
Analytical and Experimental Study of Filter Feature

Selection Algorithms for High-dimensional Datasets

Adrian Pino
1
 Carlos Morell

2

1Universidad de Holguín “Oscar Lucero Moya”, Holguín, Cuba
2 Universidad Central “Marta Abreu de las Villas”, Villa Clara, Cuba

apinoa@facinf.uho.edu.cu, cmorellp@uclv.edu.cu

Abstract

In this paper a new taxonomy for feature selection
algorithms created for high-dimensional datasets is
proposed. Also, several selectors are described, analyzed
and evaluated. It was observed that the Cfs-SFS algorithm
reached the best solutions in most of the cases.
Nevertheless, its application in very high-dimensional
datasets is not recommended due to its computational
cost. Cfs-BARS, Cfs-IRU and MRMR algorithms have
similar results to those of Cfs-SFS, but in a relatively
lesser time. The INTERACT algorithm gets good solutions
too, but its computational cost is higher if compared to the
above mentioned. On the other hand, the QPFS and
FSBMC algorithms reached the worst solutions.

Keywords: feature selection, filter strategy, high-
dimensional datasets, supervised classification

1. Introduction

Due to the great amount of information that is present in
the current technological processes, many machine
learning algorithms have been proposed for extracting the
useful knowledge for taking decision in a better way.
When the dataset analyzed is high-dimensional
(thousands or dozen of thousands features), there are huge
possibilities of finding inconsistent, redundant and
irrelevant data. In these cases, generally, feature selection
algorithms are used before employing the machine
learning algorithms [1]. The feature selection algorithms
remove the irrelevant and redundant features, in a way
that a new dataset with the relevant information implicit is
obtained [2]. In this sense, the process of knowledge
extraction is carried out with better efficiency and the
decision-making process is carried out with a higher level
of prediction.
The scientific community has focused specially on the
algorithms for high-dimensional dataset because
nowadays they are typical in different processes, such as:
business administration [3], human-genome projects [4],
polymer identification in real time [5], cardiac
arrhythmias classification [6], automatic control of
prosthesis [7] and others.
According to the evaluation function employed, the
feature selection algorithms can be cataloged as filters,
wrappers or hybrids [8]. The filters use statistical

functions for evaluating the subsets in an independent
way of the machine learning algorithm [9], while the
wrappers use the machine learning algorithm for
determining the prediction power obtained in the subset
evaluated. The wrappers are generally costly in terms of
computational complexity because the learning and
validation process are executed every time a subset is
evaluated. Nevertheless, the results obtained by the
wrappers are better [10]. On the other hand, the hybrid
strategy combines the two mentioned above with the
purpose of achieving a balance between the effectiveness
and the efficiency of its execution [10].
In this paper, an analytical and experimental study of
filter feature selection algorithms for high-dimensional
datasets is presented. The algorithms evaluated are those
created for supervised learning. Previous feature selection
evaluation studies have been developed [11, 12], but the
majority of them consider just a few of selectors and/or
the datasets used for the comparison are of dissimilar
dimensions. With the aim of giving a detailed analysis to
the scientific community about the performance of the
filter selectors made for high-dimensional datasets, in the
next sections a brief survey is presented and to finish, an
evaluation of many feature selection algorithms is carried
out in different high-dimensional datasets.

2. Feature Selection for High-dimensional Datasets

The feature selection process has been considered as an
ever evolving problem because of the growth of the data
throughout time [13].
When the dataset contains thousands or dozens of
thousands features, to obtain the best subset of all
possible (2n) is unpractical because a lot of time is
required. For this reason, the algorithms created for this
type of datasets search only heuristically in a reduced
search space.
The taxonomy showed in Figure 1 is proposed with the
aim of studying and analysing, in a better way, the feature
selection algorithms that will be evaluated in this paper.
Notice that the algorithms discussed in this paper, are also
shown.
According to this taxonomy, the feature selection
algorithms can be classified in three groups according to
the amount of features evaluated by the evaluation
function: univariate, pairwise and multivariate.
Theoretically, in this diagram, for all horizontal levels, the

Eureka-2013. Fourth International Workshop Proceedings

© 2013. The authors - Published by Atlantis Press 339

classifications located to the left are faster the more to the
left they are, but less effective. Whereas those located
more to the right obtain better results, but they need more
time. Hence, a balance for these parameters could be
found in the algorithms located in the center of the
diagram.
The algorithms located in the first group generate a
feature ranking according to the relevance level of each
one of them respect to the class feature. Later on, the first
features are selected from the ranking.
Within these algorithms there are the Mutual Information
[14] and Symmetrical Uncertainty [15] which are based
on the information theory concepts.
The difference between the entropy of feature C and its
entropy after observe the feature Ai, represents the Mutual
Information I(Ai,C) between both features (equation 3).

),()()(

)|()(

)|()();(

ii

ii

ii

ACHCHAH

CAHAH

ACHCHCAI





(3)

The Mutual Information function favors the features that
contain many values. For removing this undesirable
obstacle in advanced, a normalization method is applied,
obtaining thence, the Symmetrical Uncertainty function.
Notice that both functions are symmetric, nevertheless,
only the Symmetrical Uncertainty gives values between
zero and one.

)()(

);(
*2);(

CHAH

CAI
CASU

i

i
i 

 (4)

On the other hand, the Chi-Squared function is based on
the probability theories and represents the goodness-of-fit
test between two distributions.

  



CkAj j

i

j
ik

j
i

i
i CPAP

CPAPCAP
CA

;

2
2

)()(

))()(),((
);( (5)

The algorithms located in the first group do not take into
account the redundancy level among the features which
implies that the results obtained by the machine learning
applied in a posterior stage are not going to be so good
[16].
The algorithms of the second group use an evaluation
function that only evaluates pairs. They compute the
relevance score of a subset through the evaluation of its
pairs: feature-feature and feature-class [17]. Due to this
way of evaluation, these algorithms are, generally, very
fast and also take into account the redundancy among
features. Inside this group, there are three other groups
according to the search employed: search over a ranking,
sequential search and search based on Optimization
Models (OM). The first type of search is based on the
creation of a ranking considering the relevance score
feature-class and then the most redundant features are
removed from the ranking through the pairwise evaluation
feature-feature. On the other hand, in the algorithms that
use the sequential search, in each iteration, the feature that
better improves the current solution is added.
The algorithms that are based on optimization models,
determine the weight of each feature which optimizes an
objective function. The objective function takes into
account the relevance score of each feature (feature-class)
and the redundancy score of each pair of features (feature-
feature) [17]. Once the model has been solved, the r
features with the biggest weight or those that exceed a
predefined weight value are selected. Among the models,
mostly used in this type of search are the lineal
programming [18] and the quadratic programming [19].
Finally, the multivariate functions evaluate the subsets in
an integral way, that is to say, they explore the whole data

According to the
amount of features
evaluated for the
evaluation function

According the type of
the search

Algorithms

Univariate
Evaluation

Mutual
Information

Symmetrical
Uncertainty

Chi-
Squared

Pairwise
Evaluation

Search over
a Ranking

FCBF

PRBF

Cfs-IRU

Sequential
Search

Cfs-SFS

MRMR

Cfs-BARS

FSBMC

Search based-on
O.M

QPFS

Multivariate
Evaluation

Sequential
Search

INTERACT

HSIC Lasso

NOCCO Lasso

Feature selection algorithms for
high-dimensional datasets

Rank
Search

Fig. 1: Taxonomy used in this paper for classifying the feature selection algorithms for high-
dimensional datasets.

340

from the subset for determining its quality. For this
reason, they are not so efficient; however, they generally
obtain good solutions.

3. Feature Selection Algorithms for High-

Dimensional Datasets

In this section the algorithms presented in the low level of
Figure 1 are briefly described and analyzed in a
chronological order.

3.1. Correlation-based Feature Selection (Cfs)

Cfs function [20] evaluates each candidate subsets taking
into account the mean feature-class relevance

CAR ,
 and

the mean feature-feature redundancy
AAR ,

 of each

possible pair of features in the subset. This function is
showed in the equation 6.

AAccc

CAc
cCfs

RSSS

RS
SF

,

,

)1|(|||||

||
)(




 (6)

For computing the relevance feature-class and the
redundancy feature-feature the Symmetrical Uncertainty
function is used (see equation 4). Cfs is generally
employed with the SFS strategy [21]-[23] because it is not
so complex computationally. In this study, Cfs will be
also used with SFS and it will be called from now on Cfs-
SFS.
According to experimental studies, the solutions obtained
by this algorithm are fairly good [21]-[24], nevertheless,
its computational complexity is quite high when it is
compared with the algorithms that use a search over a
ranking.

3.2. Minimum Redundancy–Maximum Relevance

(MRMR)

MRMR function [21] also uses the SFS search strategy.
For determining if a feature is part of the solution a
correlation function is used. This function takes into
account the relevance score of the feature for the class
and its redundancy score with each one of the already
selected. The author of this algorithm proposes two
evaluation functions named: Mutual Information
Difference (equation 7) and Mutual Information Quotient
(equation 8). It is valid to point out that according to
experimental studies of the author with the Mutual
Information Quotient the solutions obtained are generally
less redundant.

 


SA jiiiMRMR
j

AAI
S

CAISAF);(*
||

1
);();((7)

 


SA jiiiMRMR
j

AAI
S

CAISAF);(*
||

1
/);();((8)

The principal disadvantage of this algorithm is that the
number of feature to select t must be specified and
generally the optimal solution size is not known.
Another disadvantage of this algorithm is the use of the
mean redundancy that the candidate feature has with the
already selected features, in the evaluation function.
Supposing, for example, that the candidate feature is
totally correlated to one of the current solution and lightly
correlated to the others, it is highly probable that the
candidate feature will be added to the solution.
Nevertheless the information that this feature contains has
been already imported by other feature.
In MRMR algorithm, the Mutual Information of all
possible feature pairs: feature-feature and feature-class, is
computed. Therefore, the computational complexity is
quadratic O (n2).
The author of this algorithm also proposes functions for
continuous features. However better results are obtained
in his experiments when after discretizing the datasets the
discrete functions are applied.

3.3. Fast Correlator-Based Filter (FCBF)

In the FCBF algorithm [22] a feature ranking is generated
according to the feature relevance with the class
computed through the Symmetrical Uncertainty function.
Once defined the ranking, the first feature is considered as
the predominant and its redundancy with the others is
computed through the Symmetrical Uncertainty function.
The features that are more correlated with the
predominant feature than with the class will be removed
from the ranking. The process is repeated iteratively
taking as predominant feature the next feature which
remains in the ranking. A threshold λ can be used for
determining how much the correlation feature-class value
should exceed to the correlation feature-predominant
value for avoiding the feature elimination. The final
solution will be composed by the features that were not
removed in any of the iteration.
The computational complexity of the FCBF algorithm is
O(nlogn) taking into account the operations made in the
features of the dataset. In practice, this algorithm is very
fast because in an iteration a feature is selected and many
others are removed. In datasets with many redundant
features, the amount of paired evaluation decrease
drastically in each iteration.
According to several experimental studies it has been
observed that the FCBF algorithm obtains very good
results [22]-[25]. One of the principal disadvantages of
FCBF algorithm is that if two features contribute
information to the current predominant feature; but they
are redundant inwardly, then the one of bigger relevance
will be selected and the other one will be removed. In this
case it is not taken into account which of the two features
better contributes to the predominant feature.

341

3.4. Incremental Ranked Usefulness (IRU)

In the IRU algorithm [26] a ranking is generated
according to the relevance feature-class. Afterwards,
beginning with the empty solution, the ranking is
explored form the beginning to the end, adding the
features that improve the solution to be part of it. In
Figure 2 a representative example of the performance of
this algorithm is shown. Notice that feature Ai represents
the i-th feature of the ranking.

Fig. 2: Example of the IRU algorithm

When this search strategy is used in combination with the
Cfs function, it could be seen as a hybrid between FCBF
and Cfs-SFS algorithms. The similarities that it possesses
with respect to the FCBF algorithm are: the search over a
ranking and the early removing of features that are not
good for the current solution. In fact, these two
characteristics are the principal pillars of the agility and
the efficiency of FCBF algorithm. On the other hand, the
advantage that Cfs-IRU possesses respect to FCBF is that
in the function Cfs the relevance and the redundancy are
taken into account at the same time for determining if a
feature will form part of the solution.
The computational complexity of this algorithm when it is
used in combination with the Cfs function is similar to
that of the FCBF. Therefore, it could be used in very high
dimensional datasets.

3.5. Feature Selection Based on Mutual Correlation

(FSBMC)

The Feature Selection based on Mutual Correlation
(FSBMC) is proposed in [27]. As it is shown in figure 3,
in the first step the Mutual Correlation between each
feature pair is computed. For this, the Mutual Correlation
formula, showed in equation 9, is used. Notice that the
initial solution S will be the whole set of features.
Afterwards, the feature that is mostly correlated with the
others is removed from S (lines 4-6). This is computed
through the mean of the correlation that the feature to
evaluate has with the others features in S (see equation
10). The algorithm stops when |A|-t features have been
removed. The t value must be specified previously.

Algorithm: FSBMC

Input:

D(A1, A2, …,C) // dataset to be processed

t // size of the final solution

Output: S // selected subset

»Step1: Computing the correlation between pairs

1: For each feature Ai

2: Compute: jiAAr jAA ji
 ;;,

»Step2: Removing the most redundant features

3: Initially: S = A

4: while (|S| > t)

5: Being: Aworst the more redundant feature of S:
)};({: CAFmaxA iFSBMCSAAworst ii 

6: S = S \ Aworst

7: return: S

Fig. 3: FSBMC algorithm

The equation used for computing the correlation between
feature pairs is only applicable to continuous features.
The author of this algorithm does not propose a measure
for discrete features because he has only used genomics
datasets in his experimental evaluations. Nevertheless, the
Mutual Information or the Symmetrical Uncertainty
functions could be used for discrete features.

))()(())()((2222; v
j

v
j

v
i

v
i

v
i

v
i

v
j

v
i

AA
AtAAtA

AAtAA
r

ji 





 (9)

 


jiSA AAiFSBMC
j ji

r
S

SAF
; ; ||

1||

1
);((10)

The principal difference of this algorithm respect to the
others is that it does not use the correlation feature-class
in his search strategy, being applicable to unsupervised
classification problems [28]. Unfortunately, if a feature is
lightly correlated with the class and it is not redundant
with the others, then it will have high probabilities of
being selected.
The computational complexity of FSBMC is O(n(n+1)/2)
in the first step. On the other hand, for the second step





n

tk

)|S|(|S| 1 simple mathematic operations are required,

where |S| represents the number of features remaining in
the current iteration. For very high dimensional datasets
this amount of operations is remarkable.

3.6. INTERACT

In the INTERACT algorithm [24] the principal goal is to
get in the final solution all the features that interact
inwardly. When a feature by itself is not highly correlated
with the class, but combined with others features it
reaches a high correlation for predicting the class values,
then it is said that this feature interacts with others.
The evaluation function proposed by the authors of this
algorithm for obtaining subsets composed by features that
interact inwardly is the Consistency Count showed in the
equation 11.

)()\();(SICRASICRAScc ii  (11)

m

EIC
SICR

pi i  1
)(

)((12)

A1 A2 A3 A4 A5 A6 …

A1,A3
A1,A3,A6

342

}{max||)(1
k
itkii EEEIC  (13)

For a feature subset S, the set of all instances with equal
value in all its features is denoted Ei. From each set Ei, |C|
instance subsets can be obtained if their instances are
separated by class.
The Inconsistency Count IC(Ei) for an instances subset Ei
is computed through the difference of the amount the
instances in Ei and the amount of instances that the

biggest instances subset
k
iE has (see equation 13). This

measure takes value zero when all the instances in Ei
belongs to the same class and takes value |Ei|(|C|-1)/|C|
when the class of all the instances in Ei are equally
distributed.
On the other hand, the Inconsistency Count Rate is
computed through the mean of all the Inconsistency
Count of each instances subset Ei. Notice that m is the
number of instances in the dataset.
As it can be observed the Consistency Count cc(S, Ai) is
basically a subtraction between the Inconsistency Count
of a subset S without a feature Ai and the Inconsistency
Count of the entire subset S. Hence, the Consistency
Count represents the inconsistency that Ai contributes to
the subset S. This can also be expressed as the consistency
that S obtains after removing feature Ai from it.
The INTERACT algorithm is presented in figure 4.

Algorithm: INTERACT

Input:

D(A1, A2, …,C) // dataset to be processed

λ // inconsistency threshold

Output: S // subset selected

»Step1: Ranking generation

1: Create a descendent ranking R through
SU(Ai;C)

»Step2: Removing inconsistent features

2: For each feature Ai in R, from the end to the

beginning :

3: if cc(S;Ai) > λ

4: S = S \ {Ai}

5: return: S

Fig. 4: INTERACT algorithm

The authors of this algorithm use a hashing mechanism
quite efficient for computing the Consistency Count. The
whole process is made through two principal operations:
removing keys and updating values in a hash table.
According to experimental studies of the author, this
algorithm obtains good results considering the quality of
the solutions and the running time. Despite this, the
algorithms: CCC [29] and SDC [30] have been created for
eliminating several intrinsic deficiencies of INTERACT.
Nevertheless, improvements were made, oriented to
obtain better solutions, but increasing the computational
complexity. For this reason, they are not recommendable
for high-dimensional datasets.

3.7. Best Agglomerative Ranked Subset (BARS)

In the BARS algorithm [25], a ranking is generated taking
into account the relevance of each feature with the class.
Later, many feature pairs are obtained through the union
of the first feature in the ranking and each one of the
followings, the second one and each one of the
followings, and so on until the q-th feature and the
followings in the ranking. In this way q(n-1)/2 features
pairs are obtained, where q is a predefined parameter.
Then all these feature pairs are evaluated and a new
ranking of pairs is made taking into account their
relevance. The pairs that are not more relevant than the
first/best feature in the previous ranking are removed.
In a second iteration, given the ranking, the process is
repeated again, but now the subsets generated will have
four features due to the union of feature pairs. It is valid
remark that some subsets will have just three features
because could be exists two feature pairs with common
features. The stopping criterion is reached when in an
iteration the new ranking obtained is empty, that is to say
that none one of the subsets generate is more relevant
than that the best obtained in the previous iteration.
Finally, the returned solution will be the best subset of the
previous iteration.
When the dataset analyzed is very consistent and does not
have many redundant features, many subsets must be
evaluated for reaching the stopping criterion.
Consequently, the BARS algorithm is an efficient strategy
when it is used in datasets with much irrelevant
information.

3.8. Pearson Redundancy Based Filter (PRBF)

In the PRBF algorithm [23] a search strategy over a
ranking is used. A very similar process to the FCBF
algorithm is employed. The only difference is that after
generating the ranking the Chi-Squared function (see
equation 5) is used for the redundancy analysis. In this
step, a feature Aj will be removed by a predominant
feature Ai, if: p-value(X2(Ai,Aj)) > α. Where α is a
predefined parameter. According to experimental results,
the author proposes α=0,001.

3.9. Quadratic Programing Feature Selection (QPFS)

In [31] the feature selection problem is modeled as a non-
lineal quadratic problem [19]. Be Q a square matrix that
represents the correlation between each feature pairs and
be F a vector that stores the correlation of each feature
with the class. It could be obtained a new vector W that
represents the weight of each feature that optimizes a
quadratic model. A basic quadratic model that contains
the variables mentioned before is represented in the
equation 14.

343

10:

2

1

1









 




n

i
ii

TT
w

WandWwith

WFQWWmin

 (14)

As it can be observed, for minimizing this objective
function it is necessary to obtain the Wi values that
minimize the redundancy pairs contained in Q and that
maximize the relevance feature-class contained in F.
The computational complexity of the algorithms that
solve this kind of model is very high. Hereby, a new
algorithm called QPFS, based on a quadratic model, was
proposed in [31] for high-dimensional datasets. The
innovation is based on the application of the
diagonalization method to the redundancy matrix Q.







  WFUUWmin TTT

w
2

1
 (15)

In the equation 15 the new objective function is shown.
The matrix Q has been transformed into TUU . U is an
invertible matrix whose column vectors are the

eigenvectors of Q and  is a diagonal matrix composed
by the eigenvalues of Q.
The author proposes the use of the Nystrӧm method [32]
for obtaining an approximated diagonal matrix without
evaluating all the feature pairs when the dataset is very
high-dimensional. This reduces, in a great manner, the
computational cost of QPFS. Nevertheless, it has negative
repercussions over the obtained results [33].

3.10. HSIC Lasso and NOCCO Lasso

The optimization model Least Absolute Shrinkage and
Selection Operator (Lasso) [34] has been used for feature
selection [33, 35, 36].
In the HSIC Lasso algorithm [33] the Independence
Criterion of Hilbert-Schmidt [37] has been used for
determining the regression coefficient Wi of each feature
Ai. In the solution of this model high weights are obtained
for the features that have high correlation with the class
and low correlation with the other features. The model is
shown in the following equation.

0,..,:

};);(
2

1

);();(
2

1
min{

1

1
1,

1















n

jij

n

ji
i

i

n

i
i

WWwith

WAAHSICWW

CAHSICWCCHSIC

 (16)

Here, the function)();()(LKtrAAHSIC i
ji  evaluates

the independence score between the feature Ai and the

class feature C.
)(iK is a squared centered gram matrix

which represents the dispersion score existing in the
values of Ai. This matrix can be obtained through a
Gaussian function.
Another algorithm based on the Lasso operator is
NOCCO Lasso [33]. In this algorithm

1)()()()(
~  n

iii nIKKK  and 1)(
~  nnILLL  are used

instead of)(iK and L . The model regularization
parameter is ε, and must be bigger than zero.

0,..,:

};);(

);(
2

1
min{

1

1
1

1,















n

i
NOCCO

n

i
i

ji
NOCCO

j

n

ji
i

WWwith

WCADW

AADWW

 (19)

In the equation 19 the NOCCO Lasso model is shown.
The Normalized-Cross Covariance Operator

);();(jiji
NOCCO AAtrAAD  represents a dependency

measure based on kernel [38].
Both algorithms have low computational complexity in
datasets with few instances, but when there are many
instances (m2 > n), its application is very expensive [33].
Finally, the nature of these operators does not allow their
use in datasets with discrete features; therefore the
insertion of a discrete operator in the Lasso model is even
a non-studied problem.

4. Experimental Evaluation

In this section the results of the experimentation.
Unfortunately, the evaluation of HSIC Lasso and NOCCO
Lasso algorithms was not possible because they can only
be used in continuous datasets. Furthermore, it was
confirmed that FCBF and PRBF algorithms obtained very
similar results in all the datasets; hereby the PRBF results
are not shown.
On the other and, the algorithms PRBF, MRMR and
FSBMC were implemented in this research using the
Weka framework [39]. Moreover, the QPFS algorithm
was taken from its author’s implementation1. The other
algorithms used in this evaluation are available in the
Weka environment.

4.1. Methodology of Evaluation

With the aim of observing the practical behavior of each
algorithm, the parameters considered in the evaluation
were: the running time, the number of features removed
and the accuracy reached by three machine learning
algorithms in the reduced datasets.

1 http://arantxa.ii.uam.es/~gaa/software_files/QPFS-1.0.zip

344

Table 1: Datasets used in this experimental evaluation

The twelve datasets used in the experiment are shown in
table 1. They were acquired from the UCI machine
learning repository [40].
The machine learning algorithms used were Naïve Bayes,
C4.5 and K-NN with K=3 [41]. They are very
representatives and therefore, they are very used in this
type of experimentation. For computing the accuracy of
the machine learning algorithms in the reduced datasets, a
10-fold cross validation process with only one run was
used as it was suggested in [42].
The Friedman’s non-parametric test was used for
detecting significant differences among all the results
obtained by the selectors. The Bergmann-Hommel’s post-
hoc test was used for detecting significant differences
between the results of each pair of algorithms as it was
proposed in [43]. The non-parametric tests were used
because it was checked that at least the results obtained
by a feature selection algorithm in all the datasets do not
have a normal distribution.
When there was required, numeric attributes in the
training data were discretized using MDL-based
discretization [44] with intervals learned from the training
data. Notice that in evaluation functions such as: FMRMR
the Mutual Information coefficient was normalized.
Finally, the number of features to select by the MRMR
and FSBMC algorithms was adjusted to t= 100 because
with this value good results are obtained [21, 27]. On the
other hand, this parameter was adjusted to t= 50 for
QPFS algorithm for the same reason [31, 33].

4.2. Discussion of the Results

In Table 2 the running time of each algorithm in each
dataset is shown.
Observing the results for this parameter, the algorithms
could be divided into two groups: the fastest and the
slowest. In the fastest group are: FCBF, Cfs-BARS, Cfs-
IRU and MRMR, as long as with a notable running time
differences are FSBMC, QPFS, INTERACT and Cfs-SFS
algorithms.
As can be observed, the FCBF algorithm is the fastest in
most of the cases. In fact, as it was pointed out, this takes
place because in the redundancy analysis step, in an
iteration only, a feature is selected and many others are
removed. Similar strategies are used in Cfs-BARS and
Cfs-IRU algorithms.
On the other hand, the results of FSBMC could not be
available (NA) in the highest dimensional datasets
because of its excessive time consuming (more than 72
hours). The only algorithm capable of obtaining the final
solution in the datasets PEM and DOR before 72 hours
was FCBF. In Table 3 the number of features selected by
each algorithm in each dataset is shown. Again the FCBF
algorithm points out positively, although it can be
observed that all the algorithms achieve a splendid
reduction in all the datasets.
With the aim of evaluating the quality of the solutions
obtained by the algorithms in each dataset, three
supervised classification algorithms were applied to the
reduced subsets. In Table 6 the accuracy reached by the
Naïve Bayes, C4.5 and K-NN machine learning algorithms
in the reduced datasets is presented. As can be observed
for the Naïve Bayes classifier the algorithms with the best
behavior are Cfs-SFS, Cfs-BARS and Cfs-IRU. On the
other hand, the worst results were obtained by FSBMC
and QPFS algorithms. It seems to be that the weak point
of FSBMC is the fact of not taking into account the
correlation feature-class. Otherwise, QPFS algorithm
shows an unstable behavior.

Datasets Acronym Features Instances Classes

ARRHYTHMIA ARR 280 452 13
MADELON MAD 501 2000 2
SECOM SEC 591 1567 2
MULTIPLE FEAT. MFE 650 2000 10
INTERNET ADV. ADS 1559 3279 2
ARCENE ARC 10001 100 2
ISOLET ISO 618 6238 26
DEXTER DEX 20001 300 2
GISETTE GIS 5001 6000 2
P53-MUTANTS MUT 5409 16772 2
PEMS-SF PEM 138673 267 7
DOROTHEA DOR 100001 800 2

Datasets Cfs-SFS FCBF MRMR Cfs-IRU FSBMC INTERACT Cfs-BARS QPFS

ARR 0,857 0,164 0,423 0,355 1,079 1,200 0,201 1,900

MAD 1,587 1,125 4,117 1,623 17,854 3,354 1,449 16,370

SEC 2,615 1,280 3,437 2,195 18,383 8,643 1,64 17,680

MFE 35,615 20,626 7,500 14,111 30,523 24,099 10,099 32,890

ADS 23,053 44,872 29,452 14,140 456,024 82,231 17,709 65,180

ARC 2286,460 1,533 37,710 41,018 23488,931 131,499 17,496 37,240

ISO 239,135 45,374 71,881 189,501 NA 98,148 66,505 198,970

DEX 4474,246 22,197 206,897 96,014 NA 1288,706 83,12 1020,780

GIS 1350,364 109,647 450,545 639,760 NA 2551,882 147,368 5702,460

MUT 2972,056 476,160 1481,350 1048,921 NA 7642,748 1613,519 5997,090

PEM NA 111,064 NA NA NA NA NA NA

DOR NA 526,762 NA NA NA NA NA NA

Mean 1138,599 72,298 229,331 204,764 4002,132 1183,251 195,911 1309,056

Table 2: Running time in seconds of each algorithm in the different datasets

345

For corroborating the observations previously exposed the
mean ranking offered by the Friedman’s test is shown on
Table 4 for each machine learning algorithm. The QPFS,
FCBF and MRMR algorithms always occupied the three
last places.

Table 4: Mean ranking coefficient of the Friedman’s test for
each machine learning algorithm.

Algorithm Ranking

Cfs-SFS 2.40

Cfs-BARS 3.05

Cfs-IRU 3.05

INTERACT 4.50

FCBF 4.75

MRMR 4.90

QPFS 5.35

Algorithm Ranking

Cfs-SFS 2.95

Cfs-BARS 3.00

Cfs-IRU 3.50

INTERACT 4.10

MRMR 4.15

FCBF 4.60

QPFS 5.70

Algorithm Ranking

Cfs-SFS 2.75

Cfs-IRU 3.25

INTERACT 3.70

Cfs-BARS 3.80

MRMR 4.30

FCBF 4.95

QPFS 5.25

(a) Naïve Bayes (b) C4.5 (c) KNN

On the other hand, Cfs-SFS obtains the first place in the
ranking made for each machine learning algorithm. The
adjusted p-value obtained through the Friedman’s test for
the Naïve Bayes, C4.5 and K-NN algorithms was of 0.01,
0.06 y 0.112 respectively. With this datum it can be
concluded that there are significant differences in the
accuracy obtained by the Naïve Bayes and C4.5
algorithms for α=0.1.
A post-hoc test is executed for detecting significant
differences among pair of algorithms. The Bergmann-
Hommel’stest is a good choice because it takes into
account the family-wise error [50].
As it can be observed in Table 5, there are significant
differences between Cfs-SFS and QPFS algorithms
according to the accuracy obtained by the Naïve Bayes
classifier. When the C4.5 classifier is used the Cfs-SFS
and Cfs-BARS algorithms have significant differences
with the QPFS.
Lastly, it can be concluded that for the datasets and
classifiers used in this study, the Cfs-SFS algorithm is the
one which provides the best solutions. Nevertheless, it is
not recommended its use in the very high-dimensional
datasets. Conversely, the FCBF algorithm is the fastest
and the most reducing, and its efficiency is not
significantly worse than the Cfs-SFS. A balanced
behavior between the efficient of FCBF and the

effectiveness of Cfs-SFS could be found in the
performance of Cfs-BARS, Cfs-IRU and MRMR
algorithms.

Table 5: Adjusted p-values of the post-hoc Bergmann-Hommel’s
test for each machine learning algorithm in the hypothesis of
comparison. There are indicated in blond letter the p-values that
allows rejecting its correspondent hypothesis with a confidence
level of 0.1.

Bergmann-Hommel (adjusted p-value)

Hypothesis Naïve Bayes C4.5

Cfs-SFS vs QPFS 0,047 0,093

Cfs-SFS vs MRMR 0,145 2,356

Cfs-SFS vs FCBF 0,165 1,315

Cfs-BARS vs QPFS 0,259 0,093

Cfs-IRU vs QPFS 0,259 0,251

Cfs-SFS vs INTERACT 0,268 2,356

MRMR vs Cfs-BARS 0,555 2,356

MRMR vs Cfs-IRU 0,555 2,356

FCBF vs Cfs-BARS 0,555 1,315

FCBF vs Cfs-IRU 0,555 2,356

INTERACT vs Cfs-BARS 0,800 2,356

Cfs-IRU vs INTERACT 0,800 2,356

INTERACT vs QPFS 3,411 1,315

Cfs-SFS vs Cfs-IRU 3,411 3,415

Cfs-SFS vs Cfs-BARS 3,411 3,415

FCBF vs QPFS 3,411 2,356

MRMR vs QPFS 3,411 1,315

MRMR vs INTERACT 3,411 3,415

FCBF vs INTERACT 3,411 3,415

FCBF vs MRMR 3,411 3,415

Cfs-IRU vs Cfs-BARS 3,411 3,415

Through INTERACT algorithm good solutions are
generally obtained, but it is very slow for very high
dimensional datasets. Unexpectedly, the QPFS algorithm,
with the configuration parameter used in this study,
obtains poor results when is compared with the rest of the
algorithms. Finally, in this study the FSBMC gets the
worst results and its application in very high dimensional
datasets was not possible for its high computational
complexity.

Datasets Cfs-SFS FCBF MRMR Cfs-IRU FCBMC INTERACT Cfs-BARS QPFS

ARR 26 12 50 24 50 23 16 100

MAD 7 4 50 7 50 15 6 100

SEC 17 9 50 12 50 23 11 100

MFE 150 136 50 146 50 137 137 100

ADS 72 75 50 71 50 50 72 100

ARC 53 39 50 56 50 38 39 100

ISO 184 40 50 244 NA 57 64 100

DEX 48 35 50 35 NA 40 36 100

GIS 77 28 50 73 NA 51 42 100

MUT 27 10 50 21 NA 20 14 100

PEM NA 130 NA NA NA NA NA NA
DOR NA 104 NA NA NA NA NA NA

Mean 66 39 50 69 50 45 44 100

Table 3: Number of features selected by each algorithm in each dataset

346

5. Conclusions

Feature selection, as a preprocessing technique,
constitutes a fundamental step for improving the results of
the machine learning algorithms. In this paper, a new
taxonomy is proposed for the feature selection algorithms
created for high dimensional datasets. Furthermore,
several algorithms of this type are described and
analyzed. An experimental evaluation of those algorithms
that have obtained good results on the reviewed literature
was carried out in high dimensional datasets. For this
evaluation it is observed that through Cfs-SFS the best
solutions are generally obtained, but due to the elevated
computational complexity of the SFS strategy, its
application in high dimensional datasets are not so
practical, mainly in real time problems. On the other
hand, Cfs-BARS and Cfs-IRU algorithms obtain similar
results to the Cfs-SFS, but they do it in a lesser time.
INTERACT algorithm obtains good results too, but its
running time is even larger that the used by Cfs-SFS. This

is due to the backward search made on the altars of
discovering interacting features.
With the aim of evaluating the QPFS algorithm, its
parameter of subsample was adjusted to p=0.005 and the
results obtained were not good if they are compared to the
results of the algorithms mentioned previously. Moreover,
in spite of decreasing its number of evaluations with
p=0.005, the running time was considerably bigger.
Finally, the FSBMC algorithm obtains discouraging
results and it was not possible its application in the
majority of the datasets because of its high computational
cost.

6. References

[1] A. Blum and P. Langley, “Selection of relevant
features and examples in machine learning. Artificial
Intelligence”, 97: pp. 245–271, 1997.

[2] R. Gilad-Bachrach, A. Navot, and N. Tishby, “Margin
based feature selection - theory and algorithms”,
ICML, 2004.

 Naïve Bayes

 Cfs-SFS FCBF MRMR Cfs-IRU FSBMC INTERACT Cfs-BARS QPFS

ARR 69,912 65,929 70,133 68,584 44,912 68,363 68,805 63,938

MAD 60,650 57,700 60,300 60,650 52,950 59,150 60,650 63,050

SEC 83,089 89,087 55,712 82,451 14,869 60,115 88,003 25,527

MFE 97,650 96,750 97,200 97,350 79,700 96,800 97,300 97,650

ADS 96,218 96,127 96,584 96,340 87,771 95,669 96,310 92,132

ARC 93,000 93,000 94,000 94,000 63,000 94,000 94,000 62,000

ISO 88,602 81,420 84,306 88,169 NA 85,332 86,502 83,264

DEX 92,333 89,667 93,333 91,667 NA 90,667 91,667 88,333

GIS 93,333 89,383 88,867 92,750 NA 88,517 92,383 78,283

MUT 95,099 96,476 95,850 94,610 NA 96,315 94,616 95,451

PEM NA 83,521 NA NA NA NA NA NA
DOR NA 94,000 NA NA NA NA NA NA

Mean 86,989 85,554 83,628 86,657 57,200 83,493 87,024 75,163

 C4.5

ARR 68,363 69,469 68,584 68,363 41,814 65,266 69,248 67,257

MAD 73,400 61,600 72,700 73,400 51,400 78,200 72,800 68,950

SEC 92,470 92,597 93,363 92,597 92,853 92,597 92,534 91,512

MFE 95,300 94,050 92,500 94,000 51,250 93,900 94,450 94,500

ADS 96,615 96,584 97,072 96,493 87,832 96,889 96,950 92,223

ARC 83,000 78,000 81,000 84,000 58,000 84,000 84,000 58,000

ISO 83,200 77,942 73,726 82,703 NA 80,042 80,699 80,955

DEX 85,333 81,667 83,667 83,000 NA 85,000 85,333 80,000

GIS 93,950 91,100 92,517 93,917 NA 93,688 93,733 92,483

MUT 99,177 99,249 99,159 99,213 NA 99,136 99,219 99,034

PEM NA 88,390 NA NA NA NA NA NA
DOR NA 89,875 NA NA NA NA NA NA

Mean 87,081 84,226 85,429 86,769 63,858 86,872 86,897 82,792

 KNN (K=3)

ARR 65,708 65,487 63,053 65,708 52,876 61,504 62,168 62,168

MAD 76,300 57,700 65,300 76,300 52,050 85,250 73,400 58,150

SEC 92,597 91,704 91,385 91,832 91,895 93,299 91,832 92,725

MFE 97,200 97,250 94,000 97,450 80,550 97,400 97,550 96,150

ADS 96,462 96,432 97,438 96,401 87,832 96,310 96,554 92,040

ARC 86,000 78,000 81,000 84,000 71,000 82,000 86,000 65,000

ISO 90,769 82,959 80,186 89,516 NA 85,845 87,785 87,464

DEX 88,333 88,000 90,333 86,333 NA 86,000 86,000 84,333

GIS 95,750 91,333 93,267 95,517 NA 96,150 94,533 93,883

MUT 99,088 99,118 99,165 99,094 NA 99,118 98,909 99,130

PEM NA 74,532 NA NA NA NA NA NA
DOR NA 92,750 NA NA NA NA NA NA

Mean 88,821 84,798 85,513 88,215 72,701 88,288 87,473 83,304

Table 6: 10-fold cross validation accuracy reached by each machine learning algorithm in each
reduced dataset

347

[3] K. Ng and H. Liu, “Customer retention via data
mining”, AI Review, pp. 569-590, 2000.

[4] E. Xing, M. Jordan, and R. Karp, “Feature selection
for high-dimensional genomic microarray data”, Proc.
Of the Eighteenth International Conference on
Machine Learning, pp. 601-608, 2001.

[5] R. Leitner, H. Mairer, and A. Kercek, “Real-time
classification of polymers with NIR spectral imaging
and blob analysis”, Real-Time Imaging, 9: pp. 245 –
251, 2003.

[6] J. Rodriguez, A. Goni, and A. Illarramendi, “Real-
time classification of ECGs on a PDA”. IEEE
Transactions on Information Technology in
Biomedicine, 9(1): pp. 23–34, 2005.

[7] P. Shenoy, K. Miller, B. Crawford, and R. Rao,
“Online electro-myographic control of a robotic
prosthesis, IEEE Trans Biomed Eng, 55(3): pp. 1128–
1135, 2008.

[8] R. Kohavi and G. John, “Wrappers for feature subset
selection”, Artificial Intelligence Journal, Special
issue on relevance, 97(1-2), pp. 273–324, 1997.

[9] H. Liu and H. Motoda, “Feature Selection for
Knowledge Discovery and Data Mining”. Boston:
Kluwer Academic Publishers, ISBN 0-7923-8198-X,
1998.

[10] S. Das, “Filters, Wrappers and a Boosting-Based
Hybrid for Feature Selection”, Proc. Of 18th Intl
Conf. Machine Learning, pp. 74-81, 2001.

[11] M. Hall and G. Holmes, “Benchmarking Attribute
Selection Techniques for Discrete Class Data
Mining”, IEEE Transactions On Knowledge and Data
Engineering, Vol. 15, No. 3, May/June, 2003.

[12] N. Sánchez, A. Alonso and M. Tombilla, “Filter
Methods for Feature Selection – A Comparative
Study”, Springer-Verlag Berlin Heidelberg 2007,
LNCS 4881, pp. 178–187, 2007.

[13] H. Liu, H. Motoda, R. Setiono and Z. Zhao, “Feature
Selection: An Ever Evolving Frontier in Data
Mining”, Workshop and Conference Proceedings. The
Fourth Workshop on Feature Selection in Data
Mining, 10: pp. 4-13, 2010.

[14] H. Almuallim and T. Dietterich, “Learning boolean
concepts in the presence of many irrelevant features”.
Artificial Intelligence, 69(1-2): pp. 279–305, 1994.

[15] R. Quinlan, “C4.5: Programs for Machine Learning”,
Morgan Kaufmann, 1993.

[16] W. Press, B. Flannery, S. Teukolski and W.
Vetterling, “Numerical Recipes”, C. Cambridge
University Press, 1988.

[17] A. Harol, C. Lai, E. Pezkalska and R. Duin,
“Pairwise feature evaluation for constructing reduced
representations”, Pattern Anal Applic vol. 10 pp. 55–
68, 2007.

[18] J. Neter and W. Wasserman. “Applied Linear
Statistical Models”, R. Irwin, INC., 1974.

[19] D. Bertsekas, “Nonlinear Programming”, Athena
Scientific, 1999.

[20] M. Hall, “Correlation-based feature selection for
discrete and numeric class machine learning”,
Proceedings of the Seventeenth International
Conference on Machine Learning, pp. 359-366, 2000.

[21] C. Ding and H. Peng, “Minimum Redundancy
Feature Selection from Microarray Gene Expression
Data,” Proc. Second IEEE Computational Systems
Bioinformatics Conf., pp. 523-528, 2003.

[22] L.Yu, H. Liu, “Efficient feature selection via analysis
of relevance and redundancy”. J. Mach. Learn. Res. 5,
pp. 1205–1224, 2004.

[23] J. Biesiada and W. Duch, “Feature Selection for
High-Dimensional Data: A Pearson Redundancy
Based Filter,” in Advances in Soft Computing, vol. 45,
pp. 242–249, Springer, 2008.

[24] Z. Zhao and H. Liu. “Searching for interacting
features”, In Proceedings of International Joint
Conference on Artificial Intelligence, pp. 1156-1161,
2007.

[25] R. Ruiz, J. Riquelme and J. Aguilar-Ruiz, “Best
Agglomerative Ranked Subset for Feature Selection”.
JMLR: Workshop and Conference Proceedings, vol.
4, pp. 148-162, 2008.

[26] R. Ruiz, J. Riquelme and J. Aguilar-Ruiz, “Búsqueda
secuencial de subconjuntos de atributos sobre un
ranking”. Actas del III Taller Nacional de Minería de
Datos y Aprendizaje, TAMIDA2005, ISBN: 84-9732-
449-8, pp.251-260, 2005.

[27] M. Haindl, P. Somol, D. Ververidis and C.
Kotropoulos, “Feature Selection Based on Mutual
Correlation”, Lecture Notes in Computer Science,
Progress in Pattern Recognition, Image Analysis and
Applications, v:4225, ISSN 0302-9743, pp. 569-577,
2006.

[28] R. Duda, P. Hart, and D. Stork. “Pattern
Classification”, John Wiley & Sons, 2001.

[29] K. Shin, X. Xu, “Consistency-based feature
selection”, In: 13th International Conferecne on
Knowledge-Based and Intelligent Information &
Engineering Systems, 2009.

[30] K. Shin and X. Ming, “A Consistency-Constrained
Feature Selection Algorithm with the Steepest
Descent Method”, MDAI 2009, LNAI 5861, pp. 338–
350, 2009.

[31] I. Rodriguez-Lujan, R. Huerta, C. Elkan and C. Cruz,
“Quadratic programming feature selection”, Journal
of Machine Learning Research, 11, pp. 1491–1516,
2010.

[32] C. Fowlkes, S. Belongie, and J. Malik, “Efficient
spatiotemporal grouping using the Nystrom method”.
Proc. Of IEEE Conf. Comput. Vision and Pattern
Recognition, pp. 231–238, 2001.

[33] Y. Makoto, S. Leonid and S. Masashi, “High-
Dimensional Feature Selection by Feature-Wise Non-
Linear Lasso”, 2012.

[34] R. Tibshirani, “Regression shrinkage and selection
via the lasso”. Journal of the Royal Statistical Society,
Series B, 58(1), pp. 267–288, 1996.

348

[35] V. Roth, “The generalized Lasso”, IEEE
Transactions on Neural Networks, 15(1), pp. 16–28,
2004.

[36] F. Li, Y. Yang and E. Xing, “From lasso regression
to feature vector machine”. In Y. Weiss, B. Scholkopf,
and J. Platt, editors, Advances in Neural Information
Processing Systems 18 (NIPS2005), pp. 779–786.
MIT Press, Cambridge, MA, 2006.

[37] A. Gretton, O. Bousquet, A. Smola, and B.
Scholkopf, “Measuring statistical dependence with
Hilbert-Schmidt norms”, In 16th International
Conference on Algorithmic Learning Theory
(ALT2005), pp. 63–78, 2005.

[38] K. Fukumizu, A. Gretton, X. Sun, and B. Scholkopf,
“Kernel measures of conditional dependence”,
Advances in Neural Information Processing Systems
21 (NIPS2008), pp. 489–496, 2009.

[39] I. Witten and E. Frank, “Data Mining Practical
Machine Learning Tools and Techniques with JAVA
Implementations”. Morgan Kaufmann Publishers, 2
Edition, 2005.

[40] C. Blake and C. Merz, “UCI repository of machine
learning databases”, 1998.

[41] T. Mitchell, “Machine Learning”, McGraw-Hill,
1997.

[42] J. Demšar, “Statistical comparisons of classifiers over
multiple data sets”. Journal of Machine Learning
Research, 7: pp. 1–30, 2006.

[43] S. García, and F. Herrera, “An Extension on
“Statistical Comparisons of Classifiers over Multiple
Data Sets” for all Pairwise Comparisons”, Journal of
Machine Learning Research pp. 2677-2694, 2008.

[44] U. Fayyad, and K. Irani, “Multi-interval
discretization of continuous-valued attributes for
classification learning”. In Int. Joint Conf. on AI, pp.
1022–1027. Morgan Kaufmann, 1993.

349

