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ABSTRACT. Homotopy Perturbation Method (HPM) has been applied to solve a nonlinear heat transfer 
problem. Natural convection around an isothermal horizontal cylinder was studied. Heat transfer coefficient and 

specific heat coefficient were assumed to be dependent on temperature. Outcomes were compared with solution 
of heat transfer equation with constant properties. Solutions of HPM were compared with numerical results for 
different cases, and variation of Nusselt number was obtained and investigated.  

Keywords: homotopy perturbation method (HPM), nonlinear heat transfer, numerical Runge-Kutta Method (NM), 
natural convection, Nusselt number.  

Investigação analítica e numérica de convecção natural em cilindro aquecido pelo Método 

de Perturbação Homotópica 

RESUMO. O método de perturbação homotópica (MPH) foi aplicado para resolver um problema de 

transferência não linear de calor e a convecção natural cerca um cilindro horizontal isotérmico foi analisada. 
Os coeficientes transferência de calor e calor específico foram considerados dependentes da temperatura. 
Os resultados foram comparados com a solução da equação de transferência de calor com as propriedades 
constantes. As soluções de MPH foram comparadas com os resultados numéricos para vários casos. A 
variação do número de Nusselt foi obtida e investigada.  

Palavras-chave: método de perturbação homotópica (MPH), transferência não linear de calor, método numérico de 

Runge-Kutta (NM), convecção natural, número de Nusselt.  

Introduction 

Many familiar heat transfer application involve 

natural convection as the primary mechanism of 

heat transfer. Some examples are cooling of 

electronic equipments such as power transistors, 

TVs and VCRs; heat transfer in electronic baseboard 

heaters or steam radiators; heat transfer phenomena 

in the refrigeration coils and power transmission 

lines. The fluid velocities associated with natural 

convection are low; typically less than 1 m/s 

therefore, the heat transfer coefficient encountered 

in natural convection are usually much lower than 

those encountered in forced convection (CHENG, 

2009; GANGI; SADIGHI, 2007; JONES et al., 

1988). 
So, studying natural convection that rises in 

applicable engineering problems, help to manipulate 
better natural convection as one of the heat transfer 
mechanism. Cooling cylindrical fin with natural 
convection is a good application of  this heat transfer 

mechanism. The boundary layer over a hot 

horizontal cylinder start to develop at the bottom, 

increasing in thickness along the circumference, and 

forming a rising plum at the top, as shown in Figure 

(1). Therefore, the local Nusselt number is highest 

at the bottom and lowest at the top of cylinder when 

the boundary layer flow remains laminar (BEJAN, 

2004). Most of problems arising in heat transfer area 

are nonlinear and through the majority of them only a 

limited numbers of them have exact analytical solution 

so these nonlinear equations should be solved using 

other methods. Other methods include numerical and 

semi exact methods, scientists believe that the 

combination of these two methods can be more cost 

effective method and also lead to useful results. 
One of the semi-exact methods is the homotopy 

perturbation method (HPM), which is established 
by by He (HE, 1999). This method has been applied 
by many authors to solve a wide variety of scientific 
and engineering problems. Esmaeilpour and Ganji 
(2007), Ganji et al. (2007) and Rajabi et al. (2007) 
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use this method and other semi exact methods to 
solve nonlinear heat transfer problems. Ghasemi et al. 
(2007) solve a nonlinear and inhomogeneous two-
dimensial wave equation problem by HPM. It was 
shown by many authors such as Hoseinnia et al. (2008) 
and He (2005) that this method provides improvements 
over existing numerical techniques. In this paper, the 
mathematical model of this method is introduced and 
then its application in natural convection flow over a 
horizontal hot cylinder is studied. 

The aim of this study is to consider the variation 

of temperature with the time in an isothermal 

horizontal cylinder that has been cooled with the 

natural convection of airflow. In recent years, much 

attention has been devoted to the newly developed 

methods to construct an analytic solution of some 

heat transfer equation; such methods include the 

HPM (ESMAEILPOUR; GANJI, 2007; RAJABI  

et al., 2007). 

Therefore in the present work the influence of 

heat transfer coefficient, h, and specific heat 

coefficient, c, when they are variable with 

temperature or they are constant on isothermal 

cylinder and how long it takes to be cooled are 

studied, We find solution for these kinds of 

problems by HPM and compare it with numerical 

method (NM). 

Material and methods 

Analysis of the Homotopy Perturbation Method 

The Homotopy perturbation method is a 

combination of the classical perturbation technique 

and Homotopy technique. To explain the basic idea 

of the HPM for solving nonlinear differential 

equations we consider the following nonlinear 

differential equation: 
 

( ) ( ) 0,A u f r   ,r Ω  (1)

 

Subject to boundary condition: 
 

( , ) 0,B u u n      ,r Γ  (2)

 

where: 

A  is a general differential operator, B  a 
boundary operator, ( )f r  is a known analytical 

function, Γ  is the boundary of domain Ω  and 

u n  denotes differentiation along the normal 

drawn outwards from Ω .The operator A  can, 
generally speaking, be divided into two parts: a 
linear part L and a nonlinear part N. Equation (1) 
therefore can be rewritten as follows: 

,0)()()(  rfuNuL
 

(3)

 
In case that the nonlinear Equation (1) has no 

‘small parameter’, we can construct the following 
Homotopy: 

 

,0))()(()()()(),( 00  rfvNpupLuLvLpvH
 

(4)

 

where, 
 

    ,1,0:, Rpr 
 

(5)

 

In Equation (7),  0 , 1p  is an embedding 

parameter and 0u  is the first approximation that 

satisfies the boundary condition. We can assume that 
the solution of Equation (4) can be written as a 
power series in p, as following: 

 

,...2

2

10   pp
 

(6)

 

And the best approximation for solution is: 
 

,...lim 2101   pu
 

(7)

 

When, Equation (4) correspond to Equation (1) 
and (7) becomes the approximate solution of Equation 
(1). Some interesting results have been attained using 
this method. Convergence and stability of this method 
is shown in (GHASEMI et al., 2007). 

Description of the problem 

The aim of this study is to consider the 
temperature variation of a small hot isothermal 
horizontal cylinder in Figure 1. With diameter and 
length of 1 cm that is being cooled with natural 
convection of air flow. 

 

 

Figure 1. An isothermal horizontal cylinder. 

In this article, 3 cases have been investigated 
which are presented in Table 1. 
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Table 1. Coefficients in different cases. 

Case H c 

1 Variable variable 

2 Constant variable 

3 Constant constant 

 

In each case parameters and the following 
equations have been introduced:  

Case 1 

In this case heat transfer coefficient, h, and specific 
heat coefficient, c, are variable with temperature. 
Equation (8) represents the heat equation of a lump 
system (INCCROPERA; DEWITT, 2002). 

 

 ( ) ( ) 0
d

V c T t h A T t T
dt

 
     
 

 (8)

 

Which c is the quality of temperature 
dependency of specific heat on temperature.  

 

0 1 ( )c c T T 
 

   
 

 (9) 

 

The average Nusselt number over the entire 
surface can be determined from Churchill and Chu 
(1975) for an isothermal horizontal cylinder: 
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where Rayleigh number and heat transfer coefficient 
are as follow: 

 
3( )

d

g d T T
Ra


 


  (11)

 

k
h Nu

d
  (12)

 

From Equation (13), the variation of h against θ 
could be found as follow: 
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(13) 

Substituting Equation (13) and (9) in (8), we 
have: 
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0
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where: 
 

0b V c  (15)

 

Ak
e

d
  (16)
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3

0 8/27
9/16
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g d
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(17)

 

Solving this equation for a real condition with 

the air as a cooling flow so we reach to the following 

coefficients and equation:  
 
1.5b   (18) 
 
0.000208e   (19) 

 

0 0.0192a   (20)

 

6 8 4/3

1.57 ( ) 0.005181 ( ) ( ) 0.00007488 ( )

4.79232 10 7.667712 10 ( ) 0

d d
t t t t

dt dt

t

   

 

       
   

    

 

(21) 

 

Case 2  

Consider heat transfer in a lumped system, 

Equation (8), with constant h and variable c. The 

specific heat coefficient varies linearly with 

temperature as shown in Equation (9). 
Substituting Equation (9) in Equation (8), we have: 

 

( ) ( ) ( ) ( ) 0
d d

b t b t t f t
dt dt
           

   
 (22) 

 
where: 

0b V c  (23) 

 
f hA  (24)

 
For a real condition with the air as a cooling 

flow, we reached the following coefficients: 
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1.57b   (25)
 

-41.13097 10f    (26)

 
0.0033   (27)

 

So we have Equation (35):  
 

3 41.57 ( ) 5.181 10 ( ) ( ) 1.13097 10 ( ) 0
d d

t t t t
dt dt
              

   

 
(28)

Case 3 

In this case both h and c are constant. 
We solve this equation for a real condition with 

the air as a cooling flow. So, we reach the following 
coefficients and equation:  

 
1.57Vc   (29)

 
-41.13097 10hA   (30)

 

41.57 ( ) 1.13097 10 ( ) 0
d

t t
dt
      

 
 (31)

Solution using Homotopy Perturbation Method 

Case 1 

In this section, we will apply the HPM to 

nonlinear ordinary differential Equation (21). 

According to the HPM, we can construct a 

homotopy of Equation (21) as follows: 
 



5

6 8 4/3

( , ) (1 ) 1.57 ( ) 7.488 10 ( )

1.57 ( ) 0.005181 ( ) ( ) 0.00007488 ( )

4.79232 10 7.667712 10 ( )

d
H p p t t

dt

d d
p t t t t

dt dt

t

  

   





 

         
             

   

 

(32)

 
2

0 1 2( ) ( ) ( ) ( )t t p t p t         (33) 

 

Substituting Equation (33) into Equation (32) 
and collect ( , )H p  and then put the coefficients of p 

equal to zero, we have: 
 

0 :p  5

0 0 01.57 ( ) 7.488 10 ( ) 0 (0) 100
d

t t
dt
        

 
 
(34)

 
1 :p 8 4/3

0 0 1 0

6 7/6

0 1

0.005181 ( ) ( ) 1.57 ( ) 7.667712 10 ( )

4.79232 10 ( ) 0 (0) 0

d d
t t t t

dt dt

t

   

 





        
   

   

 

(35) 

 
2 :p 5 3

2 0 1 2

3 6 4/3

1 0 1 2

7.488 10 ( ) 5.181 10 ( ) ( ) 1.57 ( )

5.181 10 ( ) ( ) 7.667712 10 ( ) 0 (0) 0

d d
t t t t

dt dt

d
t t t

dt

   

   

 

 

         
   

       
 

 

(36)

Solving Equation (34-36) with initial conditions, 
we have: 

 
117

2453125
0( ) 100

t

t e



 

(37)

 
4 7

234 2 117 1 1173 6
2453125 3 2453125 3 2453125

1

1 1

3 3

33 48 192
( ) 10 10

2 625 35
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2 625 35

t t t

t e e e
     

        
   

    
 

(38) 

 

2( ) 0t   (39)

 

0 1 2( ) ( ) ( ) ( )t t t t       (40)

 
So: 

 
4 7

234 2 117 1 1173 6
2453125 3 2453125 3 2453125

1 1 117

3 3 2453125

33 48 192
( ) 10 10

2 625 35

33 48 192
10 10 100

2 625 35

t t t

t

t e e e

e


  



   
        

   

     

 

(41)

Case 2 

By applying the HPM to nonlinear ordinary 

differential Equation(28) According to the HPM, we 

can construct a homotopy of Equation (28) as 

follows: 

Substituting Equation (43) into Equation (42) 
and collect ( , )H p  and then put the coefficients of 

p equal zero, we have: 

 
4

3 4

( , ) (1 ) 1.57 ( ) 11.309724 10 ( )

1.57 ( ) 5.181 10 ( ) ( ) 11.309724 10 ( )

d
H p p t t

dt

d d
p t t t t

dt dt

  

   



 

       
  

             
    

 

(42) 

 
2

0 1 2( ) ( ) ( ) ( )t t p t p t         (43)

 
0 :p 4

0 0 01.57 ( ) 11.309724 10 ( ) 0 (0) 100
d

t t
dt
        

 

 
(44)

 
1 :p

4 3

1 1 0 0 11.57 ( ) 11.309724 10 ( ) 5.181 10 ( ) ( ) 0 (0) 0
d d

t t t t
dt dt
                

   

 

(45)

 
2 :p 4 4

2 2 1

3

0 1 2

3 3

0 1 1 0 2

1.57 ( ) 11.309724 10 ( ) 1.309724 10 ( )

5.181 10 ( ) ( ) 1.57 ( )

5.181 10 ( ) ( ) 5.181 10 ( ) ( ) 0 (0) 0

d
t t t

dt

d d
t t t

dt dt

d d
t t t t

dt dt

  

  

    

 



 

     
 

        
   
           
   

 

(46) 

 

Solving Equation (44-46) with initial conditions, 
we have:  
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2827431

39250000000
0 ( ) 100

t

t e


  (47) 

 
353429 282743

4906250000 3925000000
1

93305223 93305223
( )

2827432 2827432

t t

t e e
  

   
 

 
(48) 

 
282743 353429

39250000000 4906250000
2

5654863

39250000000

6158143629 26381407997213
( )

282743200 7994371714624

26381407997213 26117593917239187

110976706000000000 1598874060181600

62284003851567

t t

t

t e e

t e


 




  


 


282743

3925000000
44314971

226035384086369082560

t

e





 

(49) 

 

So: 
 

0 1 2( ) ( ) ( ) ( )t t t t       (50) 

 
2827431 353429 282743

39250000000 4906250000 3925000000

282743 353429

39250000000 4906250000

93305223 93305223
( ) 100

2827432 2827432

6158143629 26381407997213

282743200 7994371714624

26

t t t

t t

t e e e

e e


  

 

 
    

 


  



5654863

39250000000

282743

3925000000

381407997213 26117593917239187

110976706000000000 1598874060181600

6228400385156744314971

226035384086369082560

t

t

t e

e







 


 

(51) 

Case 3 

4

4

( , ) (1 ) 1.57 ( ) 11.309724 10 ( )

1.57 ( ) 11.309724 10 ( )

d
H p p t t

dt

d
p t t

dt

  

 





         
         

 (52) 

 
2

0 1 2( ) ( ) ( ) ( )t t p t p t       
 

(53)

 

Substituting Equation (53) into Equation (52) 
and collect ( , )H p  and then put the coefficients of 

p equal zero, we have: 
 

0 :p 5

0 0 01.57 ( ) 7.488 10 ( ) 0 (0) 100
d

t t
dt
        

 
 
(54)

 
1 :p 5

1 1 11.57 ( ) 7.488 10 ( ) 0 (0) 0
d

t t
dt
        

 
 

(55) 

 
2 :p 5

2 2 21.57 ( ) 7.488 10 ( ) 0 (0) 0
d

t t
dt
        

 
 
(56)

 

Solving Equation (54-56) with initial conditions, 

we have: 
 

2827431

39250000000
0 ( ) 100

t

t e



 

(57) 

1( ) 0t 
 

(58)
 

2 ( ) 0t 
 

(59)
 

So we have: 
 

0 1 2( ) ( ) ( ) ( )t t t t     
 

(60) 

 

2827431

39250000000( ) 100
t

t e


  (61)

Results and discussion 

In Figure 2 the temperature distribution is 
compared with numerical solution. The heat transfer 
coefficient and heat specific is taken variable. It can be 
seen that there is good agreement between them. 

 

 

Figure 2. ( ) , ,t t h cte c cte    . 

In Figure 3 the temperature gradient is depicted. 
It is increased with increasing time. 

 

 

Figure 3. ( ) , ,
d

t t h cte c cte
dt
    . 
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In Figure 4 the temperature distribution for 

case of constant heat transfer coefficient and 

variable specific heat is drawn.  

 

 

Figure 4. ( ) , ,t t h cte c cte     , solved by HPM. 

For this case the temperature gradient is depicted 

also. It is depicted in Figure 5. 

 

 

Figure 5. ( ) , ,
d

t t h cte c cte
dt
    , solved by HPM. 

In Figure 6 the temperature distribution for 

the case of variable heat transfer coefficient and 

constant specific heat with both Numerical 

method and HPM is depicted. With growth of 

time the temperature of cylinder closes to 

ambient temperature. 

 

Figure 6. ( ) , ,t t h cte c cte    . 

For this case the temperature gradient is depicted 

also in Figure 7. 
 

 

Figure7. ( ) , ,
d

t t h cte c cte
dt
    . 

In Figures 8 and 9 the result of constant 

properties and variable properties is compared .it 

can be seen in the case of variable properties 

cylinder reach the ambient temperature at a 

shorter time and temperature gradient tend to 

zero faster. 

In Figures 10 and 11 the result of variable 

properties and case of constant heat transfer 

coefficient and  variable specific heat are 

compared. 
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Figure 8. Compare ( ) , , ,t t h c cteand h c cte    . 

 

 

Figure 9. Compare ( ) , , ,
d

t t h c cteand h c cte
dt
    . 

It can be seen in the case of variable properties 

cylinder reach the ambient temperature at a 

shorter time and temperature gradient tend to 

zero faster. 

In Figure 12 average Nusselt number in each 

time is shown. At the beginning time because of 

high gradient temperature Nusselt number is 

great. With growth of time Nusselt number  

tend to zero, because of zero temperature 

gradient. 

For case of constant heat transfer properties 

the Nusselt number is zero because it related to 

heat transfer coefficient and thermal conductivity 

and they are constant Figre 13. 

 
Figure 10. Compare ( )t t  , ,h c cte and h cte c cte  

. 

 
Figure 11. Compare 

( )
d

t t
dt
   , ,h c cteand h cte c cte  

. 
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Figure 12. Nu , ,h c cte . 
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Figure 13. Nu , , , ,h c cte h cte c cte   . 

Nomenclature 

A Surface 
c Specific heat coefficient 
d Diameter 
H Heat transfer coefficient 
HPM Homotopy Perturbation Method 
K Thermal conductivity  
NM Numerical Runge-Kutta Method 
Nu Nusselt 
P Small parameter 

Pr  Prandtl number 

dRa  Rayleigh number 

T Temperature 

T 
 Ambient temperature 

Greek symbol 
α  Thermal diffusivity 
β  Thermal Expansion coefficient 

  Constant parameter 

Θ temperature difference
 

ν   Kinematic Viscosity 
ρ  Density  

Conclusion 

In the present work, natural convection flow 

over a hot isothermal horizontal cylinder has been 

analyzed. The influence of variable h and c is 

studied, and the nonlinear equation that is extracted 

by He’s Homotopy Perturbation Method (HPM) is 

solved. These considered equations are easily solved 

by mentioned analytical method. Consequently, 

these equations are solved by the numerical method 

(Runge-Kutta fourth-order) using the software 

Maple 12® and the results of the HPM and NM are 

compared in Figures 2, 6, 10, 11, 12 and 13. Then 

effects of h and c when they are variable or constant 

are shown in Figures 3, 4, 5, 7, 8 and 8. Also the 

variations of Nusselt number are shown in Figure 

14 and 15. So the following results are obtained: 
(I) The effect of c is stronger than h when 

temperature is decreasing. 

(II) With increasing h and decreasing c, the time 

of cooling approach will be decreased. 

(III) The natural convection is not appropriate in 

industry that time is an important parameter.  

(IV) Obtained results from case 1, 2 and 3 are 

approximately similar.   
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