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Abstract 

In this paper a new taxonomy for feature selection 
algorithms created for high-dimensional datasets is 
proposed. Also, several selectors are described, analyzed 
and evaluated. It was observed that the Cfs-SFS algorithm 
reached the best solutions in most of the cases. 
Nevertheless, its application in very high-dimensional 
datasets is not recommended due to its computational 
cost. Cfs-BARS, Cfs-IRU and MRMR algorithms have 
similar results to those of Cfs-SFS, but in a relatively 
lesser time. The INTERACT algorithm gets good solutions 
too, but its computational cost is higher if compared to the 
above mentioned. On the other hand, the QPFS and 
FSBMC algorithms reached the worst solutions. 

Keywords: feature selection, filter strategy, high-
dimensional datasets, supervised classification 

1. Introduction 

Due to the great amount of information that is present in 
the current technological processes, many machine 
learning algorithms have been proposed for extracting the 
useful knowledge for taking decision in a better way. 
When the dataset analyzed is high-dimensional 
(thousands or dozen of thousands features), there are huge 
possibilities of finding inconsistent, redundant and 
irrelevant data. In these cases, generally, feature selection 
algorithms are used before employing the machine 
learning algorithms [1]. The feature selection algorithms 
remove the irrelevant and redundant features, in a way 
that a new dataset with the relevant information implicit is 
obtained [2]. In this sense, the process of knowledge 
extraction is carried out with better efficiency and the 
decision-making process is carried out with a higher level 
of prediction. 
The scientific community has focused specially on the 
algorithms for high-dimensional dataset because 
nowadays they are typical in different processes, such as: 
business administration [3], human-genome projects [4], 
polymer identification in real time [5], cardiac 
arrhythmias classification [6], automatic control of 
prosthesis [7] and others. 
According to the evaluation function employed, the 
feature selection algorithms can be cataloged as filters, 
wrappers or hybrids [8]. The filters use statistical 

functions for evaluating the subsets in an independent 
way of the machine learning algorithm [9], while the 
wrappers use the machine learning algorithm for 
determining the prediction power obtained in the subset 
evaluated. The wrappers are generally costly in terms of 
computational complexity because the learning and 
validation process are executed every time a subset is 
evaluated. Nevertheless, the results obtained by the 
wrappers are better [10]. On the other hand, the hybrid 
strategy combines the two mentioned above with the 
purpose of achieving a balance between the effectiveness 
and the efficiency of its execution [10]. 
In this paper, an analytical and experimental study of 
filter feature selection algorithms for high-dimensional 
datasets is presented. The algorithms evaluated are those 
created for supervised learning. Previous feature selection 
evaluation studies have been developed [11, 12], but the 
majority of them consider just a few of selectors and/or 
the datasets used for the comparison are of dissimilar 
dimensions. With the aim of giving a detailed analysis to 
the scientific community about the performance of the 
filter selectors made for high-dimensional datasets, in the 
next sections a brief survey is presented and to finish, an 
evaluation of many feature selection algorithms is carried 
out in different high-dimensional datasets. 

2. Feature Selection for High-dimensional Datasets 

The feature selection process has been considered as an 
ever evolving problem because of the growth of the data 
throughout time [13].  
When the dataset contains thousands or dozens of 
thousands features, to obtain the best subset of all 
possible (2n) is unpractical because a lot of time is 
required. For this reason, the algorithms created for this 
type of datasets search only heuristically in a reduced 
search space. 
The taxonomy showed in Figure 1 is proposed with the 
aim of studying and analysing, in a better way, the feature 
selection algorithms that will be evaluated in this paper. 
Notice that the algorithms discussed in this paper, are also 
shown. 
According to this taxonomy, the feature selection 
algorithms can be classified in three groups according to 
the amount of features evaluated by the evaluation 
function: univariate, pairwise and multivariate. 
Theoretically, in this diagram, for all horizontal levels, the 
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classifications located to the left are faster the more to the 
left they are, but less effective. Whereas those located 
more to the right obtain better results, but they need more 
time. Hence, a balance for these parameters could be 
found in the algorithms located in the center of the 
diagram. 
The algorithms located in the first group generate a 
feature ranking according to the relevance level of each 
one of them respect to the class feature. Later on, the first 
features are selected from the ranking. 
Within these algorithms there are the Mutual Information 
[14] and Symmetrical Uncertainty [15] which are based 
on the information theory concepts. 
The difference between the entropy of feature C and its 
entropy after observe the feature Ai, represents the Mutual 
Information I(Ai,C) between both features (equation 3). 
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The Mutual Information function favors the features that 
contain many values. For removing this undesirable 
obstacle in advanced, a normalization method is applied, 
obtaining thence, the Symmetrical Uncertainty function. 
Notice that both functions are symmetric, nevertheless, 
only the Symmetrical Uncertainty gives values between 
zero and one. 
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On the other hand, the Chi-Squared function is based on 
the probability theories and represents the goodness-of-fit 
test between two distributions. 
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The algorithms located in the first group do not take into 
account the redundancy level among the features which 
implies that the results obtained by the machine learning 
applied in a posterior stage are not going to be so good 
[16].  
The algorithms of the second group use an evaluation 
function that only evaluates pairs. They compute the 
relevance score of a subset through the evaluation of its 
pairs: feature-feature and feature-class [17]. Due to this 
way of evaluation, these algorithms are, generally, very 
fast and also take into account the redundancy among 
features. Inside this group, there are three other groups 
according to the search employed: search over a ranking, 
sequential search and search based on Optimization 
Models (OM). The first type of search is based on the 
creation of a ranking considering the relevance score 
feature-class and then the most redundant features are 
removed from the ranking through the pairwise evaluation 
feature-feature. On the other hand, in the algorithms that 
use the sequential search, in each iteration, the feature that 
better improves the current solution is added. 
The algorithms that are based on optimization models, 
determine the weight of each feature which optimizes an 
objective function. The objective function takes into 
account the relevance score of each feature (feature-class) 
and the redundancy score of each pair of features (feature-
feature) [17]. Once the model has been solved, the r 
features with the biggest weight or those that exceed a 
predefined weight value are selected. Among the models, 
mostly used in this type of search are the lineal 
programming [18] and the quadratic programming [19]. 
Finally, the multivariate functions evaluate the subsets in 
an integral way, that is to say, they explore the whole data 
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Fig. 1: Taxonomy used in this paper for classifying the feature selection algorithms for high-
dimensional datasets. 
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from the subset for determining its quality. For this 
reason, they are not so efficient; however, they generally 
obtain good solutions. 
 

3. Feature Selection Algorithms for High-

Dimensional Datasets 

In this section the algorithms presented in the low level of 
Figure 1 are briefly described and analyzed in a 
chronological order. 
 
3.1. Correlation-based Feature Selection (Cfs) 

Cfs function [20] evaluates each candidate subsets taking 
into account the mean feature-class relevance 

CAR ,
 and 

the mean feature-feature redundancy 
AAR ,

 of each 

possible pair of features in the subset. This function is 
showed in the equation 6. 
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For computing the relevance feature-class and the 
redundancy feature-feature the Symmetrical Uncertainty 
function is used (see equation 4). Cfs is generally 
employed with the SFS strategy [21]-[23] because it is not 
so complex computationally. In this study, Cfs will be 
also used with SFS and it will be called from now on Cfs-
SFS. 
According to experimental studies, the solutions obtained 
by this algorithm are fairly good [21]-[24], nevertheless, 
its computational complexity is quite high when it is 
compared with the algorithms that use a search over a 
ranking. 
 
3.2. Minimum Redundancy–Maximum Relevance 

(MRMR) 

MRMR function [21] also uses the SFS search strategy. 
For determining if a feature is part of the solution a 
correlation function is used. This function takes into 
account the relevance score of the feature for the class 
and its redundancy score with each one of the already 
selected. The author of this algorithm proposes two 
evaluation functions named: Mutual Information 
Difference (equation 7) and Mutual Information Quotient 
(equation 8). It is valid to point out that according to 
experimental studies of the author with the Mutual 
Information Quotient the solutions obtained are generally 
less redundant. 
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The principal disadvantage of this algorithm is that the 
number of feature to select t must be specified and 
generally the optimal solution size is not known. 
Another disadvantage of this algorithm is the use of the 
mean redundancy that the candidate feature has with the 
already selected features, in the evaluation function. 
Supposing, for example, that the candidate feature is 
totally correlated to one of the current solution and lightly 
correlated to the others, it is highly probable that the 
candidate feature will be added to the solution. 
Nevertheless the information that this feature contains has 
been already imported by other feature. 
In MRMR algorithm, the Mutual Information of all 
possible feature pairs: feature-feature and feature-class, is 
computed. Therefore, the computational complexity is 
quadratic O (n2). 
The author of this algorithm also proposes functions for 
continuous features. However better results are obtained 
in his experiments when after discretizing the datasets the 
discrete functions are applied. 
 
3.3. Fast Correlator-Based Filter (FCBF) 

In the FCBF algorithm [22] a feature ranking is generated 
according to the feature relevance with the class 
computed through the Symmetrical Uncertainty function. 
Once defined the ranking, the first feature is considered as 
the predominant and its redundancy with the others is 
computed through the Symmetrical Uncertainty function. 
The features that are more correlated with the 
predominant feature than with the class will be removed 
from the ranking. The process is repeated iteratively 
taking as predominant feature the next feature which 
remains in the ranking. A threshold λ can be used for 
determining how much the correlation feature-class value 
should exceed to the correlation feature-predominant 
value for avoiding the feature elimination. The final 
solution will be composed by the features that were not 
removed in any of the iteration. 
The computational complexity of the FCBF algorithm is 
O(nlogn) taking into account the operations made in the 
features of the dataset. In practice, this algorithm is very 
fast because in an iteration a feature is selected and many 
others are removed. In datasets with many redundant 
features, the amount of paired evaluation decrease 
drastically in each iteration. 
According to several experimental studies it has been 
observed that the FCBF algorithm obtains very good 
results [22]-[25]. One of the principal disadvantages of 
FCBF algorithm is that if two features contribute 
information to the current predominant feature; but they 
are redundant inwardly, then the one of bigger relevance 
will be selected and the other one will be removed. In this 
case it is not taken into account which of the two features 
better contributes to the predominant feature.  
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3.4. Incremental Ranked Usefulness (IRU) 

In the IRU algorithm [26] a ranking is generated 
according to the relevance feature-class. Afterwards, 
beginning with the empty solution, the ranking is 
explored form the beginning to the end, adding the 
features that improve the solution to be part of it. In 
Figure 2 a representative example of the performance of 
this algorithm is shown. Notice that feature Ai represents 
the i-th feature of the ranking. 
 

 
 
Fig. 2: Example of the IRU algorithm 
 
When this search strategy is used in combination with the 
Cfs function, it could be seen as a hybrid between FCBF 
and Cfs-SFS algorithms. The similarities that it possesses 
with respect to the FCBF algorithm are: the search over a 
ranking and the early removing of features that are not 
good for the current solution. In fact, these two 
characteristics are the principal pillars of the agility and 
the efficiency of FCBF algorithm. On the other hand, the 
advantage that Cfs-IRU possesses respect to FCBF is that 
in the function Cfs the relevance and the redundancy are 
taken into account at the same time for determining if a 
feature will form part of the solution. 
The computational complexity of this algorithm when it is 
used in combination with the Cfs function is similar to 
that of the FCBF. Therefore, it could be used in very high 
dimensional datasets. 
 
3.5. Feature Selection Based on Mutual Correlation 

(FSBMC) 

The Feature Selection based on Mutual Correlation 
(FSBMC) is proposed in [27]. As it is shown in figure 3, 
in the first step the Mutual Correlation between each 
feature pair is computed. For this, the Mutual Correlation 
formula, showed in equation 9, is used. Notice that the 
initial solution S will be the whole set of features. 
Afterwards, the feature that is mostly correlated with the 
others is removed from S (lines 4-6). This is computed 
through the mean of the correlation that the feature to 
evaluate has with the others features in S (see equation 
10). The algorithm stops when |A|-t features have been 
removed. The t value must be specified previously. 
 
Algorithm: FSBMC 

Input: 

D(A1, A2, …,C)   // dataset to be processed 

t                         // size of the final solution 

Output: S                     // selected subset 

»Step1: Computing the correlation between pairs 

1: For each feature Ai 

2: Compute: jiAAr jAA ji
 ;;,

 

»Step2: Removing the most redundant features 

3: Initially: S = A 

4: while (|S| > t) 

5: Being: Aworst the more redundant feature of S: 
 )};({: CAFmaxA iFSBMCSAAworst ii   

6: S = S \ Aworst 

7: return: S 

 
Fig. 3: FSBMC algorithm 

 
The equation used for computing the correlation between 
feature pairs is only applicable to continuous features. 
The author of this algorithm does not propose a measure 
for discrete features because he has only used genomics 
datasets in his experimental evaluations. Nevertheless, the 
Mutual Information or the Symmetrical Uncertainty 
functions could be used for discrete features. 
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The principal difference of this algorithm respect to the 
others is that it does not use the correlation feature-class 
in his search strategy, being applicable to unsupervised 
classification problems [28]. Unfortunately, if a feature is 
lightly correlated with the class and it is not redundant 
with the others, then it will have high probabilities of 
being selected. 
The computational complexity of FSBMC is O(n(n+1)/2) 
in the first step. On the other hand, for the second step  





n

tk

)|S|(|S| 1  simple mathematic operations are required, 

where |S| represents the number of features remaining in 
the current iteration. For very high dimensional datasets 
this amount of operations is remarkable. 
 
3.6. INTERACT 

In the INTERACT algorithm [24] the principal goal is to 
get in the final solution all the features that interact 
inwardly. When a feature by itself is not highly correlated 
with the class, but combined with others features it 
reaches a high correlation for predicting the class values, 
then it is said that this feature interacts with others. 
The evaluation function proposed by the authors of this 
algorithm for obtaining subsets composed by features that 
interact inwardly is the Consistency Count showed in the 
equation 11.  
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For a feature subset S, the set of all instances with equal 
value in all its features is denoted Ei. From each set Ei, |C| 
instance subsets can be obtained if their instances are 
separated by class. 
The Inconsistency Count IC(Ei) for an instances subset Ei 
is computed through the difference of the amount the 
instances in Ei and the amount of instances that the 

biggest instances subset 
k
iE  has (see equation 13). This 

measure takes value zero when all the instances in Ei 
belongs to the same class and takes value |Ei|(|C|-1)/|C| 
when the class of all the instances in Ei are equally 
distributed. 
On the other hand, the Inconsistency Count Rate is 
computed through the mean of all the Inconsistency 
Count of each instances subset Ei. Notice that m is the 
number of instances in the dataset. 
As it can be observed the Consistency Count cc(S, Ai) is 
basically a subtraction between the Inconsistency Count 
of a subset S without a feature Ai and the Inconsistency 
Count of the entire subset S. Hence, the Consistency 
Count represents the inconsistency that Ai contributes to 
the subset S. This can also be expressed as the consistency 
that S obtains after removing feature Ai from it. 
The INTERACT algorithm is presented in figure 4. 
 
Algorithm: INTERACT 

Input: 

D(A1, A2, …,C)  // dataset to be processed 

λ                         // inconsistency threshold 

Output: S                 // subset selected 

»Step1: Ranking generation 

1: Create a descendent ranking R through 
SU(Ai;C) 

»Step2: Removing inconsistent features 

2: For each feature Ai in R, from the end to the  

beginning : 

3: if cc(S;Ai) > λ 

4: S = S \ {Ai} 

5: return: S 

 
Fig. 4: INTERACT algorithm 
 
The authors of this algorithm use a hashing mechanism 
quite efficient for computing the Consistency Count. The 
whole process is made through two principal operations: 
removing keys and updating values in a hash table. 
According to experimental studies of the author, this 
algorithm obtains good results considering the quality of 
the solutions and the running time. Despite this, the 
algorithms: CCC [29] and SDC [30] have been created for 
eliminating several intrinsic deficiencies of INTERACT. 
Nevertheless, improvements were made, oriented to 
obtain better solutions, but increasing the computational 
complexity. For this reason, they are not recommendable 
for high-dimensional datasets. 
 
 

3.7. Best Agglomerative Ranked Subset (BARS) 

In the BARS algorithm [25], a ranking is generated taking 
into account the relevance of each feature with the class. 
Later, many feature pairs are obtained through the union 
of the first feature in the ranking and each one of the 
followings, the second one and each one of the 
followings, and so on until the q-th feature and the 
followings in the ranking. In this way q(n-1)/2 features 
pairs are obtained, where q is a predefined parameter. 
Then all these feature pairs are evaluated and a new 
ranking of pairs is made taking into account their 
relevance. The pairs that are not more relevant than the 
first/best feature in the previous ranking are removed. 
In a second iteration, given the ranking, the process is 
repeated again, but now the subsets generated will have 
four features due to the union of feature pairs. It is valid 
remark that some subsets will have just three features 
because could be exists two feature pairs with common 
features. The stopping criterion is reached when in an 
iteration the new ranking obtained is empty, that is to say 
that none one of the subsets generate is more relevant 
than that the best obtained in the previous iteration. 
Finally, the returned solution will be the best subset of the 
previous iteration. 
When the dataset analyzed is very consistent and does not 
have many redundant features, many subsets must be 
evaluated for reaching the stopping criterion. 
Consequently, the BARS algorithm is an efficient strategy 
when it is used in datasets with much irrelevant 
information.  
 
3.8. Pearson Redundancy Based Filter (PRBF) 

In the PRBF algorithm [23] a search strategy over a 
ranking is used. A very similar process to the FCBF 
algorithm is employed. The only difference is that after 
generating the ranking the Chi-Squared function (see 
equation 5) is used for the redundancy analysis. In this 
step, a feature Aj will be removed by a predominant 
feature Ai, if: p-value(X2(Ai,Aj)) > α. Where α is a 
predefined parameter. According to experimental results, 
the author proposes α=0,001. 
 
3.9. Quadratic Programing Feature Selection (QPFS) 

In [31] the feature selection problem is modeled as a non-
lineal quadratic problem [19]. Be Q a square matrix that 
represents the correlation between each feature pairs and 
be F a vector that stores the correlation of each feature 
with the class. It could be obtained a new vector W that 
represents the weight of each feature that optimizes a 
quadratic model. A basic quadratic model that contains 
the variables mentioned before is represented in the 
equation 14. 
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As it can be observed, for minimizing this objective 
function it is necessary to obtain the Wi values that 
minimize the redundancy pairs contained in Q and that 
maximize the relevance feature-class contained in F. 
The computational complexity of the algorithms that 
solve this kind of model is very high. Hereby, a new 
algorithm called QPFS, based on a quadratic model, was 
proposed in [31] for high-dimensional datasets. The 
innovation is based on the application of the 
diagonalization method to the redundancy matrix Q.  
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In the equation 15 the new objective function is shown. 
The matrix  Q  has been transformed into TUU . U is an 
invertible matrix whose column vectors are the 

eigenvectors of Q and   is a diagonal matrix composed 
by the eigenvalues of Q. 
The author proposes the use of the Nystrӧm method [32] 
for obtaining an approximated diagonal matrix without 
evaluating all the feature pairs when the dataset is very 
high-dimensional. This reduces, in a great manner, the 
computational cost of QPFS. Nevertheless, it has negative 
repercussions over the obtained results [33]. 
 
3.10. HSIC Lasso and NOCCO Lasso  

The optimization model Least Absolute Shrinkage and 
Selection Operator (Lasso) [34] has been used for feature 
selection [33, 35, 36]. 
In the HSIC Lasso algorithm [33] the Independence 
Criterion of Hilbert-Schmidt [37] has been used for 
determining the regression coefficient Wi of each feature 
Ai. In the solution of this model high weights are obtained 
for the features that have high correlation with the class 
and low correlation with the other features. The model is 
shown in the following equation. 
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Here, the function )();( )( LKtrAAHSIC i
ji   evaluates 

the independence score between the feature Ai and the 

class feature C. 
)(iK  is a squared centered gram matrix 

which represents the dispersion score existing in the 
values of Ai. This matrix can be obtained through a 
Gaussian function.  
Another algorithm based on the Lasso operator is 
NOCCO Lasso [33]. In this algorithm 

1)()()( )(
~  n

iii nIKKK   and 1)(
~  nnILLL   are used 

instead of )(iK  and L . The model regularization 
parameter is ε, and must be bigger than zero. 
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In the equation 19 the NOCCO Lasso model is shown. 
The Normalized-Cross Covariance Operator 

);();( jiji
NOCCO AAtrAAD   represents a dependency 

measure based on kernel [38]. 
Both algorithms have low computational complexity in 
datasets with few instances, but when there are many 
instances (m2 > n), its application is very expensive [33]. 
Finally, the nature of these operators does not allow their 
use in datasets with discrete features; therefore the 
insertion of a discrete operator in the Lasso model is even 
a non-studied problem. 

4. Experimental Evaluation 

In this section the results of the experimentation. 
Unfortunately, the evaluation of HSIC Lasso and NOCCO 
Lasso algorithms was not possible because they can only 
be used in continuous datasets. Furthermore, it was 
confirmed that FCBF and PRBF algorithms obtained very 
similar results in all the datasets; hereby the PRBF results 
are not shown. 
On the other and, the algorithms PRBF, MRMR and 
FSBMC were implemented in this research using the 
Weka framework [39]. Moreover, the QPFS algorithm 
was taken from its author’s implementation1. The other 
algorithms used in this evaluation are available in the 
Weka environment. 
 
4.1. Methodology of Evaluation 

With the aim of observing the practical behavior of each 
algorithm, the parameters considered in the evaluation 
were: the running time, the number of features removed 
and the accuracy reached by three machine learning 
algorithms in the reduced datasets. 
 

                                                 
1 http://arantxa.ii.uam.es/~gaa/software_files/QPFS-1.0.zip 
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Table 1: Datasets used in this experimental evaluation 

 

 
 
 
 
 
 
 
 

The twelve datasets used in the experiment are shown in 
table 1. They were acquired from the UCI machine 
learning repository [40].  
The machine learning algorithms used were Naïve Bayes, 
C4.5 and K-NN with K=3 [41]. They are very 
representatives and therefore, they are very used in this 
type of experimentation. For computing the accuracy of 
the machine learning algorithms in the reduced datasets, a 
10-fold cross validation process with only one run was 
used as it was suggested in [42]. 
The Friedman’s non-parametric test was used for 
detecting significant differences among all the results 
obtained by the selectors. The Bergmann-Hommel’s post-
hoc test was used for detecting significant differences 
between the results of each pair of algorithms as it was 
proposed in [43]. The non-parametric tests were used 
because it was checked that at least the results obtained 
by a feature selection algorithm in all the datasets do not 
have a normal distribution. 
When there was required, numeric attributes in the 
training data were discretized using MDL-based 
discretization [44] with intervals learned from the training 
data. Notice that in evaluation functions such as: FMRMR 
the Mutual Information coefficient was normalized.  
Finally, the number of features to select by the MRMR 
and FSBMC algorithms was adjusted to t= 100 because 
with this value good results are obtained [21, 27]. On the 
other hand, this parameter was adjusted to t= 50 for 
QPFS algorithm for the same reason [31, 33]. 

 
4.2. Discussion of the Results 

In Table 2 the running time of each algorithm in each 
dataset is shown.  
Observing the results for this parameter, the algorithms 
could be divided into two groups: the fastest and the 
slowest. In the fastest group are: FCBF, Cfs-BARS, Cfs- 
IRU and MRMR, as long as with a notable running time 
differences are FSBMC, QPFS, INTERACT and Cfs-SFS 
algorithms. 
As can be observed, the FCBF algorithm is the fastest in 
most of the cases. In fact, as it was pointed out, this takes 
place because in the redundancy analysis step, in an 
iteration only, a feature is selected and many others are 
removed. Similar strategies are used in Cfs-BARS and 
Cfs-IRU algorithms.  
On the other hand, the results of FSBMC could not be 
available (NA) in the highest dimensional datasets 
because of its excessive time consuming (more than 72 
hours). The only algorithm capable of obtaining the final 
solution in the datasets PEM and DOR before 72 hours 
was FCBF.  In Table 3 the number of features selected by 
each algorithm in each dataset is shown. Again the FCBF 
algorithm points out positively, although it can be 
observed that all the algorithms achieve a splendid 
reduction in all the datasets. 
With the aim of evaluating the quality of the solutions 
obtained by the algorithms in each dataset, three 
supervised classification algorithms were applied to the 
reduced subsets. In Table 6 the accuracy reached by the 
Naïve Bayes, C4.5 and K-NN machine learning algorithms 
in the reduced datasets is presented. As can be observed 
for the Naïve Bayes classifier the algorithms with the best 
behavior are Cfs-SFS, Cfs-BARS and Cfs-IRU. On the 
other hand, the worst results were obtained by FSBMC 
and QPFS algorithms. It seems to be that the weak point 
of FSBMC is the fact of not taking into account the 
correlation feature-class. Otherwise, QPFS algorithm 
shows an unstable behavior. 

Datasets Acronym Features Instances Classes 

ARRHYTHMIA ARR 280 452 13 
MADELON MAD 501 2000 2 
SECOM SEC 591 1567 2 
MULTIPLE FEAT. MFE 650 2000 10 
INTERNET ADV. ADS 1559 3279 2 
ARCENE ARC 10001 100 2 
ISOLET ISO 618 6238 26 
DEXTER DEX 20001 300 2 
GISETTE GIS 5001 6000 2 
P53-MUTANTS MUT 5409 16772 2 
PEMS-SF PEM 138673 267 7 
DOROTHEA DOR 100001 800 2 

Datasets Cfs-SFS FCBF MRMR Cfs-IRU FSBMC INTERACT Cfs-BARS QPFS 

ARR 0,857 0,164 0,423 0,355 1,079 1,200 0,201 1,900 

MAD 1,587 1,125 4,117 1,623 17,854 3,354 1,449 16,370 

SEC 2,615 1,280 3,437 2,195 18,383 8,643 1,64 17,680 

MFE 35,615 20,626 7,500 14,111 30,523 24,099 10,099 32,890 

ADS 23,053 44,872 29,452 14,140 456,024 82,231 17,709 65,180 

ARC 2286,460 1,533 37,710 41,018 23488,931 131,499 17,496 37,240 

ISO 239,135 45,374 71,881 189,501 NA 98,148 66,505 198,970 

DEX 4474,246 22,197 206,897 96,014 NA 1288,706 83,12 1020,780 

GIS 1350,364 109,647 450,545 639,760 NA 2551,882 147,368 5702,460 

MUT 2972,056 476,160 1481,350 1048,921 NA 7642,748 1613,519 5997,090 

PEM NA 111,064 NA NA NA NA NA NA 

DOR NA 526,762 NA NA NA NA NA NA 

Mean 1138,599 72,298 229,331 204,764 4002,132 1183,251 195,911 1309,056 

 

Table 2: Running time in seconds of each algorithm in the different datasets 
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For corroborating the observations previously exposed the 
mean ranking offered by the Friedman’s test is shown on 
Table 4 for each machine learning algorithm. The QPFS, 
FCBF and MRMR algorithms always occupied the three 
last places.  
 
Table 4: Mean ranking coefficient of the Friedman’s test for 
each machine learning algorithm. 
 

Algorithm Ranking 

Cfs-SFS 2.40 

Cfs-BARS 3.05 

Cfs-IRU 3.05 

INTERACT 4.50 

FCBF 4.75 

MRMR 4.90 

QPFS 5.35 
 

Algorithm Ranking 

Cfs-SFS 2.95 

Cfs-BARS 3.00 

Cfs-IRU 3.50 

INTERACT 4.10 

MRMR 4.15 

FCBF 4.60 

QPFS 5.70 
 

Algorithm Ranking 

Cfs-SFS 2.75 

Cfs-IRU 3.25 

INTERACT 3.70 

Cfs-BARS 3.80 

MRMR 4.30 

FCBF 4.95 

QPFS 5.25 
 

(a) Naïve Bayes (b) C4.5 (c) KNN 

 
On the other hand, Cfs-SFS obtains the first place in the 
ranking made for each machine learning algorithm. The 
adjusted p-value obtained through the Friedman’s test for 
the Naïve Bayes, C4.5 and K-NN algorithms was of 0.01, 
0.06 y 0.112 respectively. With this datum it can be 
concluded that there are significant differences in the 
accuracy obtained by the Naïve Bayes and C4.5 
algorithms for α=0.1. 
A post-hoc test is executed for detecting significant 
differences among pair of algorithms. The Bergmann-
Hommel’stest is a good choice because it takes into 
account the family-wise error [50]. 
As it can be observed in Table 5, there are significant 
differences between Cfs-SFS and QPFS algorithms 
according to the accuracy obtained by the Naïve Bayes 
classifier. When the C4.5 classifier is used the Cfs-SFS 
and Cfs-BARS algorithms have significant differences 
with the QPFS. 
Lastly, it can be concluded that for the datasets and 
classifiers used in this study, the Cfs-SFS algorithm is the 
one which provides the best solutions. Nevertheless, it is 
not recommended its use in the very high-dimensional 
datasets. Conversely, the FCBF algorithm is the fastest 
and the most reducing, and its efficiency is not 
significantly worse than the Cfs-SFS. A balanced 
behavior between the efficient of FCBF and the 

effectiveness of Cfs-SFS could be found in the 
performance of Cfs-BARS, Cfs-IRU and MRMR 
algorithms. 
 
Table 5: Adjusted p-values of the post-hoc Bergmann-Hommel’s 
test for each machine learning algorithm in the hypothesis of 
comparison. There are indicated in blond letter the p-values that 
allows rejecting its correspondent hypothesis with a confidence 
level of 0.1.  
 

Bergmann-Hommel (adjusted p-value) 

Hypothesis Naïve Bayes C4.5 

Cfs-SFS vs QPFS 0,047 0,093 

Cfs-SFS vs MRMR 0,145 2,356 

Cfs-SFS vs FCBF 0,165 1,315 

Cfs-BARS vs QPFS 0,259 0,093 

Cfs-IRU vs QPFS 0,259 0,251 

Cfs-SFS vs INTERACT 0,268 2,356 

MRMR vs Cfs-BARS 0,555 2,356 

MRMR vs Cfs-IRU 0,555 2,356 

FCBF vs Cfs-BARS 0,555 1,315 

FCBF vs Cfs-IRU 0,555 2,356 

INTERACT vs Cfs-BARS 0,800 2,356 

Cfs-IRU vs INTERACT 0,800 2,356 

INTERACT vs QPFS 3,411 1,315 

Cfs-SFS vs Cfs-IRU 3,411 3,415 

Cfs-SFS vs Cfs-BARS 3,411 3,415 

FCBF vs QPFS 3,411 2,356 

MRMR vs QPFS 3,411 1,315 

MRMR vs INTERACT 3,411 3,415 

FCBF vs INTERACT 3,411 3,415 

FCBF vs MRMR 3,411 3,415 

Cfs-IRU vs Cfs-BARS 3,411 3,415 

 
Through INTERACT algorithm good solutions are 
generally obtained, but it is very slow for very high 
dimensional datasets. Unexpectedly, the QPFS algorithm, 
with the configuration parameter used in this study, 
obtains poor results when is compared with the rest of the 
algorithms. Finally, in this study the FSBMC gets the 
worst results and its application in very high dimensional 
datasets was not possible for its high computational 
complexity. 
 
 

Datasets Cfs-SFS FCBF MRMR Cfs-IRU FCBMC INTERACT Cfs-BARS QPFS 

ARR 26 12 50 24 50 23 16 100 

MAD 7 4 50 7 50 15 6 100 

SEC 17 9 50 12 50 23 11 100 

MFE 150 136 50 146 50 137 137 100 

ADS 72 75 50 71 50 50 72 100 

ARC 53 39 50 56 50 38 39 100 

ISO 184 40 50 244 NA 57 64 100 

DEX 48 35 50 35 NA 40 36 100 

GIS 77 28 50 73 NA 51 42 100 

MUT 27 10 50 21 NA 20 14 100 

PEM NA 130 NA NA NA NA NA NA 
DOR NA 104 NA NA NA NA NA NA 

Mean 66 39 50 69 50 45 44 100 

 

Table 3: Number of features selected by each algorithm in each dataset 
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5. Conclusions 

Feature selection, as a preprocessing technique, 
constitutes a fundamental step for improving the results of 
the machine learning algorithms. In this paper, a new 
taxonomy is proposed for the feature selection algorithms 
created for high dimensional datasets. Furthermore, 
several algorithms of this type are described and 
analyzed. An experimental evaluation of those algorithms 
that have obtained good results on the reviewed literature 
was carried out in high dimensional datasets. For this 
evaluation it is observed that through Cfs-SFS the best 
solutions are generally obtained, but due to the elevated 
computational complexity of the SFS strategy, its 
application in high dimensional datasets are not so 
practical, mainly in real time problems. On the other 
hand, Cfs-BARS and Cfs-IRU algorithms obtain similar 
results to the Cfs-SFS, but they do it in a lesser time. 
INTERACT algorithm obtains good results too, but its 
running time is even larger that the used by Cfs-SFS. This 

is due to the backward search made on the altars of 
discovering interacting features.  
With the aim of evaluating the QPFS algorithm, its 
parameter of subsample was adjusted to p=0.005 and the 
results obtained were not good if they are compared to the 
results of the algorithms mentioned previously. Moreover, 
in spite of decreasing its number of evaluations with 
p=0.005, the running time was considerably bigger. 
Finally, the FSBMC algorithm obtains discouraging 
results and it was not possible its application in the 
majority of the datasets because of its high computational 
cost. 
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