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ANALYTICAL AND EXPERIMENTAL STUDY OF FEED RATE

IN HIGH-SPEED MILLING

Bassem Gassara1,2, Gilles Dessein2, Maher Baili2, Moncef Hbaieb1, and

Wassila Bouzid Saı̈1

1Unité de Génie de Production Mécanique et Matériaux, ENIS, Sfax-Tunisie, Tunisia
2Université de Toulouse, INP=ENIT, LGP, Tarbes Cedex, France

& In the context of high-speed milling (HSM), during the machining process dynamic machine
response has to be identified. To achieve this, we have to calculate the feed rate evolution in linear
and circular interpolation according to dynamic performance of machine. In addition to that,

actual trajectory for transition passages between two interpolations must be estimated with take into
account of specific machining tolerances. This article proposes a model of machine tool behavior for a
tool path with linear and circular interpolations and machining cycle time prediction. The method
involves subdividing the trajectories into elementary geometries according to the type of interpolation

(circular or linear). At points where different trajectories meet, there is often a discontinuity in cur-
vature or in tangency, which decreases the feed rate. At the points of discontinuity in tangency, a
fillet radius is inserted. In this article, the influence of the geometry for elementary trajectories

was determined. Then, the value of the fillet radius between linear and circular contours in different
combinations was modeled. An industrial application was carried out in order to validate models
and to determine the influence of feed rate evolution on the machining cycle time.

Keywords feed rate, fillet radius, high-speed milling, tangency and curvature
discontinuity

INTRODUCTION

In high-speed milling (HSM), the important feed rates and accelera-
tions of the axes solicit the structure of the machine and its numerical
control (Bearee et al., 2004; Erkorkmaz and Altintas, 2001). So, it is difficult
to control the machine response. For example, the actual machining time
is often very high compared with the time estimated by the CAM software
(Moneral and Rodriguez, 2003; Siller et al., 2006). Indeed, during the
machining process, the feed rate does not always reach the programmed
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value (Albert et al., 2007; Dugas et al., 2002; Pateloup, 2005; Tapie et al.,
2007). Erkorkmaz and Altintas (2001) and Pessoles et al. (2010) have
presented a review of the analytical methods for calculating the feed rate
according to the kinematical parameters of the machine.

For the machining of complex workpieces, the tool path generated by
the CAM software can be composed of many elementary interpolations
shared in linear (G1) and circular (G02 and G03) interpolations. The large
number of these elementary interpolations generates different discontinu-
ities in the path. So, a significant instability of the real feed rate will be
observed. As a result, the machine slow downs at each transition of interpo-
lations and actual feed rate is much lower than the programmed one.

In the context of HSM, primarily, it is necessary to adapt the tool path
to rapid piloting of the machine and to respect the maximum consumed
power. To make the trajectories continuous, two methods are possible
(Held and Spielberger, 2009; Pateloup et al., 2010; Rauch et al., 2009; Tang,
2006). The first involves adding a circle arc in the crossing of discontinuity
in tangency (Dugas et al., 2002; Pateloup et al., 2004). The second is to esti-
mate the trajectory with polynomial function (Heng and Erkorkmaz, 2010;
Pessoles et al., 2012). Then, the machine must have a rigid structure
adapted to these conditions. Moreover, the performances of the numerical
control unit (interpolation cycle time, look ahead, etc.) and the kinematical
characteristics of the machine have an influence on the feed rate variation
(Lavernhe, 2008; Wang and Cao, 2012; Yong and Narayanaswami, 2003).
Indeed, the machine, which has a high Jerk, permits reduction of the accel-
eration and deceleration effects which reduces the impact of a discontinuity
on the feed rate evolution (Pateloup et al., 2004).

Tool paths can be expressed using straight lines, circle arcs and
polynomial interpolation, as described in (Helleno and Schützer, 2006;
Sinumerik, 2006). For these authors, the three various types are related
to the control unit. For machining operations, there was a discontinuity
in curvature or in tangency when changing direction. This generates slower
movement. Therefore, the machining cycle time increases.

The discontinuity in tangency has a great impact on the feed rate evol-
ution. To remedy this problem, one of the solutions used is to replace the
discontinuity in tangency by the discontinuity in curvature (continuity in
tangency). In the literature, several works have been interested in modeling
of the fillet radius at the point of discontinuities in tangency which was in
relation with the surface tolerance e. This modeling was applied to a path
on linear-linear contour (Dugas et al., 2002; Pateloup et al., 2004; Pessoles
et al., 2012). In this article, an advanced modeling method of the fillet
radius is presented. We applied this method on tool paths with linear
and circular interpolations (as shown in Figure 1). For the modeling, the
tool path is discretized into several blocks with discontinuity in tangency



and curvature. The discontinuity in tangency between two interpolations
(at point B) was replaced by a curvature discontinuity by adding circle
arc, which is a function of the tolerance e (as shown in Figure 2). The estab-
lishment of this model allows us to calculate the feed rate. Finally, an
experimental study was carried out on a HSM machine in order to verify
the developed models.

TOOL PATH MODELING

In this part, a geometrical model of tool path is presented. For the
modeling, the tool path must be discretized into several blocks which have
a discontinuity in tangency between them.

In this work, the considered trajectory of tool center is generated by
CAM software.

FIGURE 1 Discontinuity in tangency and in curvature.

FIGURE 2 Modification of the corner geometry.



Influence of Tool Path Geometry on the Type of Discontinuity

For machining operations, the tool path can contain a discontinuity in
curvature or in tangency at the point of a direction change. This slows
down the machine. The type of this discontinuity depends on orientation
angle c representing in Figure 3(a) for the linear-linear contour.

The equation of the orientation angle c for the linear-circular contour
(Figure 3(b)) has the following form:

c ¼ 90þ h

2
ÿ jþ a ð1Þ

The equation of the orientation angle c for the circular-circular contour
(Figure 3(c)) has the following form:

c ¼ h1

2
þ h2

2
þ j1 ÿ j2 ð2Þ

From Equations (1) and (2), two cases of the discontinuity are
distinguished:

. Discontinuity in curvature (D.c.) : c¼ 90� for the linear-circular contour
and c¼ 0� for the circular-circular contour.

FIGURE 3 Elementary tool path.



. Discontinuity in tangency (D.t.): 0�< c< 180� for the linear-circular con-
tour and for the circular-circular contour.

The orientation angle c has a great influence on the type of disconti-
nuity and the feed rate evolution. It is determined from the points coordi-
nates using a geometry equation. In the following part, a fillet radius
modeling was developed in two steps. The first step permits to calculate
the angle c basing on the points coordinates. The second step consists of
modeling the fillet radius value between circular-circular interpolations
in relation to the tolerance (e) imposed in the piece design.

Fillet Radius Modeling

For adapting the tool path to rapid piloting of the machine and in
order to reduce the machining cycle time, the discontinuity in tangency
has been replaced by discontinuity in curvature. This can be possible by
adding an arc of circle which depends on imposed error (e).

The modeling of the fillet radius can be presented by two methods.
In the first, the fillet radius between the blocks is defined with numerical
control (NC) function of the tangential displacement mode (G641) of
Sinumerik language (Sinumerik, 2006). In this case the value of the fillet
radius depends on the distance tolerance of trajectory interpolation
(TTI) (as shown in Figure 2) which is the tolerance of interpolation of
the trajectory. The distance must be specified with ADIS1, the circle arc
is inserted by numerical control unit (NCU). In the second method, the
fillet radius between the blocks can be defined with a modal instruction
(RNDM) or a not modal instruction (RND), the circle arc is inserted in
NC programs (Figure 4).

1Programmable smoothing characteristics (This function permits to specify the value of the TTI).

FIGURE 4 Recursive algorithm for fillet radius modeling.



As said before, the machine slows down on the level of discontinuities in
tangency. So, the control unit allows a non-null feed rate if it has an error. This
creates an arc of a circle that depends on imposed error e on orientation.

According to Dugas (2002), the fillet radius on the level of discontinu-
ities in tangency is in relation with the error tolerance e and the orientation
angle c (as shown in Figure 5). This modeling was applied to a path on
linear-linear contour.

The fillet radius is given by in Equation (3).

Rc ¼ e
cos c

2

ÿ �

1ÿ cos c
2

ÿ � ð3Þ

However, all the controllers never use this definition. They use the TTI
instead of tolerance (e) (Dugas, 2002) (Figure 5).

The TTI is given by:

TTI ¼ e
sin c

2

ÿ �

1ÿ cos c
2

ÿ � ð4Þ

In this article, the fillet radius Rc is calculated for various combinations of
path (linear-circular and circular-circular).
The step of modeling as follows:

. Generation of the numerical control intermediate (NCI) files (points
coordinates),

. Calculation of the angle c from the points coordinates between two
interpolations,

. Calculation the fillet radius adding at the discontinuity in tangency in
relation to the imposed tolerance e.

FIGURE 5 Modeling of a fillet radius of a discontinuity in tangency.



First, linear-circular interpolation will be studied. In this case, the tool
path is represented by a linear contour (BC) and a circular contour (CD:
circle C, radius R and center O) (as shown in Figure 6).

The coordinates of point D are given by:

XD ¼ 2R sin
h

2
cos jþ XC YD ¼ 2R sin

h

2
sin jþ YC ð5Þ

Where: XC and YC are the point C coordinates.
The tool path presents a discontinuity in tangency located at connec-

tion between linear (BC) and circular contour (as shown in Figure 6). This
discontinuity in tangency has been replaced by discontinuity in curvature
by adding an arc with a center Oc, with a fillet radius Rc calculated in
relation to imposed error e.

First, the angles h and j are determined using Equation (5). Then, the
angle c is calculated from Equation (1).

The fillet radius, which depends on the imposed error e (as shown in
Figure 6). It is given by:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XB ÿ XGð Þ2þ YB ÿ YGð Þ2
q

ð6Þ

The equation of the circular interpolation in arc CD is:

X ÿ XOð Þ2þ Y ÿ YOð Þ2¼ R2 ð7Þ

FIGURE 6 Fillet radius between linear-circular contour.



Coordinates of the point Oc and the radius Rc are calculated by:

XC ÿ XOc
ð Þ2þ YC ÿ YOc

ð Þ2¼ eþ Rcð Þ2
YCÿYB
XCÿXB

XOcÿYOcþ
YBXCÿYCXB

XCÿXB

�

�

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ YCÿYB
XCÿXB

� �2
r ¼ Rc

XO ÿ XOc
ð Þ2þ YO ÿ YOc

ð Þ2¼ R þ Rcð Þ2

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

TTI is calculated in relation to e. It is introduced in the zone from which or
to which the block transition is rounded (as shown in Figure 6) when
TTI¼ IC 0¼ IC 00.

With: I is the intersection between D and the line BC, D is the tangent
to the circle C at point C 00, and the points C 0 and C 00 have the coordinates:

XC 0 ÿ XOc
ð Þ2þ YC 0 ÿ YOc

ð Þ2¼ R2
c

YCÿYB

XCÿXB
XD ÿ YD þ YBXCÿYCXB

XCÿXB
¼ 0

XC 00 ÿ XOc
ð Þ2þ YC 00 ÿ YOc

ð Þ2¼ R2
c

XC 00 ÿ XOð Þ2þ YC 00 ÿ YOð Þ2¼ R2

8

>

>

>

>

>

<

>

>

>

>

>

:

ð8Þ

Coordinates of point I may be calculated by:

XC 0 ÿ XIð Þ2þ YC 0 ÿ YIð Þ2¼ XC 00 ÿ XIð Þ2þ YC 00 ÿ YIð Þ2
YCÿYB

XCÿXB
XI ÿ YI þ YBXCÿYCXB

XCÿXB
¼ 0

(

ð9Þ

The value of (TTI) is given by:

TTI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XC 0 ÿ XIð Þ2þ YC 0 ÿ YIð Þ2
q

ð10Þ

Figure 7 shows a path presented a discontinuity in tangency located at
connection between linear and circular contour with the angle of orien-
tation c< 90�:

Rc, XOc, and YOc are calculated as follows:

XC ÿ XOc
ð Þ2þ YC ÿ YOc

ð Þ2¼ eþ Rcð Þ2

YCÿYB
XCÿXB

XOcÿYOcþ
YBXCÿYCXB

XCÿXB

�

�

�

�

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ YCÿYB
XCÿXB

� �2
r ¼ Rc

XO ÿ XOc
ð Þ2þ YO ÿ YOc

ð Þ2¼ R ÿ Rcð Þ2

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:



Second, circular-circular interpolation will be detailed (as shown in
Figure 8). So, the tool path was represented by two arcs: (CD: circle C1,
radius R1 and center O1) and (DE: circle C2, radius R2 and center O2).

The coordinates of point E are given by:

XE ¼ 2R2 sin
h2

2
cos j2 þ XD YE ¼ 2R2 sin

h2

2
sin j2 þ YD ð11Þ

XD and YD are the point D coordinates, they are given by:

XD ¼ 2R1 sin;
h1

2
cos j1 þ XC YD ¼ 2R1 sin

h1

2
sin j1 þ YC ð12Þ

FIGURE 8 Fillet radius between circular-circular interpolations.

FIGURE 7 Fillet radius between linear-circular contours.



Where: XC and YC are the point C coordinates.
First, the angles h1, h2, j1 and j2are determined using Equations (12) and
(13) and then the angle c is resolute from Equation (2).

The fillet radius, which depends on the imposed error e, is given by:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD ÿ XGð Þ2þ YD ÿ YGð Þ2
q

ð13Þ

The equation of the circular interpolation in arc CD is:

X ÿ XO1
ð Þ2þ Y ÿ YO1

ð Þ2¼ R2
1 ð14Þ

The equation of the circular interpolation in arc DE is:

X ÿ XO2

ÿ �2þ Y ÿ YO2

ÿ �2¼ R2
2 ð15Þ

The coordinates of the point Oc and the radius Rc are calculated by:

XOc
ÿ XO1ð Þ2þ YOc

ÿ YO1
ð Þ2¼ R1 þ Rcð Þ2

XOc
ÿ XO2

ÿ �2þ YOc
ÿ YO2

ÿ �2¼ R2 þ Rcð Þ2
XOc

ÿ XDð Þ2þ YOc
ÿ YDð Þ2¼ eþ Rcð Þ2

8

>

<

>

:

With: I is the intersection between D1 and D2, D1 is the tangent to the
circle C1 at point D0 and D2 is the tangent to the circle C2 at point D’00.

The points D0 belongs to circles Cc and C1 and D00 belongs to circles Cc

and C2. Thus the coordinates of D0 and D00 are calculated using the circle
equations.

The coordinates of point I may be calculated by:

XD0 ÿ XIð Þ2þ YD0 ÿ YIð Þ2¼ XD00 ÿ XIð Þ2þ YD00 ÿ YIð Þ2

ÿ XO1
ÿXD0

YO1
ÿYD0

XI ÿ YI þ
XO1

XD0þYO1
YD0ÿX 2

D0ÿY 2
D0

YO1
ÿYD0

¼ 0

(

ð16Þ

The value of TTI is given by:

TTI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

XD0 ÿ XIð Þ2þ YD0 ÿ YIð Þ2
q

ð17Þ

In Siemens NCU, the TTI value must not exceed 0.5mm. If the resulting
theoretical value exceeds 0.5mm, the radius Rc must be introduced in
the program with a circular interpolation between D0 and D00’. This Circle
arc inserted with circular interpolation (G02 and G03) or by a modal
instruction, RNDM or a not modal instruction, RND.



FEED RATE MODELING

Figure 9 depicts the correspondence between the tool path and the
feed rate profile.

The tool path is locally modified at connection between linear-circular
by adding circle arcs contours to remove tangential discontinuity.

For motion along the tool path, the value of jerk is constant. So, the
acceleration has trapezoidal profiles (Erkorkmaz and Altintas, 2001;
Pessoles et al., 2010). The phase of acceleration is composed to 3 zones
(as shown in Figure 10).

The expression of the acceleration time is:

Tacc ¼ 2TJm þ TAm
ð18Þ

TJm and TAm
, respectively, present the time when the feed rate is controlled

by the maximum jerk and the time when the feed rate is controlled by the
maximum acceleration.

FIGURE 9 Feed rate profile for the linear-circular contour.



The profiles generated in the deceleration phase are totally symmetric
to acceleration phase. Based on the work of (Erkorkmaz and Altintas,
2001), the duration of each phase (Tacc, TVm, Tdec) must be calculated
according to the geometric and kinematic constraints. MATLAB# software
is used for developing a feed rate simulator.

Calculation of a Circular and Linear Interpolation

According to Pateloup (2005), the feed rate is related to three types of
parameters: adjustments and capacity of NCU, the NC programs and the
capacities of the axes.

Feed rate for the linear interpolation
In linear interpolation:

At ¼
dVf ðT Þ
dT

and An ¼ 0

The used kinematical parameters are limited by the less dynamic axis2

(Dugas, 2002):

Va ¼ min
VpmX

cos aj j ;
VmY

sin aj j

� �

t

; At ¼ min
AmX

cos aj j ;
AmY

sin aj j

� �

;

Jm ¼ min
JmX

cos aj j ;
JmY

sin aj j

� �

FIGURE 10 Acceleration phase.



a,VmX, VmY, AmX, AmY, JmX, and JmY respectively are the inclination angular,
the maximum feed rate for the X-axis, the maximum feed rate for the
Y-axis, the maximum acceleration for the X-axis, the maximum acceleration
for the Y-axis, the maximum jerk for the X-axis and the maximum jerk for
the Y-axis.

The feed rate limited by the interpolation cycle time tcy is:

Vtcy ¼
Llin

Tcy
ð19Þ

The feed rate imposed by the tool path length VLb
: is the case when the

sum of the acceleration and deceleration length (Lacc and Ldec) is higher
to Llin. So, the machine never finds the sufficient stroke to reach the
maximum feed rate.

The feed rate in the linear interpolation is:

Vlinm ¼ min Va;Vtcy;VLb
;Vfprog

ÿ �

ð20Þ

Feed Rate for the Circular Interpolation

In circular interpolation, the acceleration has two components:
tangential acceleration At, and a normal acceleration An.

At ¼
dVf ðT Þ
dT

An ¼
V 2
f ðT Þ
R

The less dynamic axis requires its capabilities during kinematic displace-
ment when more than one axis has to be used. The optimum solution is
to use an axis to its maximum capacity, or to define the following
limitation (Tapie et al., 2007):

Va ¼ min
VmX

cos ap
�

�

�

�

;
VmY

sin aPj j

 !

t

; An ¼ min
AmX

cos aPj j ;
AmY

sin aPj j

� �

;

At ¼ min
AmX

cos aej j ;
AmY

sin aej j

� �

Jt ¼ min
JmX

cos aPj j ;
JmY

sin aPj j

� �

With ap 2 ae ; as½ �; as ÿ ae ¼ h and ae ¼ arccos XO1ÿXCj j
R

� �

ap, ae, and as, respectively, are the angular position, the input angle and
the output angle.

For small radius values, the feed rate will be limited by the NCU.



The feed rate Vtcy, limited by the interpolation cycle time tcy, is:

Vtcy ¼
Rh

tcy
¼ Lcir

tcy
ð21Þ

When the stationary feed rate is reached, the two corresponding para-
meters are normal acceleration Anand tangential jerk Jm.

The expression of the jerk is:

~JJ ¼ d~AA

dT
¼ dA

dT
~NN þ A

d ~NN

dT
) Jt ¼

V 3
f Tð Þ
R2

ð22Þ

When we use the limitation of the normal acceleration, the feed rate is
(Dugas, 2002):

VAn ¼
ffiffiffiffiffiffiffiffiffiffiffi

R An

p

ð23Þ

When we use the limitation of the tangential jerk, the feed rate is deduced
from Equation (4) (Dugas, 2002):

VJt ¼
ffiffiffiffiffiffiffiffiffi

JtR23

q

ð24Þ

The feed rate in the circular interpolation is:

Vcirm ¼ min Va ;Vfprog ;VJt ;VAn;Vtcy;VLb

ÿ �

ð25Þ

Calculation of the Feed Rate of Crossing on a Discontinuity

in Curvature

At the time of a discontinuity in tangency or in curvature, numerical
control unit slows down in order to respect the maximum values of accel-
eration and Jerk for each axis (Figure 11).

Discontinuity in curvature between two circular interpolations
(point C00).

The feed rate for a discontinuity in curvature between two circle arcs
with different radius values is proposed in (Pateloup, 2005):

Vfc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R1 R2 Jt dt

R1 þ R2

s

ð26Þ

Discontinuity in curvature between a linear and circular interpolation
(point C 0)



For a discontinuity in curvature, the federate between a linear and
circular interpolation is (Pateloup et al., 2004):

Vfc ¼
ffiffiffiffiffiffiffi

RC
p

et C ¼ Jt dt ð27Þ

Thus, for a given fillet radius, the feed rate at the discontinuity will be
limited:

Vfcm ¼ min Vfc ;Vfprog ;VJt ;VAn;Vtcy;VLb

ÿ �

ð28Þ

Calculation of the Feed Rate of Crossing on a Discontinuity in

Tangency

In the transition of a discontinuity in tangency, the derivative of the tan-
gent to the tool path dðT Þ

ds is not defined. Consequently, the crossing feed
rate, Vfc, had to be nullified to avoid the infinite acceleration.

The transition that had a null feed rate at crossing on a discontinuity
was a manner of solving the problem. This implied a stop of cutting pro-
cess, brand of the part and an increase in the machining cycle time.

FIGURE 11 Discontinuity in curvature (continuity in tangency).



Another solution is to authorize an error (e) between the programmed
trajectory and the real trajectory to obtain a non-null feed rate of crossing.
In this case, the tool does not pass along the point of discontinuity as said
before.

Algorithm

The modeling steps are represented in the following diagram shown on
Figure 12. The modeling steps are as follows:

. Determination of the angle c by using the points coordinates in order to
identify the type of discontinuity.

. Calculation of the fillet radius (Rc), if it is a discontinuity in tangency.

FIGURE 12 Recursive algorithm for estimating feed rate.



. Calculation of the feed rate at the extremity using Equations (26) and
(27).

. Computation of the maximum feed rate Vlin m and Vcir m.

. Calculation of the duration of each phase T (Tacc, Tdec, TVm) for each
block.

. Plot the evolution of feed rate in function of time using MATLAB #
software.

MACHINING CYCLE TIME MODELING

The machining cycle time is expressed:

Tc mod ¼
X

N

k¼1

TVm
kð Þ þ Tacc kð Þ þ Tdec kð Þð Þ ð29Þ

TVm is the total time along the distance of the tool path with maximum feed
rate Vm, Tacc is the acceleration time and Tdec is the deceleration time during
the kth interpolation.

N is the total number of interpolations that constitute the trajectory.
The total time TVm is given by the following expression:

X

N

k¼1

TVm kð Þð Þ ¼
X

NVlin m

m¼1

Llin mð Þ
Vlin m

� �

þ
X

NVcir m

n¼1

Lcir nð Þ
Vcir m

� �

ð30Þ

With NVlinm
, NVcirm

, Llin and Lcir are, respectively, the number of interpolations
for which feed rate reached the maximum feed rate Vlin m , the number of
circular interpolation for which feed rate could reach the maximum feed
rate Vcir m, the length of feed rate reached the maximum feed rate Vlin m

in the linear interpolation number m and the length of feed rate reached
the maximum feed rate Vcir m in the circular interpolation number n.

EXPERIMENTAL STUDY

To validate the proposed models, an experimental study was conduc-
ted. In particular, feed rate evolution for three values of the orientation
angle c between linear and circular interpolation was tested and cycle time
for a machined die was registered. This experimental study was carried out
on a high speed machine (Huron K� 10). Its characteristics are given in
Table 1.

The continuous path mode with the tangential displacement mode
(G641) and the ‘‘soft’’ acceleration (Sinumerik, 2006) were integrated.



Elementary Tests

In this part, three tests are designed on the linear-circular interpolation
(Table 2) that is presented on Figure 13. The first test enables to validate
the simulation method for the case of the continuity in tangency. The
second one permits to validate the modeling of feed rate at the disconti-
nuity in tangency point. The last test confirms the modeling of feed rate
for another value of orientation angle c and imposed error.

Table 2 presents the geometry and kinematic parameters used.
Based on a geometry presented in the Test 1 (as shown in Table 2), the

feed rate variation to crossing in the discontinuity in curvature (continuity
in tangency) is calculated (as shown in Figure 14).

Test 2 presents the geometrical parameters of the path with disconti-
nuity in tangency. This discontinuity is eliminated by adding a circle arc,

TABLE 1 The Characteristics of the Machine

Huron K� 10

Spindle
Spindle speed 100–24000 rev=min
Maximum Power 20 kW
Axis capacity
Maximum fast speed X Y 30m=min
Maximum fast speed Z 18m=min
Feed rate: 10m=min
Maximum acceleration 3m=s2

MaximumJerk 50m=s3

NCU

Design Siemens 840D
Acceleration mode Soft
Tangential displacement mode G641
Look ahead 100 blocs
Interpolation cycle time 2ms

TABLE 2 Geometric Parameters

Discontinuity in C

Points
coordinates

R1

(mm)
h1
(�)

c

(�)
Type of

discontinuity
e

(mm)
Rc

(mm)
TTI

(mm)
Vfprog

(mm=min)B C D

Test 1 X 10 110 153.3 50 60 90 In curvature – – – 10000
Y 20 20 45

Test 2 X 10 110 160 50 60 120 In tangency 0.07 1.88 0.5 10000
Y 20 20 20

Test 3 X 10 61.42 74.81 50 60 180 In tangency 1.55 4 – 10000
Y 20 20 95.96



which is function of the TTI. Figure 15 presents the theoretical and the
experimental feed rate variation for this trajectory.

Test 3 is like the latter, although the circle arc is introduced in the
program with RND function (as shown in Figure 16).

At discontinuity (point C), it is noted that the machine slows down
immediately. In the crossing of a discontinuity, the machine adopted a
maximum speed in relation to its capacities, the type of discontinuity and
the imposed error e.

A good correlation has been found between experimental and theoreti-
cal results. Table 3 presents the error between measured feed rate on the
machine and calculated feed rate by the model for the various tests pre-
sented in Table 2. It is noted that the error between theoretical and experi-
ments feed rate in the transition ranging from 1 to 10%, while the error on
the total machining cycle time is less than 3.6%.

FIGURE 13 Tool path geometry.

FIGURE 14 Theoretical and experimental variation of feed rate.



Industrial Application

The procedure of determining the feed rate was applied to a machined
die of the Tunisian manufacture SIAF (Figure 17 and Figure 18). The final
HSM configuration adopted for this application integrates the continuous
path mode with the tangential displacement mode (G641 with
TTI¼ 0.05mm), the ‘‘soft’’ acceleration mode and the tolerance limits is
0.02mm. The CAM software is used to generate the trajectory of the tool
as well as approximate times of the various operations. The cutting
parameters are the following:

FIGURE 15 Theoretical and experimental variation of feed rate; TTI¼ 0.5mm.

FIGURE 16 Theoretical and experimental variation of feed rate; Rc¼ 4mm.



Roughing operation:

. Tool path strategy: Spiral parallel.

. Vfprog¼ 10,000mm=min.

. The diameter of tool dtool¼ 16mm.

. The radial depth of cut ae¼ 0.9 dtool mm.

. The axial depth of cut ap¼ 0.3mm.

. Spindle speed, N¼ 3800 rev=min.

The tool path presented in Figure 19 includes the various cases of connec-
tion between linear and circular interpolations in different combinations.

Table 4 presents the analytical solutions of the orientation angle c and
fillet radius Rc at some points placed on the tool path presented in

FIGURE 17 Workpiece configuration.

TABLE 3 Error Calculated on the Feed Rate at the Point of Discontinuity

Test Points

Feed rate in the transition (mm=min) Machining cycle time (s)

Model Experiments Error (%) Model Experiments Error (%)

1 C 6364 6173 3 1.05 1.09 3.6
2 C 0 1234 1371 9.9 1.16 1.2 3.3

C 1571 1479 6.2
C 00 1211 1242 2.4

4 C 0 1800 1887 4.6 1.18 1.22 3.2
C 4352 4125 5.5
C 00 1732 1762 1.7



Figure 19. The choice of these points aims to distinguish c equation accord-
ing to the type of combination between linear (G01) and circular interp-
olation (G02 and G03).

Figure 20 and Figure 21 present the theoretical and the experimental
feed rates, respectively.

At points 4, 8, 10, 11, 12, 13, 14, 15, 16, 17, and 20, the trajectory pre-
sents a discontinuity in tangency. This discontinuity is eliminated by adding
a circle arc which is function of the tolerance value. The length of this

FIGURE 18 Simulation and machining of the injection moulds.

FIGURE 19 Tool center paths during sweeping the machined shape.

TABLE 4 Results of the Analytical Solution of the Orientation Angle c and Fillet Radius Rc

Points
Connection
between Equation of c c(�)

Discontinuity=
continuity

Fillet
radius Rc

3 G1G3 90þ h
2 ÿ jþ a 90 continuity –

4 G3G3 h1
2 þ h2

2 þ j1 ÿ j2 30.7 Discontinuity 0.57

5 G3G2 h2
2 ÿ h1

2 þ j1 ÿ j2 8.4 Discontinuity 10.9

6 G2G2 h1
2 þ h2

2 þ j1 ÿ j2 4 Discontinuity 6.68

7 G2G1 90þ h
2 ÿ jþ a 85.5 Discontinuity 6.68

11 G2G3 h1
2 ÿ h2

2 þ j1 ÿ j2 20 Discontinuity 0.75

20 G3G1 90þ h
2 þ jÿ a 219.2 Discontinuity 0.024



adding circle arc is very small. Then, the maximum feed rate can be limited
by the interpolation cycle time.

In the experimental profile, the absence of acceleration and deceler-
ation phase at these points (as shown in Figure 21) can be explained by:

. The maximum feed rate calculated by the theoretical interpolation cycle
time (tcy¼ 2 ms) is higher to the experimental value. This phenomenon
is well met in the work of (Lavernhe et al., 2008).

. The tool path generated by the Siemens CNC (G641) at transition of the
discontinuity in tangency is a polynomial trajectory approximation of
circle arc (Pessole et al., 2012; Sinumerik, 2006) and this can also justify
the disparity between theoretical and experimental results.

FIGURE 20 Theoretical variation of feed rate in function of time Vfprog¼ 10000mm=min.

FIGURE 21 Experimental variation of feed rate in function of time Vfprog¼ 10000mm=min.



For the theoretical study, the ratio of the total time that would be
required if the feed rate were a programmed value Vfpr og to the actual
required machining cycle time r1 is calculated Tcmod (as shown in
Figure 22). For a programmed feed rate equal to 10,000mm=min, r1 is
8.011% of the total machining cycle time and 15.98% for 8000mm=min.

r1 is given by:

r1 ¼
Time Vfprog

ÿ �

Tc mod
ð31Þ

The percentage r1 decreases by increasing the value of the programmed
feed rate. This means that the feed rate does not always reach the
programmed value during the machining process, especially when we used
the important feed rates. To determine the impact of the feed rate variation
on the machining cycle time, this last is calculated with and without taking
the variation of the feed rate into account.

For a programmed feed rate Vfprog¼ 10,000mm=min, the total
machining cycle time calculated by Cam Software is given by:

TcVfprog
¼ ltot

Vfprog
¼ 1:5 sec ð32Þ

When we used a variable feed rate the total machining cycle time is
given by:

Tc mod ¼ 3:7 sec

FIGURE 22 Representative graph of using percentage of the programmed speed.



The report q showed that the estimated cost is much higher than the
actual cost:

q ¼ Cact

Cest
¼ CmTc mod

CmTcVfprog

¼ Tc mod

TcVfprog

’ 2 ð33Þ

Cest : The estimated cost is calculated as a function of the time TcVfprog

calculated by CAM Software.
Cact : The actual cost is calculated as a function of the simulated timeTcmod.

This study shows us that the time calculated by CAM Software (the
trajectory length=programmed feed rate) is not representative of the real
machining time. It can be concluded that the importance of this shift
should be taken into account during the calculation of the time and the
cost of machining.

CONCLUSIONS

It is noted that in the context ‘‘HSM,’’ it is important to study the
response of machine during the machining process. Indeed, modeling
the laws of motion axes and the actual trajectory at discontinuities is neces-
sary to identify the machine behavior. The important numbers of disconti-
nuities generates a significant instability of the real feed rate, which implies
an increasing machining time and non-compliance with the programmed
feed rate. This phenomenon leads to productivity issues and an underesti-
mation of the cost of machining for the industry.

In this article, a theoretical and experimental study of the feed rate
evolution in HSM for a tool path containing linear and circular interpola-
tions is presented. The aim of this study is to investigate the response of the
machine tool during any type of discontinuity between linear and circular
contours in different combinaison. This can be determined from the
following investigation:

. Identification of the type of a discontinuity at points where different
trajectories meet;

. Calculation of the fillet radius value, which will be inserted at a disconti-
nuity in tangency;

. Expression of the feed rate variation during a linear and circular interp-
olation;

. Estimation of the machining cycle time with a maximum error of 5%.



The theoretical study was developed in two parts. The first part was
devoted to modeling geometryof the tool path, itinvolves calculating the
radius between linear and circular interpolations in different combinations
in relation to the errore imposed on the piece design. The second part
focuses on the feed rate modeling with tangency continuity.

The experimental study is based on elementary tests, which leads to the
determination of the influence of the tool path geometry on the feed rate
evolution. An industrial case has been studied to validate models.

Our next work will be concentrated on developing a calculation inter-
face for automating the process of determining the feed rate evolution
and the estimated time and cost of production. This enables the industrial
to minimize the time needed to establish the estimated cost.
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NOMENCLATURE

Symbol Description
Vf instantaneous feed rate [mm=min]
Vfprog programmed feed rate [mm=min]
Vlin m maximum feed rate on a linear contour [mm=min]
Vcirm maximum feed rate on a circular contour [mm=min]
VLb attainable feed rate according to length of block [mm=min]
Vtcy attainable feed rate according to interpolation cycle time [mm=min]
VAn attainable feed rate according to normal acceleration [mm=min]
VJt attainable feed rate according to tangential jerk [mm=min]
Va attainable feed rate according to axis feed rate capacity [mm=min]
Vfc feed rate at a discontinuity crossing [mm=min]
Vfci feed rate at a discontinuity crossing in ith block [mm=min]
A instantaneous acceleration [m=s2]
An normal acceleration [m=s2]
At tangential acceleration [m=s2]
J jerk [m=s3]
Jt instantaneous tangential acceleration [m=s3]
Jm maximum jerk [m=s3]
T time [s]
TVm machining cycle time when we used maximum feed rate [s]
Tcmod machining cycle time of the model using [s]
TcVfprg

machining cycle time when we used Vfprog[s]
Tacc acceleration time [s]



Tdec deceleration time [s]
tcy interpolation cycle time [s]
dt circular transition block crossing time [s]
S curvilinear abscissa [mm]
R; R1;R2 workpiece curvature radius [mm]
RC fillet radius [mm]
Llin length of the linear tool path of each block [mm]
Lcir length of the circular tool path of each block [mm]
ltot total length of tool path [mm]
e imposed error [mm]
TTI tolerance of trajectory interpolation [mm]
c orientation angle [�]
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