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Abstract 
This paper presents a gas turbine design and off-design model in which the difficulties 
due to lack of knowledge about stage-by-stage performance are overcome by constructing 
artificial machine maps through appropriate scaling techniques applied to generalized 
maps taken from the literature and validating them with test measurement data from real 
plants. In particular, off-design performance is obtained through compressor map 
modifications according to variable inlet guide vane closure. The set of equations of the 
developed analytical model is solved by a commercial package, which provides great 
flexibility in the choice of independent variables of the overall system. The results 
obtained from this simulator are used for neural network training: problems associated 
with the construction and use of neural networks are discussed and their capability as a 
tool for predicting machine performance is analyzed. 
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1.  Introduction 

The increasing success of gas turbines in 
industrial applications (both electric and thermal 
energy production) is partly due to their quick 
response to load variations; in fact, these plants are 
often used for electric production in an intermediate 
range between peak and base demand. 

Most gas turbine analytical models proposed 
in the literature are simply design models. Some 
others, however, are able to predict off-design 
behavior by means of zero-dimensional models 
(Ismail and Bhinder, 1991; Zhu and 
Saravanamuttoo, 1992), one-dimensional or more 
sophisticated models of the components (see e.g., 
Stamatis et al. 1990). The models are referred to as 
zero-dimensional if only the thermodynamic 
transformations across the component are 
considered without simulating the internal flow 
field. One-dimensional models include the variation 
of thermodynamic and flow quantities along the 
main flow direction. 

The gas turbine design and off-design model 
presented in this paper aims both at computational 
simplicity and at the ability to deal with plants 
having large variations in the operating parameters. 
The main issue in the development of an off-design 
model is the prediction of machine off-design 
performance. The model should be constructed 
using the stage-stacking technique, simulating the 
performance maps of each machine stage, and then 
verified using operational data on single 
compressor and turbine stages. However, data 
about component performance maps are in general 
not available, since manufacturers very rarely 
supply gas turbine performance data to users. A 
mathematical model is therefore necessary to 
predict machine performance. In this paper 
generalized maps of the machines were taken from 
the literature and new maps for the considered gas 
turbines were constructed using appropriate scaling 
techniques. These maps are then to be validated on 
the basis of test measurement data of the whole 
machine. The numerical methods proposed by 
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Mirandola and Macor (1986) and Kurzke (1996) 
were used to manipulate compressor and turbine 
performance maps taken from the literature. The 
choice of using a single block to model the 
compressor through its performance maps 
implies that the VIGV effect is to be evaluated 
by modifying maps according to the VIGV 
degree of closure. Furthermore, the actual flow 
pattern of the turbine blade cooling system 
cannot be modeled properly (Zhu and 
Saravanamuttoo, 1992). Here, it was simplified 
with a single cooling air stream from compressor 
exit to the first turbine nozzle row. Load control 
was obtained by adjusting the VIGVs angle, 
while temperature at the turbine exit was kept 
constant. When the VIGVs reach maximum 
closure, further power reduction was obtained by 
decreasing fuel flow rate to the combustor 
(Lozza, 1996). 

On the basis of these assumptions and of 
available actual plant test measurements data, a 
zero-dimensional design and off-design model of 
a single shaft gas turbine was developed. The set 
of equations was implemented for solving in a 
commercial package, Engineering Equations 
Solver (EES). This solver allows extreme 
flexibility in the choice of the decision variables 
for the whole system. While other softwares 
require explicit dependent variables and/or a 
defined order for equation system solution, there 
is no need in EES to replace component 
equations when the set of system independent 
variables is changed. 

The results obtained from the model with 
different loads and different conditions of pressure 
and temperature at the compressor inlet were used 
to train neural networks (NNs), in order to test their 
ability to reproduce the relationships (generally 
non-linear) between the main operating parameters 
of the plant. During the training phase the NNs are 
taught to match a set of values of the variables 
given as inputs (load, pressure and temperature at 
the compressor inlet) with the corresponding values 
of the desired outputs (e.g. overall efficiency, 
compressor pressure ratio, air and fuel mass flow 
rates, as calculated by the analytical model). After 
the training, the NNs should provide satisfying 
predictions of the output variables, whether the 
values of the input variables belong to the training 
set or not. If a large measurement database had 
been available, these data could have been used to 
train the NNs directly, without the need to set up an 
analytical model that provides the large amount of 
data required to train a NN with several inputs. 

2.  Analytical Model 

The thermal system to be simulated is a single 
shaft gas turbine for electricity production. The 
reference thermodynamic cycle is an open Brayton-
Joule cycle, without regeneration. 

A zero-dimensional analytical model was 
developed to predict the plant stationary behavior 
both in design and off-design conditions. The 
model considers the effect of variable inlet guide 
vanes (VIGVs) on compressor performance and a 
simplified turbine blades cooling system with a 
single cooling air stream from compressor exit to 
the first turbine nozzle row (Figure 1). 
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Figure 1.  Plant Flowsheet 

The chemical species involved (CH4, O2, N2, 
CO2, H2O) were treated as ideal gases, with 
enthalpies and specific heats dependent from 
temperature only. The calculation of the 
thermodynamic properties of the mixture was 
performed according to the theoretical relations in 
Moran and Shapiro (1988) and Keating (1993), 
while enthalpy and entropy (at the reference 
pressure of 1.013 bar) values for each species were 
obtained from the JANAF tables. The fuel was 
assumed to be pure methane and the combustion 
model was taken from Keating (1993) and Turns 
(1996), considering a complete combustion of the 
fuel without dissociation. The air/fuel ratio and the 
fraction of combustion products were calculated 
from the adiabatic flame temperature. 

The equations of the model express mass or 
energy balances of the components. The model 
calculates temperature, pressure and mass flow rate 
in each point of the plant (Figure 1). 

Separate calculations are considered to 
construct the model in the design and off-design 
conditions, as shown in the following. 

2.1  Design point model 
The first step in the development of the model 

consists in determining the design point conditions. 
Ambient pressure and temperature (T0, p0), 
compressor pressure ratio (rc=p02/p01) and net power 
of the turbine (Ptot) were considered as independent 
variables. In addition to these variables one of the 
three following sets was chosen as inputs: 

• T05, ηc, ηt; 
• T06, ηc, ηt; 
• T06, ηt, 1m! ; 
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where 1m!  is the air mass flow rate at the 
compressor inlet T05, T06 are total temperature at 
turbine inlet and exit, respectively and ηc, ηt are 
compressor and turbine isentropic efficiencies, 
respectively. The choice was determined by the 
adjustment criterion that is used in partial load 
calculations (see Section 2.2.4). 

Pressure losses were considered as assigned 
parameters concentrated in three points of the 
cycle: 

- At the compressor inlet (filters and inlet duct); 
- At the turbine outlet (silencer and discharge 

duct); 
- In the combustion chamber. 

The cooling air mass flow rate was assumed 
as constant (equal to 0.15) for all operation 
conditions. It was bled from the compressor 
outlet (point 2 in Figure 1) and sent to the first 
turbine nozzle row (point 5 in Figure 1). The 
compressor air bleed was only used to determine 
more precisely the combustion chamber parameters 
since the overall compressor and turbine 
performance maps already include the effects of the 
air cooling flows. 

The temperature at the exit of the first nozzle 
(T05 in Figure 1) was considered as Turbine Inlet 
Temperature (TIT).  

The equations of the model were written 
component by component. The independent 
variables at the component level which were not 
included in the set of independent variables of the 
total plant were considered as calculated variables. 
When for instance, the independent variables of the 
total plant are T0, p0, rc, Ptot, T06, ηc, ηt, the 
combustion adiabatic temperature T04 is a 
calculated variable for the combustion chamber. 
From the value of T04, the excess air coefficient, the 
fuel mass flow rate and composition of the 
combustion products can be evaluated by the 
combustion chamber model. In the mixing point at 
the turbine inlet, T05 is considered as calculated 
variable and T04 is evaluated by the model. In the 
turbine model, the discharge temperature T06 is 
known and p06 is obtained from the discharge 
pressure losses; then, through the known efficiency 
ηt, the inlet conditions can be determined, including 
the value of T05 that was considered as calculated 
variable in the mixing point. 

When the calculation of the thermodynamic 
quantities of the cycle is completed, the corrected 
compressor and turbine mass flow rates (φc and φt 
respectively) and the ratio ∆h to T05 of the turbine 
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are evaluated. These dimensional groups are 
needed in the off-design calculation to scale the 
available characteristic curves for the plant being 
considered. 

2.2  Off-design model 

2.2.1  Compressor maps.  The calculation of 
the off-design conditions requires the off-design 
behavior of the compressor and turbine to be 
known. Starting from known maps, such as those 
shown in Figure 2, the evaluation of the off-design 
performance of different gas turbines can be 
investigated. 

 

 

 

 

 

 

Figure 2.  Compressor maps (Mirandola, 
Macor, 1986). 

Maps of type as Figure 2 cannot be directly 
used in a simulation program for two main reasons: 

- in the asymptotic segment of the curves, 
assigned values for corrected speed and mass 
flow rate ( 01TN  and 01011 pTm! , 
respectively) do not result in accurate values 
for the pressure ratio and efficiency; 

- for low values of 01TN and assigned value 
of the pressure ratio, two values of 

01011 pTm!  may exist, as shown in Figure 
3 (Kurzke, 1996). 

As suggested by Mirandola, Macor (1986) 
and Kurzke (1996), the problem is overcome by 
introducing auxiliary coordinates (lines  β), having 
no physical meaning, which are superimposed to 
the characteristic curves as in Figure 3.  

These lines are used to parameterize all the 
constant speed curves through a monotonic 
parameter β ranging from 0 to 1 (the auxiliary 
variable β becomes a dependent variable in the off-
design model of the plant). Equally-spaced 
parabolic lines are chosen here, as suggested by 
Kurzke (1996). In this way, for given values of 
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01TN and β, the values of 01011 pTm! , rc and 
ηc remain determined. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Auxiliary lines β used to read 
compressor maps (Kurzke, 1996). 

Three maps in tabular form can then be 
obtained, in which the values of 01011 pTm! , rc 

and ηc are included as functions of β and 01TN . 
These values are divided by the corresponding 
design point values to make the maps non-
dimensional. TABLES I to III show the non-
dimensional maps obtained by the compressor 
curves in Figure 2. When the maps are used for 
different compressors, their values are to be 
multiplied for the corresponding design point 
values (see also Walsh and Fletcher, 1998, Section 
5.2.13). 

Intermediate values of 01011 pTm! , rc and 
ηc between two subsequent values of β and/or 

01TN  are obtained by a two-dimensional linear 
interpolation. 

TABLE I.  COMPRESSOR NON-
DIMENSIONAL CORRECTED AIR MASS 

FLOW. 
(N/√√√√ T01)% 64.34 81.37 89.81 91.15 93.83 96.50 100.00 103.21 107.23 111.26

ββββ
0.0 0.2808 0.5503 0.8271 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.1 0.2808 0.5503 0.8270 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.2 0.2808 0.5503 0.8270 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.3 0.2808 0.5503 0.8270 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.4 0.2808 0.5503 0.8270 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.5 0.2808 0.5478 0.8270 0.8584 0.9182 0.9559 1 1.025 1.047 1.057
0.6 0.2799 0.5440 0.8264 0.8584 0.9164 0.9541 1 1.025 1.047 1.057
0.7 0.2752 0.5377 0.8239 0.8579 0.9151 0.9534 1 1.025 1.047 1.057
0.8 0.2672 0.5327 0.8208 0.8553 0.9120 0.9528 1 1.025 1.047 1.057
0.9 0.2547 0.5220 0.8132 0.8459 0.9057 0.9509 1 1.025 1.047 1.054
1.0 0.2358 0.5031 0.8050 0.8346 0.8962 0.9481 0.9994 1.024 1.044 1.052 

TABLE II.  COMPRESSOR NON-
DIMENSIONAL PRESSURE RATIO. 

(N/√√√√ T01)% 64.34 81.37 89.81 91.15 93.83 96.50 100.00 103.21 107.23 111.26
ββββ

0.0 0.0098 0.2589 0.5012 0.5384 0.6279 0.6873 0.7546 0.8131 0.8654 0.8868
0.1 0.1306 0.2747 0.5321 0.5637 0.6524 0.7126 0.7759 0.8314 0.8812 0.8947
0.2 0.1386 0.2969 0.5622 0.5938 0.6809 0.7363 0.7997 0.8551 0.9042 0.9224
0.3 0.1449 0.3088 0.6017 0.6176 0.7047 0.7601 0.8234 0.8812 0.9303 0.9501
0.4 0.1584 0.3365 0.6176 0.6477 0.7324 0.7838 0.8511 0.9184 0.9501 0.9715
0.5 0.1639 0.3603 0.6572 0.6785 0.7601 0.8155 0.8749 0.9343 0.9818 0.9976
0.6 0.1821 0.3800 0.6809 0.7205 0.7918 0.8472 0.9105 0.9644 1.013 1.029
0.7 0.1900 0.3959 0.7047 0.7443 0.8155 0.8709 0.9343 0.9897 1.037 1.053
0.8 0.1979 0.4078 0.7284 0.7680 0.8393 0.8947 0.9660 1.017 1.065 1.082
0.9 0.2074 0.4196 0.7522 0.7918 0.8630 0.9264 1 1.053 1.101 1.116
1.0 0.2138 0.4276 0.7641 0.8068 0.8828 0.9541 1.037 1.082 1.124 1.140  

TABLE III.  COMPRESSOR NON-
DIMENSIONAL ISENTROPIC EFFCIENCY. 

(N/√√√√ T01)% 64.34 81.37 89.81 91.15 93.83 96.50 100.00 103.21 107.23 111.26
ββββ

0.0 1.022 0.7962 0.8025 0.7898 0.8255 0.8255 0.7516 0.7006 0.6369 0.6115
0.1 0.8089 0.8025 0.8535 0.8408 0.8662 0.8599 0.8153 0.7898 0.7643 0.7261
0.2 0.8153 0.8318 0.9045 0.8981 0.9172 0.9045 0.8535 0.828 0.7898 0.758
0.3 0.828 0.8535 0.9427 0.9414 0.958 0.9554 0.8917 0.8662 0.828 0.7771
0.4 0.8318 0.8854 0.972 0.9809 0.9873 0.9745 0.9439 0.9146 0.8471 0.8153
0.5 0.8382 0.9172 0.9936 0.9975 1.009 0.9949 0.9682 0.9554 0.8828 0.8306
0.6 0.8433 0.9554 1.009 1.019 1.022 1.009 0.9873 0.9682 0.893 0.8662
0.7 0.8497 0.958 1.02 1.025 1.026 1.015 0.9936 0.9745 0.9236 0.879
0.8 0.8535 0.9605 1.027 1.032 1.032 1.019 0.9987 0.9732 0.9299 0.879
0.9 0.8535 0.9618 1.024 1.033 1.034 1.019 1 0.9809 0.9236 0.879
1.0 0.851 0.9618 1.022 1.031 1.032 1.018 0.9975 0.9873 0.9236 0.8917 

2.2.2  Turbine maps.  Turbine maps, such 
as those in Figure 4, need to be known for the 
off-design calculations.  

 

 

 

 

 

 

 

 

Figure 4.  Turbine maps (Mirandola and 
Macor, 1986) 

These maps express 05Th∆  (see Eq. 1) and 

ηt as function of φt/(φt)DP and 05TN ; auxiliary β 
lines are not needed for reading these maps which 
are transposed in tabular form to be used in the 
calculations. 

As for the compressor, the values of φt and ηt 
between two subsequent values of 05Th∆  and 

05TN  are obtained using a two-dimensional 
linear interpolation. 

2.2.3  Compressor maps under variations 
of the VIGVs angle.  A variation in the inlet 
flow angle results in a modification of the fluid-
dynamic behavior of the compressor and in the 
consequent modification of its characteristic 
curves. The indications by Walsh and Fletcher 
(1998, Section 5.2.8) can be used to modify the 
compressor maps for each value of the inlet flow 
angle (Figure 5). At low speed the speed lines 
move approximately horizontally and the surge 
line moves to the left. At high speed the effect of 
the VIGV angle makes the speed lines shift 
towards both lower pressure ratios and mass flow 
rates with only small improvement in surge 
limits. The efficiency map is modified according 



 Int.J. Applied Thermodynamics, Vol.4 (No.4)  177 

to a criterion aimed at obtaining values close to 
the maximum ones in each load condition. 

 
Figure 5.. VIGV effect on compressor maps 

(Walsh and Fletcher, 1998) (w indicates mass flow 
rate m1) 

2.2.4  Load adjustment criteria.  Various 
load adjustment criteria can be adopted in the 
plant operation (see Cohen, 1972, Desideri, 
Facchini, 1989, Bathie, 1984, Lozza 1996, 
Walsh, Fletcher, 1998). The simplest criterion 
consists in lowering the fuel mass flow rate in 
the combustion chamber, the air mass flow rate 
remaining constant (no VIGV adjustment in this 
case). This criterion results, however, in a 
decrease of the turbine inlet temperature with a 
strong reduction in overall efficiency. More 
common is the load adjustment with VIGVs that 
is considered here: in the first part of load 
reduction, the turbine outlet temperature is kept 
constant while the power reduction is obtained 
by closing the VIGV angle (and consequently 
lowering the air mass flow rate); when the 
minimum VIGV angle is reached, the fuel mass 
flow rate is decreased by the control system until 
the desired power output is obtained. 

2.2.5  Off-design calculations.  All the 
thermodynamic quantities calculated at the 
design point (Section 2.1) are known before 
performing the off-design calculations. In the 
first part of load reduction a value is assigned to 
the variable IGVα  which mathematically 
describes the VIGV effect, and the turbine outlet 
temperature T06, which is a controlled variable, is 
kept constant at the design point value. Ambient 
temperature and pressure are independent 
variables fixed as parameters; the value of 

01TN  is therefore known.  

By giving rc a guess value (it is a calculated 
variable - see Section 2.1- and its value will be 
calculated by the turbine model), the values of β, ηc 
and 01011c pTm!=φ  can be obtained by the 
compressor maps. From φc and the pressure losses 

at the compressor inlet, p01 and 1m!  are evaluated, 
so that the thermodynamic conditions at point 2 and 
the air cooling flow rate ( 1m15.0 ! ) can also be 
determined. The calculations of the other points in 
the cycle are then performed as already shown for 
the design point calculations under the hypothesis 
of constant T06  (see Section 2.1), by considering T04 
and T05 as calculated variables for the combustion 
chamber and the mixing point, respectively. These 
temperatures are then evaluated in the mixing point 
and turbine models, respectively. In the turbine 
model an iterative procedure to evaluate T05 is 
needed as described below. From the inlet and 
outlet thermodynamic conditions (p05 is evaluated 
in the combustion chamber model, T06 is fixed by 
the adjustment system and p06 is evaluated from the 
discharge pressure losses), the efficiency ηt is 
determined. The value of 05Th∆  is then read 
from the turbine map and is used to update the 
guess of T05 until convergence is obtained. Then, 
the value of 05055t pTm!=φ  is obtained from 
the mass flow rate map. By expressing p05 as a 
function of the pressure ratio rc, 

)(rΔprpp cCCc0105 −= , and substituting into φt, 
the value of rc is calculated. 

3.  Example of Application 

The model presented in the previous sections 
was implemented in a commercial equation solver 
(Engineering Equations Solver – EES). The 
flexibility in writing and solving equations provided 
by EES, made it possible to include various options 
in the choice of the independent variables, and then 
to simulate different plant adjustment modes (see 
Section 2.2.4). 

TABLE IV.  WORKING PARAMETERS 
AT DESIGN POINT. 

Power output at coupling Ptot=61.54 MW 
Rotational speed N=3000 rpm 
Pressure ratio rc=15.6 
Turbine inlet temperature T05=1120 °C 
Turbine outlet temperature T06=533.6 °C 
Air mass flow rate at 
compressor inlet 1m! =183.3 kg/s 

Cooling air mass flow rate b3m! =27.5 kg/s 

Compressor outlet temp. T02=397.5 °C 
Fuel mass flow rate fm! = 3.438 kg/s 
Mechanical efficiency 
(turbine to compressor) mη =0.985 

Fuel low heating value LHV=50056 kJ/kg 
Ambient pressure and 
temperature (ISO-standard 
reference conditions) 

p0 = 1.013 bar  
T0 = 15°C 
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The EES method to solve the system of non-
linear equations is a variant of Newton’s method 
(EES, 1999). The Jacobian matrix needed in 
Newton’s method is evaluated numerically at each 
iteration. Sparse matrix techniques are employed to 
improve calculation efficiency and permit rather 
large problems to be solved. The efficiency and 
convergence properties of the solution method are 
further improved by the step-size alteration and 
implementation of the Tarjan blocking algorithm 
which breaks the problems into a number of smaller 
problems which are easier to solve. A higher 
number of blocks is desired to obtain the 
convergence more easily. This number mainly 
depends on the choice of the independent variable 
set and, in turn, on the adjustment mode. 

To check the simulation capabilities of the 
analytical model, the results were compared with 
design and off-design working parameters of a 
single shaft 60 MW commercial gas turbine. The 
design point values are shown in TABLE IV 

(according to these values the compressor 
isentropic efficiency is 0.8543). 

The variables rc, Ptot, T06, 1m! , p0, T0, and 
LHV were assumed as independent. The values 
of the other variables are obtained by the model 
using ηt=0.88 and 2% p0, 3% p06 and 3% p03 as 
pressure losses at compressor inlet, turbine 
outlet, and in the combustion chamber, 
respectively.  

In the off-design calculations the existing 
maps of a GE LM 2500 compressor and turbine 
(Figures 2 and 4) were used to build generalized 
non-dimensional maps in tabular form which 
were updated by scaling to get the desired design 
point values. All pressure losses (at compressor 
inlet, turbine outlet, and in the combustion 
chamber) were assumed to be a quadratic 
function of mass flow rate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Comparison between simulated and actual off-design values along the working line. 
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The effect of the VIGV angle was considered 
by moving horizontally the compressor speed lines 
while reducing their vertical extension to keep the 
upper point on the surge line (this line is supposed 
to remain unchanged in the off-design operation). 
The horizontal shift is proportional to the value of 
αIGV  and can be determined when the maximum 
VIGV closure and the corresponding air mass flow 
rate are known. At increasing VIGV closure 
degrees, the efficiency curves were modified to get, 
at each VIGV angle, an expected working point 
efficiency close to its maximum value, according to 
the indications given by Walsh and Fletcher (1998) 
(see Figure 5). 

A partial load simulation was then performed, 
the results of which represent the plant working 
line. In general, some deviations can be found by 
this first simulation on the values of one or more 
thermodynamic parameters along the working line. 
To make the working line parameters match more 
accurately with the actual ones, the following 
actions were then undertaken: i) the pressure ratio 
and mass flow rate as function of load were tuned 
by modifying the turbine map; ii) the compressor 
outlet temperature T02 was adjusted by modifying 
the compressor efficiency map and/or its shift 
caused by the VIGV closure. Since a change in T02 
unavoidably reflects on the turbine map through 
T05, an iterative adjustment was needed. 

A comparison between off-design simulated 
and actual values is shown in Figure 6. A 
satisfactory approximation was obtained for all the 
represented variables. The little error still existing 
when the maximum VIGV closure is reached could 
be corrected with further maps adjustments. 

4.  The Neural Network Model 

Artificial NNs are a well-known tool among 
artificial intelligence techniques able to reproduce 
the relationships existing between input and output 
variables of (highly) non-linear system. Thus, they 
can be used to predict the performance of a gas 
turbine plant, setting up a model that is alternative 
to the analytical one. 

Once the structure has been chosen, the 
training phase performed and the outputs validated, 
a NN offers the advantage of a much lower 
computational effort. In fact, the number of 
operations required is minimal with respect to the 
analytical model, whose non-linear set of 
thermodynamic equations usually requires an 
iterative algorithm to be solved. Another advantage 
of a NN is its intrinsic ability of adaptation to a 
given plant. While the analytical model has to be 
“tuned” to have its output represent accurately the 
behavior of the plant, a NN already adjusts its 
output implicitly during the training phase. 
However, the NN approach to the simulation of a 
real plant can only be considered for a stand-alone 

model if a large number of data related to the 
desired input and output variables is available. 

The setup of a NN requires the choice of the 
number of layers, the number of neurons in each 
layer, the transfer function of each layer and the 
training algorithm (Fausett, 1994). Two phases are 
then required to make the NN become operative. 
The first one is the training (or learning) phase, in 
which the NN is taught to match a known set of 
corresponding input and output values. This allows 
the NN to “learn” the relationship existing between 
inputs and outputs. During the learning process, 
“learning” is achieved through modification of 
weights associated with each neural connection 
made by the training algorithm (also called 
“learning rule”). The training process aims, in 
general, at the minimization of the error between 
predicted and actual values. This phase is the most 
time consuming and it is critical for the success of 
the NN as a predictive model. The second phase is 
called generalization (or testing). Here, the NN is 
tested on another known set of corresponding input 
and output values different from the training set and 
the performance is evaluated (Fausett, 1994; 
Baugham and Liu, 1995). 

4.1  Application to the gas turbine 
The NN approach (see, e.g., Chbat et al., 

1996, Kanelopoulos et al., 1997) was used to 
predict the operation of the gas turbine plant 
considered in the previous sections at different 
loads and environmental conditions, which 
univocally define the working point of the plant. 
Ambient pressure (p0) and temperature (T0), and 
plant output power (Ptot) were therefore chosen as 
input variables to the NN (Figure 7). 

The output variables were chosen among the 
thermodynamic quantities that are usually 
measured in a real plant: compressor outlet 
temperature (T02), turbine outlet temperature (T06), 
compressor inlet mass flow rate ( 1m! ), fuel mass 
flow rate to the combustor ( fm! ), compressor 
pressure ratio (rc). In a real plant, the latter is 
calculated by the data acquisition system as the 
ratio between compressor outlet and inlet pressures. 
Other useful quantities, characteristic of the 
thermodynamic cycle, were then added to the set of 
output variables: the overall efficiency (ηtot), excess 
air coefficient (L) and turbine inlet temperature 
(T05). 

The data required for the training phase were 
supplied by the analytical off-design model 
developed in Section 2. Otherwise, if a large 
database of measurements had been available for 
the desired variables, the training would have been 
performed directly.  
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Simulations were performed with p0 ranging 
from 98kPa to 104kPa by steps of 1kPa, and with 
T0 ranging from 0°C to 40°C by steps of 5°C; 
twenty different load conditions were simulated for 
each pair of p0 and T0, making a total of 1260 
samples available for the training. 

A simple two-layer feed-forward topology 
was chosen as a compromise between short 
learning time and good prediction accuracy (Figure 
7).  

 
p0 

Ptot 

T0 Yi 

 
Figure 7.  Neural network topology for a 

generic plant variable Yi. 

A NN was set up for each output variable 
(T02, T05, T06, 1m! , fm! , rc, L, ηtot) using the 
MATLAB Neural Network Toolbox (MATLAB, 
2000). The output layer is therefore made up of 
only one neuron, while the number of neurons in 
the hidden layer is a trade-off between the learning 
time and the generalization ability of the NN. An 
output layer including all the output variables 
(Kanelopoulos et al., 1997) increases the 
computational effort, while decreasing, in general, 
prediction accuracy if a large number of data is not 
available for training. The transfer function used in 
the hidden layer was always the hyperbolic tangent 
sigmoid function. Conversely, the linear transfer 
function was sometimes used in the output layer 
instead of it (see TABLE VI). The learning rules 
used were the BFGS quasi-Newton and the 
Levenberg-Marquardt backpropagation algorithms 
(MATLAB, 2000). 

To increase the efficiency of the learning 
procedure, the training data set values are 
normalized in the range [-1,1] (Baugham and Liu, 
1995). The number of samples used to form the 
training set is kept as low as possible, considering 
the need of covering the entire ranges of the input 
variables. In TABLE V the pairs of p0 and T0 used 
in the off-design simulations are shown: gray 
squares represent the samples chosen to build up 
the training set, while black squares represent the 
samples of the test set; for each pair of p0 and T0 all 
the twenty simulations at different load conditions 
were used, so a total of 620 samples were used in 
the training phase and 240 in the generalization 
phase. 

TABLE V.  TRAINING AND TEST SET. 
  ]C[T0 °  

  0 5 10 15 20 25 30 35 40 

98          
99          
100          
101          
102          
103          

0p  

]kPa[  

104          

TABLE VI presents the configurations giving 
the highest accuracy for each NN in terms of 
number of neurons in the hidden layer, transfer 
functions and training method used, and maximum 
percentage error found in the generalization phase 
(referred to the non-normalized output quantities), 
that is err%=(xNN-xactual)/xactual.  

TABLE VI.  HIGHEST ACCURACY NEURAL 
NETWORKS. 

N
et

w
or

k 

N
o.

 o
f n

eu
ro

ns
 

in
 th

e h
id

de
n 

la
ye

r 

H
id

de
n 

la
ye

r 
Tr

an
sf

er
 fu

nc
tio

n 

O
ut

pu
t l

ay
er

  
Tr

an
sf

er
 fu

nc
tio

n 

Le
ar

ni
ng

 
al

go
ri

th
m

 

M
ax

im
um

 
Pe

rc
en

ta
ge

 E
rr

or
  

totη  15 
hyperbolic. 

tangent 
sigmoid 

hyperbolic 
tangent 
sigmoid 

BFGS 1.05 

cR  15 
hyperbolic 

tangent 
sigmoid 

hyperbolic 
tangent 
sigmoid 

Levenberg-
Marquardt 0.79 

1m!  15 
hyperbolic 

tangent 
sigmoid 

hyperbolic 
tangent 
sigmoid 

Levenberg-
Marquardt 0.47 

02T  21 
hyperbolic 

tangent 
sigmoid 

linear Levenberg-
Marquardt 0.3 

03T  18 
hyperbolic 

tangent 
sigmoid 

linear Levenberg-
Marquardt 0.13 

05T  14 
hyperbolic 

tangent 
sigmoid 

hyperbolic 
tangent 
sigmoid 

Levenberg-
Marquardt 0.49 

fm!  9 
hyperbolic 

tangent 
sigmoid 

linear Levenberg-
Marquardt 0.92 

L  12 
hyperbolic 

tangent 
sigmoid 

hyperbolic 
tangent 
sigmoid 

BFGS 0.99 

Figures 8 and 9 show a comparison between 
off-design total plant efficiencies obtained by the 
neural network and the analytical model for 
different normalized values of Ptot and T0. The 
highest prediction errors are around 1% for all the 
considered variables as it appears from the 
corresponding percentage errors (TABLE VI). 
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Figure 8.  Comparison between NN 
prediction (surface) and model values (dots) for 
ηtot. 

 
Figure 9.  Percentage deviation of NN 

predictions for ηtot from actual values. 

5.  Conclusions 

Two approaches to a zero-dimensional design 
and off-design model of a single-shaft gas turbine 
were presented and discussed.  

The model obtains off-design performance 
from compressor and turbine generalized non-
dimensional maps. Little errors on all the 
thermodynamic variables along the working line 
were achieved by the following actions: i) design 
point calculations and scaling of generic available 
compressor and turbine maps to get the design 
point, ii) compressor map modifications to take into 
account VIGV effects, iii) partial load simulation to 
determine an approximate engine working line, iv) 
tuning of both compressor and turbine maps to 
minimize differences between actual and simulated 
values of the parameters along the working line.  

The analytical model was implemented using 
a commercial equation solver. High flexibility in 
the choice of the adjustment criteria is allowed by 
the different sets of independent variables that can 
be selected according to the available data. 

Precise results were obtained notwithstanding 
only overall component characteristics were 

considered. This approach, however, does not allow 
to take into account effects of internal parameters 
variations on performance. 

Feed-forward neural networks, using limited 
computational effort, have shown to reproduce 
effectively actual working parameters with 
prediction accuracy of about one per cent. The most 
interesting feature of this approach is the ability of 
prediction of the output variables without any 
knowledge of the equations governing the main 
phenomena within the system. The use of NNs is 
an example of the application of artificial 
intelligence techniques to thermal system 
simulation. Their reliability in reproducing the 
relationships existing among the most important 
thermodynamic parameters may be a key point in 
their use in the simulation of complex thermal 
systems. 
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