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We study the noisy voter model using a specific non-linear dependence of the rates that takes into

account collective interaction between individuals. The resulting model is solved exactly under the

all-to-all coupling configuration and approximately in some random network environments. In the

all-to-all setup, we find that the non-linear interactions induce bona fide phase transitions that, con-

trary to the linear version of the model, survive in the thermodynamic limit. The main effect of the

complex network is to shift the transition lines and modify the finite-size dependence, a modification

that can be captured with the introduction of an effective system size that decreases with the degree

heterogeneity of the network. While a non-trivial finite-size dependence of the moments of the prob-

ability distribution is derived from our treatment, mean-field exponents are nevertheless obtained in

the thermodynamic limit. These theoretical predictions are well confirmed by numerical simulations

of the stochastic process. Published by AIP Publishing. https://doi.org/10.1063/1.5030112

Imitation models where individuals copy the actions or

opinions of others are the basis to understand the tran-

sition to consensus and organized behavior in societies.

The voter model incorporates the simplest mechanism

of blind imitation and has become one of the accepted

paradigms in this field. To make the model closer to reality,

one needs to take into account the addition of sponta-

neous changes of state, the characteristics of the network

of interactions, and the details of the imitation mecha-

nism. All three ingredients have been considered in the

present paper. The resulting non-equilibrium model turns

out to offer a rich phenomenology, and its phase diagram

includes tricritical points, catastrophes, and a non-trivial

scaling behavior that can be analyzed using some tools of

equilibrium statistical mechanics.

I. INTRODUCTION

The original voter model1,2 implements, in its simplest

way, the mechanism of random imitation by which a “voter”

(an individual represented by a variable that can be in any of

two possible states) adopts the state of one of its neighbors

in a given network of interactions. The voter model displays

stochastic dynamics with absorbing states that correspond to

the collective consensus in each of the two possible states

and that, from the point of view of Statistical Physics and

Critical Phenomena, have very special characteristics.3 Some

studies4,5 have examined in detail the robustness or generic

behavior of the voter model dynamics by the introduction of

nonlinear variations of the random imitation mechanism that,

however, respect the existence of the two absorbing states

of the stochastic dynamics. A different modification of the

a)Electronic mail: afperalta@ifisc.uib-csic.es

voter model is the noisy voter6 model, also called the Kir-

man model,7 that has appeared under different names and

contexts in the literature8–12 and that adds to the random imi-

tation mechanism spontaneous switches of state or noise. It

was introduced, in the social sciences literature, as a sim-

ple stochastic process that could explain some experimental

features observed in ant colonies, when ants have to choose

between two symmetrical food sources, as well as some styl-

ized facts—or non-Gaussian statistical properties—observed

in financial markets, where traders have to decide whether to

buy or sell a given stock. In both cases, noise is introduced to

allow switches between the two collective consensuses avoid-

ing the existence of absorbing states. With its very simple

behavioral rules, the noisy voter model is able to capture

the emergence of herding and non-Gaussian statistical prop-

erties in those two different contexts.13,14 Furthermore, the

model presents an order-disorder transition as a function of

the relative importance of the spontaneous switching with

respect to the copying mechanism, the order parameter being

the fraction of voters that share a common value for the

state variable. This is known to be a finite-size noise induced

transition,7 with well characterized critical properties in the

thermodynamic limit,6 where the transition disappears—or

rather, it occurs in the limit of vanishing spontaneous switch-

ing. Some modifications of the system size scaling of the

copying mechanism have been proposed to preserve the exis-

tence of the order-disorder transition in the thermodynamic

limit.13,14 In this paper, we address the question of the robust-

ness of the order-disorder transition of the noisy voter model

under nonlinear modifications of the random imitation mech-

anism, emphasizing the system size scaling of its critical

properties.

The voter model can be thought of as based on a dyadic,

direct interaction between two neighboring voters so that the
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probability that a voter changes its state is proportional to the

fraction of neighboring voters in the opposite state. It is clear

that in some situations a more complex mechanism of group

interaction can be relevant. This collective interaction intro-

duces a nonlinearity in which the probability to change state

is proportional to a power α of the fraction of neighbors in

the opposite state. Similar types of nonlinearities, with minor

variations in some cases, as the ones introduced here in the

noisy voter model have been previously considered in differ-

ent contexts.5,15–26 For example, the degree of nonlinearity,

α, is assumed in social impact theory18,19 to be a positive

real number measuring the nonlinear effect of local majorities,

while the same parameter is termed “volatility” and is repre-

sented by the letter “a” in problems of language competition

dynamics.16,17 In the interpretation of Refs. 5, 21, and 23 each

individual interacts with a set of α of its nearest neighbors,

and therefore, α > 1 and it takes integer values. In order to

allow for a detailed study of the robustness of the transition of

the noisy voter model—that is, near α = 1—we focus here on

continuous values of α.

We show in this paper that the noisy voter model is

structurally unstable with respect to non-linearity so that its

order-disorder transition becomes now well defined in the

thermodynamic limit for any value of α > 1. The resulting

rich phase diagram, with the presence of tricriticality and

catastrophe transitions, extends to the case of continuous α

and asymmetry in the transition rates, as some previous results

recently presented in the literature21,23 seem to display. Using

analytical techniques and numerical simulations, we carry out

a detailed analysis of the dependence with system size of

the moments and maxima of the probability distribution of

the order parameter. In particular, we focus on the all-to-all

interaction and on highly heterogeneous networks of interac-

tions, and we obtain the critical exponents of the finite-size

scaling behavior. Furthermore, we prove that the system size

scaling of the copying mechanism proposed in Refs. 13 and

14 for the noisy voter model is not applicable for nonlin-

ear interactions. In the context of language competition,16,17

our study can be understood as an analysis of the robustness

of the transition between language coexistence and extinc-

tion under noisy perturbations. In this sense, we find that the

transition from language extinction to language coexistence

at α = 1 occurs now at a value modified by noise. Inter-

estingly, we also find that there is a tricritical point27 such

that for α > 5 there is a range of parameters with a new

phase of coexistence of three solutions: extinction of each of

the two languages or language coexistence in which, in the

absence of stochasticity, the initial condition determines the

final state.

The paper is organized as follows: in Section II, we define

the model, set the notation, and introduce the non-linear inter-

action term. In Section III, we solve the model analytically in

an all-to-all scenario. This includes the identification of tran-

sition lines and the statistical properties of the global state of

the system. Section IV deals with the characterization of the

model in a network structure using the pair-approximation,

which is capable of reproducing the main differences with

respect to the all-to-all result. We end with a summary and

conclusions in Section V.

II. MODEL

We consider a population of N individuals located in

the nodes of a given (undirected) network of interactions.

Each node holds a time-dependent binary variable ni = 0, 1,

defining the state of individual i = 1, . . . , N . The meaning

of this binary variable does not concern us in this paper,

but typical interpretations include the optimistic/pessimistic

state of a stock market broker,7 the language A/B used by

a speaker,16,17 or the direction of the velocity right/left in

a one-dimensional model of active particles.28 The network

of interactions is mapped onto the usual (symmetric) adja-

cency matrix of coefficients Aij = 1 if nodes i and j are

connected and Aij = 0 otherwise. The degree of node i is

its total number of connected nodes (also known as neigh-

bors) ki =
∑

j Aij. An important characteristic of the network

is its degree distribution, Pk ≡ Nk/N , where Nk is the num-

ber of nodes with degree k. The m-moment of the degree

distribution is defined as µm =
∑

k Pkkm, with short notation

µ ≡ µ1.

The state of a node can change over time following

the combination of a purely random, or noisy, effect and a

herding, or copying, mechanism. They are both stochastic

processes defined as follows:

1. The purely random effect takes into account that individ-

uals can change their state independently of the state of

others, with a rate a0 or a1, depending on whether the

node holds state 0 or 1, respectively. This process reflects

an idiosyncratic or autonomous behavioral rule.

2. The herding mechanism considers that individuals can

be persuaded by their neighbors to change their state.

Hence, individual i in state ni = 0 can change the state

to ni = 1 with a rate h f [σ1(i)]. Here, σ1(i) is the frac-

tion of neighbors of i holding the opposite state 1, h is

a parameter measuring the herding intensity, and f is a

monotonically increasing function that fulfills f [0] = 0

and f [1] = 1. Similarly, an individual in the state ni = 1

can change to state ni = 0 with a rate h f [σ0(i)], where

σ0(i) = 1 − σ1(i).

The total individual transition rates π±
i result from the sum of

these two complementary processes

π+
i ≡ rate(ni = 0 → ni = 1) = a0 + hf [σ1(i)], (1)

π−
i ≡ rate(ni = 1 → ni = 0) = a1 + hf [σ0(i)]. (2)

In terms of the of the adjacency matrix, σ0/1(i) can be written

as follows:

σ1(i) =
1

ki

N
∑

j=1

Aijnj, σ0(i) = 1 − σ1(i). (3)

The function f [σ ] depicts the nature of the copying mecha-

nism. For example, the traditional voter model uses a linear

dependence f [σ ] = σ which corresponds to the process in

which a node copies the state of a randomly selected neigh-

bor. We will focus, however, on a more general way to model

the interactions, considering a non-linear function f [σ ] = σ α .

For α > 1 individuals are more resistant to follow the opinion
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of the neighbors holding the opposite state, while the contrary

is true for α < 1, it is easier to copy the opposite state of a

neighbor. Hence, a value of α > 1 (probability of imitation

below random) can be representative of a situation of aversion

to change, where a larger fraction of neighbors in the opposite

state is needed to switch state compared to the purely random

imitation of the voter model. In fact, values of α > 1 have

been fitted in some problems of language competition.16 On

the other hand, values of α < 1, corresponding to a proba-

bility of imitation above random or a situation of preference

for change, have been considered in social impact theory.18

The cases α = 2, 3 . . . are equivalent to a process in which an

individual changes state if and only if after checking repeat-

edly the state of α randomly selected neighbors (and allowing

for repetitions in the selection), all of them happen to be in the

opposite state to the one held by the individual.5

The global state of the system can be characterized by

the total number of nodes in state 1, n =
∑N

i=1 ni, taking inte-

ger values n ∈ [0, N], or by the intensive variable (also known

as “magnetization”) m = 2n/N − 1 that takes values in the

range m ∈ [−1, +1]. The values m = −1 and m = +1 corre-

spond to a situation where all the nodes hold the same state,

respectively, ni = 0 and ni = 1, while m = 0 is the perfectly

balanced case, where half of the nodes are in state ni = 0 and

the other half in ni = 1. One of the particularities of the noisy

version of the voter model is that for a0 > 0 the system, even

after long enough times, does not get stuck at n = 0 nor at

n = N for a1 > 0, the two absorbing states of the noiseless

voter model.

The aim of this paper is to study the stationary statisti-

cal properties of the magnetization, namely, its moments 〈mk〉

and the location of the maxima of its probability distribution

as a function of the parameters a0, a1, h, α, as well as the pop-

ulation size N and the structure of the network of interactions,

with special attention to the role of the non-linear parameter

α. In order to do that, in Section III, we will develop analytical

results that will be compared with those coming from numer-

ical simulations of the stochastic process using well-known

techniques.49

III. ALL-TO-ALL SOLUTION

In the all-to-all scenario, all the nodes are equivalent, and

the only relevant variable is n. In this sense, we do not con-

sider the individual rates Eqs. (1) and (2) but the global rates

π±(n) ≡ rate(n → n ± 1) at which a change of state in any of

the nodes takes place. The individual fraction σ1(i) is replaced

by the global fraction n/N [while σ0(i) by (N − n)/N] and

thus the global rates read as follows:

π+(n) = (N − n)
[

a0 + h
( n

N

)α]

, (4)

π−(n) = n

[

a1 + h

(

N − n

N

)α]

. (5)

The approach is exact only when the network is fully con-

nected, namely, when each node is connected to all the other

nodes. The transition rates Eqs. (4) and (5) define a Markovian

stochastic process, which is of the one-step type. The process

can be fully described by means of the probability P(n, t) to

have n individuals in state 1 at time t, which obeys the master

equation:31

∂P(n, t)

∂t
=

(

E+ − 1
) [

π−(n)P
]

+
(

E− − 1
) [

π+(n)P
]

, (6)

where we have introduced the step operators E±, defined to

act on an arbitrary function g(n) as E±[g(n)] = g(n ± 1). One

can derive a continuous version of this equation, known as

Fokker-Planck equation, through a systematic expansion in N .

Rewriting Eq. (6) in terms of the magnetization m and expand-

ing it in power series of �m = ±2/N to second order, one

finds

∂P(m, t)

∂t
= −

∂

∂m
[F(m)P] +

1

N

∂2

∂m2
[D(m)P] , (7)

where P(m, t) is now a probability density function (pdf),

related to the discrete probability function as P(n, t) =

P(m, t) · |dm/dn| = P(m, t) · 2/N . The functions F(m) =

[π+ − π−]2/N and D(m) = [π+ + π−]2/N are usually

called drift and diffusion, respectively, and, for this model,

are given by

F(m) = a0 − a1 − (a0 + a1)m

+ 2−αh(1 − m2)[(1 + m)α−1 − (1 − m)α−1], (8)

D(m) = a0 + a1 − (a0 − a1)m

+ 2−αh(1 − m2)[(1 + m)α−1 + (1 − m)α−1]. (9)

It is also possible to describe the evolution of the system in

terms of a Langevin stochastic differential equation for the

trajectories m(t), which, within the Itô convention, reads

dm(t)

dt
= F(m) + N−1/2

√

2D(m) · ξ(t), (10)

where ξ(t) is a Gaussian white noise with zero mean

〈ξ(t)〉 = 0 and correlations 〈ξ(t)ξ(t′)〉 = δ(t − t′).

A. Modes and transitions

In general, it is difficult to find an analytical solution of

the master equation (6) or the Fokker-Planck equation (7).

There is, however, a general solution Pst(m) of the latter50 in

the stationary state (∂/∂t)P(m, t) = 0 that can be written in

the exponential form

Pst(m) = Z
−1 · exp [−NV(m)] , (11)

V(m) =

∫ m −F(z) + D′(z)/N

D(z)
dz, (12)

where V(m) is called the “potential function” and Z is a

normalization constant.

Although the solution Eqs. (11) and (12) is a complicated

expression given the drift and diffusion functions Eqs. (8) and

(9), it is possible to portray the shape of the stationary distribu-

tion Pst(m). In particular, in this subsection, we will focus on

characterizing the modes, or values of m∗ for which Pst(m∗)

is a maximum, and the transitions where modes appear or

disappear as a function of the parameters of the model.

The condition of local maximum for the mode is

P′
st(m∗) = 0 (condition of local extreme) and P′′

st(m∗) < 0, but
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note that modes can also be located at the boundary values

m∗ = ±1. In the symmetric case a0 = a1, there is a trivial

extreme m∗ = 0 which corresponds to the perfectly balanced

case. Its dynamical stability under perturbations comes deter-

mined by the second derivative of Pst(m) or, alternatively, of

V(m)

V ′′(m∗ = 0) =
2α

2αε + 1
[ε − εc(N)], (13)

where we define the noise-herding intensity ratio parameter

ε ≡ (a0 + a1)/2h, and εc(N) reads

εc(N) = 2−α

(

α − 1 +
α(3 − α)

N

)

, (14)

εc ≡ εc(∞) = 2−α (α − 1). (15)

Then, for ε < εc(N), m∗ = 0 corresponds to a minimum of the

probability distribution, while for ε > εc(N) to a maximum.

Note that in the thermodynamic limit N → ∞, the transition

between maximum and minimum occurs at a finite positive

value of ε for α > 1, while for α < 1 there is no transition

since εc(∞) < 0 and m∗ = 0 is always a stable solution. For

the particular value α = 1, the linear model, the transition is

only a finite-size effect since εc(N) = 1/N and, in the ther-

modynamic limit, the maximum is located at m∗ = 0 for all

values of ε > 0.

Consequently, only in the non-linear regime α > 1, the

parameters a0, a1, and h take values of the same order near

the transition, and we can safely disregard the term D′(z)/N

in front of F(z) in the numerator of Eq. (12), in the limit of

large N . In this limit, that we assume in the remaining of this

subsection, the extrema of the distribution fulfill the condition

F(m∗) = 0 while the stability comes determined by the sign of

the derivative F ′(m∗). Since it is not possible to find a closed

solution of this equation, we will expand the drift function in

power-series to O(m7)

F(m) = h�ε + 2h (εc − ε) m +
h

3
2−α(α − 5)(α − 1)αm3

+
h

15
2−2−α(α − 9)(α − 3)(α − 2)(α − 1)αm5

+ O(m7), (16)

where we define the parameter �ε = (a0 − a1)/h as a mea-

sure of the asymmetry in the rates for switching states 0 → 1

and 1 → 0. This expression coincides with the derivative of

the potential function found by Vazquez et al.17 in their study

of the noiseless version (ε = �ε = 0) of the nonlinear model

in the unbiased case.51 In principle, the solution (16) using the

power-series expansion will be valid only for m∗ ≈ 0, but it is

enough to identify additional extrema and transitions. We now

find the extrema and their stability distinguishing between the

symmetric a0 = a1 and asymmetric a0 �= a1 cases.

1. Symmetric case

Using the expansion Eq. (16), there are five (maybe com-

plex) solutions of F(m∗) = 0. When a0 = a1, they are as

follows: the trivial one m∗ = 0 and other four roots ±m+
∗ ,

FIG. 1. Phase diagram of the symmetric case �ε = 0. The dot (blue) at α = 1

is the finite-size transition point εc(N), Eq. (14) for N = 100. The solid line

corresponds to the all-to-all setting, while the dotted line to a 15-regular net-

work (black) and a scale free network P5≤k≤966 ∼ k−2.34 with µ ≈ 15 (green),

see Section IV. The trimodal region is delimited by the transition lines εc and

εt , which for the all-to-all network correspond to expressions Eqs. (14) and

(18), with a tricritical point (red) at α = 5, ε = 1/8. The tricritical point for

the 15-regular network (black) is at α = 6.14, ε = 0.084 and for the scale free

network (green) at α = 6.33, ε = 0.063 (the trimodal region of the scale free

network is removed for clarity in the figure).

±m−
∗ obtained from

(m±
∗ )2 ≈

10(α − 5)

(α − 2)(α − 3)(α − 9)
, (17)

[

±

√

1 −
6

5

(α − 2)(α − 3)(9 − α)

α(α − 5)2

(

ε − εc

εc

)

− 1

]

.

The acceptable maxima of the probability distribution Pst(m)

must correspond to values of m∗ which are real and inside the

interval [−1, 1]. The four roots given by Eq. (17) are real or

imaginary depending on the values of the parameters ε and

α:

1. In the range 1 < α < 5, for ε < εc the pair of solutions

±m+
∗ are real and correspond to probability maxima,

while for ε > εc all four roots are imaginary. Then, in

this range, the line εc divides unimodal (a single maxi-

mum of the probability distribution) from bimodal (two

real maxima) regimes, see Fig. 1 and top panels of Fig. 2.

2. In the range α > 5, for ε < εc the pair of solutions ±m+
∗

are real and correspond to probability maxima; for εc <

ε < εt all four roots are real, ±m−
∗ correspond to proba-

bility maxima, and ±m+
∗ to minima; while for ε > εt all

four are imaginary, where εt reads

εt ≈ εc ·

(

1 +
5α(α − 5)2

6(α − 2)(α − 3)(9 − α)

)

. (18)

Consequently, for α > 5, the line εc divides bimodal from

trimodal regimes, while εt divides trimodal from uni-

modal regimes, see Fig. 1 and the top panels of Fig. 3.

The two lines meet at the tricritical point α = 5 and

ε = 2−3 = 0.125.

Note that the expressions for the roots Eq. (17) and the

transition line Eq. (18) are based on the expansion Eq. (16),

and consequently, they are an approximation, hence the ≈

symbol used in those formulas. In fact, we have found that
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FIG. 2. Probability distribution Pst(m), for different values of the parameters

with fixed α = 2. In the symmetric case �ε = 0 (top panels), the transition

point is at εc = 0.25 where the distribution switches from symmetric bimodal

to unimodal. In the bottom panels, we identify the transition from an asym-

metric bimodal (with two maxima, one of them absolute and the other local)

to a unimodal distribution occurring at a value of the asymmetry parameter

�εa = 0.017 for ε = 0.2 (see the corresponding points in Fig. 5). Dots cor-

respond to numerical simulations of the process defined by the rates Eqs. (4)

and (5), while lines are the function Eq. (11).

they remain accurate only for α < 7. Despite that the classi-

fication of maxima/minima is completely general and addi-

tional extrema or transitions are not observed in a numerical

analysis using the exact expression for the potential function

Eqs. (11), (8), and (9).

It is also important to mention that for 1 < α < 5, the line

ε = εc corresponds to a classical (Landau) second order phase

transition from the “ordered” phase m∗ �= 0 to the “disor-

dered” one52 m∗ = 0, with scaling |m∗| ∼ (εc − ε)β for ε ≤ εc

with β = 1/2 and m∗ = 0 for ε ≥ εc. This line is delimited by

two special degenerate points, α = 1 and α = 5:

• For α = 1, all the terms of the expansion Eq. (16) vanish

and Pst(m) is completely flat at the transition. It is only at

ε = εc = 0 (noiseless voter model) that the probability dis-

tribution is a sum of two delta-functions at m = ±1, leading

to m∗ = ±1 if ε = 0 or m∗ = 0 if ε > 0. This discontinuity

survives in the finite N limit, where the result is m∗ = ±1 if

ε < εc(N) or m∗ = 0 if ε > εc(N). Formally, we still have

a scaling of the form |m∗| ∼ (εc(N) − ε)β , but now β = 0.

• For α = 5, the first three terms of the expansion vanish

and Pst(m) is flatter than for the classical second order

transition, with a scaling |m∗| ∼ (εc − ε)β , β = 1/4.

The condition that isolates the classical second order line from

the degenerate points is that we can disregard the O(m5) term

of Eq. (16) in front of the O(m3), which leads to

|ε − εc| ≪ εc ·

∣

∣

∣

∣

α(α − 5)2

(α − 2)(α − 3)(9 − α)

∣

∣

∣

∣

. (19)

For α > 5 an increase of ε leads first to a transition from

a bimodal to a trimodal distribution at ε = εc, implying a

discontinuity of the location of the absolute maximum from

|m∗| > 0 to m∗ = 0. This corresponds to a first-order transi-

tion. The local maxima at |m∗| > 0 remain up to ε = εt where

they disappear and the distribution is unimodal. The absolute

maximum of the distribution is at |m∗| > 0 for ε < εM and at

m∗ = 0 for ε > εM , being εM the Maxwell point where the

potential takes the same value at the maxima, |m∗| > 0 and

m∗ = 0.

A summary of the equation of state m(ε) for different

values of α in the symmetric case is presented in Fig. 4.

2. Asymmetric case

When a0 �= a1, there are two main effects: (i) the loca-

tions of the modes shift and (ii) one of the members of the

previous symmetrical solution pair ±m+
∗ is promoted to be

more likely than its corresponding partner. If the asymmetry

parameter |�ε| is large enough, bimodality and trimodal-

ity may even be destroyed, inducing new transitions in the

(a0, a1, α) or, alternatively, in the (ε, �ε, α) space of param-

eters. These transitions are known as catastrophes.32,33 For

fixed α, the projection (εa, �εa) of the transition region in the

plane (ε, �ε) must fulfill the transition conditions F(m∗) = 0

and F ′(m∗) = 0, which in the approximation Eq. (16) and in

FIG. 3. Probability distribution Pst(m), for different values of the parameters with fixed α = 6. In the symmetric case �ε = 0 (top panels), the transition points

are εc = 0.075 (from bimodal to trimodal) and εt = 0.086 (from trimodal to unimodal). In the bottom panels, we fix ε = 0.085 and identify the transition from a

trimodal to a bimodal distribution occurring at a value of the asymmetry parameter �εa,1 = 0.00082 . . ., and the transition from bimodal to unimodal occurring

at �εa,2 = 0.00280 . . . (see the corresponding points in Fig. 5). Dots correspond to numerical simulations of the process defined by the rates Eqs. (4) and (5),

while lines are the function Eq. (11).
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FIG. 4. Summary of the equation of state for different values of α in the symmetric case �ε = 0. The lines come from the determination of the maxima m∗ of

the exact potential Eq. (12) for N = 100. The vertical dashed line for α = 6 is εM = 0.0838, the Maxwell point where the potential takes the same value at the

two maxima, m∗ > 0 and m∗ = 0.

parametric representation read

εa

εc

≈ 1 +
α(α − 5)

2
m2

∗ +
α(α − 2)(α − 3)(α − 9)

24
m4

∗, (20)

�εa

εc

≈
2α(α − 5)

3
m3

∗ +
α(α − 2)(α − 3)(α − 9)

15
m5

∗.

The transition line in the plane (εa, �εa) is obtained by elimi-

nation of the parameter m∗. As indicated in Fig. 5, there could

be several transition lines.

For 1 < α < 5, and when the condition Eq. (19) is ful-

filled, we can disregard the terms of order O(m4) or higher in

Eqs. (20). The resulting transition line corresponds to the well

known Cusp Catastrophe33 with geometry εc − εa ∼ |�εa|
2/3

(see the left panel of Fig. 5). The degenerate points α = 1, 5

also display cusp-like transition curves with different geome-

tries: εc − εa ∼ |�εa|
4/5 for α = 5 and εc − εa ∼ |�εa| for

α = 1. In the bottom panels of Fig. 2, we plot the probability

distribution for α = 2, ε = 0.2 as the parameter �ε crosses

the transition line at �εa = 0.017 depicted in Fig. 5.

For α > 5 one has to keep all the terms of Eqs. (20). In

this case, trimodality, together with bimodality and unimodal-

ity, is also possible and the transition curves correspond to the

so-called Butterfly Catastrophe.33 Its geometry is similar to

three cusps, whose intersections delimit the trimodal regime

(see the right panel of Fig. 5, corresponding to α = 6). The

two tips at the top divide unimodal from bimodal zones, while

the tip at the bottom separates trimodal from bimodal. In the

bottom panel of Fig. 2, we plot the probability distribution

for α = 6, ε = 0.085 as the parameter �ε crosses the transi-

tion lines at �εa,1 = 0.00082 . . . and �εa,2 = 0.00280 . . ., as

depicted in Fig. 5.

B. Fluctuations and N-dependence

Fluctuations, including those due to the finite-size of the

system, play a very important role in the original version of

the noisy voter model, α = 1. This is mainly because, as we

mentioned earlier, the transition is noise-induced and finite-

size. In this case, with α = 1, and if we approach the critical

point εc(N) = 1/N by keeping ε ∼ 1/N and �ε ∼ 1/N , the

expression Eq. (12) for the potential can be simplified to

V(m) =

(

1

N
− ε

)

log(1 − m2) +
�ε

2
log

(

1 − m

1 + m

)

. (21)

If we conveniently redefine the rates Eqs. (4) and (5) such

that we are always in the regime ε ∼ 1/N and �ε ∼ 1/N (for

example, considering h/N ≡ h∗ with h∗ = O(1) being a new

parameter), then the distribution Pst(m) is N-independent,

which is one of the interesting properties of the model with

rescaled parameters widely discussed in the literature.13,14,34

We will, however, show that this is not the case for the

non-linear version of the model and that the N-independence

property is not a robust result of the noisy voter model.

Let us expand the potential Eq. (12) in power series of m,

around the critical point ε ∼ εc, �ε ∼ 0, to find

V(m) = −c1m + c2m2 + c4m4 + c6m6 + · · · , (22)

with coefficients

c1 =
2α

2α
�ε ≡ c · �ε, (23)

c2 =
2α

2α
(ε − εc) ≡ c · (ε − εc), (24)
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FIG. 5. Phase diagram of the asymmetric case �ε �= 0. The left panel corresponds to α = 2 and the right one to α = 6. The transition lines correspond to the

expressions Eqs. (20). The dots are the points whose probability distributions are displayed in the bottom panels of Figs. 2 and 3.

c4 =
(α − 1)(5 − α)

24
, (25)

c6 =
(α − 1)(α − 3)(α − 4)(17 − α)

720
. (26)

Note that we have only kept the first order of each coef-

ficient and only some of the coefficients. In doing so, we

have neglected terms of order 1/N , m2(ε − εc)
2, m2�ε2,

m3�ε, etc. If we now assume that 1 < α < 5, then we can

also neglect the order m6 of the potential, and an arbitrary

k-moment of the distribution Pst(m) will read

〈mk〉st =

∫ 1

−1
dm mke

N
(

c1m−c2m2−c4m4
)

∫ 1

−1
dm eN(c1m−c2m2−c4m4)

. (27)

If we make the change of variables z = N1/4m, the leading

term can be rewritten as follows:

〈mk〉st = N−k/4φk

[

N1/2(ε − εc), N3/4�ε
]

, (28)

with the scaling function

φk[x, y] =

∫ ∞

−∞
dz zkecyz−cxz2−c4z4

∫ ∞

−∞
dz ecyz−cxz2−c4z4

. (29)

Note that this function φk[x, y] is independent of N , and all

the N-dependence is displayed explicitly in the expression Eq.

(28). The case α = 5 is a degenerate case where c4 = 0, and

we have to keep the order m6 of the potential, this leads to a

different scaling function:

〈mk〉st = N−k/6φk

[

N2/3(ε − εc), N5/6�ε
]

, (30)

with

φk[x, y] =

∫ ∞

−∞
dz zkecyz−cxz2−c6z6

∫ ∞

−∞
dz ecyz−cxz2−c6z6

. (31)

If we write the special case α = 1 in this form, we obtain

〈mk〉 = φk[Nε, N�ε], where now the scaling function uses the

expression Eq. (21) of the potential with all the orders of m

included. In this case of α = 1, a rescaling of the parameters

of the model ε, �ε in an appropriate way, will make all the

moments 〈mk〉 N-independent. However, for α �= 1, even if

we rescale the parameters of the model to be close enough to

the critical point, the moments 〈mk〉 vanish as N−k/4 for 1 <

α < 5 and as N−k/6 for α = 5. It is also important to mention

that the width of the critical region where these scaling proper-

ties hold is wider for the non-linear case ε − εc ∼ N−1/2 (for

1 < α < 5) compared to ε − εc ∼ N−1 for α = 1. In Fig. 6,

we check the scaling form of the stationary variance of the

magnetization σ 2
st[m] in the cases α = 2 and α = 5.

IV. COMPLEX NETWORKS

So far, we have considered the case of an all-to-all inter-

action, in which each node is a neighbor of every other node.

Given the application of the model to problems of consensus

formation in populations, it seems important to consider in

FIG. 6. Variance of the magnetization σ 2
st[m] ≡ 〈m2〉st − 〈|m|〉2

st as a function of ε − εc, rescaled with the correct power of system size N , in order to check the

scaling relations Eqs. (28) and (30). Both panels are for the symmetric case �ε = 0, the left one with α = 2 and the right one with α = 5. Dots correspond to

Monte Carlo simulations of different system sizes, averaged over 105 Monte Carlo steps, while the solid black line is the scaling function Eqs. (29) and (31).
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detail the role the network of interactions might have on the

transitions identified in Section III. In this way, we are able to

go beyond the global coupling approach and consider in some

detail the effect of the locality of the interactions.

There are several theoretical approaches under which the

network structure can be considered.34–40 In this work, we

focus on a particular version of the so-called pair approxi-

mation as developed in Refs. 17 and 41. In this approach, one

defines the network related variables nk and ρ as, respectively,

the number of nodes with degree k in state 1 (not to be con-

fused with ni, which is the node state variable) and the density

of active links, i.e., the ratio between the number of links con-

necting nodes in different states and the total number of links

µN/2. Additionally, it is also convenient to define the vari-

able nL =
∑N

i=1 kini, which is the number of links coming out

of nodes in state 1. The intensive versions of the variables

nk and nL are mk = 2nk/Nk − 1 and mL = 2nL/Nµ − 1 (also

known as link magnetization). We follow closely the method

of Vazquez and Eguiluz41 in their study of the linear noise-

less voter model adapted to the presence of the noise term

and non-linear rates of our model, and we refer to that work

for a more detailed explanation of the approach. Similar, but

not identical, treatments have been developed by Diakonova

et al.12 in their study of the linear noisy voter model, and

by Jȩdrzejewski23 and by Min and San Miguel20 in particular

versions of nonlinear voter models.

For simplicity, we will restrict ourselves to the symmet-

ric case �ε = 0 and a0 = a1 ≡ a, such that mk = mL = 0 is

always a fixed point of the dynamics. We start by finding an

approximate mean-field time evolution equation for ρ:

dρ

dt
=

∑

k

Pk

2

k
∑

q=0

P0(k, q)
[

a + h
(q

k

)α] �ρk,q

�t

−
∑

k

Pk

2

k
∑

q=0

P1(k, q)

[

a + h

(

k − q

k

)α]

�ρk,q

�t
.

(32)

Here, P0/1(k, q) is the probability of selecting a node within

the population in state 0/1 with degree k and that has q

neighbors in state 1, �ρk,q = 2(k − 2q)/µN is the change

in ρ when a node with (k, q) changes from 0 to 1 [being

−�ρk,q the corresponding change in ρ when a (k, q) node

changes from 1 to 0], and �t = 1/N is the elementary time

increment in Monte Carlo steps.49 In this way, the right-

hand side of Eq. (32) is simply the probability of selecting

nodes (0/1, k, q), times the rate at which those nodes change

state, times the corresponding change in ρ, summed over all

the possible values of k, q. The so-called pair approxima-

tion assumes P0/1(k, q) to be binomial, with a single event

probability p0 = ρ and p1 = 1 − ρ, i.e., P0(k, q) ≈
(

k

q

)

ρq(1 −

ρ)k−q, P1(k, q) ≈
(

k

q

)

(1 − ρ)qρk−q. Under this approximation,

Eq. (32) reduces to

dρ

dt
= 2a(1 − 2ρ) +

2h

µ

∑

k

Pk

〈

(k − 2q)
(q

k

)α〉

0
, (33)

where 〈· · · 〉0/1 is an average over P0/1(k, q). In the case of

directed networks,29 the density of 0 → 1 links ρ01 is not the

same as the density of 1 → 0 links ρ10, and one would need

to obtain an evolution equation for each. While such a gen-

eralization is beyond the scope of this contribution, we point

the interested reader to Ref. 53, where the necessary steps are

described.

Note that Eq. (33) is applicable for an arbitrary α and that,

in particular, for integer α, the right-hand side contains powers

of ρ up to order α + 1. It also depends on the mean degree

µ and the first negative moments of the degree distribution

µ−1,. . . , µ−α+1, e.g., for α = 1 it is12

dρ

dt
= −4ρ2 µ − 1

µ
+ 2ρ

(

µ − 2

µ
− 2a

)

+ 2a, (34)

and for α = 2,

dρ

dt
= 2a(1 − 2ρ) +

2hρ

µ

(

ω1 + ω2ρ − 2ω3ρ
2
)

, (35)

with ω1 = 1 − 2µ−1, ω2 = µ − 7 + 6µ−1, and ω3 = µ −

3 + 2µ−1 (as no node of the network is allowed to be isolated,

the degree distribution satisfies P0 = 0 and the m-moment

µm is defined also for negative m, as required in the previ-

ous formulas). Although we have not been able to provide

a rigorous proof, for all analyzed cases it turns out that the

stationary state
dρ

dt
= 0 admits a physical (stable) solution

ρ = ξ ∈ [0, 1]. For α = 2, ξ is the root of the cubic equation

ε(1 − 2ξ) +
ξ

µ

(

ω1 + ω2ξ − 2ω3ξ
2
)

= 0, (36)

satisfying ξ ∈ [0, 1]. See Fig. 7 for an example of the depen-

dence of ξ with ε = a/h. It is possible to recover the all-to-all

limit by taking a degree distribution Pk = δ(k − µ) such that

all averages can be written as µm = µm, and taking the limit

µ → ∞. In this limiting case, it is found that ξ = 1/2.

Next, we derive a master equation for the link-

magnetization variable mL. A single update 0 → 1 of a node

with degree k implies a change mL → mL + �k , with �k =
2k
µN

, whereas an update 1 → 0 of a node with degree k changes

FIG. 7. Stationary solution ρ = ξ from Eq. (36), corresponding to α = 2, as a

function of ε for µ = 5.54, µ−1 = 0.35 and ω1 = 0.30, ω2 = 0.64, ω3 = 3.24

(green line). The black line-point is the numerical results of ξ(numeric) ≡

〈ρ〉st/〈1 − m2〉st for an ensemble of 100 scale free networks with the specified

degree moments. In purple

√

εµ

µ − 1
, the crossing of the two curves is the

critical point εc = 0.120, ξc = 0.383.
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FIG. 8. Binder cumulant as a function of ε for a 5-regular network. Dots

(joined by lines as a guide to the eye) correspond to Monte Carlo sim-

ulations of different system sizes, averaged over 106 Monte Carlo steps,

while the vertical dashed black line is the prediction εc = 0.1125 of the

pair-approximation.

mL → mL − �k . The master equation for P(mL, t) then reads

∂P(mL, t)

∂t
=

∑

k

(

E�k
mL

− 1
) [

π−
k P

]

+
(

E−�k
mL

− 1
) [

π+
k P

]

,

(37)

where Eℓ
mL

is the step operator acting on an arbitrary function

g(mL) as Eℓ
mL

[g(mL)] = g(mL + ℓ), and π±
k are the rates of the

proposed processes in the mL variable:

π+
k = (Nk − nk)

[

a + h
〈(q

k

)α〉

0

]

, (38)

π−
k = nk

[

a + h

〈(

k − q

k

)α〉

1

]

. (39)

The single event probabilities p0/1 are different as mL �= 0

during the dynamical evolution. They are calculated as the

ratio between the number of active links and the number of

links coming out from nodes in state 0/1, i.e., p0 = ρ

1−mL
and

1 − p1 = ρ

1+mL
. If we expand the master equation in powers

FIG. 9. The same data of Fig. 8 are plotted versus the rescaled variable

N1/2(ε − εc). The good collapse of the data validates the proposed scaling

law U4(ε, N) = u(N1/2(ε − εc)), being u(x) the scaling function. The theo-

retical prediction (dotted line) is obtained from Eq. (29) using the coefficients

c = 1.602 and c4 = 0.093.

FIG. 10. Rescaled variance of the magnetization as a function of N1/2(ε −

εc) for a 5-regular network. Dots correspond to Monte Carlo simulations of

different system sizes, averaged over 106 Monte Carlo steps, while the dashed

black line is the prediction of the pair-approximation.

of �k to second order, we find

∂P(mL, t)

∂t
= −

∂

∂mL

[FL(mL)P] +
1

N

∂2

∂m2
L

[DL(mL)P], (40)

with drift FL =
∑

k

2k

µN
[π+

k − π−
k ] and diffusion DL =

∑

k

2k2

µ2N
[π+

k + π−
k ].

In order for Eq. (37) to be consistent, π±
k should depend

only on mL. Following Refs. 38, 39, and 41, we will make an

approximation based on an adiabatic elimination that allows

us to relate variables mk ≈ mL, ρ ≈ ξ(1 − m2
L) as functions of

mL only. Performing the averages on Eqs. (38) and (39) using

the known moments of the binomial distributions P0/1(k, q)

and replacing the above mentioned relations resulting from

the adiabatic approximation, we obtain specific formulas for

the drift and diffusion in terms of the mL variable. For

example, if we take α = 2, we obtain

FL = −2amL + 2hξ 2 µ − 1

µ
mL(1 − m2

L), (41)

FIG. 11. Binder cumulant as a function of ε for a scale-free network with

λ = 2.3. Dots (joined by lines as a guide to the eye) correspond to Monte

Carlo simulations of different system sizes, averaged over 105 Monte Carlo

steps and an ensemble of 100 networks, while the dashed black line is the

prediction εc = 0.120 of the pair approximation.



075516-10 Peralta et al. Chaos 28, 075516 (2018)

FIG. 12. The same data of Fig. 11 are plotted versus the rescaled variable

Neff(ε − εc)
1/2. The good collapse of the data validates the proposed scaling

law U4(ε, N) = u(N
1/2

eff (ε − εc)), being u(x) the scaling function. The theo-

retical prediction (dotted line) is obtained from Eq. (29) using instead of c, c4

the rescaled coefficients c̄ = 1.84 and c̄4 = 0.11.

DL =
µ2

µ2

[

2a + 2hξ
µ + (µ2 − µ)ξ

µ2

(1 − m2
L)

]

, (42)

which coincide with Eqs. (8) and (9) in the all-to-all limit

µm = µm, µ → ∞, ξ = 1/2. It is now straightforward to

repeat the analysis of Section III with those new drift and dif-

fusion terms Eqs. (41) and (42) or their equivalent for other

values of α. The critical point is determined by the condi-

tion εc =
µ − 1

µ
ξ 2

c where the dependence of ξc with εc is

given by Eq. (36) or its equivalent for other values of α.

Note that εc is always smaller, for finite µ, than the all-to-

all result εc = 1/4 (see Fig. 7). For the particular case of a

15-regular lattice, we find that the tricritical point moves to a

larger value α = 6.14, with corresponding ε = 0.084, and the

trimodal region shrinks with respect to the one found in the

all-to-all setup (see Fig. 1). For z-regular lattices with z ≤ 5,

the trimodal region disappears altogether. In general, multi-

ple stability and tricritical points are also possible in the case

FIG. 13. Rescaled variance of the magnetization as a function of ε in the same

case than in Fig. 11, showing the validity of the scaling law σ 2[m](ε, N) =

N
−1/2

eff v(N
1/2

eff (ε − εc)). The theoretical prediction (dotted line) is obtained

from Eq. (29) using instead of c, c4 the rescaled coefficients c̄ = 1.84 and

c̄4 = 0.11.

of other complex networks and we leave for future work a

detailed analysis of the phase diagram for different network

types.

We now compare the theoretical results with numerical

simulations of the stochastic process as defined by the individ-

ual rates Eqs. (1) and (2). We consider a quadratic interaction

α = 2 and two network configurations: (i) a z-regular random

network, where each node is randomly connected to exactly

z neighbors and hence µ = z and µm = µm; and (ii) a scale-

free network, with a power-law degree distribution Pk ∼ k−λ.

Both networks have been generated with the configuration

model as detailed in Ref. 42.

In the z-regular network, for which we take z = 5, the

previous analysis leads to εc = 0.1125, ξc = 0.3899 and coef-

ficients of the potential [see Eqs. (22) and (24)] c = 1.602,

c4 = 0.093, while the all-to-all solution is εc = 0.25, ξc =

0.5 and c = 1, c4 = 0.125. To compare the predictions of

the pair approximation with the numerical simulations in

the steady state, we have chosen two particular combina-

tions of moments: the Binder cumulant,30,43 defined as U4 =

1 −
〈m4〉

3〈m2〉2
, and the variance σ 2[m]. As shown in Fig. 8,

the theory agrees very well with the simulations. Accord-

ing to the finite-size scaling relation Eq. (28) for �ε = 0,

the dependence on system size is U4(ε, N) = u(N1/2(ε − εc)),

being u(x) the scaling function. This means that the cumu-

lant curves for different values of N intersect at the critical

point of the infinite system εc. From the numerical data, we

obtain εc = 0.114 ± 0.002 which is compatible with the the-

oretical prediction. A plot of U4(ε, N) vs N1/2(ε − εc) (see

Fig. 9) indicates a good data collapse in a single function u(x).

For the variance, we obtain the scaling law σ 2[m](ε, N) =

N−1/2v(N1/2(ε − εc)), being v(x) the scaling function, which

is checked in Fig. 10. The comparison in Figs. 9 and 10

indicates that the scaling functions u(x) and v(x) obtained

analytically capture reasonably well the overall shape of the

numerical results.

In the scale-free network, we have chosen λ = 2.3, and

measured directly µ ≈ 5.54, µ−1 ≈ 0.35, while the second

moment depends on system size N as µ2(N) ∼ Nb with b =

0.64. The theoretical results are εc = 0.120 and ξc = 0.383.

The analysis of the Binder cumulant obtained numerically

(see Fig. 11) yields εc = 0.157, while the all-to-all prediction

is εc = 0.25. The finite-size scaling of the scale-free network

is somehow tricky. In our theoretical analysis, the critical

point εc depends only on µ and µ−1, which tend to finite

values as N → ∞, but the second moment µ2 diverges as

Nb. Under the assumption µ2 ≫ µ, which is true in general

for scale-free networks, the diffusion scales as DL ∝ µ2/µ2

[see, for example, Eq. (42) for α = 2], which eventually

leads to coefficients c ∝ µ2/µ2 and c4 ∝ µ2/µ2. One can

still keep a scaling law as in Eq. (28) if one replaces the

size N by an effective system size defined as Neff = Nµ2/µ2,

in such a way that the dependence of c and c4 on µ2 is

absorbed by Neff and the scaling law becomes U4(ε, N) =

u(N
1/2

eff (ε − εc)), being u(x) the scaling function. This scaling

law is confirmed by the data collapse presented in Fig. 12. The

theoretical scaling function obtained from Eq. (28) replacing

c and c4 by their rescaled versions c̄ = cµ2/µ
2 = 1.84 and
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FIG. 14. Numerical and theoretical results for the 15-regular network and a scale free network with Pk≥6 ∼ k−2.51 and µ ≈ 14.79, µ−1 ≈ 0.11. Dots correspond

to numerical simulations of different system sizes averaged over 106 Monte Carlo steps and an ensemble of 100 networks, while the dashed black lines are the

prediction of the pair-approximation which are: εc = 0.201, c = 1.15 and c4 = 0.12 for the 15-regular network and εc = 0.200, c̄ = 1.19 and c̄4 = 0.12 for the

scale free network.

c̄4 = c4µ2/µ
2 = 0.11 yields a reasonable qualitative agree-

ment with the numerical data. A similar scaling law holds for

the variance σ 2[m](ε, N) = N
−1/2

eff v(N
1/2

eff (ε − εc)), the valid-

ity of which is checked in Fig. 13. While the numerical results

indeed follow the proposed scaling law, the theory can only

offer a qualitative agreement for the scaling function.

There are at least three possible sources of the quantita-

tive discrepancy between the scaling function derived from

the theory and the numerical results: (i) the scale-free net-

work has no cut-off so that the maximum degree scales as

kmax ∼ N1/(λ−1) and there will be degree-degree correlations

which are neglected in the pair-approximation; (ii) the trun-

cation of expansion Eq. (40) may not converge rapidly with

�k for the scale free network, producing anomalous diffusion;

and (iii) the binomial ansatz for the probabilities P0/1(k, q)

fails in two different ways for low degrees k. First, the single

event probabilities p0 and p1 depend also on the degree (see

Ref. 40) and, second, the shape of the distribution may dif-

fer from being binomial (see Ref. 36). In order to elucidate

which one is more important, we repeated the analysis for

highly connected networks, which are equally affected by the

error sources (i) and (ii) compared to the previous low aver-

age degree networks. The corresponding results are presented

in Fig. 14. We explored a 15-regular network, and a scale free

network with Pk≥6 ∼ k−2.51 and average degree µ ≈ 14.79.

As one can appreciate in the figure, the theoretical predic-

tions are greatly improved in this case, which indicates that

the third cause is the most significant one. There are still some

discrepancies for the scale free network, which are caused by

the other two possible error sources mentioned above.
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FIG. 15. Binder cumulant and rescaled magnetization variance as a function of the rescaled asymmetry parameter N3/4�ε for the z-regular network, and N
3/4

eff �ε

for the scale free network. The simulation and network specifications, together with the theoretical results, are the same of those of Fig. 14. The value of ε is

taken to be below the critical value, ε = εc − 1/N1/2 for the 15-regular network and ε = εc − 1/N
1/2

eff for the scale free network, so that as the asymmetry

increases the system crosses the catastrophe lines. The corresponding scaling functions are calculated using Eq. (29) taking into account that x = −1 is fixed

and the variable in this case is the asymmetry y.

In Fig. 15, we additionally checked if the theoretical anal-

ysis is also valid for the asymmetric case. For the highly

connected networks, we take values of ε ≤ εc below the

critical point previously calculated in Fig. 14 and vary the

asymmetry parameter �ε checking the scaling law Eq. (28).

The results suggest that the theory is equally accurate for

the asymmetric case, with a very different tendency of the

moments with respect to �ε before and after the catastrophe.

As in the scale-free network we have Neff ∼ N1−b, the

scaling laws Eq. (28) can be written in terms of the physical

system size N as

〈mk〉st = N−kβ/ν̄ φ̃k

[

N1/ν̄(ε − εc), N δβ/ν̄�ε
]

, (43)

with an appropriate scaling function φ̃k and β = 1/2, δ =

3, 1/ν̄ = (1 − b)/2. In the thermodynamic limit, one recov-

ers the Landau theory mean-field exponents 〈|m|〉 ∼ (εc −

ε)1/2 for �ε = 0, and 〈|m|〉 ∼ (�ε)1/3 for ε = εc. For the

normalized fluctuations (the equivalent of the “magnetic

susceptibility”) χ = N[〈m2〉st − 〈|m|〉2
st], we find the scal-

ing behavior χ(ε, N) = Nγ /ν̄ χ̄ [N1/ν̄(ε − εc), N δβ/ν̄�ε] with a

scaling function χ̄ and γ /ν̄ = 1 − 2β/ν̄, and γ = 1. Again,

in the thermodynamic limit, we find the mean-field result

χ ∼ |ε − εc|
−1. Therefore, although the critical exponents

of the transition are those given by the mean-field theory,

the analysis in terms of the finite system size N yields

a network-dependent exponent 1/ν̄ = (1 − b)/2. We have

computed b = 0.36(1) for the scale free network with tail

exponent λ = 2.43, yielding 1/ν̄ = 0.160(5) and γ /ν̄ = 1 −

2β/ν̄ = 0.680(5) in perfect agreement with the numerical fits

β/ν̄ = 0.157(6) and γ /ν̄ = 0.691(9) reported in Ref. 23.

V. SUMMARY AND CONCLUSIONS

In this paper, we have studied the impact of a non-linear

herding mechanism in the noisy voter model, with the con-

sideration of a parameter α, the “volatility” in the context

of the Abrams-Strogatz model,16 that measures the resistance

of individuals to copy the state of a neighbor in the oppo-

site state or the effect of complex, collective interactions. α is

taken as a real parameter that can take any non-negative value.

The solution in the all-to-all scenario, where all voters are

neighbors of each other, shows that the well studied bimodal-

unimodal finite-size transition of the noisy voter model turns

into a classical second-order transition, with a critical point

εc = 2−α(α − 1) �= 0 for α > 1, no transition for α < 1, and

a finite-size transition εc(N) = 1/N for the traditional lin-

ear case α = 1. In the strong non-linear regime α > 5, the

transition εc separates bimodal from trimodal states, with the

appearance of a new first order transition line εt > εc that

separates trimodal from unimodal states. This implies that

this non-linear mechanism is able to generate tristability and

the point where the tristability parameter region begins is a
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tricritical point α = 5, ε = εc = εt, in accordance with the

results of Ref. 21, valid for integer α. The asymmetry in the

rates of the model �ε �= 0 is capable of destroying bimodal-

ity and trimodality at what is known as cusp and butterfly

catastrophes, respectively.

The existence of a bona-fide transition that remains in the

thermodynamic limit offers a convenient solution to the N-

dependence of the transition without the need to resort to a

N-dependent rescaling of the model parameters,14 also known

as non-extensive formulation. Although this formulation par-

tially solves this problem, it makes the model structurally

unstable in such a way that simple perturbations such as the

inclusion of agents that do not change state,45–47 an external

signal of information,44 or a network structure, can drastically

change the properties to be Gaussian.34 Similar conclusions

were already reported in the context of the voter model48

(without spontaneous switching). The addition of a third state

or a small perturbation of the functional form of the rates

of the voter model drastically changes the dynamics and the

ordering mechanism. These structural changes of the voter

model are specially relevant in the context of agent-based

modeling of language competition.17 In this context, the inclu-

sion of a third state represents the role of bilingual speakers

in the evolution of the number of speakers of a particular

language.

The N-dependence of the non-linear model in the pres-

ence of noise is dramatically different from the linear case.

The aforementioned non-extensive formulation of the linear

model leads to N-independent statistics of the magnetiza-

tion 〈mk〉 ∼ N0. For the non-linear case, however, we have

shown that rescaling the parameters leads to 〈mk〉 ∼ N−k/4

for 1 < α < 5 at the critical point εc and 〈mk〉 ∼ N−k/6 at the

tricritical point for α = 5, i.e., vanishing moments in the ther-

modynamic limit N → ∞. The critical region where these

scaling laws are valid, however, is wider for the non-linear

case making them more robust against perturbations.

We have also checked the role of the network of interac-

tions in the presented results of the model, making use of the

pair approximation. It would indeed be possible to develop

higher accuracy theoretical methods at the cost of simplic-

ity and analytical tractability.35,36,40 In general, we conclude

that the critical point εc is lowered compared to the all-to-all

solution, depending on the mean degree µ and the first neg-

ative moments of the degree distribution µ−1,. . . , µ−α+1 (for

α integer). The N-dependent scaling laws are also changed

for networks whose second moment of the degree distribu-

tion µ2 changes dramatically with system size, e.g., scale-free

networks µ2 ∼ Nb with 0 < b < 1. In this case, we have

shown that one can define an effective system size Neff =

Nµ2/µ2 ∼ N1−b for which the all-to-all scaling laws become

valid. In the limit of highly heterogeneous networks, λ → 2

and b → 0, statistics may be N-independent or with a very

weak dependence on system size.
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23A. Jȩdrzejewski, “Pair approximation for the q-voter model with indepen-

dence on complex networks,” Phys. Rev. E 95, 012307 (2017).
24P. Moretti, S. Liu, C. Castellano, and R. Pastor-Satorras, “Mean-field

analysis of the q-voter model on networks,” J. Stat. Phys. 151, 113 (2013).
25R. Lambiotte and S. Redner, “Dynamics of non-conservative voters,” EPL

82, 18007 (2008).
26J. Molofsky, R. Durrett, J. Dushoff, D. Griffeath, and S. Levine, “Local

frequency dependence and global coexistence,” Theor. Popul. Biol. 55, 270

(1999).
27K. Huang, Statistical Mechanics (John Wiley & Sons, New York, 1963).
28D. Escaff, R. Toral, C. Van den Broeck, and K. Lindenberg, “A continuous-

time persistent random walk model for flocking,” Chaos 28, 075507

(2018).

https://doi.org/10.1093/biomet/60.3.581
https://doi.org/10.1214/aop/1176996306
https://doi.org/10.1103/PhysRevLett.94.230601
https://doi.org/10.1103/PhysRevE.78.061127
https://doi.org/10.1103/PhysRevE.80.041129
https://doi.org/10.1016/0304-4149(94)00035-R
https://doi.org/10.2307/2118498
https://doi.org/10.1016/0378-4371(86)90180-9
https://doi.org/10.1103/PhysRevLett.63.1527
https://doi.org/10.1103/PhysRevLett.63.2857
https://doi.org/10.1103/PhysRevE.92.032803
https://doi.org/10.1007/s10614-005-6415-1
https://doi.org/10.1016/j.jedc.2006.12.014
https://doi.org/10.1140/epjb/e2009-00001-3
https://doi.org/10.1038/424900a
https://doi.org/10.1088/1742-5468/2010/04/P04007
https://doi.org/10.1037/0033-295X.97.3.362
https://doi.org/10.1016/S0024-3841(98)00046-1
https://doi.org/10.1038/s41598-017-13047-2
https://doi.org/10.1103/PhysRevE.86.011105
https://doi.org/10.1007/s10955-013-0701-4
https://doi.org/10.1103/PhysRevE.95.012307
https://doi.org/10.1007/s10955-013-0704-1
https://doi.org/10.1209/0295-5075/82/18007
https://doi.org/10.1006/tpbi.1998.1404


075516-14 Peralta et al. Chaos 28, 075516 (2018)

29M. A. Serrano, K. Klemm, F. Vazquez, V. M. Eguiluz, and M. San Miguel,

“Conservation laws for voter-like models on random directed networks,”

J. Stat. Mech. Theory Exp. 2009(10), P10024 (2009).
30R. Toral and P. Colet, Stochastic Numerical Methods: An Introduction for

Students and Scientists (Wiley, 2014).
31N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North-

Holland Physics Publishing, Amsterdam, 2007).
32E. C. Zeeman, “Catastrophe theory,” Sci. Am. 234, 65–83 (1976).
33R. Gilmore, Catastrophe Theory for Scientists and Engineers (Wiley, New

York, 1981).
34S. Alfarano and M. Milaković, “Network structure and N-dependence

in agent-based herding models,” J. Econ. Dyn. Control 33, 78–92

(2009).
35J. P. Gleeson, “High-accuracy approximation of binary-state dynamics on

networks,” Phys. Rev. Lett. 107, 068701 (2011).
36J. P. Gleeson, “Binary-state dynamics on complex networks: Pair approxi-

mation and beyond,” Phys. Rev. X 3, 021004 (2013).
37A. Carro, R. Toral, and M. San Miguel, “The noisy voter model on complex

networks,” Sci. Rep. 6, 24775 (2016).
38A. F. Peralta, R. Toral, A. Carro, and M. San Miguel, “Stochastic pair

approximation treatment of the noisy voter model,” arXiv:1807.04615.
39V. Sood, T. Antal, and S. Redner, “Voter models on heterogeneous net-

works,” Phys. Rev. E 77, 041121 (2008).
40E. Pugliese and C. Castellano, “Heterogeneous pair approximation for

voter models on networks,” EPL 88, 58004 (2009).
41F. Vazquez and V. M. Eguiluz, “Analytical solution of the voter model on

uncorrelated networks,” New J. Phys. 10, 063011 (2008).
42M. Catanzaro, M. Boguñá, and R. Pastor-Satorras, “Generation of

uncorrelated random scale-free networks,” Phys. Rev. E 71, 027103

(2005).
43K. Binder, “Finite-size scaling analysis of Ising model block distribution

functions,” Z. Phys. B Condens. Matter 43, 119 (1981).
44A. Carro, R. Toral, and M. San Miguel, “Markets, herding and response to

external information,” PLoS ONE 10(7), e0133287 (2015).
45N. Khalil, M. San Miguel, and R. Toral, “Zealots in the mean-field noisy

voter model,” Phys. Rev. E 97, 0123101 (2018).

46A. Kononovicius and V. Gontis, “Control of the socio-economic systems

using herding interactions,” Physica A 405, 80 (2014).
47A. Kononovicius and V. Gontis, “Herding interactions as an opportunity

to prevent extreme events in financial markets,” Eur. Phys. J. B 88, 189

(2015).
48X. Castelló, V. M. Eguiluz, and M. San Miguel, “Ordering dynamics with

two non-excluding options: Bilingualism in language competition,” New

J. Phys. 8, 308 (2006).
49The simulations proceed by selecting randomly one of the N nodes, say

i. If ni = 0, the transition ni → 1 occurs with a probability π+
i /C, and

if ni = 1, the transition ni → 0 occurs with probability π−
i /C with C =

max(a0, a1) + h. N node selections constitute one Monte Carlo step.30

50There is also a recurrence relation for the master equation in the stationary

state: Pst(n) =
π+(n − 1)

π−(n)
Pst(n − 1), but for a general value of α, it does

not seem to be possible to reduce this expression to an analytically tractable

function.
51There is a misprint in Ref. 17 and the factor (α − 9) is missing in formula

(10).
52In some interpretations of the model, the ordered phase corresponds to

social consensus where a large fraction of the population holds the same

option for the variable ni.
53In the case of directed networks, there is an equation for ρ01 and another

one for ρ10, which are formally similar to Eq. (32). The difference

is that the changes of these quantities are �ρ01
k,q;kin ,qin

= 2(kin − qin −

q)/µN and �ρ10
k,q;kin ,qin

= 2(k − q − qin)/µN , which depend on the in-

degree kin
i =

∑

j Aji which is different from the out-degree ki =
∑

j Aij.

The single event probabilities of P0/1(k, q) are in this case p0 = ρ01

and p1 = 1 − ρ10, and we have to define the binomial Pin
0/1(kin, qin)

with single event probabilities pin
0 = ρ10 and pin

1 = 1 − ρ01. The cor-

responding Eq. (32) will need to be averaged additionally by the in-

degree distribution Pin
kin

(or by Pin
kin |k if there are kin − k correlations)

and Pin
0/1(kin, qin). Obviously, this treatment is valid only if recipro-

cal links are negligible; otherwise, the method is significantly more

involved.

https://doi.org/10.1088/1742-5468/2009/10/P10024
https://doi.org/10.1038/scientificamerican0476-65
https://doi.org/10.1016/j.jedc.2008.05.003
https://doi.org/10.1103/PhysRevLett.107.068701
https://doi.org/10.1103/PhysRevX.3.021004
https://doi.org/10.1038/srep24775
http://arxiv.org/abs/arXiv:1807.04615
https://doi.org/10.1103/PhysRevE.77.041121
https://doi.org/10.1209/0295-5075/88/58004
https://doi.org/10.1088/1367-2630/10/6/063011
https://doi.org/10.1103/PhysRevE.71.027103
https://doi.org/10.1007/BF01293604
https://doi.org/10.1371/journal.pone.0133287
https://doi.org/10.1103/PhysRevE.97.012310
https://doi.org/10.1016/j.physa.2014.03.003
https://doi.org/10.1140/epjb/e2015-60160-0
https://doi.org/10.1088/1367-2630/8/12/308

	I. Introduction
	II. Model
	III. All-to-all solution
	A. Modes and transitions
	1. Symmetric case
	2. Asymmetric case

	B. Fluctuations and N-dependence

	IV. Complex Networks
	V. Summary and Conclusions
	Acknowledgments

