)
+ Iαiλi

(
t, ul(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ul(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ul(s)

)
ds

)

–

[
–

1 – �i

B(�i)

( m∑
1

Fi
(
t, uj(t)

)
+ Iαiλi

(
t, uj(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, uj(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, uj(s)

)
ds

)]∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i |ul – uj|
)

+
1

�(αi + 1)
(
ζ 1

i |ul – uj|
))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i |ul – uj|
))

ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i |ul – uj|
))

ds
)
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≤
[

1 – �i

B(�i)

(
mζ 2

i +
1

�(αi + 1)
ζ 1

i

)
+ B(�i)

(
1

�(�i)
k�i

�(� + 1)
mζ 2

i

+
1

�(�i + αi)
k�i+αi

�(� + αi + 1)
ζ 1

i

)]
|ul – uj|

≤ ηi|ul – uj|. (28)

If ηi < 1, where ηi are given by (18), then Ti are contraction operators, and by Banach’s fixed
point theorem the sequential hybrid fractional-order system (1) has a unique solution,
represented by the fixed points of Ti. �

Theorem 2.3 Under the assumptions of Lemma 2.2, the sequential hybrid system of FDEs
(1) has a solution.

Proof In Lemma 2.2, we proved that Ti are bounded. Furthermore, let t1, t2 ∈ [0, k] with
t2 > t1 and k ≤ 1. In the case t ≥ s, we have

∣∣Tiu(t2) – Tiu(t1)
∣∣

=

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t2, u(t2)

)
+ Iαiλi

(
t2, u(t2)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t2, s)

m∑
1

Fi
(
s, u(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t2, s)λi

(
s, u(s)

)
ds

)

–

[
–

1 – �i

B(�i)

( m∑
1

Fi
(
t1, u(t1)

)
+ Iαiλi

(
t1, u(t1)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t1, s)

m∑
1

Fi
(
s, u(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t1, s)λi

(
s, u(s)

)
ds

)]∣∣∣∣∣ (29)

≤ 1 – �i

B(�i)

( m∑
1

∣∣Fi
(
t2, u(t2)

)
– Fi

(
t1, u(t1)

)∣∣ + Iαi
∣∣λi

(
t2, u(t2)

)
– λi

(
t1, u(t1)

)∣∣)

+ B(�i)

(
1

�(�i)

∣∣∣∣
∫ t2

0
(t2 – s)�i–1 –

∫ t1

0
(t1 – s)�i–1

∣∣∣∣
m∑
1

∣∣Fi
(
s, u(s)

)∣∣ds

+
1

�(�i + αi)

∣∣∣∣
∫ t2

0
(t2 – s)�i+α–1 –

∫ t1

0
(t1 – s)�i+α–1

∣∣∣∣∣∣λi
(
s, u(s)

)∣∣ds

)

≤ 1 – �i

B(�i)

( m∑
1

∣∣Fi
(
t2, u(t2)

)
– Fi

(
t1, u(t1)

)∣∣ + Iαi
∣∣λi

(
t2, u(t2)

)
– λi

(
t1, u(t1)

)∣∣)

+ B(�i)
(

1
�(�i + 1)

∣∣∣∣t�i
2 – t�i

1
(
ζ 2

i ηi + ℘2
)

+
1

�(�i + αi + 1)

∣∣∣∣t�i+α
2

– t�i+α

1 |(ζ 1
i ηi + ℘1

))
. (30)
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This implies that Tiu(t2) → Tiu(t1) as t2 → t1. This implies |Tiui(t2) – Tiui(t1)| → 0 as
t2 → t1. Hence Ti are equicontinuous operators for t ≥ s. The case t ≤ s is similar, and
thus we omit it. Next, for any u ∈ {u ∈ C([0, k],Re) : u = �Ti(u), for � ∈ [0, 1]}, we have

‖u‖ =
∣∣Tiui(t)

∣∣
=

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i ηi + ℘2
))

ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i ηi + ℘1
))

ds
)

≤ 1 – �i

B(�i)

(
m

(
ζ 2

i ηi + ℘2
)

+
1

�(αi + 1)
(
ζ 1

i ηi + ℘1
))

+ B(�i)
(

1
�(�i)

k�i

�(� + 1)
m

((
ζ 2

i ηi + ℘2
))

+
1

�(�i + αi)
kαi+�i

�(� + αi + 1)
((

ζ 1
i ηi + ℘1

)))

= �1 + �2‖u‖, (31)

where

�1
i =

1 – �i

B(�i)

(
mζ 2

i +
1

�(αi + 1)
ζ 1

i

)
+ B(�i)

(
1

�(�i)
k�i

�(� + 1)
mζ 2

i

+
1

�(�i + αi)
k�i+αi

�(� + αi + 1)
ζ 1

i

)
(32)

and

�2
i =

1 – �i

B(�i)

(
m℘2 +

1
�(αi + 1)

℘1

)
+ B(�i)

(
1

�(�i)
k�i

�(� + 1)
m℘2

+
1

�(�i + αi)
k�i+αi

�(� + αi + 1)
℘1

)
(33)

for i = 1, 2, . . . , m. With the help of (31), (32), and (33) we have

‖u‖ ≤ �1
i

1 – �2
i

(34)
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for i = 1, 2, . . . , m. Hence the requirement of the Leray–Schauder alternative theorem is
ensured, and therefore the system of sequential hybrid FDEs (1) has a solution. �

3 H-U-stability
Here we consider the H-U stability of system (15). The following definition plays a vital
role in the stability.

Definition 3.1 The fractional-order integral system (15) is H-U-stable if for some ζi > 0,
there exist �i > 0, for each solution ui with

‖ui – Tiui‖1 < �i, (35)

there are ūi(t) of the operators system (15) with

ūi(t) = Tiūi(t) (36)

such that

‖ui – ūi‖ < �iζi (37)

for all i = 1, 2, . . . , m.

Theorem 3.2 With assumptions of Lemma 2.2, the integral system (15) is H-U stable, that
is, the sequential hybrid system of FDEs (1) is H-U stable.

Proof Let ui ∈ C satisfy inequality (35), and let ūi ∈ C of system (1) satisfy (15). Also,

∣∣Tiui(t) – Tiū∗(t)
∣∣ =

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)

–

[
–

1 – �i

B(�i)

( m∑
1

Fi
(
t, ū∗(t)

)
+ Iαiλi

(
t, ū∗(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ū∗(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ū∗(s)

)
ds

)]∣∣∣∣∣
≤ 1 – �i

B(�i)

(
m

(
ζ 2

i
∣∣ui – ū∗∣∣) +

1
�(αi + 1)

(
ζ 1

i
∣∣ui – ū∗∣∣))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i
∣∣ui – ū∗∣∣))ds
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+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i
∣∣ui – ū∗∣∣))ds

)

≤
[

1 – �i

B(�i)

(
mζ 2

i +
1

�(αi + 1)
ζ 1

i

)
+ B(�i)

(
1

�(�i)
2k�i

�(� + 1)
mζ 2

i

+
1

�(�i + αi)
2k�i+αi

�(� + αi + 1)
ζ 1

i

)]∣∣ui – ū∗∣∣. (38)

For t ≤ s ∈ [0, k], a calculation leads to

∣∣Tiui(t) – Tiū∗(t)
∣∣

=

∣∣∣∣∣– 1 – �i

B(�i)

( m∑
1

Fi
(
t, ui(t)

)
+ Iαiλi

(
t, ui(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ui(s)

)
ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)λi

(
s, ui(s)

)
ds

)

–

[
–

1 – �i

B(�i)

( m∑
1

Fi
(
t, ū∗(t)

)
+ Iαiλi

(
t, ū∗(t)

))

+ B(�i)

(
1

�(�i)

∫ 1

0
Gi(t, s)

m∑
1

Fi
(
s, ū∗(s)

)
ds

+
1

�(αi + �i)

∫ 1

0
Hi(t, s)λi

(
s, ū∗(s)

)
ds

)]∣∣∣∣∣ (39)

≤ 1 – �i

B(�i)

(
m

(
ζ 2

i
∣∣ui – ū∗∣∣) +

1
�(αi + 1)

(
ζ 1

i
∣∣ui – ū∗∣∣))

+ B(�i)
(

1
�(�i)

∫ 1

0
Gi(t, s)m

((
ζ 2

i
∣∣ui – ū∗∣∣))ds

+
1

�(�i + αi)

∫ 1

0
Hi(t, s)

((
ζ 1

i
∣∣ui – ū∗∣∣))ds

)

≤
[

1 – �i

B(�i)

(
mζ 2

i +
1

�(αi + 1)
ζ 1

i

)
+ B(�i)

(
1

�(�i)
k�i

�(� + 1)
mζ 2

i

+
1

�(�i + αi)
k�i+αi

�(� + αi + 1)
ζ 1

i

)]∣∣ui – ū∗∣∣
≤ ηi

∣∣ui – ū∗∣∣ (40)

Let ηi < 1, where ηi are defined in (18) for i = 1, 2, . . . , m. With the help of (35), (36), (38),
and (40) consider the norm

∥∥ui – ū∗
i
∥∥ =

∥∥ui – Tiui + Tiui – ū∗
i
∥∥

≤ ‖ui – Tiui‖ +
∥∥Tiui – Tiū∗

i
∥∥

≤ �i + ηi
∥∥ui – ū∗

i
∥∥ (41)
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for i = 1, 2, . . . , m. This further implies that

∥∥ui – ū∗
i
∥∥ ≤ �i

1 – ηi
(42)

with ζi = 1
1–ηi

. Therefore system (15) is H-U stable. This ultimately ensures the stability of
the sequential hybrid system of FDEs (1). �

4 Application
Here we present an application of problem (1) and provide its numerical simulations. The
following system of four equations is a generalization of the smoking model with relapse
effect from quit smokers to the potential smoker [59]. Here P is a potential smoker, L is a
slight smoker, S is a smoker, and Q is quit smokers. We have

ABCD�1
0 P = �∗ + �Q – 2

β∗PL
P + L – (μ + d)P ,

ABCD�2
0 L = 2

β∗PL
P + L – (ξ + μ + d)L,

ABCD�3
0 S = ξL – (ξ + μ + δ)S ,

ABCD�4
0 Q = δS – (ξ + μ + γ )Q.

(43)

Here �i ∈ (0, 1], i = 1, 2, . . . , 6, (u1, u2, u3, u4) = (P ,L1,S2,Q), G1(t,P) = �∗ + �Q– 2 β∗PL
P+L –

(μ + d)P , G2(t,L) = 2 β∗PL
P+L – (ξ + μ + d)L, G3(t,S) = ξL – (ξ + μ + δ)S , and G4(t,Q) =

δS – (ξ + μ + γ )Q.

4.1 Numerical scheme
Let us consider

ABC
0D�1,�2

t P(t) = H
(
t,P(t)

)
,

where P(0) = P0. Applying the AB fractional integral, we get

P(t) = P(0) +
1 – �1

AB(�1)
H

(
t,P(t)

)
+

�1

AB(�1)��1

∫ t

0
ζ �2–1(t – ζ )�1–1H

(
ζ ,P(ζ )

)
dζ .

Replacing (t) by tn+1, we have

Pn+1 = P(0) +
1 – �1

AB(�1)
H

(
tn,P(tn)

)

+
�1

AB(�1)��1

∫ tn+1

0
ζ �2–1(tn+1 – ζ )�1–1H

(
ζ ,P(ζ )

)
dζ

and

H
(
t,P(t)

)
=

H(tk ,P(tk)(y – tk–1)
tk – tk–1

–
H(tk–1,P(tk–1))(y – tk)

tk – tk–1

=
H(tk ,Pk)(y – tk–1)

h
–

H(tk–1,Pk–1)(y – tk)
h

.
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By applying the Lagrange polynomial we further have

Pn+1 = P(0) +
1 – �1

AB(�1)
H

(
tn,P(tn)

)

+
�1

AB(�1)��1

n∑
i=1

[H(ti,P(ti))
h

∫ tk+1

tk

(ζ – ti–1)(tn+1 – ζ )�1–1 dζ

–
H(ti–1,P(ti–1))

h

∫ tn+1

tk

(ζ – ti)(tn+1 – ζ )�1–1 dζ

]
.

Now solving the integrals, we get

Pn+1 = P(0) +
1 – �1

AB(�1)
H

(
tn,P(tn)

)

+
�1h�1

�(�1 + 2)

n∑
i=1

[
H

(
ti,P(ti)

)(
(n – i + 1)�1 (n + 2 – i + �1)

– (n – i)�1 (n + 2 – i + 2�1)
)

– H(ti–1,Pi–1)
(
(n – i + 1)�1+1 – (n – i + 1 + �1)(n – i)�1

)]
.

Replacing the value of H(t,P(t)) by the functions, we obtain the following numerical
scheme:

Pn+1 = P(0) + �2t�2–1 1 – �1

AB(�1)
G1

(
tn,P(tn)

)
+ �2t�2–1 �2h�1

�(�1 + 2)

×
n∑

i=1

[
G1

(
ti,P(ti)

)(
(n – i + 1)�1 (�1 + n + 2 – i) – (n – i)�1 (–i + 2�1 + n + 2)

)

– G1(ti–1,Pi–1)
(
(n + 1 – i)�1+1 – (n + �1 – i + 1)(n – i)�1

)]
,

Ln+1 = L(0) + �2t�2–1 1 – �1

AB(�1)
G2(tn,Ln) + �2t�2–1 �2h�1

�(�1 + 2)

×
n∑

i=1

[
G2(ti,Li)

(
(n – i + 1)�1 (n + 2 – i + �1) – (n – i)�1 (n + 2�1 + 2 – i)

)

– G2(ti–1,Li–1)
(
(–i + n + 1)�1+1 – (n – i + �1 + 1)(n – i)�1

)]
,

Sn+1 = S(0) + �2t�2–1 1 – �1

AB(�1)
G3(tn,Sn) + �2t�2–1 �2h�1

�(�1 + 2)

×
n∑

i=1

[
G3(ti,Si)

(
(n – i + 1)�1 (n + �1 + 2 – i) – (n – i)�1 (n + 2�1 + 2 – i)

)

– G3(ti–1,Si–1)
(
(n – i + 1)1+�1 – (n – i + 1 + �1)(n – i)�1

)]
,

Qn+1 = Q(0) + �2t�2–1 1 – �1

AB(�1)
G4(tn,Qn) + �2t�2–1 �2h�1

�(�1 + 2)

×
n∑

i=1

[
G4(ti,Qi)

(
(n – i + 1)�1 (n + 2 – i + �1) – (n – i)�1 (n + 2 – i + 2�1)

)

– G4(ti–1,Qi–1)
(
(n + 1 – i)�1+1 – (n + �1 – i + 1)(n – i)�1

)]
,
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Figure 1 Potential smokers P (t) for orders 1.0, 0.99, 0.98, 0.97

Figure 2 Light smokers for the orders 1.0, 0.99, 0.98, 0.97

Here the numerical scheme is applied to a particular case with the initial values P(0) =
100, L = 30, S = 10, Q = 20. A = 10.25, β = 0.038, δ = 0.000274, μ = 0.0111, d = 0.0019,
ξ = 0.021, and γ = 0.006.

In Fig. 1, we present a graphical representation of the simulation of the potential smokers
P(t) in (43) for the fractional orders 1.0, 0.99, 0.98, 0.97. They increase up to 100 days and
then decrease to a certain value. Comparing the results of fractional orders with integer
orders, we see that the fractional-order results get closer to the classical results on values
of the fractional orders closer to 1. Figures 2 and 3 show the computational results for the
light L and smokers S .

In Fig. 4, a comparative analysis is given for the numerical simulations of the Q class of
the smoking model (43). The final Fig. 5 shows a join solution of the model for order 1.

5 Conclusions
We considered a general class of fractional-order differential equations (FDEs). This area is
still open for consideration of the sequential fractional differential equations, hybrid FDEs,
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Figure 3 Smokers S for the orders 1.0, 0.99, 0.98, 0.97

Figure 4 Quit smokers S(t) for orders 1.0, 0.99, 0.98, 0.97

mixed fractional functional equations, and many more. The hybrid FDEs consist of two
subclasses called the linear and quadratic differential equations. In this paper, we aimed
to present a system of hybrid sequential FDEs with two different fractional operators, the
Caputo and Atangana–Baleanu operators. We studied the existence and uniqueness of a
solution. We have observed that some essential conditions are required for the existence
of a solution of the fractional-order hybrid problem (1). There are two basic reasons for the
importance. We have studied in the literature that the sequential hybrid class of FDS have
not been considered for the presumed class for the existence of solution and stability anal-
ysis. Among them, one is a combination of the fractional derivative operators (the Caputo
fractional differential operator and the Atangana–Baleanu fractional operator), whereas
the second importance of the problem is the coupling of n FDEs with complex boundary
conditions. This can further motivate the readers to the combination of other operators
and make more research problems for the initial and boundary conditions. The problem is
converted into its equivalent integral form using Green’s functions. Then the H-U stability
is illustrated. Mathematical modeling of dynamical systems and their numerical simula-
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Figure 5 Joint solution for the model at 1.0

tions are considered as an application of the work. This aspect of the paper consists of a
fractional-order smoking model studied for the numerical analysis. The numerical results
are illustrated by some graphics based on our numerical scheme for model (43).
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