

Analytical Methods

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: E. Bolea, M. S. Jimenez, J. Perez-Arantegui, J. C. Vidal, M. Bakir, K. Ben-Jeddou, A. C. Giménez, D. Ojeda, C. Trujillo and F. Laborda, *Anal. Methods*, 2021, DOI: 10.1039/D1AY00761K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

11

12

7079 8

42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57

58

59 60 View Article Online DOI: 10.1039/D1AY00761K

Analytical applications of single particle inductively coupled plasma mass spectrometry: A comprehensive and critical review

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

Eduardo Bolea, Maria S. Jimenez, Josefina Perez-Arantegui, Juan C. Vidal, Mariam Bakir, Khaoula Ben-Jeddou, Ana C. Gimenez-Ingalaturre, David Ojeda, Celia Trujillo and Francisco Laborda*

Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) refers to the use of ICP-MS as a particle counting technique. When ICP-MS measurements are performed at very high data acquisition frequencies, information about (nano)particles containing specific elements and their dissolved forms can be obtained (element mass per particle, size and number and mass concentrations). As a result of its outstanding performance, SP-ICP-MS has become a relevant technique for the analysis of complex samples containing inorganic nanoparticles. This review discusses the maturity level achieved by the technique through the methods developed for the detection, characterisation and quantification of engineered and natural (nano)particles. The application of these methods in different analytical scenarios is comprehensively reviewed and critically discussed, with special attention to their current technical and metrological limitations. The emergent applications of SP-ICP-MS in the field of nanoparticle-tagged immunoassay and hybridization methods are also reviewed.

SP-ICP-MS: A fast-developing technique

The use of inductively coupled plasma mass spectrometers in single particle mode has led to the emergence of a particle counting technique known as single particle inductively coupled plasma mass spectrometry (SP-ICP-MS). Although the origins of the technique can be traced back to the 1970's,¹ a series of key papers by Degueldre et al.,²-6 published between 2003 and 2006, are considered its starting point. However, the application of SP-ICP-MS to the analysis of engineered nanomaterials, ^{7,8} followed by its implementation in commercial ICP-MS instruments,^{9–11} became the main driving force behind the success of the technique in recent years.

Figure 1

Fig. 1 Comparison of the evolution of SP-ICP-MS with respect to ICP-MS (adapted from Horlick¹²)

The birth and evolution of SP-ICP-MS resembles that of the ICP-MS technique itself (Fig. 1). After their initial conception, it took some time to get the first ICP-MS research instrument, as well as the first application to nanomaterials in the case of SP-ICP-MS. But from then on, it took only about three years for manufacturers to launch the first commercial ICP-MS instruments, or the first dedicated instruments in the case of SP-ICP-MS. Thereafter, conventional ICP-MS evolved in a fast way, becoming a mature technique in about ten years.¹²

Group of Analytical Spectroscopy and Sensors (GEAS), Institute of Environmental Sciences (IUCA), University of Zaragoza, Pedro Cerbuna 12, 50009, Zaragoza, Spain. * Corresponding author.

According to Horlick, a mature technique is characterised by the fact that their methods are applied to a wide range of analytical problems and determinations, and become established as a routine tool with broad commercialisation. Before the maturity stage, a technique goes through a characterisation stage, a period of intense research activity aimed at achieving a complete picture of the technique at instrumental, metrological and methodological levels. On the other hand, during the characterisation stage the new technique seems to have no limits and to be able to solve all the problems, whereas with maturity comes the realization that not all is ideal and there are a number of problems that will not be solved. In the case of SP-ICP-MS, the question is whether the technique can be considered to have reached maturity or is still in the characterisation phase. The final aim of this comprehensive review is to gather the publications involving SP-ICP-MS and critically evaluate the current state of the technique, its limitations and its level of maturity level. Special attention is paid to the problem-solving analytical methods developed and their application under different relevant analytical scenarios.

Basic principles

When an ICP-MS instrument is used at very high reading frequencies, ICP-MS becomes a particle counting technique, being able to deliver information in a particle-by-particle basis. The basics of SP-ICP-MS measurements were established by Degueldre et al.² Basically, when a diluted suspension of nanoparticles is nebulized into an ICP-MS, and an isotope of the element present in the nanoparticles is measured at acquisition frequencies over ca. 100 Hz, a series of events corresponding to individual nanoparticles are recorded over a continuous baseline. The intensity of these events is related to the mass of the element

ARTICLE Journal Name

in the nanoparticle, and hence to its size if additional information about the composition, shape and density of the nanoparticle are available, whereas the frequency of events is proportional to the number concentration of nanoparticles. Subsequently, Laborda et al.⁷ revealed that information about dissolved forms of the element measured could also be obtained from the baseline. Whereas the dissolved species are homogeneously distributed in all the aerosol droplets, the nanoparticles are present randomly in some of them. Thus, a constant signal (baseline) is produced by the dissolved species, whereas the nanoparticles give rise to individual signal events, as it can be seen in a typical time scan (Fig. 2.a).

1 2

3

4

5

6

7

8

9

10

11

12

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

As the SP-ICP-MS measurements are performed in time resolved mode, the data acquisition frequency (or the number of events along a fixed acquisition time), controlled through the dwell time of the instrument, is one of the most relevant parameters. Considering that the ion cloud generated in the plasma from a single nanoparticle can be detected during 300–1000 μs, ^{13,14} nanoparticle events can be recorded in two different forms, depending on the dwell time selected. When using dwell times in the millisecond range (3–10 ms), larger that the duration of the ion cloud in the instrument, events are recorded as one-reading signals (pulses), whereas for dwell times in the microsecond range (10–200 µs), they are recorded as peaks (transient signals), comprising several readings (see the insets in Fig. 2.a). For pulses, the intensity event is given by the reading itself, whereas for peaks, the intensity is calculated as the sum of the individual readings along it. With respect to the acquisition frequency, it is worth to mention that the commercial launch of SP-ICP-MS in 2014 was linked to quadrupole spectrometers with higher reading frequencies, allowing dwell times down to 10 µs,10 instead of just working at milliseconds. In the meantime, timeof-flight⁹ and double focussing¹¹ spectrometers have become commercially available with minimum dwell times of 33 and 10 μs, respectively.

Raw data from both milli- and microsecond time scans can be processed by plotting the event intensity vs. the number of events, obtaining histograms as shown in Fig. 2.b, where the first distribution is due to the background and/or the presence of dissolved forms of the element measured and the second to the nanoparticles themselves. The second distribution is further processed to convert the event intensities to mass of element per nanoparticle or size distributions (Fig. 2.c). Instrumental and metrological issues related to measurements, data acquisition and data processing have been summarized and described in detail in a number of reviews^{1,15–18} and articles therein. It is worth to mention that the different types of quantitative information on nanoparticles achievable by SP-ICP-MS, and discussed in the next section, require different calibrations with nanoparticle size and number concentration standards. If size standards of the particles under study are not available, indirect calibrations based on the use of dissolved standards are usually applied. In these cases, sample introduction flow rate and the analyte nebulization efficiency have to be known to determine the mass of element per nanoparticle and hence the nanoparticle size. The analyte nebulization efficiency is commonly determined using

the methods developed by Pace et al. 8 An overview of calibration issues in SP-ICP-MS can be found in Laborda 161 14 13 99 D1AY00761K

Figure 2

Fig. 2 (a) Time scan of suspension containing nanoparticles and dissolved forms of the same element. (b) Event intensity histogram of data from (a). (c) Mass per nanoparticle/size distribution of spherical nanoparticles calculated from the second intensity distribution in (b).

Analytical information: Analytes and measurands

The strength of SP-ICP-MS lies in the different types of analytical information that the technique can provide from very simple measurements. As we have seen above, two types of analytes are under the scope of SP-ICP-MS, namely (nano)particles and dissolved species. The term "nanoparticle" is going to be used here in a broad sense, although in most cases it will coincide with the ISO definition (nano-object with its three dimensions in the nanoscale, 1-100 nm). Other nano-objects, like nanofibers/nanotubes or nanoplates (two and one dimensions in the nanoscale, respectively) may be suitable of being analysed by SP-ICP-MS, depending on the magnitude of the other dimensions that are not in the nanoscale. Thus, particles over 100 nm, even in the micrometre range, have been successfully analysed, although issues related to their nebulization and ionization must be considered.

Table 1 Analytes, analytical information and measurands involved in SP-ICP-MS.

analytical inform	nation	analyte	measurand
qualitative	presence/absence	nanoparticle	
		dissolved element	
quantitative content	concentration	nanoparticle	number concentration
			mass concentration of nanoparticulate element
	concentration	dissolved element	mass concentration of dissolved element
characterisation	element content	nanoparticle	element mass per particle
	size	nanoparticle	equivalent spherical diameter
	element content distribution	nanoparticle	histogram showing the number of particles for each of a number of defined element content per particle classes
	size distribution	nanoparticle	histogram showing the number of particles for each of a number of defined size classes

3

4

5

6

7

8

9

10

11

12

702798

42

43

44

45

46 47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name ARTICLE

In any case, the information provided by SP-ICP-MS can be: (i) qualitative, about the presence of (nano)particulate and dissolved forms of specific elements; (ii) quantitative contents, as number and mass concentrations; and (iii) characterisation, about the mass of element/s per nanoparticle and nanoparticle size.

For dissolved species, the mass concentration of the element monitored is the measurand of interest, whereas nanoparticles, the primary measurands of concern are the number concentration and the mass of element per particle. When additional information about the shape, composition and density of the particles is available, information about the size of the particles can be obtained. Nevertheless, a spherical shape is commonly assumed and the equivalent spherical diameter is the measurand usually reported. Any population of particles always exhibits more or less broad size distributions, recorded primarily by SP-ICP-MS as element content distributions, whose measurands are histograms showing the number of particles for each of a number of defined size or element content per particle classes, respectively. Table 1 summarises the quantitative and characterisation information with the corresponding measurands for each of the analytes involved in SP-ICP-MS. Qualitative information about the presence/absence of dissolved species and/or nanoparticles over a certain concentration and size cannot be disregarded because of the practical limitations of the technique when analysing complex samples, as it will be shown below. In addition, other types of information can be obtained from SP-ICP-MS measurements (e.g., porosity,²² density,²³ aggregation,^{24,25} agglomeration²⁶), although they will not be discussed in detail.

Scientific production and evolution stage

Since the publication of the first article by Degueldre and Favarger in 2003, almost 400 studies directly related to SP-ICP-MS have been published in peer-reviewed journals until the end of 2020. These publications include a limited number of reviews, tutorials and divulgation articles; whereas most of them consists of articles on fundamentals and basic aspects of the technique, the development of methods, as well as their application. As it has been stated above, the analysis of engineered nanomaterials is behind the success of SP-ICP-MS, and most of the works deal with manufactured nanoparticles, although natural and incidental nanoparticles have also been analysed. SP-ICP-MS has proved its usefulness in other areas, like nanoparticle tag-based immunoassay and hybridization methods, as it will be discussed in a specific section.

The scientific production from 2003 to the end of 2020 has been organized in four fields, namely "Reviews", "Fundamentals", "Method Development" and "Applications". With respect to the "Reviews" field, one tutorial, 15 five reviews 1,16–18,27 and two divulgation articles 28,29 on the specific topic of SP-ICP-MS have been published to date. However, the technique is being included in most reviews on ICP-MS 30,31 or about the analysis of natural 32 or engineered 33–35 nanomaterials. The "Fundamentals" field covers publications whose main objective is the study of basic aspects of the technique (e.g., instrumentation, plasma processes, sample introduction, data acquisition and processing). All these

studies have been performed with nanoparticle standards although synthetic matrices have been considered no some cases, but always under controlled laboratory conditions. The "Method Development" field includes publications focused on the development of proofs-of-concept methods, based on the use of in-lab synthesized nanoparticles, nanoparticle standards or samples spiked with standards. When the method has been applied to samples containing original nanoparticles, it has been considered under the "Applications" field. Analysis of samples from laboratory tests (e.g., in vivo, in vitro, migration) involving nanoparticle standards have also been considered within this field, as it will be justified below.

Fig. 3 summarizes the distribution of publications in the four fields cited above directly related with the analysis of nanomaterials or samples containing nanomaterials, as well as their chronological evolution. The analysis of these data may give light about the maturity and the expected evolution of SP-ICP-MS. As it has been stated above, the rise of SP-ICP-MS publications started from 2011, with a constant increase in the total number of publications related to both "Fundamentals" and "Method Development" until 2016, showing some stabilization in recent years, whereas the number of publications about "Applications" is steadily growing. Following the evolution stages proposed by Horlick, and despite some overlap between them is unavoidable, the trend in publications suggests that SP-ICP-MS has passed the stage of characterisation and would be at the beginning of the maturity stage. However, other indicators than the extent of application of the technique, namely metrological indicators like method validation and traceability, should also be considered. While traceability of results is out of question in conventional ICP-MS because of the availability of validated methods, standards and reference materials,36 this is not the case in SP-ICP-MS. As will be seen in the following sections, the number of SP-ICP-MS methods developed for the most diverse applications is increasing, although the number of validated ones is still limited. On the other hand, due to the special features of nanoparticles, the availability of standards and reference materials is still scarce, conditioning in the end the traceability of the results obtained.

Figure 3

Fig. 3 Evolution of SP-ICP-MS publications related to Reviews, Fundamentals, Method Development and Applications.

Analytical methods based on SP-ICP-MS: validation

In spite of the significant evolution of the technique discussed above, method validation in SP-ICP-MS is still at an early stage, lacking the harmonization of other fields in analytical chemistry, mainly because of the special features of nanoparticles as analytes. Whereas conventional analytes consist of identical entities (mostly atoms in ICP-MS) identified by their chemical composition (e.g., silver, titanium dioxide), identification of particles (e.g., 10 nm spherical silver or titanium dioxide nanoparticles) requires determining their chemical composition

ARTICLE Journal Name

but also their morphology (size and shape). This means that validation parameters, like limits of detection and quantification, working range, precision or trueness, must be applied to mass/number concentrations but also to particle size. With respect to size, it must keep in mind that particles always exhibit more or less broad size distributions, entailing that particles cannot be considered as truly identical entities. An additional drawback in relation to validation is the lack of certified reference materials for nanoparticles in any type of matrix, which forces to use recovery tests with matrix-free reference materials or properly characterised commercial nanoparticles for the evaluation of trueness. These recovery tests, based on the spike of nanoparticles, must test not only the recovery of the mass added, but also that the particle size and its distribution remain unchanged. For all these reasons, Linsinger at al.³⁷ proposed an adaptation of conventional validation schemes to the detection and quantification of engineered nanoparticles, although the number of validated methods already published is still scarce. In most cases, the scheme has been based on the addition of nanoparticles to different matrices, such as surface waters, 38 fruit juices,³⁹ chicken meat,⁴⁰ human liver and spleen tissues⁴¹ or human blood.42 In these cases, particle stability in the matrices has a strong influence on trueness and precision of the results, as it was reported for silver nanoparticles in chicken meat, since metallic nanoparticles were transformed into silver sulfide. 40 Only in a few cases, samples with nanoparticles originally present, such as Ag nanoparticles in confectionery, 43 have been described in validated methods. Finally, some methods for screening purposes have also been validated for detection of silver and gold nanoparticles in foods⁴⁴ and TiO₂ nanoparticles in confectionery products.⁴⁵

1 2

4

5

6

7

8

9

10

11

12

70*7*/91 8

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

Validation parameters commonly determined in these studies include trueness, selectivity, precision, detection limits, linearity and robustness.37 The evaluation of trueness has been done mostly by spiking control samples with nanoparticle standards, ensuring that the particle size and size distribution remain unchanged, together with the recovery of the mass added. In general, larger bias, as high as +80% have been reported for number concentration compared to particle size, with bias around -20%.19 Comparison with nominal median diameter and/or concentration of the standard added is the common rule, although the confirmation of the results by independent methods is highly recommended when possible. Thus, validation of the size characterisation has been performed by comparison with electron microscopy techniques (TEM or SEM), such in the characterisation of a series of TiO2 materials used as food additives⁴⁶ or with the gold nanoparticle reference material RM8012,⁴⁷ showing differences on size distributions.

Selectivity has been evaluated considering possible (poly)atomic interferences^{38,40,41} and other matrix constituents, which may cause changes in nebulization efficiency or in the ionization, affecting to particle concentration and size, respectively.⁴⁸ In any case, the effect of other nanoparticles or nanoparticles of the same composition but with different properties (size, coating...) should also be evaluated.

Respect to precision, determination of the nanoparticle number concentration is usually less precise than size determination, with reproducibility that reach up to 90% in some cases. ⁴⁹ Data processing, is the driving factor in this parameter of the preparation or sample dilution, especially at high baseline levels that make discrimination of nanoparticle readings more difficult. ⁴³ It should be noted that satisfactory results have been obtained when comparing the repeatability and reproducibility obtained with the values predicted by the Horwitz ratio in the analysis of TiO₂ particles at concentration levels in the order of 0.01 mg Ti kg⁻¹. ⁴¹

Despite there are not expressions widely accepted for the calculation of the limits of detection in the different domains covered by SP-ICP-MS, Laborda et al.17 have proposed a harmonizing approach to calculated LODs for validation purposes. Most widely applied criteria for calculation of size detection limits are based on the use of multiples of the baseline standard deviation (n-sigma criterion). Multiples from 3- to 8sigma criteria can be found in SP-ICP-MS publications,41 although the use of 5-sigma criteria has been justified by these authors¹⁷ on a routine basis. In general, size LODs depend on different factors, such as the concentration of the dissolved element, the strategy used for substracting the baseline signal to the particle signal or the type of mass spectrometer.⁴⁵ A comprehensive list of size LODs for metallic and oxide nanoparticles using a commercial quadrupole instrument under typical experimental conditions can be found in Laborda et al.¹⁷ Size LODs around 10 nm and larger were obtained for most common nanoparticles at 100 µs dwell times. Incomplete vaporization of large particles in the plasma can limit the linearity of the size measurement ranges, hence larger particles, in the micrometre range, can produce signals outside the linear range of the detector.⁵⁰ For instance, a linear size range up to 150 nm has been reported for gold nanoparticles, whereas for SiO2 it can increase up to 1000 51 or 2000 nm. 50 Besides, particles larger than 2-5 µm are transported into the plasma with lower efficiency.

With respect to the number concentration LOD, it depends on the number of particles events detected in the blank, the sample introduction to the ICP-MS and the acquisition time. The use of conventional procedures for concentration LOD based on the blank standard deviation as in size LOD results in unrealistic values^{9,42} and therefore, they cannot be used interchangeably. LOD values of 100 particles per mL have been reported¹⁷ with acquisition times of 60 s, using a cyclonic spray chamber and a concentric nebulizer. The number concentration measurement range is limited by the occurrence of multiple particle events, which cause a progressively loss of linearity. The occurrence of events due to two or more nanoparticles is predicted by Poisson statistic and is expected to be significant, depending on the nebulization system and the range of dwell times (milli or microseconds) used.13 Linear ranges up to 107 L-1 can be achieved with conventional nebulization systems at millisecond dwell times, which can be increased one order of magnitude working at microsecond dwell times.

Robustness has been evaluated commonly by changing different parameters that affect the measurement results, such as sample pre-treatment or dilution factor, 40 although in some cases only

3

4

5

6

7

8

9

10

11

12

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name ARTICLE

the element total concentration has been considered for robustness evaluation. 41

Other studies have included quality control procedures, such as the evaluation of trueness by spiking nanoparticles standards to natural matrix samples, considering that conventional procedures cannot be directly applied in SP-ICP-MS analysis due to the limitations described above. Thus, trueness has been evaluated by measuring recovery of the spiked nanoparticles, mainly based on number concentration, and the use of alternative techniques to confirm size results, such as for the sizing and quantification of Ag nanoparticles in food simulants,52 moisturizing creams,⁵³ fish tissue,⁵⁴ or ZnO⁵⁵ and TiO₂ nanoparticles⁵⁶ in natural waters. This strategy has also been applied to the detection of naturally occurring iron oxide nanoparticles in crude oil and residual fuel oil by spiking in-lab synthesized silica-shelled Fe₃O₄ nanoparticles.⁵⁷ Alternatively, the agreement between the total element content determined by acid digestion and ICP-MS can be used for confirmation of the results, as in the determination of Ce, Cd and Pt-bearing nanoparticles in road runoff sediments⁵⁶ or Au nanoparticles in tumour cells after alkaline digestion.⁵⁸

However, if the sample contains nanoparticles smaller than the LOD, 54-56 size information will be overestimated and number/mass concentration underestimated in consequence. In such situations, SP-ICP-MS should be restricted to confirm the presence of nanoparticles containing the element monitored over a certain equivalent diameter and concentration.

Applications of SP-ICP-MS: Analytical scenarios

In relation to the application of SP-ICP-MS to real-world analytical problems, Fig. 4 shows four different analytical scenarios that can be considered. Whereas the first one (type 0) corresponds to the analysis of pristine nanoparticles commonly produced at laboratory or industrial-scale, which just involves their characterisation, the other three correspond mainly to the needs of analytical information arising from the risk assessment of nanomaterials and nanoproducts in relation to environment, health and safety, as well as to legal regulations, which involve the detection, characterisation and/or quantification of nanoparticles in the presence of, more or less, complex matrices. Type 1 scenario includes the analysis of industrial and consumer products containing nanoparticles (e.g., cosmetics, textiles, polymers). Type 2 scenarios consider laboratory tests with pristine nanoparticles or products containing nanoparticles to assess their release, fate, and behaviour (2.1) as well as their (eco)toxicity in a variety of exposure conditions (e.g., environmental micro and mesocosms, migration in food simulants, gastrointestinal digestions, in vitro and in vivo (eco)toxicity test) (2.2). Finally, type 3 scenarios are related to the monitoring of the occurrence of nanoparticles in foods (3.1) environment (3.2) and organisms (3.3).

Leaving aside the scenario type 0, where the nanoparticles are the sample because of the lack of matrix, each of the three other scenarios involve samples containing nanoparticles and, in general terms, represent a progressive increase in analytical complexity, from the point of view of both the matrix and the decreasing concentrations.

DOI: 10.1039/D1AY00761K

Figure 4

Fig. 4 Analytical scenarios related to nanoparticles (adapted from Laborda et al. 59).

The use and application of SP-ICP-MS methods has been organized according to the scenario classification presented in Fig. 4. Fig. 5 shows the distribution of the number of publications in relation to these different scenarios. The chart shows that two thirds of applications correspond to laboratory tests (scenario 2), whereas one fourth involves samples originally containing nanoparticles (scenario 3). The analysis of pristine nanomaterials (scenario 0) and products containing nanoparticles (scenario 1) account for 16%, most probably because they are usually analysed by other well-stablished techniques (e.g., electron microscopy, DLS). The following sections provide a detailed reviewing of the SP-ICP-MS application in the different scenarios considered.

Figure

Fig. 5 Distribution of publications (2011-2020) related to applications of SP-ICP-MS in different analytical scenarios.

View Article Online DOI: 10.1039/D1AY00761K

Table 2 Scenario 0: Analysis of pristine nanoparticles.

ample	nanoparticle composition	sample preparation	dwell time	mass analyser	collision/ reaction cell gas	analytical information	measurands	complementary techniques	re
uspension	Ag	-	5 ms	Q	no	qualitative (NP)	NP size distribution	TEM DLS	οθ
	Ag	-	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP mass concentration DE mass concentration	TEM DLS	61
	Au@Ag (Ag shell)	-	50 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	AF4-UV-vis	62
	Au-Ag alloy	-	6 ms 20 μs	Q	no	characterisation (NP)	molar ratios Au:Ag	-	63
	Au	-	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	TEM	64
	Au (NP and nanorods)	-	6 ms 20 μs	Q	no	characterisation (NP)	NP mean size	TEM DLS UV-vis	63 64 65
	Au/polymer composite	-	100 μs	Q	no	characterisation (NP)	mean mass per NP NP mass distribution	ICP-MS TEM AF4-ICP-MS CFFF-ICP-MS	66
	CuO FeOOH	-	50 μs	DF	no	characterisation (NP)	NP mean size NP size distribution	SEM XRD DLS	67
	Ni	-	500 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	SEM TEM	68
						quantitative (NP) quantitative (DE)	NP number concentration NP mass concentration DE mass concentration	XRD	
	Pd	-	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	SEM SAXS XRD	69
	NaYF ₄ (Yb dopped) NaYF ₄ (Er dopped) NaGdF ₄ (Yb dopped) NaGdF ₄ (Er dopped)	-	100 μs	Q	no	characterisation (NP)	NP size distribution	TEM XRD	70
owder	TiO ₂	dispersion in 2% PVP	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	DLS TEM	71
	SiO ₂ /Pt	dispersion	10 ms	Q	Не	quantitative (DE) characterisation (NP)	DE mass concentration mean mass per NP	ICP-MS SEM-EDS TEM XPS	72
	CNT (trace metals)	dispersion in 1% Triton X-100	10 ms	Q	no	qualitative (NP) quantitative (NP)	- CNT number concentration	SEM-EDS NTA	73
	CNT (trace Y)	dispersion in 1% Na deoxycholate	100 μs	Q	no	qualitative (NP) quantitative (NP)	- CNT mass concentration	ICP-MS TEM	74

ournal Na	ame						ARTICLE	
	TiO ₂ (Mn)	-	100 μs Q	no	characterisation (NP)	DOI: 10. mean mass per NP NP mass distribution	NTA Viety Article Online 1039/D1AY00761K SEM TEM SAM AES XPS XRD Raman	75
filters	Au	water extraction	100 μs Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	HIM SEM-EDS XRD UV-vis	76
								7
								ingerial Mothodo Accorda Maniecri
								MA-44
								+//101
								2

ARTICLE Journal Name

 Table 3 Scenario 1: Analysis consumer and industrial products containing nanoparticles.

sample	nanoparticle composition*	sample preparation	dwell time	mass analyser	collision/ reaction cell gas	analytical information	measurands	complementary techniques	ref.
cosmetics									
sunscreen	TiO ₂	dispersion in ethanol	50 μs	DF	no	characterisation (NP)	NP mean size NP size distribution	-	77
						quantitative (NP)	NP number concentration NP mass concentration		
	TiO ₂	dispersion in 1% Triton X-100	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEM-EDS	78
						quantitative (NP)	NP number concentration NP mass concentration		
	TiO ₂	defatting with hexane + filtration	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEM	79
						quantitative (NP)	NP number concentration DE mass concentration	TEM DLS	
						quantitative (DE)	22	AF4-MALS-ICP- MS	
	TiO ₂ ZnO	dispersion in 1% Triton X-100	-	-	-	characterisation (NP)	NP mean size	TEM-EDS XRD	80
	TiO ₂ ZnO	dispersion in 1% Triton X-100	5 ms	Q	Не	characterisation (NP) quantitative (NP)	NP mean size NP number concentration NP mass concentration	AF4-MALS-ICP- MS	81
ip balm	TiO ₂	defatting with hexane + filtration	100 μs	Q	Не	characterisation (NP)	NP size distribution	ICP-MS CE-ICP-MS	82
oothpaste	TiO ₂	dispersion in 0.1% SDS	100 μs	Q	Не	characterisation (NP)	NP size distribution	ICP-MS CE-ICP-MS	82
	$ ext{TiO}_2 ext{Al}_2 ext{O}_3$	H ₂ O ₂ digestion + dilution in 0.1% SDS	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS STEM-EDS	83
	1-2-5					quantitative (NP)	NP number concentration	DLS AF4-MALS-ICP- MS HDC-ICP-MS	
unscreen ip balm	TiO ₂	defatting with hexane dispersion in 0.1%	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS ICP-OES	84
oothpaste		SDS				quantitative (NP)	NP number concentration DE mass concentration	DLS	_
hampoo						quantitative (DE)			4
noisturizing	Ag	dispersion in methanol	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS FESEM	53
ream						quantitative (NP)	NP number concentration NP mass concentration	TEM	-
exfoliant	plastic polymers (C-)	dispersion in water	200 μs	Q	no	qualitive (NP)	-	FESEM	85
other consumer products									17.1
antibacterial spray	Ag	-	3 ms	Q	no	qualitative (NP) qualitative (DE)	-	HPLC-ICP-MS TEM	86
	Ag	-	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	87
commercial sprays	Ag- Sn- Zn-	-	5 ms	Q	no	characterisation (NP)	NP mean size	ICP-MS DLS SEM-EDS TEM-EDS SMPS	88

Journal Nai	me							ARTICLE	Ε
E174	Ag	ethanol wetting + dispersion in 0.05% BSA	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution DOI: 1 NP number concentration NP mass concentration	TEM w Article Online 0.1039/D1AY00761⊦	e 43 <
E171	TiO ₂	dispersion in water	3 ms	Q	NH ₃	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	TEM-EDS HAADF-STEM- EDS	46
	TiO ₂	dispersion in 0.05% BSA	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	SEM NTA AF4-MALS AF4-ICP-MS	89
other material	s								5
steel	NbCN TiNbCN	extraction 0.5 M H ₂ SO ₄ /0.1% Disperbyk-2012 + centrifugation	1.8 ms	TOF	no	characterisation (NP)	NP size distribution mass per NP distribution	STEM	90
petroleum products	Fe ₃ O ₄	dilution (o-xylene)	100 μs	Q	Не	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ICP-OES TEM	57
						quantitative (DE)	DE mass concentration		ā
asphaltene solutions	Mo- Fe-	dilution (o-xylene)	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ICP-MS	91
						quantitative (DE)	DE mass concentration		TO
tattoo inks	Al ₂ O ₃ TiO ₂ Cu-	-	5 ms	Q	Не	characterisation (NP)	NP mean size NP size distribution	TEM DLS AF4- MALS	92
	Ti- Al- Cr- Cu- Zn- Pb-	-	5 ms	Q	Не	characterisation (NP) quantitative (NP)	NP mean size NP number concentration NP mass concentration	ICP-MS	93 QQ QQ QQ QQ QQ QQ QQ QQ
homeopathic medicine	Cu	-	-	Q	-	qualitative (NP)	-	DLS NTA SEM-EDS	94
* M: nanoparticl	e with composit	tion M. M-: nanoparticle co	ontaining el	ement M					0
									th
									D
									Analytical Meth
									2
									Ţ
									a
									A

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M

ARTICLE Journal Name

 Table 4 Scenario 2.1: Laboratory tests involving pristine nanoparticles or products containing nanoparticles.

View Article Online

	nanoparticle composition*	sample preparation	dwell time	mass analys	collision/ reaction	analytical information	measurands	complementary techniques	ref.
	Composition		unit	er	cell gas	momation		conniques	
Release studies									
nigration									
ood containers	Ag-	migration: - 3% acetic acid - 50% ethanol	100 μs	Q	no	qualitative (NP)	-	ICP-MS SEM-EDS	95
	Ag-	migration: - 3% acetic acid - 10% ethanol	3 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	ICP-MS TEM-EDS	
	Ag-	migration: - water	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEM-EDS	9
		- 3% acetic acid - 10% ethanol - 90% ethanol				quantitative (NP) qualitative (DE)	NP number concentration -		
	Ag-	migration: - water	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM-EDS	9.
		- 3% acetic acid - 10% ethanol				quantitative (NP)	NP number concentration		Ž
	clays (Al-)	migration: - 3% acetic acid - 10% ethanol	100 ms	Q	no	qualitative (NP)	-	ICP-MS SEM-EDS	40 40
	plastic polymers (C-)	water	200 μs	Q	no	qualitive (NP)	-	FESEM	85
ood packaging films	Ag-	migration: - water - 3% acetic acid - 10% ethanol	5 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS STEM-EDS	9' 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Al- Ti- Si-	migration in 3% acetic acid	3 ms	Q	H ₂	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ICP-MS SEM-EDS	N U
onsumer products									
aby products	Ag-	leaching in artificial saliva	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM-EDS	9
						quantitative (NP)	NP number concentration		Ŧ
oothbrush	Ag-	leaching in tap water	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM-EDS	
						quantitative (NP)	NP number concentration NP mass concentration		2
	Ag- Cu-	wiping test (artificial sweat) + water extraction	100 μs	Q	no He	characterisation (NP) quantitative (NP)	NP mean size NP number concentration NP mass concentration	ICP-MS SEM-EDS TEM-EDS	In C
laster	Ag-	water extraction + filtration + CPE	10 ms	Q	no	quantitative (NP)	mass concentration NP	ICP-OES TXRF SEM-EDS	104
xtiles	TiO ₂	leaching in water	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM-EDS	10
						quantitative (NP)	NP number concentration NP mass concentration		
	Ag	leaching under washing conditions	5 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEM	106
						quantitative (NP)	NP mass concentration	TEM-EDS XANES	
vashing machine	Ag	-	4 ms 1 ms	DF	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ISE TEM-EDS	107

Journal Name								ARTICLE	
CNT polymer nanocomposite	CNT (trace Y)	leaching in water + surfactant stabilization	100 μs	Q	no	quantitative (NP)	NP number concentration V	ie XPS icle Online 9 A71A7997 61K FESEM	108
pigmented polyethyelene	Fe ₂ O ₃	leaching in: - 0.05% SDS - water - hard EPA water - SRNOM migration in: - water - 3% acetic acid - 10% ethanol	5 ms	Q	H_2	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ICP-MS TEM AUC FTIR	109
ZnO doped polymers	ZnO	migration to: - orange juice - chicken meat + Tris-HCl extraction	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	FAAS TEM-EDS FTIR DLS	
antifouling paint	Cu ₂ O	leaching in freshwater from painted surface	100 μs	Q	no	characterisation (NP)	NP size distribution	DLS XRD XPS SEM-EDS TEM-EDS	DISIL
paint	TiO ₂	leaching in rainwater/snow from painted surface + filtration	50 μs	DF	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	ICP-MS	120
	TiO ₂	leaching in water from painted surface	100 μs	Q	no	-	-	SEM-EDS TEM HRTEM XRD UV-Vis XPS XRD	cepted
printed circuits	Ag	leaching in water	100 μs	Q	no	characterisation (NP)	NP mean size	SEM AFM AF4-ICP-MS	0
photovoltaic cells	Ag- Al- Cd- Mo- Se- Zn-	leaching in: - model freshwater - model seawater - model acidic rainwater	30 ms	Q	no	qualitative (NP)	-	ICP-MS	Spo
wood	Cu-	leaching in water	-	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	AAS ICP-OES SEM-EDS ATR-FTIR	
leather	Ag	leaching in water	50 μs	Q	no	qualitative (NP)	-	XPS FESEM	112
paper environmental samples	multielement	collection of airborne particles in filter + suspension in DMEM	-	Q	no	qualitative (NP)	-	SEM-EDS TEM-EDS	
road dust	Pt-	leaching in stormwater runoff	5 ms	Q	Не	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ICP-MS	110
mine tailings	Th- U-	leaching in different media + filtration	50 μs	DF	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration DE mass concentration	ICP-MS	lzv
Fate studies									
food simulants water acetic acid (3%) ethanol (10%)	Ag (spiked)	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration NP mass concentration	TEM AF4-MALS	121
water acetic acid (3%)	Ag (spiked)	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-MS	122

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, **00**, 1-3 | **11**

ARTICLE							Jo	urnal Name	
ethanol (10-50%) olive oil milk						quantitative (DE)		/iew Article Online 39/D1AY00761K	
in vitro digestion									
gastric fluid	Au Ag ZnO CeO ₂ (spiked)	gastric step	50 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration DE mass concentration	SEM	123
digestion fluids	Ag (spiked)	3-steps in vitro-human gastro-intestinal digestion	-	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	SEM-EDS TEM DLS	124
chicken meat (spiked)	Ag (spiked)	3-steps in vitro-human gastro-intestinal digestion	10 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration DE mass concentration	ICP-MS TEM-EDS	125
orange juice chicken meat	ZnO	3-steps in vitro-human gastro-intestinal	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	FAAS TEM-EDS	175
		digestion				quantitative (NP)	NP number concentration NP mass concentration	FTIR DLS	ns
laundry process			2	0		l (i (i OID)	NTD :	CTEM EDG	126
washing solutions	Ag (spiked)	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	STEM-EDS	
						quantitative (DE)	DE mass concentration		
waters									O
synthetic moderately hard water + NOM	Pt (spiked)	-	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	-	
						quantitative (NP)	NP number concentration		6
	Au@Ag (spiked)	-	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	-	
						quantitative (NP)	NP number concentration		6
ozonized water	Ag (spiked)	-	5 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-OES DLS	29
						quantitative (NP)	NP number concentration		(J)
lake water	Ag (spiked)	-	5 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS AF4-UV-vis	70
	Ag (lake spike)	-	5 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP mass concentration DE mass concentration	ICP-MS	ethe
	Ag	-	10 ms	Q	no	characterisation (NP)	NP mean size	ICP-MS	132
	(lake spike)					quantitative (NP)	NP size distribution NP number concentration NP mass concentration	CPE+ICP-MS AF4-ICP-MS	2
	Ag (lake spike)	-	50 μs	DF	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS DGT+ICP-MS	13
						quantitative (NP) quantitative (DE)	NP number concentration DE mass concentration		Ţ
river water	Ag Ag ₂ S (spiked)	СРЕ	500 μs	Q	Не	characterisation (NP)	NP mean size NP size distribution	HAADF- STEM-EDX	134
	Ag CeO ₂ Fe ₂ O ₃ (spiked)	digestion (Na ₄ P ₂ O ₇)	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-OES AF4-ICP-MS	150
	TiO ₂	-	100 μs	Q	no	characterisation (NP)	NP mean size	-	136
	ZnO (spiked)					quantitative (NP)	NP size distribution NP number concentration		
						quantitative (DE)	NP mass concentration DE mass concentration		
	Au Ag (spiked)	fractions collected from HDC	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	DLS AUC	137

Journal Name								ARTICLE	
fresh waters	Ag	-	10 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP mass concentration 103	/ie /k/P4ti}(@P>M/S e 39/D1AY00761K	138
synthetic seawater	Au (spiked)	-	3 ms	Q	no	characterisation NP	size distribution	AF4-UV-vis DLS	139
seawater	Ag Ag ₂ S AgCl (spiked)	СРЕ	500 μs	Q	Не	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS TEM-EDS	140
seawater	Ag (spiked)	-	10 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration NP mass concentration	TEM	141
seawater	Ag (spiked)	-	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	-	1-2
waste water treatments									
synthetic wastewater	Ag (spiked)	SPE (Chelex-100)	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	NTA	143
	TiO ₂ CeO ₂ (spiked)	-	-	Q	no	qualitative (NP) qualitative (DE)	-	ICP-MS	
	Fe + adsorbed Cd(II)	-	3 ms	Q	H ₂ (MS/MS)	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ICP-MS XRD	140
wastewater	Ag (spiked)	-	500 μs	Q	no	characterisation (NP)	NP size distribution	EDM-HSI DLS TEM	(D)
wastewater	Ag (spiked)	-	1 ms 100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration DE mass concentration	TEM TOF-SIMS XPS UV-vis	ccept
wastewater	TiO ₂ Ag (spiked)	-	3 ms	Q	no	characterisation NP	average size	ICP-MS STEM-EDS	Y
wastewater river water	Au (spiked)	-	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	-	197
wastewater river water	Ag (spiked)	centrifugation	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	TEM-EDS DLS HDC-RI AF4-UV-vis- MALS-RI	etho
wastewater river water	Ag (spiked)	HDC online separation	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	HDC-ICP-MS	\geq
activated sludge	CNT (trace Y) (spiked)	centrifugation + ultrafiltration	10 ms	Q	no	quantitative (NP)	NP mass concentration	ICP-MS TEM-EDS	Sal
activated sludge	Ag	settling	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	-	alytic
						quantitative (NP)	NP mass concentration		2
biofilm reactor	Ag (spiked)	settling	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	ICP-MS TEM-EDS	
biofilm reactor	Ag (spiked)	settling	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	ICP-MS TEM-EDS	154
drinking water treatments									
fresh water	Ag	-	100 μs	Q	no	characterisation (NP)	NP mean size	TEM-EDS	155
	Au TiO ₂ CeO ₂ ZnO (spiked)					quantitative (NP)	NP size distribution NP mass concentration		

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, **00**, 1-3 | **13**

Analytical Methods Accepted Mariuscript

ARTICLE Journal Name

soils and sediments								/iew Article Online
soil	Ag ZnO TiO ₂ CeO ₂ (spiked)	water extraction + centrifugation + filtration	10 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	39/D1AY00761K SEM-EDS
	Ag (spiked)	water extraction + filtration + CPE	10 ms	Q	no	quantitative (NP)	mass concentration NP	ICP-OES TXRF SEM-EDS
	Ag (spiked)	- water extraction + centrifugation + filtration - extraction (DTPA 5mM) + centrifugation + filtration	10 ms	Q	no	qualitative (NP)	-	ICP-OES
	Ag (spiked)	extraction (2.5 mM $Na_4P_2O_7$)	50 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration NP mass concentration DE mass concentration	DLS TEM
	Ag (spiked)	extraction (2.5 mM Na ₄ P ₂ O ₇) + settling	50 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ICP-MS
	Ag (spiked)	water extraction + centrifugation + filtration	50 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP mass concentration	ICP-MS ISE TEM-EDS DLS
soil colloids	CuO (spiked)	-	5 ms 100 μs	Q	H_2	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	DLS
soil sediment	Au (spiked)	water extraction + centrifugation	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS AF4-MALS- UV-ICP-MS DLS
soil sediment	Ag (spiked)	extraction (2.5 mM Na ₄ P ₂ O ₇) + settling	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	-
sediment column	aged Ag (spiked)	extraction (different media) + centrifugation (+ filtration)	5 ms	Q	no	qualitative (NP)	(presence of aggregates)	ICP-MS ICP-OES ETAAS TEM SEM-EDS HDC-ICP-MS
sand column	Au (spiked)	-	3 ms	Q	no	characterisation (NP)	NP size distribution	SEM
biological fluids artificial sweat	Ag (spiked)	-	100 μs	Q	no	characterisation (NP)	NP mean size	DLS UV-vis XAS SEM-EDS
plasma cellular blood fractions	Fe ₃ O ₄ (spiked)	-	100 μs	Q	H_2	characterisation (NP)	NP mean size NP size distribution	TEM AF4-UV- MALS-ICP-MS

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M

Journal Name ARTICLE

View Article Online DOI: 10.1039/D1AY00761K

Table 5 Scenario 2.2: In vitro, in vivo and ex vivo (eco)toxicological tests.

sample	nanoparticle composition*	sample preparation	dwell time	mass analys er	collision/ reaction cell gas	analytical information	measurands	complementary techniques	ref.
in vitro studies fungi									
Aspergillus flavus Aspergillus parasiticus	Ag (spiked)	-	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	TEM DLS	168
Aspergillus carbonarius Aspergillus niger Aspergillus ochraceus Aspergillus steynii Aspergillus westerdijkiae Penicillium verrucosum bacteria	(op.nets)					quantitative (NP)	NP number concentration NP mass concentration		Script
Pseudomonas aeruginosa Staphylococcus aureus	Ag (spiked)	-	5 ms	Q	no	characterisation (NP)	NP size distribution NP number concentration	TEM-EDS XRD	loy
Staphylococcus aureus	(spikeu)					quantitative (NP)	NP mass concentration	FTIR	
Staphylococcus aureus Escherichia coli	Te (internalized)	bacteria lysis + centrifugation	5 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	TEM XRD	~~0
Escherichia con	(internatized)	continugation				quantitative (NP)	NP number concentration	AKD	7
river bacterial community	TiO ₂ ZnO	-	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	DLS	11
	Ag (spiked)					quantitative (NP)	NP number concentration NP mass concentration		C
	(op.med)					quantitative (DE)	DE mass concentration		CCA
algae									172
Chlamydomonas reinhardtii	Ag (spiked)	ultracentrifugation	0.5 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	ICP-MS	172
Raphidocelis subcapitata	Cr- (biosynthesis)	filtration	50 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP number concentration DE mass concentration	AAS TEM NTA	Watho
cells									ď
human umbilical vein endothelial cells	Au (spiked)	TMAH digestion	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	FIB-SEM flow citometry	
						quantitative (NP)	NP mass concentration	confocal microscopy	7
human macrophages and exosomes	Au (spiked)	ultracentrifugation + lysis	5 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	TEM NTA flow cytometry confocal microscopy	
human breast cancer cells	Au (spiked)	TMAH digestion	5 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ICP-MS	58
human epithelial colorectal	Ag (spiked)	lysis	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS DLS	176
adenocarcinoma cells human colon adenocarcinoma mucus secreting cells	Cr - 77					quantitative (NP) quantitative (DE)	NP number concentration NP mass concentration	TEM-EDS confocal microscopy	

ARTICLE							Jo	urnal Name	
mouse embryonic stem cells	Ag Ag ₂ S (spiked)	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	ICP-MS /iew-Wicle Online 39,53,4700761K	177
mouse neuroblastoma cells	TiO ₂ Ag (spiked)	lysis	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP number concentration	ICP-MS LA-ICP-MS TEM DLS	178
trout liver cells	TiO ₂ (spiked)	lysis	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration NP mass concentration DE mass concentration	ICP-MS TEM-EDS DLS confocal microscopy	179
in vivo studies									0
plants									
tomato	Au (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP mass concentration DE mass concentration	TEM DLS) INSC
tomato pumpkin soybean cucumber	CeO ₂ (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration DE mass concentration	ICP-MS TEM	
thale cress	Ag (spiked)	enzymatic digestion (macerozyme R- 10)	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM	187
garden cress white mustard	Pt (spiked)	enzymatic digestion (macerozyme R- 10) + filtration	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration DE mass concentration	ICP-MS	182
thale cress	Ag Cu ZnO (spiked)	enzymatic digestion (macerozyme R- 10)	3 ms	Q	no	qualitative (NP)	-	ICP-MS SEM-EDS TEM-EDS DLS	S Ac
cucumber wheat	Ag ₂ S (spiked)	enzymatic digestion (macerozyme R- 10)	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	DLS SEM-EDS XAS	
white mustard	Pd (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS TEM	186
lettuce	Ag (spiked)	enzymatic digestion (macerozyme R- 10)	10 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP mass concentration DE mass concentration	ICP-OES XAS	187
	ZnO (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration DE mass concentration	ICP-MS HPLC-ICP-MS HPLC-QTOF- MS HPLC-FT- Orbitrap-MS	Inalyti
	CuO Cu(OH) ₂ (spiked)	methanol extraction (50%)	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS TEM	.~a
lettuce kale	CuO (spiked)	enzymatic digestion	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	FESEM TEM	190
collard green	(spiked)	(macerozyme R- 10)				quantitative (NP) quantitative (DE)	NP size distribution NP mass concentration DE mass concentration	I EIVI	

Journal Name								ARTICLE	
wheat	Ag (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP mass concentration DE mass concentration	ICP-MS /iew-Article Online 39/DIAY00761K	191
	Ag Au (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP mass concentration DE mass concentration	TEM	192
rice	TiO ₂ (spiked)	enzymatic digestion (macerozyme R- 10)	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-OES DLS STEM-EDS	193
rice soybean	Ag (spiked)	enzymatic digestion (macerozyme R- 10)	50 μs	Q	no	characterisation (NP) quantitative (DE)	NP size distribution DE mass concentration	TEM-EDS	194
radish	CeO ₂ CuO (spiked)	gastrointestinal digestion	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration DE mass concentration	ICP-MS	
	TiO ₂ (spiked)	enzymatic digestion (macerozyme R-	100 μs	Q	O ₂ /H ₂ (MS/MS)	quantitative (DE) characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS	196
	CeO ₂ (spiked)	enzymatic digestion (macerozyme R-	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mass concentration NP mean size NP size distribution NP mass concentration	ICP-MS LA-ICP-MS	197
soil organisms		10) + filtration							()
Lumbriculus variegatus	Ag Au (spiked)	TMAH digestion	10 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS	1.8
Lumbriculus variegatus	Ag (spiked)	water extraction + centrifugation+ filtration	-	Q	no	characterisation (NP)	NP mass concentration NP mean size NP size distribution	ICP-OES TEM DLS	O
Lumbriculus rubellus	Ag (spiked)	enzymatic digestion (collagenase+hyal unoridase+protein ase	3 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration NP mass concentration DE mass concentration	AF4-ICP-MS ICP-MS FESEM-EDS DLS	
Caenorhabditis elegans	Au (spiked)	K)+centrifugation TMAH digestion	10 ms	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-MS SEM-EDS TEM DLS ICP-MS	20'0
									7
<i>aquatic organisms</i> Daphnia magna	Ag Au (spiked)	TMAH digestion	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution NP number concentration	ICP-MS	198
	(sp.meu)					quantum (e (r ir)	NP mass concentration		g
	Ag nanowire	collection of hemolymph	10 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEM	al Xter
	(spiked)	петютутірії				quantitative (NP)	NP number concentration	TEM	
						quantitative (DE)	NP mass concentration DE mass concentration		700
mussel	TiO ₂ (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ICP-MS TEM	2.
zebra fish (liver, intestine, gills)	Au Ag (spiked)	TMAH digestion+filtratio	1 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP mass concentration	TEM	204
zebra fish (intestine, liver, gills, brain)	CeO ₂ TiO ₂ (spiked)	enzymatic digestion (proteinase K) + H ₂ O ₂ digestion	3 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration NP mass concentration DE mass concentration	ICP-MS TEM DLS	205

ARTICLE							Jo	urnal Name	
trout (liver)	Ag (spiked)	TMAH digestion	3 ms	Q	Не	characterisation (NP) quantitative (NP)	NP number concentration	/iew Article Online 39/D1AY00761K	54
						quantitative (DE)	NP mass concentration DE mass concentration		
rat tissues									
spleen	Au (spiked)	TMAH digestion	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	-	206
	TiO ₂ (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	NH ₃	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	SEM-EDS TEM	207
liver	Au (spiked)	lysis + centrifugation	10 ms	Q	no	characterisation (NP)	NP size distribution	TEM HPLC-ICP-MS	208
	SiO ₂ (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	CH ₄	characterisation (NP)	NP mean size	ICP-MS TEM	209
liver lung	CeO ₂ TiO ₂ (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP mass concentration	ICP-MS DLS TEM	210
ung cidney blood	TiO ₂ nanorods (spiked)	HCl/HNO ₃ digestion+filtratio n	-	Q	-	qualitative NP		TEM SEM-EDS DLS	211
foetus, resorption, placenta, lung, liver,	Ag (spiked)	TMAH digestion	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	TEM-EDS	212
spleen, kidney, mammary gland	(1)					quantitative (NP)	NP number concentration NP mass concentration		
						quantitative (DE)	DE mass concentration		O
stomach, intestinal content, liver, spleen, kidney, lungs, blood	Ag (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	AAS TEM DLS	2 3)
chicken tissues									d
liver yolk	Ag (spiked)	enzymatic digestion (proteinase K)	2 ms	DF	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration NP mass concentration	AAS SEM-EDS	214
ex vivo studies									4
numan placenta	Ag (spiked)	enzymatic digestion (proteinase K)	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	TEM DLS	215
		(proteinase K)				quantitative (DE)	NP mass concentration DE mass concentration		D
M: nanoparticle with com	position M. M	-: nanoparticle containi	ng elemer	nt M		quantum (5.2)	22 1100 001001111101		tho
									Analytical Meth
									(C)
									#
									B
									A

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M

Journal Name **ARTICLE**

 Table 6 Scenario 3.1: Analysis of foods.

View Article Online	
DOL 40 4070 /D4 N / 007 C41/	

sample	nanoparticle	sample preparation	dwell	mass	collision/	analytical	measurands	complementary	ref.
	composition*		time	analysers	reaction cell gas	information		techniques	
confectionery									
cakes candy chewing gum	TiO ₂	H ₂ O ₂ digestion	3 ms	Q	no	characterisation (NP)	NP size distribution	ICP-MS AF4-ICP-MS	216
chewing gum	TiO ₂	water extraction	10 ms	Q	NH ₃ (MS/MS)	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration		217
ilver pearls	Ag	water extraction	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS TEM-EDS	218
						quantitative (NP)	NP number concentration NP mass concentration	HAADF-STEM	E
silver pearls decoration dusting powder	Ag Al Au	water extraction + centrifugation	5 ms	Q	no	qualitative (NP)		ICP-MS	S
custard cream candies pearls confectionery masses	TiO ₂		100 μs	Q	no	qualitative (NP)		TEM-EDS CLS	anusc
candies	TiO_2	water extraction + filtration	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	AF4-MALS-ICP MS	5
		muauon				quantitative (NP) quantitative (DE)	NP number concentration DE mass concentration	DLS	7
candies	TiO_2	centrifugation	100 μs	Q	no	characterisation (NP)	NP size distribution	SEM	1330
silver coated chocolate and pearls	Ag	ethanol wetting + dispersion in 0.05% BSA	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	TEM	ds Accepted
meat									Ö
game meat	Pb	enzymatic digestion (proteinase K)	5 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	G _l i
						quantitative (NP)	NP number concentration NP mass concentration		10
						quantitative (DE)	DE mass concentration		S
miscellaneous noodles	Al-	enzymatic digestion	3 ms	0	no	characterisation (NP)	NP mean size	ICP-MS	22
ioodics	/AI-	(α-amylase)	21115	V	110	quantitative (DE)	NP size distribution DE mass concentration	101-1010	
drinks	Ti-	water extraction +	100 μs	Q	Не	characterisation (NP)	NP mean size	ICP-MS	223
chocolate coffee chewing gum silver pearls	Si- Ag-	filtration				quantitative (DE)	DE mass concentration	DLS AF4-MALS-ICP MS	Z
surimi sticks	TiO_2	enzymatic digestion	100 μs	Q	Не	characterisation (NP)	NP mean size	ICP-MS	224
		(pancreatin and lipase)				quantitative (NP) quantitative (DE)	NP size distribution NP number concentration DE mass concentration	TEM	Ö

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M

ARTICLE Journal Name

 Table 7 Scenario 3.2: Analysis of environmental samples.

View Article Online DOI: 10.1039/D1AY00761K

aoila sadimants			time	analys er	reaction cell gas	information		y techniques	
soils, sediments and sludges									
soil	Fe-	water extraction + centrifugation	3 ms	Q	NH ₃	characterisation (NP)	NP mean size NP size distribution	ICP-MS NTA DLS TEM AF4-UV-ICP- MS	225
nine tailings	FeAsO ₄ ·2H ₂ O (scorodite)	water extraction + centrifugation	5 ms	Q	no	characterisation (NP)	NP size distribution NP mass distribution	ICP-MS EXAFS XAS TEM-EDS	2
ake sediment	Ag-	water extraction + centrifugation + filtration	50 μs	DF	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP mass concentration DE mass concentration	ICP-MS	2 :
	Ag- Ti-	extraction (TMAH)	50 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS	2
road runoff sediment	Cu- Zn- Zr-	surfactant extraction + centrifugation	5 ms	Q	H ₂ +He	characterisation (NP) quantitative (NP)	NP mass concentration NP mean mass NP size distribution NP mass distribution	ICP-MS	7
	Cd- Ce- Pt- Pb-					quantitative (DE)	NP mass concentration DE mass concentration		
ewage sludge	Ti-	digestion (HNO ₃ +H ₂ O ₂) + filtration	3-10 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	ICP-MS	2
	Ti- Fe- Zn-	extraction (acetic acid) and centrifugation	100 μs	Q	n.r.	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	ICP-MS FESEM-EDS TEM-EDS LDA	23
	Ti-	extraction (sodium pyrophosphate) + centrifugation	-	TOF	no	characterisation (NP) quantitative (NP)	NP mass distribution NP number concentration	ICP-MS TEM	2
vaters	Tr:	Clearling	50	0		alamatarian (AID)	NID	ICD MC	50
resh waters	Ti-	filtration	50 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	ICP-MS TEM-EDS	
	TiO ₂	filtration	50 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration DE mass concentration	SEM-EDS FESEM	2
	Ti-	-	10 ms	Q	no	quantitative (NP)	NP number concentration	ICP-MS ICP-OES SEM-EDS	2
	Ti-	centrifugation	4 ms 3ms	Q TOF	NH ₃ +He (MS/MS) no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	TEM	2
	Ti-	-	50 μs	DF	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	-	•
	Ti-	-	3 ms	Q	no	quantitative (NP)	NP number concentration	ICP-MS ICP-OES	23
	Ti-	filtration	10 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP number concentration NP mass concentration DE mass concentration	CPE/TEM- EDS	23

Journal Na	me							ARTICLE	
	Ti-	filtration	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size Vie NP size distribution 1039 NP number concentration	wIGPeMSnline /DOPYAES61K TEM-EDS HPLC-UV	238
	Ag- Ti-	-	50 μs	Q	no	characterisation quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	ICP-MS	228
	Ag	filtration	50 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration DE mass concentration	-	239
	Ag	filtration	1 ms	DF	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP number concentration NP mass concentration DE mass concentration	ICP-MS ICP-AES IC	240
	Ag-	cloud point extraction	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP size distribution NP mass concentration	ICP-MS ETAAS	21
	Ag- Ti- Ce-	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	-	3(5)
	Ag- Ti- Au-	-	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	FESEM-EDS	² CO
	Ce- Zn-	-	100 μs	Q	no	quantitative (DE) characterisation (NP) quantitative (NP) quantitative (DE)	DE mass concentration NP mean size NP size distribution NP number concentration DE mass concentration	-	243
	Ti- Ce-	filtration	1 ms	DF	no	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-MS ICP-AES FESEM-EDS IC	2000
river water rainwater	Ce- La-	-	50 μs	DF TOF	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration NP mass concentration DE mass concentration	-	S AC
	Zn-	ion exchange (on line)	50 μs	DF	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mean mass NP mass distribution NP number concentration DE mass concentration	TEM-EDS	Poq
seawater	Ag- Ti- Cu- Zn-	-	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-MS	2'6
sea water fresh water	Ag- Ti- Ce-	filtration	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration NP mass concentration	-	247
wastewater	Ag-	filtration	5 μs	Q	no	characterisation (NP)	NP size distribution	ICP-MS ICP-OES	240
	Ag-	settling	20 ms	Q	no	quantitative (NP) quantitative (DE)	NP mass concentration DE mass concentration	-	249
	Ag-	filtration	100 μs	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP mass concentration DE mass concentration	-	An
	Ag- Ti- Ce-	filtration	100 μs	DF	no	quantitative (NP)	NP number concentration	-	251
wastewater river water	Zn-	cation exchange separation	0.5 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP mass concentration DE mass concentration	-	252 253
wastewater river water	Zn-	settling and filtration	100 μs 3 ms	Q TOF	no H ₂ +He	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP number concentration	ICP-OES	233

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, **00**, 1-3 | **21**

Analytical Methods Accepted Manuscript

Journal Name

ARTICLE

						quantitative (DE)		w Article Online /D1AY00761K
wastewater river water lake water	Ag-	-	3 ms	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	CPE+ETAAS
tap water	Ag- Ti- Pb- Sn- Cu- Fe-	-	10 ms	Q	n.r.	characterisation (NP) quantitative (NP) quantitative (DE)	NP size distribution NP mass concentration DE mass concentration	TEM-EDS
	Ag-	cloud point extraction	100 μs	Q	no	characterisation (NP) quantitative (NP)	NP mean size NP size distribution NP mass concentration	ETAAS
various types of waters	Ag-	-	0.5 ms	Q	no	characterisation (NP) quantitative (NP) quantitative (DE)	NP mean size NP size distribution NP number concentration NP mass concentration DE mass concentration	-
throughfall water	Cu-	-	100 μs	Q	no	characterisation (NP)	NP mean size	ICP-MS DLS AF4-MALS- ICP-MS
acid mine drainage	Fe- Cu-	-	100 μs	Q	NH ₃	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-OES STEM-EDS IC
landfill leachates	Ti-	filtration + surfactant stabilization (0.1% NovaChem 100)	3 ms	Q	NH ₃	characterisation (NP) quantitative (NP)	NP size distribution NP number concentration	ICP-OES SEM-EDS STEM-EDS DLS
miscellaneous								
cigarette smoke	As-	electrostatic trapping	100 μs	Q	no	qualitative (NP)		ICP-MS HPLC-ICP- MS
gas condensate	Hg-	dilution with THF	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS STEM-EDS
						quantitative (NP)	NP number concentration NP mass concentration	AF4-UV- MALS-ICP-
						quantitative (DE)	DE mass concentration	MS

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M n.r.: not reported.

hip fluid

liver

spleen

kidney

liver

59 60 spleen

exhaled breath

miscellaneous

condensate

intestine

periprosthetic tissue

Co-

Cr-

Ti-

Ta-

Co-

Cr-Mo-

Al-

V-

TiO₂

 SiO_2

 TiO_2

 SiO_2

enzymatic digestion

enzymatic digestion

enzymatic digestion

(proteinase K)

(proteinase K)

(proteinase K)

3 ms

3 ms

2 ms

2 ms

3 ms

 $100 \mu s$

Q

DF

DF

Q

Journal Name **ARTICLE**

Table 8 Scenario 3.3: Analysis of biological samples

sample	nanoparticle	sample preparation	dwell	mass	collision/	analytical	measurands	complementary	ref
sample	composition*	sample preparation	time	analyser	reaction cell gas	information	incasuranus	techniques	101
microorganisms									
yeast	Se	enzymatic digestion (protease)	5 ms 100 μs	Q	H ₂	characterisation (NP)	NP mean size NP size distribution	ICP-MS SEC-ICP-MS TEM-EDS	263
aquatic organisms									
molluses	Ag-	enzymatic digestion (pancreatin/lipase)	50 μs	Q	no	characterisation (NP)	NP mean size	ICP-MS SEM	264
						quantitative (NP)	NP size distribution NP number concentration		
	Ti-	enzymatic digestion (pancreatin/lipase)	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS DLS	2 5
		(panorounis npaso)				quantitative (NP)	NP number concentration		U
	Ag- Ti-	enzymatic digestion (pancreatin/lipase)	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	246
	Cu- Zn-	(panereams inpuse)				quantitative (NP)	NP number concentration NP mass concentration		(
	20 elements	alkaline digestion (TMAH) + filtration	3 ms	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	200
						quantitative (NP)	NP mass concentration		7
various (plankton,	Ag- Ti-	alkaline digestion (TMAH)	50 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	22
crustaceans, molluscs, fish)		(1)				quantitative (NP)	NP number concentration NP mass concentration		
human fluids and tissues									22.
olood	Ag	-	5 ms	Q	no	characterisation (NP)	NP mean hydrodynamic diameter	HDC-SP-ICP- MS μXRF	26
						quantitative (NP)	NP mean mass per particle NP number concentration NP mass concentration	μΧΑΝΕS	(
						quantitative (DE)	DE mass concentration		
urine	Ag- Ti-	-	100 μs	Q	no	characterisation (NP)	NP mean size NP size distribution	ICP-MS	2 .

no

no

 H_2

no

Не

characterisation (NP)

characterisation (NP)

characterisation (NP)

characterisation (NP)

quantitative (NP)

quantitative (NP)

qualitative (NP)

quantitative (NP)

NP number concentration

NP mean size

NP mean size

NP mean size

NP size distribution

NP size distribution

NP number concentration

NP mass concentration

NP mass concentration

NP size distribution

NP size distribution

NP number concentration

This journal is © The Royal Society of Chemistry 20xx

Analytical Met

273

ICP-MS

ICP-MS

ICP-MS

ICP-MS

SEM-EDS

TEM-EDS

SEM-EDS

SEM

AF4-UV-MALS AF4-ICP-MS

Analytical Methods Accepted Manuscript

 Journal Name

gunshot residue Sb- - washing with water 30 µs Q no qualitative (NP) - View Article Online wash from shooter's Ba- - swabbing+water DOI: 10.1039/D1AY00761K

hand Pb- extraction

ARTICLE

^{*} M: nanoparticle with composition M. M-: nanoparticle containing element M

10

11

12

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 View Article Online DOI: 10.1039/D1AY00761K

Scenario 0: Analysis of pristine nanoparticles

The analysis of pristine nanoparticles is regarded as the least complex scenario, since there is no matrix in which they are contained. Engineered nanomaterials commonly produced at laboratories for research or industrial purposes, ^{61,63–72,75,76} but also commercial suspensions, ^{60,62,73,74} have been considered in this section. Table 2 summarizes the applications of SP-ICP-MS to the analysis of such pristine nanoparticles. In any case, the main aim of the analysis is focused on the characterisation of the nanoparticles, although the effect on size of different factors (stability, ⁶⁰ kinetics, ⁶¹ use of specific reagents ^{67,76}) along their synthesis have also been studied by some authors.

Pure nanoparticles of metallic Au,^{63–65} Ag,^{60,61,63} Pd and Ni,⁶⁸ as well as TiO₂,⁷¹ have been analysed by SP-ICP-MS. The nanoparticles were usually obtained by chemical synthesis, although they were also produced by milling.⁶⁰ Most of the nanoparticles were available as suspensions, however, those presented as powders had to be prepared as stable suspensions, requiring convenient dilutions in all cases. Only in the work by Lahtinen et al.⁷⁶ nanoparticles had to be extracted with water, because they were obtained by reduction of tetrachloroaurate adsorbed onto 3-D filters.

In relation to the analytical information delivered, size distributions and mean/median sizes were typically reported, although mass^{61,68} and number concentration^{64,68} were also considered when samples were originally presented as suspensions. In this scenario, characterisation was not only limited to sizing. Kalomista et al.⁶⁵ were able to provide information about the shape of the nanomaterial, differentiating between spherical nanoparticles and nanorods of Au by comparing the signal-time profiles of the peaks recorded. Merrifield et al.⁶² characterised and quantified Au-Ag core-shell nanoparticles, whereas Keri et al.,⁶³ following a similar methodology to Kalomista,⁶⁵ were able to distinguish between Au-Ag alloyed and core-shell nanoparticles, providing average Au:Ag molar ratios.

The analysis by SP-ICP-MS of composite particles consisting of polymer⁶⁶ or silica⁷² particles containing metallic nanoparticles allowed to obtain the mass of Au or Pt per particle, respectively, as well as the corresponding distributions and the number of metallic nanoparticles per composite particle when their size was known. Complex nanomaterials, like up-conversion nanoparticles (NaYF₄ and NaGdF₄ doped with Yb or Er), could also be characterised by decreasing the element mass per particle detection limit; this could be done by reducing the resolution of the quadrupole and hence increasing the transmission of ions.⁷⁰ Although carbon nanotubes are not directly detectable by SP-ICP-MS, their metal impurities have been used as proxies for their detection. In that way, the yttrium contained in nanotubes

allowed their detection,^{73,74} although the concentration was underestimated due to the difficulties of detecting nanotubes with low loads of yttrium.

The characterisation of pristine nanoparticle by SP-ICP-MS has been complemented by electron microscopy techniques for size and shape characterisation^{57,61,64,65,68–70,73,74} and XRD^{68,69,72,75} for confirmation of their nature through their crystalline structure.

Scenario 1: Analysis of consumer and industrial products containing nanoparticles

Owing to their specific properties at the nanoscale level, nanoparticles are currently contained in numerous consumer and industrial products. The nano-enhanced products analysed by SP-ICP-MS are summarized in Table 3; they consist of consumer, mainly cosmetics, 53,77-85 and industrial products, including food additives 43,46,89 and other materials, like steel, 90 petroleum products 57,91 or tattoo inks. 92,93

Nanoparticles in cosmetics are mainly focused on sunscreens, 77-^{79,84} in which TiO2 is the most frequent nanocomponent due to its photocatalytical properties, although ZnO has also been studied in this type of products. 80,81 TiO₂ was the target analyte in other cosmetics and personal care products, like toothpastes,82,83 lip balms,82,84 creams84 and shampoos.84 Aluminium oxide and silver nanoparticles in toothpastes⁸³ and moisturizing creams,⁵³ respectively, have also been measured by SP-ICP-MS, as well as plastic microparticles added as abrasives in exfoliant creams.85 Sample preparation of cosmetics always requires their dispersion in ethanol or water, in most cases by adding a surfactant, although a previous defatting step with hexane is typical for sunscreens and lip balms.^{79,82,84} When refractory nanoparticles like TiO2 or Al2O3 are involved, a previous matrix digestion with hydrogen peroxide has been applied.83 Other consumer products considered have been antibacterial sprays containing silver nanoparticles, 86-88 although the occurrence of other elements like Sn or Zn in these products has also been checked.88

TiO₂ and metallic Ag are approved food additives, labelled as E171 and E174, respectively. Raw samples of E171^{46,89} and E174⁴³ have been characterised by SP-ICP-MS in combination with other techniques to obtain information about the nanoparticulate fraction in these materials. In the case of steels, ⁹⁰ the aim of the analysis was the characterisation of refractory particles of titanium and niobium carbonitrides, whereas in petroleum products (crude and fuel oil, ⁵⁷ and asphaltene solutions ⁹¹) was the detection of iron and molybdenum containing particles. In a similar way, tattoo inks ^{92,93} were analysed to study the occurrence of nanoparticulate Al, Ti, Cu, Cr, Zn and Pb from the pigments used in their fabrication, or the presence of copper nanoparticles in homeopathic medicines. ⁹⁴

ARTICLE Journal Name

Given the nature of the materials considered and their commercial purpose, many of the studies were placed under the European Commission regulation and its definition of nanomaterial. 43,46,79,81,83,84,93 The principal objective of the use of SP-ICP-MS was therefore focused on the characterisation of the nanoparticle fraction, being the mean size and the particle size distribution the main measurands of concern.

1 2

4

5

6

7

8

9

10

11

12

702798

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Although concentration is not a serious constrain in this scenario, a common limitation when using SP-ICP-MS is the detection of the smallest fraction of the nanoparticles present with these samples. This can lead to partial histograms since complete size distributions are not always obtained. This was the case for titanium in some cosmetics 77–79,82 and food additives, 46 as well as for silver. 43,53,86,87 For microplastics, 85 the sizes of detectable particles were restricted at both size range limits. At lower size range, it is restricted due to the inherent limitations of carbon detection by ICP-MS, and at the upper size range due to low nebulization efficiency of large particles, being limited to sizes from 1 up to 5 μm .

Scenario 2.1: Laboratory tests involving nanoparticles or products containing nanoparticles

The applications developed under scenario 2.1, summarized in Table 4, include laboratory tests under controlled conditions, involving pristine nanoparticle or products containing nanoparticles. Laboratory tests with materials originally containing nanoparticles are devoted to studying their release into aqueous media under selected conditions, whereas the study of the fate and behaviour of nanoparticles in different media, or along different relevant processes, requires the addition of pristine nanoparticles to the samples of concern.

Release studies. The risk assessment of consumer and industrial products containing engineered nanoparticles involves knowing the human and environmental exposure to the nanoparticles released from such products along their whole life cycle. These release studies are usually performed at laboratory scale under controlled simulation conditions.

Direct human exposure to engineered nanoparticles and/or their transformation products might arise from the ingestion of foods stored in containers bearing nanoparticles (e.g., Ag, nanoclays). Migration test from existing regulations for conventional analytes, based on the use of model food simulants (acetic acid, ethanol), have been applied to plastic food containers^{95–99} and packaging films, ¹⁰⁰ as well as to cookware. ¹⁰¹ The procedures are straightforward; after incubation of the samples at selected temperatures during fixed time periods, simulants are diluted conveniently and analysed by SP-ICP-MS. In addition to plastic containers, polymers doped with Fe₂O₃¹⁰⁹ and ZnO¹¹⁰ have also been studied by using these migration tests. In the case of baby products containing silver nanoparticles, release studies were performed by leaching in artificial saliva to simulate the exposure route for children.98 In a similar way, silver release from toothbrushes was studied by leaching in tap water. 102 The dermal exposure from surfaces containing nanoparticles was simulated through wiping tests by using artificial sweat, followed by the extraction with water of the nanoparticles from the wipes. 103 Water extraction has also been applied to study the

release of Ag nanoparticles from antibacterial plasters 104 to TiMe from textiles. 105

Environmental exposure to engineered nanoparticles from nanoenhanced products is related to their release and transformations that they undergo during their life cycle. Most commonly, materials like wood, 116 leather 117 or polymers 108,109 have been subjected to direct leaching in water, whereas for paints^{111,113} or conductive inks, 114 the release from painted surfaces or printed circuits have been considered, respectively. More realistic studies have involved the use of different model waters to study the leaching of metal bearing particles under end-of-life conditions from photovoltaic cells, 115 or the leaching of TiO₂ particles from painted surfaces by snow and rainwater under weathering conditions. 112 Mitrano et al. 106 studied the life cycle of nano-enhanced textiles subjected to different aging and washing processes to understand the release and transformation of the silver nanoparticles from the textiles. The release of metal containing particles from environmental samples, like road dust¹¹⁹ and mine tailings,¹²⁰ has also been studied by leaching in different media as a source of environmental pollution.

Regarding the composition of the nanoparticles, silver^{95–98,100,102–104,106,107,114,115,117} and titanium^{101,105,112,113} are the most frequently studied, although zinc¹¹⁰ and copper^{103,111,116} have also been considered. Multielement monitoring has also been performed, as in the case of photovoltaic cells,¹¹⁵ cookware¹⁰¹ or the emission of particles from paper printing and shredding.¹¹⁸ The release of carbon nanotubes from polymer nanocomposites was followed by monitoring the yttrium present in the nanotubes,¹⁰⁸ as it was described for pristine carbon nanotubes in scenario 0.^{73,74} Detection of plastic microparticles released from food containers has also been possible by using the carbon-13 isotope.⁸⁵

Although SP-ICP-MS allows to obtain detailed quantitative information about nanoparticle size and concentration, the technique has been used in some release studies only to confirm the presence of the nanoparticles in the food simulants^{85,95,99} or the leaching media,^{115,117,118} as well as of dissolved forms of the element monitored.⁹⁷ In these cases, the recorded time scans (Fig. 2.a) allow to obtain the qualitative information required, once the adequate metrological criteria have been applied.⁴⁴ In many other studies, detailed information about mean/median sizes, size distributions and number/mass concentration of the nanoparticles released were reported, although the profiles of the size distributions revealed that the nanoparticle distribution had been partially recorded due to the attainable size limits of detection, hence underestimating the actual concentrations and overestimating mean sizes.

Fate studies. Whereas the release studies discussed above involve consumer and industrial products, fate studies are mostly based on the use of pristine and well-characterised nanoparticles, commercially available or synthesized at the laboratory, although aged nanoparticles have also been used. ¹⁶⁴ The nanoparticles are spiked in the matrix of interest and the samples analysed directly or after undergoing the simulated process under study (e.g., gastrointestinal digestion, laundry, wastewater treatment, environmental exposure). The main advantage of these controlled experiments is that both size and concentration

3

4

5

6

7

8

9

10

11

12

255:04 BML 9 5 4 P E

7079 8

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name ARTICLE

of the spiked nanoparticles can be selected as desired. Although concentration is not a serious limitation for SP-ICP-MS, allowing even to work at realistic environmental concentrations, 135,138,141 attainable size LODs can be a critical drawback when using SP-ICP-MS with real samples, as it has been discussed above and it will be shown again in relation to scenario 3.

Fate studies performed with spiked Ag nanoparticles in food simulants complement the migration tests of silver from food containers discussed above, allowing to obtain information about the oxidation of silver nanoparticles to dissolved forms. 121,122 In relation to the potential human exposure to engineered nanoparticles through ingestion, the behaviours of Ag, 123,124 but also of Au, 123 CeO₂123 and ZnO110,123 nanoparticles along in vitro gastrointestinal digestions have been studied by SP-ICP-MS through the direct spiking of the digestion fluids^{123,124} or foods submitted to the in vitro digestions. 110,125 With respect to the dermal exposure to consumer products containing Ag nanoparticles, laboratory experiments with artificial sweat have allowed to detect changes in size of the nanoparticles. 166 The stability of iron oxide nanoparticles in Ferumoxytol, an intravenous preparation for treatment of the anaemia, was studied in human plasma and cellular blood fractions.¹⁶⁷ In relation to the life cycle of silver nano-enhanced textiles and their environmental implications, the fate and behaviour of pristine Ag nanoparticles in the washing solutions during the laundry process has also been studied. 126

Environmental scenarios for studying the fate of nanoparticles by SP-ICP-MS have included different types of real and synthetic surface waters (lake, 130–133 river, 134–137 sea 140–142) and wastewaters, 143–150,275 as well as soils 104,156–161 and sediments. 162,163 Whereas spiked water samples were usually analysed directly or after dilution, soil analysis required the extraction and the separation of the nanoparticles from the soil matrix. This was done by using water or other extractants, like sodium pyrophosphate, 158,159,163 followed by centrifugation or/and filtration.

Apart from works devoted to demonstrate the capability of SP-ICP-MS for detecting specific nanoparticles in water^{142,150} and soil^{159,161,163} samples, fate experiments focus mainly on studying stability^{129,143} and transformations oxidation, 128,138 aggregation 127,135...) of nanoparticles under laboratory controlled conditions, although experiments adding nanoparticles into natural aguifers have also been performed. 131-133 Special attention has been paid to the fate of nanoparticles in relation to drinking and wastewater treatments. The stability of Ag nanoparticles under ozonisation conditions¹²⁹ and the removal of different engineered nanoparticle through coagulation processes¹⁵⁵ and wastewater treatments^{151–154} have been studied. Soil studies have focused on the interaction of the nanoparticles with soil components, that control their transformations as well as their retention mobility. 157,162,164,165

Most studies with environmental samples have focused on Ag nanoparticles, $^{104,121-126,129-135,137-143,146-148,150,152-160,275,163,164,166}$ as well as their transformation products, Ag₂S and AgCl. 134,140 Other nanoparticles studied include TiO₂, 136,144,148,155,156

 $ZnO,^{136,155,156} \quad CeO_2,^{135,144,155,156} \quad CuO,^{161} \quad Fe_2O_3,^{135}_{\text{view}} \quad \text{Article of and } \\ Au.^{137,149,155,165} \quad Less \quad common \quad nanoparticles \\ 0.11760 \quad \text{Less} \quad \text{Common nanoparticles} \\ Au@Ag \quad nanoparticles \\ 128 \quad and \quad carbon \quad nanotubes \\ 151 \quad have \quad also \quad been \\ considered. \quad The \quad influence \quad of \quad the \\ coating \\ 104,129,130,138,141,142,146,157,162,163 \quad \quad and \quad the \\ size \\ 123,126,149,150,155,159,163,165,166,275 \quad of \quad the spiked \quad nanoparticles \quad on \\ the \quad transformations \quad studied \quad have \quad also \quad been \quad considered.$

Fate studies focus on the transformations of the nanoparticles in relation to their potential toxicity. \(^{130-132},^{136,138,141,149,155,164}\) In general, the mean/median size and size distributions are the most frequent measurands. These measurands are related to the stability of the nanoparticles, but also to their aggregation \(^{110,122-129,131,133,136,138,139,141,145,148,152,157,158,162-164,166}\) and dissolution. \(^{138,143,144,147,151}\) For this reason, the concentration of the dissolved element has also been considered in different studies. \(^{122,123,125,126,131,133,136,144,147,153,154,158}\) To confirm the formation of aggregates, electron microscopy techniques (SEM, TEM), \(^{110,123-125,141,147,151,158,164}\) DLS \(^{110,124,129,139,158,162,166}\) or

Scenario 2.2: In vitro, in vivo and ex vivo (eco)toxicological tests

NTA¹⁴³ have been used as complementary techniques.

Risk assessment of nanomaterials must be based on exposure information but also on their toxicological behaviour in humans, animals and the environment. Hence, in vitro, in vivo and ex vivo (eco)toxicological essays worth studying in order to assess these behaviours and effects on living organisms. However, unravelling the mechanisms of action of nanoparticles for the correct interpretation of (eco)toxicity data requires the availability of detailed analytical information characterising and quantifying nanoparticles and their transformation products in biological media.³⁴ In this context, SP-ICP-MS has proved to be a valuable technique in recent years, as it is summarized in Table 5. As in the case of the fate studies discussed above, (eco)toxicological test use mostly pristine and well-characterised nanoparticles, commercially available or synthesized at laboratory, allowing to select their size and coating, as well as their concentration levels.

In vitro **studies.** Bacteria, fungi and algae have been microorganisms used to assess the uptake, biotransformation and ecotoxicity of nanoparticles under laboratory-controlled conditions, in a similar way that it has been done with different types of cells for toxicity assessment.

Because many *in vitro* studies were performed with in-lab synthesised nanoparticles, SP-ICP-MS has been used in combination with other techniques only for characterisation of these pristine nanoparticles. ^{168,169} The uptake of Te nanoparticles by *Staphylococcus aureus* and *Escherichia coli* was studied by the direct addition of spherical nanoparticles into the culture medium. Their biotransformation to nanorods when they were incorporated into the bacterial strains was confirmed by TEM and XRD, whereas SP-ICP-MS was applied after bacteria lysis to determine the number of particles per bacteria and to infer dimensional information of the rod-shaped Te nanoparticles. ¹⁷⁰ The effect of TiO₂, ZnO and Ag nanoparticles on a river bacterial community was studied by mixing river water with artificial treated wastewater containing added nanoparticles. After three days of exposure, water samples were analysed by SP-ICP-MS

to determine the mean size and size distributions, as well as the concentration of nanoparticles and dissolved species.¹⁷¹

1 2

4

5

6

7

8

9

10

11

12

1 5:55:04 BML 9 5 4 EML

70*7*/91 8

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Algae are commonly used in ecotoxicity testing. In this context, the dissolution of Ag nanoparticles and the bioavailability of silver to the model green alga *Chlamydomonas reinhardtii* was studied in a wastewater matrix,¹⁷² using SP-ICP-MS for monitoring the aggregation and dissolution of the nanoparticles. Speciation studies with chromium (III) and (VI) in ISO 8692 algal medium showed the formation of Cr-bearing nanoparticles, detected by SP-ICP-MS, which could contribute to the ecotoxicity of chromium to *Raphidocelis subcapitata*.¹⁷³

The risk assessment of nanoparticles in living beings involves the proper evaluation of their behaviour at cellular level by *in vitro* assays. Within this framework, SP-ICP-MS has been used in a number of studies with human cell lines (umbilical vein endothelium, 174 macrophages and exosomes, 175 breast cancer, 58 human epithelial colorectal adenocarcinoma and colon adenocarcinoma mucus secreting cells 176) but also mouse (embryonic stem 177 and neuroblastoma 178) and liver trout 179 cells. The uptake of nanoparticles by cells was demonstrated to be dependent on their concentration in the media, 174 exposure time and cell line. 58 SP-ICP-MS allowed to study their biotransformations, 176 as well as their dissolution and agglomeration within the cells. Moreover, the release of internalised nanoparticles by macrophages through exosomes could also be confirmed. 175

Au nanoparticles have been more frequently used in these *in vitro* studies with cells, 58,174,175 although Ag, $^{176-178}$ Ag₂S¹⁷⁷ and TiO₂^{178,179} have also been investigated. After exposure in the culture media containing the nanoparticles, cells were separated by centrifugation and lysed 175,176,178,179 or digested with TMAH^{58,174} as a previous step to the analysis by SP-ICP-MS.

In vivo studies. Release of engineered nanoparticles to the environment may end up and accumulate in edible plants, which is a potential pathway to human exposure. SP-ICP-MS has been used to study the uptake of nanoparticles by different types of plants in suitable growing media (hydroponic solutions^{185,187,192} and soils 180-184,186,188,191,193-197) containing known concentrations of nanoparticles of selected compositions and sizes. Edible plants like tomato, pumpkin, soybean, cucumber, thale cress, garden cress, white mustard, lettuce, kale, collard green, wheat, rice, soybean and radish have been selected for these experiments. Most of uptake studies have involved Ag nanoparticles, 182,184,187,191,192,194 but also Ag_2S , 185 Cu, 184 CuO/Cu(OH)₂, 189,190,195 ZnO, 184,188 CeO₂, 181,195,197 TiO₂, 193,196 Au, 180,192 Pd186 and Pt.183 By analysing different parts of the plants (roots, leaves, fruits), the uptake of nanoparticles through the roots and their translocation to other parts as intact particles or dissolved has been followed. 183,196 In addition to the uptake of nanoparticles through the roots, the foliar exposure has been also assessed for Ag^{194} and $CuO^{189,190}$ nanoparticles. In the case of silver, the transformation of Ag nanoparticles after foliar exposure to ionic silver was reported.

In most cases, plant tissues were enzymatically digested by using macerozyme R-10, an enzyme mixture able to break down vegetal cell walls maintaining nanoparticles intact, as confirmed by several authors. ^{182,190} To avoid dissolution of CuO/Cu(OH)₂

nanoparticles, Laughton et al. 189 proposed the use, of methanol for extraction of the nanoparticles from Dettice 364 alternative to the enzymatic digestion.

The assessment of the nanoparticle ecotoxicity in aquatic and terrestrial environments is based on the use of model organisms. In this context, the bioaccumulation of Ag^{198–200} and Au^{198,201} nanoparticles in spiked sediments and soils has been studied in the earthworms *Lumbriculus variegatus*, ^{198,199} *Lumbriculus rubellus* and *Caenorhabditis elegans*. ²⁰¹ Homogenates of the whole organisms were submitted to enzymatic²⁰⁰ or alkaline ^{198,201} digestions, as well as to water extraction ¹⁹⁹ prior to SP-ICP-MS analysis.

In relation to ecotoxicity studies in aquatic environments, the uptake of Ag^{198,202} and Au¹⁹⁸ nanoparticles by *Daphnia magna* was studied by analysing the haemolymph of the daphnids,²⁰² as well as whole organisms after alkaline digestion with TMAH.¹⁹⁸ In the case of mussels, Gallochio et al.²⁰³ suggested the *in vivo* formation of TiO₂ nanoparticles after their exposure to both ionic and particulate titanium. Zebra fish^{204,205} and trout⁵⁴ have also been used as target species for ecotoxicological studies with Ag, Au, TiO₂ and CeO₂ nanoparticles. The bioaccumulation of these nanoparticles was assessed by analysing different organs of the fishes (liver, intestine, gills, brain) by SP-ICP-MS after their digestion with TMAH or proteinase K.

Rats has been used extensively as model mammals for the toxicity assessment of nanomaterials. Different nanoparticles have been administered in a number of ways (oral gavage, 213,207 intravenous injection, 206 intratracheal instillation, 210 nose inhalation 212 or intraperitoneal injection 208) and their bioaccumulation and distribution in tissues were investigated by SP-ICP-MS. Van der Zande et al. 213 reported the detection of silver nanoparticles in all the tissues studied after oral gavage, although the target organs were liver and spleen. Usually, samples were subjected to digestion with TMAH or proteinase K prior to SP-ICP-MS. Gallochio et al. 214 evaluated the oral administration of PVP-stabilized 20 nm Ag nanoparticles to chickens, detecting 16 nm nanoparticles in liver, but only ionic silver in egg yolks.

Ex vivo **studies.** Experiments involving human tissues are scarce, nonetheless Vidmar et al.²¹⁵ conducted an *ex vivo* study involving human placentas obtained from pregnancies after caesarean section. The SP-ICP-MS analysis of the perfusion experiment confirmed the translocation and accumulation of Ag nanoparticles, although it could not be confirmed if the Agcontaining particles detected in the foetal circulation were translocated pristine Ag nanoparticles or Ag-bearing particles formed from dissolved silver that crossed the placental barrier.

Scenario 3.1: Analysis of foods

A number of inorganic substances are approved as food additives by different regulations. Whereas metallic aluminium (E173), silver (E174) and gold (E175) are used to colour the external coating of confectionery, TiO₂ (E171) is added to provide a whitening effect, and SiO₂ (E551) as anticaking agent. All these additives have been re-evaluated recently by the European Food Safety Authority in relation to their safety, recommending that information about particle size and percentage (in number) of

3

4

5

6

7

8

9

10

11

12

70*7*/91 8

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

Journal Name ARTICLE

particles in the nanoscale should be included in their specifications when present in powder forms. Thus, as it has been seen in scenario 1 with E171 and E174 additives, regulatory requirements are the main driving factors for monitoring these elements by SP-ICP-MS, along with studying their occurrence as nanoparticles in foods. Table 6 summarises the applications of SP-ICP-MS in relation with food analysis.

TiO₂ has been studied in different confectionery products, such as candies, 79,216,219,220,223 chewing gum, 216,217,223 products²¹⁹ or cakes,²¹⁶ but also in drinks²²³ and surimi sticks.²²⁴ These samples were typically subjected to water extraction, followed by centrifugation or filtration, 79,217,219,220 although Peters et al.²¹⁶ proposed the digestion with hydrogen peroxide to release the particles from the coating of the products. For the analysis of surimi sticks, samples underwent enzymatic digestion with pancreatin and lipase.224 The occurrence of particulate and dissolved aluminium in noodles was studied by Loeschner et al.,²²² after enzymatic digestion with α-amylase of the food products. Metallic silver, aluminium and gold are available as decorating powders or found as coatings of confectionery products. 43,44,218 In these cases, samples had to be dispersed or extracted with water, or adding albumin as stabilising agent.⁴³ A different issue was addressed by Kollander et al.,²²¹ who studied the presence of Pb nanoparticles from ammunition in meat of hunted wild animals. Samples from the shot areas were digested with proteinase K and analysed by SP-ICP-MS, detecting Pb nanoparticles.

Although some analysis only focused on detecting the presence of nanoparticles in the samples, 44,219 most of them covered their size characterization and the determination of number and mass concentrations as well. Moreover, most works included the determination of the total content of the elements under study in their analysis schemes, as well as considering the use of electron microscopy techniques 43,218-220,224 or AF4 separations 79,216,223 to verify or complement the results obtained by SP-ICP-MS.

Scenario 3.2: Analysis of environmental samples

The widespread use of engineered nanomaterials in consumer products has increased their potential risk of environmental contamination, and consequently, the need and demand of analysis of environmental samples (waters, soils, sediments, sludges...) to provide reliable field information about their actual occurrence. On the other hand, SP-ICP-MS is also a suitable technique for monitoring naturally occurring or incidental nanomaterials.³² In fact, an still unresolved challenge in this scenario is the discrimination between engineered and natural occurring nanomaterials, which will be discussed below.

Table 7 summarizes different environmental samples analysed by SP-ICP-MS. Most cases refer only to the detection of nanoparticles containing the monitored element because the chemical composition of the particles was not available. Thus, the size information reported was based on assuming a specific composition (e.g., metallic Ag, TiO₂) and a spherical shape. When the authors did not confirm the composition of the nanoparticles by an alternative technique, nanoparticles in Table 7 are referred as nanoparticles containing a specific element (e.g., Ag-, Ti-, Ce- instead of Ag, TiO₂, CeO₂).

In most studies, total element concentrations were determined by ICP-MS or other atomic spectrometry techniques (ICP-OES, AAS) to obtain complementary information of the samples. The use of complementary techniques, like TEM/FESEM or EXAF/XAS, for confirming the presence of nanoparticles or aggregates and obtaining information about morphology, size and composition of the particles was limited to samples containing particles at high enough concentrations. 55,56,242,244,255,259,225,226,231–234,237,238

Soils, wastes, sediments and sludges. Solid environmental samples analysed by SP-ICP-MS include soils, 225 mine wastes, 226 sediments 227-229 and sludges from wastewater treatment plants.^{230–232} In the latter case, these analyses were complemented by the analysis of the influent and the treated effluent of the plants, 230,231 or the analysis of the sediments of lake where discharges were carried out.²²⁹ The nanoparticles of interest were diverse, comprising particles containing elements such as Ag,^{227,228} As,²²⁶ Ti,^{228,230–232} Fe,^{225,231} Zn,^{229,231} Cu,²²⁹ Pb,²²⁹ Pt,²²⁹ Cd,²²⁹ Ce,²²⁹ or Zr²²⁹. Sample preparation involved the extraction of the particulate matter with ultrapure water,²²⁵⁻ 227 the addition of surfactants²²⁹ or other reagents (sodium pyrophosphate,²³² acetic acid²³¹ or TMAH²²⁸); in the case of particles containing Ti, stronger procedures based on microwave acid digestion have also been applied.²³⁰ These treatments were followed by a separation step consisting of centrifugation, filtration, or both sequentially, prior to the analysis of the corresponding supernatant or filtrate.

In relation to the information reported, only Gomez-Gonzalez et al. 226 determined by EXAFS and XAS the nature of the Ascontaining particles detected by SP-ICP-MS in mine tailings (FeAsO4 \cdot 2H2O, scorodite), providing real size information confirmed by TEM. Due to the unknown nature of the particles detected, Baur et al. 229 reported mean mass per particle and mass per particle distributions instead of information as equivalent size, which was the characterisation information typically reported, along with particle mass and number concentrations, as well as dissolved element concentrations.

Waters. Different types of waters have been analysed by SP-ICP-MS, including fresh waters from lakes, rivers and dams, as well as rain, sea, tap, pool and waste waters. The reasons for carrying out these analyses are diverse. The monitoring of titanium in river, lake and swimming pool waters is associated to the release of TiO₂ nanoparticles from sunscreens.^{234–238} Silver has been monitored in different types of waters, although the most relevant studies are related to the removal of silver containing particles in wastewater treatment plants,248-251,254 which has been also the case for Ti-,251 Zn-252,253 and Cecontaining particles.²⁵¹ In the case of cerium, CeO₂ nanoparticles can be released into the air by diesel emissions being detected in rain water²⁴⁵ and other natural waters.^{38,243–245,247,251} Tap waters have been analysed in relation to the release of incidental nanoparticles containing different metals from copper pipes. 255,256 Throughfall water from the wash-off of vine leaves treated with Cu-based fungicides has also been analysed by SP-ICP-MS in combination with other techniques to study the mobilization of Cu-containing particles.²⁵⁸ The occurrence of Zn-,²⁴⁶ Ag-,^{246,247} Ti-,^{246,247} Cu-²⁴⁶ and Ce-²⁴⁷ containing

ARTICLE Journal Name

particles⁴⁵ has also been monitored in seawaters. SP-ICP-MS was used to study acid mine drainage by monitoring Fe- and Cu-containing particles and the effects of water chemistry,²⁵⁹ as well as the release of titanium from construction and demolition landfills by analysing their leachates.²⁶⁰

1 2

3

4

5

6

7

8

9

10

11

12

702791

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 With respect to the preparation of water samples, the simplest procedures only involved the dilution of the sample, although settling, centrifugation or filtration were also applied when suspended matter was present.

In relation to the information reported, a reduced number of works provided qualitative information, ^{236,248,258,274} relying on time scans (Figure 2.a) to prove the presence of particles, whereas most of articles provided quantitative information, including mean/median particle sizes, particle size distributions and particle mass and number concentrations, despite that partial size distributions were obtained in some cases. ^{226,235,241,248,259} In this regard, although Rand and Ranville²⁵⁹ have demonstrated the utility of SP-ICP-MS for detecting incidental nanoparticles in natural systems, they also recommended caution in the data treatment and their interpretation.

In an attempt to discriminate between anthropogenic engineered nanoparticles from natural ones, the measurement of element ratios has been proposed. This strategy assumes that engineered nanoparticles are high purity substances, containing a single major element, while natural nanoparticles have heterogeneous multielement compositions. The Ce/La ratio has been reported for identification of CeO₂ nanoparticles, ^{244,245,247} whereas for TiO₂ nanoparticles, the Ti/Al and Ti/V ratios have been considered. 232,234–236,238,244,247 Whereas SP-ICP-MS with quadrupole instruments is limited to the measurement of two isotopes in an individual particle, TOF instruments are able to record the whole mass spectrum from each particle. In this respect, a promising approach for discrimination anthropogenic and natural particles was proposed by Praetorius et al.²⁷⁶ based on the combination of single particle multielement analysis by SP-ICP-TOF-MS and machine learning data treatment.

Miscellaneous. The analysis of gaseous systems by SP-ICP-MS has been limited to condensates from cigarette smoke to study the presence of arsenic containing particles. ²⁶¹ Condensates from cigarette smoke were accumulated in an electrostatic trapping device followed by washing with methanol. Whereas different inorganic and organoarsenic dissolved species were determined by HPLC-ICP-MS, no As containing particles were detected by SP-ICP-MS. Gas condensates from petroleum hydrocarbon samples were analysed by a number of techniques, including SP-ICP-MS, confirming the presence of Hg-containing nanoparticles by direct analysis of the samples diluted in THF. ²⁶²

Scenario 3.3: Analysis of biological samples

The potential exposure of living organisms, including humans, to engineered nanoparticles has led to study their occurrence in such biological systems. Other applications include the detection of wear metal particles from prothesis in human fluids and tissues, as well as nanoparticles biosynthesised by microorganisms. Table 8 summarizes the application under this scenario involving biological samples originally containing

nanoparticles. As in scenario 3.2, in most works total element concentrations were determined by ICP-MS: and also be element microscopy techniques were applied to obtain complementary information.

Microorganisms. Nanoparticles synthesized by microorganisms from dissolved precursors can be analysed by SP-ICP-MS in a similar way than those internalized from culture media once the microorganisms have been selectively digested, as it has been seen in scenario 2.2. This was the case of selenium-rich yeast, ²⁶³ where biogenic-selenium nanoparticles where detected by SP-ICP-MS and confirmed by TEM-EDS, revealing the significance of nanoparticles in the speciation of metals and metalloids in biological systems.

Aquatic organisms. The analysis of aquatic organisms has included plankton,²²⁸ crustaceans,²²⁸ molluscs^{228,246,264–266} and fishes.²²⁸ In all cases, prior to SP-ICP-MS analysis, nanoparticles were extracted by digestion of the biological matrices. Enzymatic digestions included the use pancreatin/lipase, 246,264,265 whereas alkaline digestions were based on the use of TMAH.^{228,266} The most studied elements have been Ti^{228,246,265} and Ag,^{228,246,264} although nanoparticles containing Cu,²⁴⁶ Zn²⁴⁶ or different rare earth elements²⁶⁶ have been also considered. In relation to the information reported, all the articles provided quantitative information of particle mass and number concentration, particle size distribution and mean size. Reported size detection limits and size distributions allowed to confirm that nanoparticle distribution were incomplete in some cases.^{246,264,266} Moreover, and although SEM and DLS were used in some studies, these techniques did not provide conclusive information, hence the studies only confirmed the occurrence of particles containing the elements detected and not their specific nature.

Human body fluids and tissues. Although the monitoring of Ag-, Ti- and Si-bearing nanoparticles is supported by the potential exposure to Ag, TiO2 and SiO2 engineered nanoparticles,^{268,271,272} human fluids and tissues have also been analysed in relation with the release of incidental nanoparticles containing different elements from metal prothesis^{269,270} and their migration from wound dressings.²⁶⁷ Moreover, exhaled breath condensates were analysed to detect the presence of respirable silica particles in quarry workers.²⁷³ In this latter work, the combination of SP-ICP-MS and TEM-EDS allowed to confirm the presence of silica and silicate particles in the breath condensates. Post-mortem tissues (liver, spleen, kidney, intestine) from deceased persons were analysed after enzymatic digestion with proteinase K, providing detailed information about the SiO₂ and TiO₂ found in the tissues and confirmed by SEM-EDS.^{271,272} On the other hand, periprosthetic tissues and hip fluids from arthroplasty patients were also analysed by SP-ICP-MS, confirming the presence of particles containing Co, Cr, Ti, V, Al, Ta and Mo and the importance of in vivo exposure assessments for realistic appraisal of metal toxicity and associated risks in arthroplasty. 269,270

Urine²⁶⁸ and blood²⁶⁷ samples were analysed directly after dilution with 1% glycerol or ultrapure water, respectively. Whereas particles containing Ti and Ag were detected in urine,

3

4

5

6

7

8

9

10

11

12

70*7*/91 8

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name

only dissolved Ag was detected in blood from burned nations

only dissolved Ag was detected in blood from burned patients treated with wound dressings containing Ag nanoparticles.

SP-ICP-MS has also been used with forensic purposes for the direct analysis of gunshot residues.²⁷⁴ Residues were sampled from the hands of shooters by washing with ultrapure water or swabbing (followed by water extraction from the swabs) to obtain the nanoparticle suspensions, which were analysed directly for screening the presence of Sb-, Ba- and Pb-bearing particles.

Instrumentation and data acquisition

As explained above, SP-ICP-MS was originally developed in commercial quadrupole mass spectrometers with data acquisition frequencies in the range of 1-100 Hz, by using dwell times in the millisecond range. The implementation of single particle detection in quadrupole instruments by manufacturers implied that higher acquisition frequencies became feasible by working at dwell times in the microsecond range, removing the settling time of the quadrupole between readings and improving the capability for transmission and storage of data. Although this new generation of instruments was commercially available since 2014, Tables 2 to 8 show that both ranges of dwell times are being currently used, mostly depending on the availability of instruments, with 45% and 55% of applications using microsecond and millisecond dwell times, respectively. In any case, the duration of the particle events limits the selection of dwell times. Dwell times longer than twice the duration of the events are recommended17 when working at millisecond dwell times to record the particle events as pulses, whereas for microseconds, they should be shorter than half the duration of the events. Working at dwell times longer than 10 ms increases the number of events corresponding to two or more nanoparticles, whereas dwell times around the duration of a single nanoparticle event (300 µs-1 ms) makes difficult to confirm whether the recorded events correspond to one or more nanoparticles. In any case, an adequate dilution of the sample must be made, if needed, in accordance with the dwell time used, because it also affects to the number concentration linear range. 13 In spite of these constraints, dwell times in the range of 0.5–2 ms have been used in several works, compromising the quality of their results.

The feasibility of using microsecond dwell times with double focusing ICP-MS also depends on the instrument, with last generation instruments capable of working down to 10 µs. 11 In a similar way, a new design of TOF mass spectrometer with a temporal resolution of 33 µs became commercially available recently. 9 In either case, their less widespread use is reflected in the low number of applications found in tables 2-8. The main feature of TOF instruments lies in their simultaneous multi-element capability, recording nearly the whole mass spectrum within each reading. Although applications of SP-TOF-ICP-MS are still scarce, the technique offers unique performance for multi-element and isotope ratio analysis in individual nanoparticles, and for discerning between naturally occurring and engineered nanoparticles. 32 Although multielement SP-ICP-MS with quadrupole instruments has also been reported, 277 it is

limited to monitoring up to two isotopes, and is not commercially available yet.

DOI: 10.1039/D1AY00761K

ARTICLE

Apart from resolving spectral interferences, double focusing instruments provide better transmission efficiency and hence improved sensitivity with respect to quadrupole and TOF instruments, resulting in the lowest available size LODs.⁷⁷ The lower resolution of quadrupole ICP-MS is compensated by using single quadrupole instruments with collision/reaction cells (see Tables 2-8), as well as multipole instruments in MS/MS mode, 145,196,217,235 to reduce polyatomic interferences and improve size limits of detection for nanoparticles containing Ti, Fe, Si or Se. However, the collisions/interactions of the ion cloud generated by each particle with the collision/reaction gases increase the duration of the particle events, affecting the performance of the measurements.²⁷⁸ In fact, the use of short dwell times instead of collision/reaction cell technologies has been proposed as an alternative for improving size LODs for silica particles.279

Sample preparation

When ICP-MS is used in single particle mode, the preservation of most of the properties of the nanoparticles is mandatory, hence sample treatments should be reduced to the minimum required. Apart from the extraction of the nanoparticles from solid samples, sample treatments prior to SP-ICP-MS measurements have been limited to clean-up procedures for removal of large particles or fats, the separation of nanoparticles from dissolved species and the preconcentration of the formers.

As it has been shown in the different scenarios discussed above, extraction of nanoparticles from solid samples can involve just the use of water or aqueous solutions containing surfactants, although 50% methanol has been proposed to avoid the dissolution of copper oxide nanoparticles.¹⁸⁹ However, for more refractory nanoparticles, like TiO2, SiO2 or CeO2, more aggressive treatments based on the use of strong acids and/or hydrogen peroxide have been applied. 83,205,216,230 Nanoparticles from soils and sediments have been often extracted with tetrasodium pyrophosphate, 158,159,163 commonly used to disperse soil heteroaggregates. On the other hand, biological samples require the degradation of the organic matrix by using alkaline reagents, like TMAH, or enzymes. In this regard, enzymatic digestions of plant samples have relied exclusively on the use of macerozyme R-10, a mixture of cellulase, hemicellulase and pectinase, whereas for animal samples, proteinase K has been selected, most often although also mixtures pancreatin/lipase²²⁴ and amylase²²² have been used. In this regard, there is not a general agreement about the best digestion approach. For example, Loeschner et al. 206 reported that both TMAH and proteinase K provided similar size distributions for gold nanoparticles in animal tissues, although mass recoveries with proteinase K were not quantitative. In contrast, it was shown that enzymatic treatment with proteinase K was more suitable for silver nanoparticles in human placental tissue, as TMAH treatment appeared to change the nanoparticles, most likely by silver ion precipitation and/or nanoparticle aggregation.²⁸⁰

ARTICLE Journal Name

Once nanoparticles have been extracted from a solid sample, it is usual to separate the liquid phase containing the nanoparticles from the solid residue to remove large particles that may clog the nebulisers. This is also the case in release and fate studies involving solid materials as well as in the analysis of waters. Both filtration and centrifugation have been used for this purpose, although several authors have reported significant losses of nanoparticles in membrane filters. 126,159,163,245 Thus, filtration should be discouraged unless quantitative recoveries have been proved, therefore settling or centrifugation should be used on a routine basis if removal of large particles is needed. Other clean-up procedures involved the defatting of cosmetics by using hexane. 79,82,84

1 2

4

5

6

7

8

9

10

11

12

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 The presence of dissolved species of the measured element has a negative effect on the size LODs, hence methods including their removal by ion exchange^{55,252} or chelating resins¹⁴³ prior to SP-ICP-MS measurements have been reported.

Nanoparticle concentration is not a serious limiting factor for SP-ICP-MS in most scenarios due to its low limits of detection down to 100 particles per millilitre. When lower LODs are required, cloud point extraction has proved to be a valid approach for the isolation and concentration of nanoparticles, while preserving their core size and morphology. 104,132,140,241,256,281 Cloud point extraction involves the addition of a non-ionic surfactant (e.g., Triton X114) at concentrations over the critical micellar concentration, the incorporation of the nanoparticles in the micellar aggregates and the separation of the surfactant phase from the aqueous one by mild heating (ca. 40°C). Besides the addition of a complexing agent allows the selective extraction of the nanoparticles in the presence of the corresponding cations. 282 Finally, a further dilution of the surfactant phase in a mixture of ethanol and water is required before SP-ICP-MS measurements.

As it has been discussed in the previous section, nanoparticle concentration of the measured suspensions should be low enough to be within the linear range, below 10⁷-10⁸ L⁻¹ depending on the instrumental and acquisition conditions, ¹³ and hence the adequate dilution of the suspensions must be considered in each

Separation techniques coupled to SP-ICP-MS

Separation techniques like asymmetrical flow and centrifugal field flow fractionation, capillary electrophoresis, differential mobility analysis, hydrodynamic chromatography, as well as other chromatography modes (size exclusion, reverse phase, ion exchange) have been coupled to ICP-MS. In this situation, the ICP-MS instrument acts as an element specific detector of inorganic nanoparticles that are separated according to their size, density, surface properties or charge.²⁸³ However, the coupling of an ICP-MS working in single particle mode allows to obtain information related to the homo/heteroaggregation/agglomeration of primary inorganic nanoparticles as well as the element content in complex nanoparticles or nanocomposites, in addition to the information obtained directly through the separation itself.

Although methods based on the online coupling of SPATCPOMS to HDC, 284 AF4, 285 capillary electrophoresis 2840 and DMA287 have been reported since 2012, most of them must be considered as proofs-of-concept because their applications to complex scenarios are still scarce or absent, as in the case of capillary electrophoresis and DMA.

The online coupling of HDC to SP-ICP-MS was first described by Pergantis et al.²⁸⁴ for the simultaneous determination of nanoparticle size, number concentration and metal content, by using pristine Au nanoparticles. Subsequently, the capability of HDC-SP-ICP-MS to identify and characterize nanoparticle homoagglomerates in complex media by determining the mass and the hydrodynamic diameter of the separated particles was also demonstrated.²⁸⁸

Roman et al.²⁶⁷ developed an algorithm to deconvolute the SP-ICP-MS signals of dissolved element and nanoparticles separated by HDC, providing information about the concentration of dissolved silver and the distribution of Ag nanoparticles in terms of hydrodynamic diameter, mass-derived diameter, number and mass concentration. The approach was suitable to study quantitatively the dynamics and kinetics of silver nanoparticles in complex biological fluids, including processes such as agglomeration, dissolution and formation of protein coronas. The method was applied to investigate the presence of Ag nanoparticles in the blood of burn patients treated with silver dressings, although only dissolved species were detected.

Under less complex conditions, HDC-SP-ICP-MS has been successfully applied to simultaneously determine both the hydrodynamic radius and the content of Au nanoparticles in liposomes used as carriers of Au nanoparticles. ²⁸⁹ It was possible to distinguish between subpopulations of liposomes with different hydrodynamic diameters and various nanoparticle loads. The application of HDC-SP-ICP-MS to the analysis of river and wastewaters under optimized conditions did not allow to detect silver nanoparticles in the samples, although Cucontaining nanoparticles could be identified. ²⁷⁵

The feasibility of using AF4 online coupled with SP-ICP-MS to detect and quantify inorganic nanoparticles at environmentally relevant concentrations was firstly investigated by Huynh et al.²⁸⁵ by using Ag and Ag-SiO₂ core shell nanoparticles. Later on, Hetzer et al.¹⁰⁰ used AF4-SP-ICP-MS to evaluate the migration behaviour of Ag nanoparticles from food packaging films with varying nanosilver content into three different food simulants (water, 3% acetic acid and 10% ethanol), verifying that both silver nanoparticles and silver nanoparticles/polymer heteroaggregates were released in water.

An alternative to online couplings is the analysis of the fractions collected from the effluents of HDC or AF4 by SP-ICP-MS. This was the approach followed by Proulx et al., ¹³⁷ who demonstrated the feasibility of using HDC offline coupled to SP-ICP-MS for detecting of 20 nm Ag nanoparticles spiked in a river water sample, as well as by Woo-Chun et al.²⁹⁰ who analysed tap, river and waste waters spiked with 30, 60 and 100 nm silver nanoparticles. However, the nanoparticle concentrations used in both studies, in the range of mg L⁻¹, were well above those expected in the environment. In a simpler scenario, the content

3

4

5

6

7

8

9

10

11

12

702798

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name ARTICLE

of metal nanoparticles in composite particles consisting of Au nanoparticles embedded in polymeric particles was determined by using both asymmetrical flow and centrifugal field-flow fractionation. 66 Nanoplastics were separated according to their hydrodynamic diameter and buoyant mass, respectively, and the collected fractions analysed by SP-ICP-MS, confirming the presence of between 1 and more than 8 Au nanoparticles per plastic particle. Under more complex conditions, the SP-ICP-MS analysis of fractions collected from AF4 separations allowed to obtain complementary information about Ag nanoparticles in chicken meat digestates²⁹¹ and Al₂O₃ and TiO₂ nanoparticles in toothpaste. 83

Techniques complementing SP-ICP-MS: Analytical platforms

As it has been highlighted through the previous sections, SP-ICP-MS has opened the way for analysing a variety of samples in different scenarios, allowing the detection of nanoparticles, determination of their concentrations and their characterization to a certain level. However, SP-ICP-MS shows intrinsic limitations, mainly with respect to morphological characterization (size, shape, aggregation/agglomeration) and composition, therefore SP-ICP-MS is usually complemented by using additional techniques (see column "Complementary techniques" in tables 2-8), leading to advanced analytical platforms which are required for solving complex analytical problems. In the end, the size information provided by SP-ICP-MS has to be estimated from the content of the element directly measured in the particles together with their shape and composition, which must be determined by other complementary techniques; otherwise, these morphological parameters must be assumed and only an equivalent size could be reported. The first purpose of these complementary techniques is to provide additional information on nanoparticle size and shape, to supplement or validate the SP-ICP-MS information. In this way, dynamic light scattering, nanoparticle tracking analysis, and particularly electron microscopy are the most common techniques.

Due to its high spatial resolution, below 1 nm, TEM is one of the most powerful techniques to visualize nanoparticles, and then to obtain information not only about their size, but also shape and aggregation state. This technique is essential in the characterization of pristine nanoparticles (scenario 0), to verify the success of the synthesis of new nanoparticles and to confirm their properties. When more complex analytical scenarios are considered, SEM often substitutes TEM. Current SEM instruments, working with field-emission electron sources (FESEM), offer improved spatial resolutions, reaching competitive ranges for the determination of nanoparticle size and shape in complex samples with easier sample preparation than TEM. Moreover, FESEM provides images of larger sample areas, obtaining more representative size distributions. In any case, electron microscopy plays a significant role to evaluate shapes and possible aggregations of nanoparticles in scenarios 1

and 2, and even in scenario 3 if concentrations of nanoparticles are high enough.

DOI: 10.1039/D1AY00761K

On the other hand, unlike light scattering techniques, electron microscopy enables the determination of the chemical composition of the nanoparticles. Most SEM and TEM instruments include several detectors and are usually coupled to EDS, obtaining elemental composition of the nanoparticles for their identification, allowing the verification of their nature, but also studying their reactivity, stability and transformations. Although EDS is frequently coupled to TEM or SEM in any analytical scenario, other techniques like electron diffraction and electron energy-loss spectroscopy have also been considered to obtain structural information. The use of transmission electron scanning microscopes working mode (STEM), in 83,90,100,126,148,193,259,260,262 with high-angle annular dark-field detection, 46,134,218 allows to obtain Z-contrast images that can also add information about the chemical composition of the nanoparticles.

Even though XAS techniques do not provide information on nanoparticle morphology, they have also been considered in some works^{166,182,185,187,226} because of the interest for improving the information about the composition of the nanoparticles in complex samples. Whereas XANES has been used to obtain information on the geometry and oxidation state of the elements, 106,267 EXAFS has done it on element coordination. 226 However, these techniques have been applied occasionally because of their limitations in sensitivity, data interpretation and availability of synchrotron radiation facilities. XRD is also a technique to be considered to obtain structural information of nanoparticles, although limited to pristine nanoparticles (scenario 0) or scenarios in which nanoparticle concentration is not a limitation (scenarios 1 and 2). Finally, the determination of the total element content in the samples under study is included in most works, to evaluate mass balances and recoveries, by using atomic spectrometry techniques (ICP-MS, ICP-OES, AAS) after a suitable digestion step.

SP-ICP-MS based immunoassay and hybridization methods

ICP-MS-based immunoassay methods for determination of biomolecules has gained increasing interest in recent years.²⁹² Immunoassays are based on the use of an antibody (or antigen) as a biorecognition agent of the analyte of interest, which acts as antigen (or antibody), respectively. Immunoassays are very widely used in clinical diagnostics, environmental and food safety, covering a range of analytes from small molecules to macromolecules. The high selectivity and affinity of an antibody against its antigen allows their specific binding in the presence of complex matrices (e.g., whole blood, serum, urine, foods). Most immunoassays require the labelling of the antibody (or the antigen) with easily detectable markers (e.g., radioisotopes, enzymes, small molecule light absorbers, fluorophores, nanoparticles). ICP-MS immunoassays are based on the use of elemental tags of metal ions, nanoparticles or metal containing polymers. Although element-tagged immunoassays were firstly

Analytical Methods Accepted Manuscript

59 60

1

ARTICLE Journal Name

proposed in the 1970s,²⁹³ it was not until the advent of ICP-MS that this methodology started to be relevant, largely due to its higher sensitivity in comparison with other atomic spectrometry techniques and its multiplexing capability.^{294,295}

The use of metal nanoparticles as labels provides significant advantages, owing to their stability, biocompatibility, and easy conjugation to antibodies/antigens without modifying their binding properties. Moreover, when used in combination with an ICP-MS operated in single particle detection mode a further improvement in sensitivity is achieved. Whereas ICP-MS immunoassays are based on the conventional quantification of the tagging element, reaching detection limits in the range of 50-5000 pg mL⁻¹, these detection limits can be decreased to 1-15 pg mL⁻¹ when SP-ICP-MS is used.²⁹² The improvement lies in the fact that the biomolecule concentration is related to the number concentration of nanoparticles determined by SP-ICP-MS and not to the total content of element measured by ICP-MS.

The first immunoassay based on SP-ICP-MS was reported in 2009. α-Fetoprotein was determined by a competitive immunoassay, using 45 nm Au nanoparticles as labels. A detection limit of 16 pg mL-1 was achieved, lower than using strategies.²⁹⁶ immunoassay Rabbit-anti-human immunoglobulin G was determined by a sandwich type immunoassay using 45 nm Au nanoparticles with detection limits of 100 pg mL-1.297 A self-validated homogeneous immunoassay was also proposed for the carcinoembryonic antigen quantification by monitoring both frequency and intensity of the gold nanoparticles used as labels. The method provided accurate results in human serum samples with detection limits in the pM level.²⁹⁸ ZnSe quantum dots were used for tagging antibodies in a sandwich-type magnetic immunoassay for determination of carcinoembryonic antigen in human serum with a detection limit of 6 pg mL⁻¹ by monitoring ⁶⁴Zn.²⁹⁹ The determination of cytokeratin fragment antigen 21-1, carbohydrate antigen, and carcinoembryonic antigen was carried out by a simultaneous sandwich-type immunoassay using antibody-immobilized magnetic beads and Au, Ag and ZnSe nanoparticle labels, respectively.300 The method was successfully applied to detect the three biomarkers in human lung cancer serum samples.

Besides immunoassay, SP-ICP-MS has also been applied in DNA hybridization and RNA methods. 301-304 A homogeneous DNA assay based on a target-induced hybridization chain reaction to achieve controlled spherical nucleic acid assembly has been reported. The strategy relies on the mediation of the hybridization chain reaction in the assembly of a nanogold core with oligonucleotide shell to generate controllable large Au nanoparticle aggregates and significant ¹⁹⁷Au counts as compared with the background of a simple dispersed Au nanoparticle. This homogeneous assay could determine DNA within the range of 5 fM to 10 pM. 302

A rRNA detection platform was achieved by combining a sandwich type hybridization reaction with a single-molecule magnetic capture and SP-ICP-MS for the absolute and relative quantification of *E. coli* rRNA. This method was applied to the direct quantification of rRNA from dangerous human pathogens in milk samples with a detection limit of 10 fM.³⁰⁴

Table 9 summarises the SP-ICP-MS based immunoassay and hybridization methods developed up to date: 1Ato name particles have been more frequently used, although methods based on Ag and Pt nanoparticles have also been reported, as well as ZnS quantum dots. Quadrupole instruments have been used in all works, with dwell times in the range of milliseconds, but also at microseconds. In some cases, immunoassay and hybridization schemes use antibody-immobilised magnetic particles, that greatly improve the efficiency of the washing and separating steps of the captured antigens under a magnetic field. 298,302

View Article Online DOI: 10.1039/D1AY00761K

Table 9 SP-ICP-MS-based immunoassay and hybridization methods for the quantification of biomolecules.

analyte	sample	assay type	nanoparticle label	dwell time	LOD	ref.
α-fetoprotein	human serum	competitive immunoassay	Au (45 nm)	10 ms	16 pg mL ⁻¹	296
rabbit-anti-human IgG	human serum	sandwich immunoassay	Au (45 nm)	10 ms	100 pg mL ⁻¹	297
carcinoembryonic antigen	human serum	homogeneous immunoassay	Au (30 nm)	50 μs	210 pg mL ⁻¹ (1.2 pM)	298
	human serum	sandwich magnetic immunoassay	ZnSe (2.6 nm)	100 μs	6 pg mL ⁻¹	299
cytokeratin fragment antigen	human serum	sandwich magnetic	Au (29 nm)	100 μs	20 pg mL ⁻¹	300
carcinoembryonic antigen		immunoassay	ZnSe (2.6 nm)		6 pg mL ⁻¹	
carbohydrate antigen			Ag (14 nm)		0.25 mU mL ⁻¹	
DNA	-	homogeneous DNA hybridization	Au (28 nm)	0.5 ms	1 pM	301
	human serum	homogeneous DNA hybridization chain reaction	Au (30 nm)	5 ms	3 fM	302
human immunodeficiency virus hepatitis B virus hepatitis C virus	human serum	multiplexed heterogeneous sandwich DNA hybridization	Au (25 nm) Ag (25 nm) Pt (20 nm)	0.5 ms	< 1 pM	303
E. coli RNA	milk	sandwich hybridization with magnetic particles	Au (30 nm)	-	10 fM	304

Analytical Methods Accepted Manuscri

View Article Online DOI: 10.1039/D1AY00761K

Conclusions

The features of SP-ICP-MS for the detection, quantification and characterization of nanoparticles have led to the development of this technique and its increasing application in many different fields under analytical scenarios of varying complexity, which have been comprehensively covered in this review. However, its implementation in commercial instruments by most ICP-MS manufacturers can be considered the key to its success. Despite the rapid evolution of SP-ICP-MS in the last ten years, in 2020 the number of publications related to fundamental aspects of the technique and the development of methods was still 1 out of 3 with respect to the number of publications dedicated to specific analytical applications. For this reason, by following Horlick's approach, 12 although SP-ICP-MS is on the way of becoming a mature technique, its characterization stage cannot be considered finished yet. Moreover, its progress towards maturity is currently hampered by other issues like the availability of validated methods and the traceability of their results. Both issues are conditioned by the availability of reference materials, which are currently restricted to pristine nanoparticles of specific compositions, whereas matrix reference materials are still not available due long-term stability problems.¹⁹ This situation entails using nanoparticle suspensions supplied from a reduced number of manufacturers as standards for calibrations and quality control. Furthermore, since standards for only a small number of nanoparticle compositions are available, indirect calibrations based on the determination of the nebulisation efficiency and the use of dissolved standards are applied routinely to obtain quantitative information. This approach requires that not only the element in dissolved and particulate forms behave in the ICP in the same way, but also the nebulisation for the standards and the samples. These two factors cannot be disregarded to obtain unbiased results, which is particularly challenging when dealing with complex matrices. The analytical scenarios in which SP-ICP-MS is more frequently applied are those related to studies about fate and (eco)toxicity under controlled laboratory conditions involving the use of pristine nanoparticles (type 2 scenarios). The main reason is that both size and concentration of the nanoparticles added can be selected according to the experiment design and the detection capability, although there is an increasing trend to perform these studies at realistic concentrations. In any case, the most complex challenge for SP-ICP-MS is the analysis of samples originally containing nanoparticles, namely foods and environmental and biological samples (scenarios type 3), because of the complexity of the matrices and the low concentrations expected, but also nano-enhanced products (scenario 1). The main drawback with

these samples is that the nature of the particles is unknown in

many cases. Consequently, only masses of element per particle or equivalent sizes (assuming an expected composition and shape) can be reported, unless complementary techniques are used to obtain such information. An additional difficulty with this samples arises when part of the particle size distribution is missed due to the attainable size LODs. In such cases, nanoparticle concentrations will be underestimated and mean sizes overestimated. Hence, results should include these limitations, only reporting the occurrence of particles in the sample over a certain (equivalent) size and number concentration, considering SP-ICP-MS as a screening technique instead of a fully quantitative one. On the other hand, particles are not the only targets of SP-ICP-MS, its capability for the simultaneous quantification of dissolved elements has also been exploited in many of the applications involving nanoparticles prone to oxidation or dissolution, like those made of Ag, CuO or

Although SP-ICP-MS is mostly involved in methods for the analysis of samples containing nanoparticles, the technique is also suitable for being used in methods where nanoparticles are not analytes but analytical tools. This is the case of immunoassay and hybridization methods for the analysis of biomolecules, where nanoparticles are used as elemental labels conjugated to antibodies and oligonucleotides. By selecting the adequate nanoparticles, SP-ICP-MS can provide better limits of detection for these bioassays due to its high sensitivity in terms of number concentration. The applications of SP-ICP-MS in immuno- and hybridization assays are still scarce but show very promising results.

Author contributions

Eduardo Bolea: Writing - Review & Editing; Maria S. Jimenez: Writing - Original Draft; Josefina Perez-Arantegui: Writing - Original Draft; Juan C. Vidal: Investigation, Writing - Original Draft, Mariam Bakir: Investigation, Writing - Original Draft; Khaoula Ben-Jeddou: Investigation, Writing - Original Draft; Ana C. Gimenez-Ingalaturre: Investigation, Writing - Original Draft; David Ojeda: Investigation, Writing - Original Draft, Celia Trujillo: Investigation, Writing - Original Draft; Francisco Laborda: Conceptualization, Supervision, Visualization, Writing - Review & Editing.

Conflicts of interest

There are no conflicts to declare.

3 4

5

6

7

8

9

10

11

12

70*7*91 8

42

43

44 45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

ARTICLE

(MICINN/FEDER).

Journal Name

Acknowledgements

This work was supported by the Spanish Ministry of Science, Innovation and Universities and the European Regional Development Fund, project RTI2018-096111-B-I00

K. B.-J. thanks funding from the EU Horizon 2020 programme under the Marie Sklowdowska-Curie grant agreement no. 801586.

A.C.G. thanks the Government of Aragón (DGA) for a predoctoral contract.

C.T. thanks the University of Zaragoza for a predoctoral contract

List of acronyms

AAS	atomic absorption spectrometry		
AES	Auger electron spectroscopy		
AFM	atomic force microscopy		
AF4	asymmetric flow field flow fractionation		
ATR-FTIR	attenuated total reflectance-Fourier transform		
	infrared spectroscopy		
AUC	analytical ultracentrifugation		
BSA	bovine serum albumin		
CE	capillary electrophoresis		
CFFF	centrifugal field flow fractionation		
CLS	centrifugal liquid sedimentation		
CNT	carbon nanotube		
CPE	cloud point extraction		
DE	dissolved element		
DF	double focussing		
DGT	diffusive gradient in thin film		
DLS	dynamic light scattering		
DMA	differential mobility analysis		
EDM-HSI	enhanced darkfield microscopy-hyperspectral		
	imaging		
EDS	energy dispersive X-ray spectroscopy		
ETAAS	electrothermal atomic absorption spectrometry		
EXAFS	extended X-ray absorption fine structure		
FAAS	flame atomic absorption spectrometry		
FESEM	field-emission scanning electron microscopy		
FIBSEM	focused ion beam scanning electron microscopy		
FTIR	Fourier transform infrared spectroscopy		
HAADF	high-angle annular dark-field		
HDC	hydrodynamic chromatography		
HIM	helium ion microscopy		
HPLC	high performance liquid chromatography		
HRTEM	high resolution transmission electron microscopy		
IC	ion chromatography		
ICP-MS	inductively coupled plasms-mass spectrometry		
ICP-OES	inductively coupled plasma-optical emission		
	spectrometry		
ISE	ion selective electrode potentiometry		
LA	laser ablation		
LDA	laser diffraction analysis		
LOD	limit of detection		
MALS	multiangle light scattering		

NOM	natural organic matter	View Article Onlin	
NP	nanoparticle	DOI: 10.1039/D1AY00761	
NTA	nanoparticle tracking analy	sis	
Q	quadrupole		
RI	refractive index		
SAM	scanning Auger mapping		
SDS	sodium dodecylsulphate		
SEC	size exclusion chromatography		
SEM	scanning electron microscopy		
SIMS	secondary-ion mass spectrometry		
SMPS	scanning mobility particle sizer		
SP-ICP-MS	single particle-inductively	coupled plasma-mas	
	spectrometry		
CEPTA 6			

spectrometry
STEM scanning transmission electron microscopy
TEM transmission electron microscopy

TMAH tetramethyl ammonium hydroxide

TOF time of flight

TXRF total reflection X-ray fluorescence
UV-vis ultraviolet visible absorption
XANES X-ray absorption near edge structure
XAS X-ray absorption spectroscopy
XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction

References

1	M. D. Montaño, J. W. Olesik, A. G. Barber, K. Challis and
	J. F. Ranville, Anal. Bioanal. Chem., 2016, 408, 5053-
	5074

- C. Degueldre and P.-Y. Favarger, Colloids Surfaces A Physicochem. Eng. Asp., 2003, 217, 137–142.
- 3 C. Degueldre and P.-Y. Favarger, *Talanta*, 2004, **62**, 1051–1054.
- 4 C. Degueldre, P.-Y. Favarger and C. Bitea, *Anal. Chim. Acta*, 2004, **518**, 137–142.
- C. Degueldre, P.-Y. Favarger, R. Rossé and S. Wold, *Talanta*, 2006, 68, 623–628.
- 6 C. Degueldre, P. Favarger and S. Wold, *Anal. Chim. Acta*, 2006, **555**, 263–268.
- F. Laborda, J. Jiménez-Lamana, E. Bolea and J. R. Castillo, J. Anal. At. Spectrom., 2011, 26, 1362–1371.
- H. E. Pace, N. J. Rogers, C. Jarolimek, V. A. Coleman, C.
 P. Higgins and J. F. Ranville, *Anal. Chem.*, 2011, 83, 9361–9369.
- O. Borovinskaya, B. Hattendorf, M. Tanner, S. Gschwind and D. Günther, *J. Anal. At. Spectrom.*, 2013, **28**, 226–233.
- 10 A. Hineman and C. Stephan, *J. Anal. At. Spectrom.*, 2014, **29**, 1252–1257.
- 11 P. Shaw and A. Donard, *J. Anal. At. Spectrom.*, 2016, **31**, 1234–1242.
- 12 G. Horlick, J. Anal. At. Spectrom., 1994, 9, 593–597.
- I. Abad-Álvaro, E. Peña-Vázquez, E. Bolea, P. Bermejo-Barrera, J. R. Castillo and F. Laborda, *Anal. Bioanal. Chem.*, 2016, 408, 5089–5097.
- 14 V. Geertsen, E. Barruet, F. Gobeaux, J.-L. Lacour and O. Taché, *Anal. Chem.*, 2018, **90**, 9742–9750.
- F. Laborda, E. Bolea and J. Jiménez-Lamana, *Anal. Chem.*, 2014, 86, 2270–2278.
- 16 F. Laborda, E. Bolea and J. Jiménez-Lamana, *Trends Environ. Anal. Chem.*, 2016, **9**, 15–23.
- 17 F. Laborda, A. C. Gimenez-Ingalaturre, E. Bolea and J. R.

ARTICLE Journal Name

Castillo, Spectrochim. Acta Part B At. Spectrosc., 2020,
169 , 105883.

1 2

3

4

5

6

7

8

9

10

11

12

70279

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

- D. Mozhayeva and C. Engelhard, J. Anal. At. Spectrom., 2020, **35**, 1740–1783.
- 19 F. Laborda, A. C. Gimenez-Ingalaturre and E. Bolea, in Analysis and Characterisation of Metal-Based Nanomaterials, eds. R. Milacic, J. Scancar, J. Vidmar and H. Goenaga-Infante, Elsevier, 1st editio., 2021.
- 20 ISO/TC 229, ISO/TS 80004-2:2015 Nanotechnologies — Vocabulary — Part 2: Nano-objects, 2015.
- F. Laborda, C. Trujillo and R. Lobinski, Talanta, 2021, 221, 21 121486.
- A. Kéri, A. Sápi, D. Ungor, D. Sebők, E. Csapó, Z. Kónya 22 and G. Galbács, J. Anal. At. Spectrom., 2020, 35, 1139-
- 23 N. Joo and H. B. Lim, Bull. Korean Chem. Soc., 2019, 40, 1087-1092.
- 24 H.-A. Kim, B.-T. Lee, S.-Y. Na, K.-W. Kim, J. F. Ranville, S.-O. Kim, E. Jo and I.-C. Eom, Chemosphere, 2017, 171, 468 - 475
- 25 N. D. Donahue, E. R. Francek, E. Kiyotake, E. E. Thomas, W. Yang, L. Wang, M. S. Detamore and S. Wilhelm, Anal. Bioanal. Chem., 2020, 412, 5205-5216.
- 26 S. V. Jenkins, H. Qu, T. Mudalige, T. M. Ingle, R. Wang, F. Wang, P. C. Howard, J. Chen and Y. Zhang, Biomaterials, 2015, **51**, 226–237.
- 27 K. Flores, R. S. Turley, C. Valdes, Y. Ye, J. Cantu, J. A. Hernandez-Viezcas, J. G. Parsons and J. L. Gardea-Torresdey, Appl. Spectrosc. Rev., 2019, 0, 1–26.
- 28 L. C. Jones, E. Soffey and M. Kelinske, Spectroscopy, 2019, 34, 10-20.
- C. Stephan and R. Thomas, Spectroscopy, 2017, 32, 12-25.
- B. Meermann and V. Nischwitz, J. Anal. At. Spectrom., 30 2018. 33. 1432-1468.
- 31 R. M. Galazzi, K. Chacón-Madrid, D. C. Freitas, L. F. Costa and M. A. Z. Arruda, Rapid Commun. Mass Spectrom., 2020, 34.
- 32 M. D. Montaño, F. Von Der Kammer, C. W. Cuss and J. F. Ranville, J. Anal. At. Spectrom., 2019, 34, 1768-1772.
- 33 Z. Gajdosechova and Z. Mester, Anal. Bioanal. Chem., 2019, 4277-4292.
- 34 F. Abdolahpur Monikh, L. Chupani, M. G. Vijver, M. Vancová and W. J. G. M. Peijnenburg, Sci. Total Environ., 2019, 660, 1283-1293.
- 35 G. E. Schaumann, A. Philippe, M. Bundschuh, G. Metreveli, S. Klitzke, D. Rakcheev, A. Grün, S. K. Kumahor, M. Kühn, T. Baumann, F. Lang, W. Manz, R. Schulz and H. Vogel, Sci. Total Environ., 2015, 535, 3-19.
- M. Sargent, J. Anal. At. Spectrom., 2020, 35, 2479-2486. 36
- T. P. J. Linsinger, O. Chaudhry, V. Dehalu, P. Delahaut, a Dudkiewicz, R. Grombe, F. von der Kammer, E. H. Larsen, S. Legros, K. Loeschner, R. Peters, R. Ramsch, G. Roebben, K. Tiede and S. Weigel, Food Chem., 2013, 138,
- 38 R. J. B. Peters, G. van Bemmel, N. B. L. Milani, G. C. T. den Hertog, A. K. Undas, M. van der Lee and H. Bouwmeester, Sci. Total Environ., 2018, 621, 210-218.
- 39 M. Witzler, F. Küllmer, A. Hirtz and K. Günther, J. Agric. Food Chem., 2016, 64, 4165-4170.
- 40 R. J. B. Peters, Z. H. Rivera, G. van Bemmel, H. J. P. Marvin, S. Weigel and H. Bouwmeester, Anal. Bioanal. Chem., 2014, 406, 3875-3885.
- 41 P. Ruud JB, U. Anna K, M. Joost, B. Greet van, M. Sandra, B. Hans, N. Peter, S. Wobbe and L. Martijn K van der, Curr. Trends Anal. Bioanal. Chem., 2018, 2, 74-84.
- 42 M. Witzler, F. Küllmer and K. Günther, Anal. Lett., 2018,

- **51**, 587–599.
- N. Waegeneers, S. De Vos, E. Verleysen, A. Buttens, and G.K. 43 Mast, Materials (Basel)., 2019, 12, 2677.
- 44 F. Laborda, A. C. Gimenez-Ingalaturre, E. Bolea and J. R. Castillo, Spectrochim. Acta Part B At. Spectrosc., 2019, 159, 105654.
- O. Geiss, I. Bianchi, C. Senaldi, G. Bucher, E. Verleysen, 45 N. Waegeneers, F. Brassinne, J. Mast, K. Loeschner, J. Vidmar, F. Aureli, F. Cubadda, A. Raggi, F. Iacoponi, R. Peters, A. Undas, A. Müller, A. K. Meinhardt, E. Walz, V. Gräf and J. Barrero-Moreno, Food Control, 2021, 120,
- E. Verleysen, N. Waegeneers, F. Brassinne, S. De Vos, I. O. 46 Jimenez, S. Mathioudaki and J. Mast, Nanomaterials, 2020,
- 47 A. R. Montoro Bustos, K. P. Purushotham, A. Possolo, N. Farkas, A. E. Vladár, K. E. Murphy and M. R. Winchester, Anal. Chem., 2018, 90, 14376-14386.
- R. Peters, Z. Herrera-Rivera, A. Undas, M. van der Lee, H. Marvin, H. Bouwmeester and S. Weigel, J. Anal. At. Spectrom., 2015, 30, 1274-1285.
- 49 S. Weigel, R. Peters, K. Loeschner, R. Grombe and T. P. J. Linsinger, Anal. Bioanal. Chem., 2017, 409, 4839-4848.
- R. Peters, Z. Herrera-Rivera, A. Undas, M. Van Der Lee, H. 50 Marvin, H. Bouwmeester and S. Weigel, J. Anal. At. Spectrom., 2015, 30, 1274-1285.
- 51 J. W. Olesik and P. J. Gray, J. Anal. At. Spectrom., 2012, **27**, 1143–1155.
- T. P. J. Linsinger, R. Peters and S. Weigel, Anal. Bioanal. 52 Chem., 2014, 406, 3835-3843.
- I. Rujido-Santos, L. Naveiro-Seijo, P. Herbello-Hermelo, 53 M. del C. Barciela-Alonso, P. Bermejo-Barrera and A. Moreda-Piñeiro, Talanta, 2019, 197, 530-538.
- 54 N. J. Clark, R. Clough, D. Boyle and R. D. Handy, Environ. Sci. Nano, 2019, 6, 3388-3400.
- 55 L. Fréchette-Viens, M. Hadioui and K. J. Wilkinson, Talanta, 2019, 200, 156–162.
- S. Wu, S. Zhang, Y. Gong, L. Shi and B. Zhou, J. Hazard. 56 Mater., 2020, 382, 121045.
- 57 J. Nelson, A. Saunders, L. Poirier, E. Rogel, C. Ovalles, T. Rea and F. Lopez-Linares, J. Nanoparticle Res., 2020, 22,
- J. Noireaux, R. Grall, M. Hullo, S. Chevillard, C. Oster, E. 58 Brun, C. Sicard-Roselli, K. Loeschner and P. Fisicaro, Separations, 2019, **6**, 3.
- 59 F. Laborda and E. Bolea, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, Elsevier, 2018, pp. 1-9.
- J. D. Martin, L. Telgmann and C. D. Metcalfe, Bull. 60 Environ. Contam. Toxicol., 2017, 98, 589-594.
- H. Zhang, Y. Huang, J. Gu, A. Keller, Y. Qin, Y. Bian, K. Tang, X. Qu, R. Ji and L. Zhao, New J. Chem., 2019, 43, 3946-3955.
- R. C. Merrifield, C. Stephan and J. R. Lead, *Talanta*, 2017, 62 **162**, 130-134.
- 63 A. Kéri, I. Kálomista, D. Ungor, Á. Bélteki, E. Csapó, I. Dékány, T. Prohaska and G. Galbács, Talanta, 2018, 179, 193-199.
- J.-B. CHAO, J.-R. WANG and J.-Q. ZHANG, Chinese J. 64 Anal. Chem., 2020, 48, 946-954.
- 65 I. Kálomista, A. Kéri, D. Ungor, E. Csapó, I. Dékány, T. Prohaska and G. Galbács, J. Anal. At. Spectrom., 2017, 32, 2455-2462.
- A. Barber, S. Kly, M. G. Moffitt, L. Rand and J. F. 66 Ranville, Environ. Sci. Nano, 2020, 7, 514–524.
- 67 S. G. F. Eggermont, A. Rua-Ibarz, K. Tirez, X. Dominguez-

3

4

5

6

7

8

9

10

11

12

777 78 8

175 no 17

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name ARTICLE

	Benetton and J. Fransaer, <i>RSC Adv.</i> , 2019, 9 , 29902–29908.
68	R. P. Lamsal, M. S. E. Houache, A. Williams, E. Baranova,
	G. Jerkiewicz and D. Beauchemin, Anal. Chim. Acta, 2020,
	1120 , 67–74.

- 69 K. Walbrück, F. Kuellmer, S. Witzleben and K. Guenther, *J. Nanomater.*, 2019, **2019**, 1–7.
- S. Meyer, R. Gonzalez de Vega, X. Xu, Z. Du, P. A. Doble and D. Clases, *Anal. Chem.*, 2020, 92, 15007–15016.
- 71 S. Salou, C. Cirtiu, D. Larivière and N. Fleury, *Anal. Bioanal. Chem.*, 2020, **412**, 1469–1481.
- 72 A. Sápi, A. Kéri, I. Kálomista, D. G. Dobó, A. Szamosvölgyi, K. L. Juhász, A. Kukovecz, Z. Kónya and G. Galbács, J. Anal. At. Spectrom., 2017, 32, 996–1003.
- 73 R. B. Reed, D. G. Goodwin, K. L. Marsh, S. S. Capracotta, C. P. Higgins, D. H. Fairbrother and J. F. Ranville, *Environ. Sci. Process. Impacts*, 2013, **15**, 204–213.
- 74 J. Wang, R. S. Lankone, R. B. Reed, D. H. Fairbrother and J. F. Ranville, *NanoImpact*, 2016, 1, 65–72.
- 75 P. M. P. Danty, A. Mazel, B. Cormary, M. L. De Marco, J. Allouche, D. Flahaut, J. Jimenez-Lamana, S. Lacomme, M. H. Delville and G. L. Drisko, *Inorg. Chem.*, 2020, 59, 6232–6241.
- 76 E. Lahtinen, E. Kukkonen, V. Kinnunen, M. Lahtinen, K. Kinnunen, S. Suvanto, A. Vaïsänen and M. Haukka, ACS Omega, 2019, 4, 16891–16898.
- 77 M. Hadioui, G. Knapp, A. Azimzada, I. Jreije, L. Frechette-Viens and K. J. Wilkinson, *Anal. Chem.*, 2019, 91, 13275– 13284.
- 78 Y. Dan, H. Shi, C. Stephan and X. Liang, *Microchem. J.*, 2015, **122**, 119–126.
- I. de la Calle, M. Menta, M. Klein, B. Maxit and F. Séby, *Spectrochim. Acta - Part B At. Spectrosc.*, 2018, 147, 28– 42.
- 80 P. J. Lu, S. W. Fang, W. L. Cheng, S. C. Huang, M. C. Huang and H. F. Cheng, *J. Food Drug Anal.*, 2018, 26, 1192–1200.
- 81 B. Bocca, S. Caimi, O. Senofonte, A. Alimonti and F. Petrucci, *Sci. Total Environ.*, 2018, **630**, 922–930.
- C. Adelantado, Á. Ríos and M. Zougagh, *Talanta*, 2020, 219, 121385.
- 83 M. Correia, T. Uusimäki, A. Philippe and K. Loeschner, *Separations*, 2018, **5**, 1–25.
- 84 I. de la Calle, M. Menta, M. Klein and F. Séby, *Talanta*, 2017, **171**, 291–306.
- F. Laborda, C. Trujillo and R. Lobinski, *Talanta*, 2021, 221, 121486.
- 86 Y. Yang, L. Luo, H. P. Li, Q. Wang, Z. G. Yang, Z. P. Qu and R. Ding, *Talanta*, 2018, 182, 156–163.
- 87 J. Therkorn, L. Calderón, B. Cartledge, N. Thomas, B. Majestic and G. Mainelis, *Environ. Sci. Nano*, 2018, 5, 544–555.
- 88 S. Losert, A. Hess, G. Ilari, N. von Goetz and K. Hungerbuehler, *J. Nanoparticle Res.*, 2015, **17**, 293.
- 89 J. P. F. G. Helsper, R. J. B. Peters, M. E. M. van Bemmel, Z. E. H. Rivera, S. Wagner, F. von der Kammer, P. C. Tromp, T. Hofmann and S. Weigel, *Anal. Bioanal. Chem.*, 2016, 408, 6679–6691.
- A. Hegetschweiler, O. Borovinskaya, T. Staudt and T. Kraus, *Anal. Chem.*, 2019, 91, 943–950.
- 91 J. Nelson, M. Yamanaka, F. Lopez-Linares, L. Poirier and E. Rogel, *Energy and Fuels*, 2017, **31**, 11971–11976.
- 92 B. Bocca, E. Sabbioni, I. Micetic, A. Alimonti and F. Petrucci, *J. Anal. At. Spectrom.*, 2017, **32**, 616–628.
- B. Battistini, F. Petrucci, I. De Angelis, C. M. Failla and B. Bocca, *Chemosphere*, 2020, **245**, 125667.
- 94 M. Van Wassenhoven, M. Goyens, E. Capieaux, P. Devos

- and P. Dorfman, *Homeopathy*, 2019, **108**, 073_074 Y. Echegoyen and C. Nerín, *Food Chem*. 1702/09/01/2006761K **62C**, 16–22.
- 96 A. Mackevica, M. E. Olsson and S. F. Hansen, J. Nanoparticle Res., 2016, 18, 5.
- 97 K. Ramos, M. M. Gómez-Gómez, C. Cámara and L. Ramos, *Talanta*, 2016, **151**, 83–90.
- 98 R. Ding, P. Yang, Y. Yang, Z. Yang, L. Luo, H. Li and Q. Wang, Food Addit. Contam. Part A, 2018, 35, 2052–2061.
- 99 Y. Echegoyen, S. Rodríguez and C. Nerín, *Food Addit. Contam. Part A*, 2016, **33**, 530–539.
- 100 B. Hetzer, A. Burcza, V. Gräf, E. Walz and R. Greiner, *Food Control*, 2017, **80**, 113–124.
- 101 S. Addo Ntim, S. Norris, K. Scott, T. A. Thomas and G. O. Noonan, Food Control, 2018, 87, 31–39.
- 102 A. Mackevica, M. E. Olsson and S. F. Hansen, *J. Hazard. Mater.*, 2017, 322, 270–275.
- 103 A. Mackevica, M. E. Olsson, P. D. Mines, L. R. Heggelund and S. F. Hansen, *NanoImpact*, 2018, **11**, 109–118.
- L. Torrent, M. Iglesias, M. Hidalgo and E. Marguí, *J. Anal. At. Spectrom.*, 2018, **33**, 383–394.
- 105 A. Mackevica, M. E. Olsson and S. F. Hansen, *J. Nanoparticle Res.*, 2018, **20**, 6.
- D. M. Mitrano, E. Lombi, Y. A. R. Dasilva and B. Nowack, *Environ. Sci. Technol.*, 2016, **50**, 5790–5799.
- J. Farkas, H. Peter, P. Christian, J. A. Gallego Urrea, M. Hassellöv, J. Tuoriniemi, S. Gustafsson, E. Olsson, K. Hylland and K. V. Thomas, *Environ. Int.*, 2011, 37, 1057–1062.
- 108 R. S. Lankone, J. Wang, J. F. Ranville and D. H. Fairbrother, *Environ. Sci. Nano*, 2017, 4, 967–982.
- N. Neubauer, L. Scifo, J. Navratilova, A. Gondikas, A. Mackevica, D. Borschneck, P. Chaurand, V. Vidal, J. Rose, F. von der Kammer and W. Wohlleben, *Environ. Sci. Technol.*, 2017, 51, 11669–11680.
- B. Gomez-Gomez, M. T. Perez-Corona and Y. Madrid, *Anal. Chim. Acta*, 2020, 1100, 12–21.
- 111 A. S. Adeleye, E. A. Oranu, M. Tao and A. A. Keller, Water Res., 2016, 102, 374–382.
- A. Azimzada, J. M. Farner, M. Hadioui, C. Liu-Kang, I. Jreije, N. Tufenkji and K. J. Wilkinson, *Environ. Sci. Nano*, 2020, 7, 139–148.
- 113 M. T. Islam, A. Dominguez, R. S. Turley, H. Kim, K. A. Sultana, M. A. I. Shuvo, B. Alvarado-Tenorio, M. O. Montes, Y. Lin, J. Gardea-Torresdey and J. C. Noveron, *Sci. Total Environ.*, 2020, 704, 135406.
- D. P. Martin, N. L. Melby, S. M. Jordan, A. J. Bednar, A. J. Kennedy, M. E. Negrete, M. A. Chappell and A. R. Poda, Chemosphere, 2016, 162, 222–227.
- 115 Y.-S. Zimmermann, A. Schäffer, P. F.-X. Corvini and M. Lenz, *Environ. Sci. Technol.*, 2013, **47**, 13151–13159.
- 116 R. S. Lankone, K. Challis, L. Pourzahedi, D. P. Durkin, Y. Bi, Y. Wang, M. A. Garland, F. Brown, K. Hristovski, R. L. Tanguay, P. Westerhoff, G. Lowry, L. M. Gilbertson, J. Ranville and D. H. Fairbrother, *Sci. Total Environ.*, 2019, 668, 234–244.
- M. C. Sportelli, R. A. Picca, F. Paladini, A. Mangone, L. C. Giannossa, C. Di Franco, A. L. Gallo, A. Valentini, A. Sannino, M. Pollini and N. Cioffi, *Nanomaterials*, 2017, 7, 203.
- N. Shin, K. Velmurugan, C. Su, A. K. Bauer and C. S. J. Tsai, Environ. Sci. Process. Impacts, 2019, 21, 1342–1352.
- K. Folens, T. Van Acker, E. Bolea-Fernandez, G. Cornelis, F. Vanhaecke, G. Du Laing and S. Rauch, *Sci. Total Environ.*, 2018, 615, 849–856.
- 120 Z. Li, M. Hadioui and K. J. Wilkinson, Environ. Pollut.,

ART	ICLE		Journal Name
	2019, 247 , 206–215.		M. Tilahun, K. Ndungu, A. M. Booth, K. V. Thomas and A.
121	S. Addo Ntim, T. A. Thomas and G. O. Noonan, <i>Food Addit. Contam Part A Chem. Anal. Control. Expo. Risk Assess.</i> , 2016, 33 , 905–912.	149	Macken, Environ. Sci. Technol., 2018, 52, 043,507,514,007,618 C. Long, Z. Yang, Y. Yang, H. Li and Q. Wang, J. Cent. South Univ., 2016, 23, 1611–1617.
122	M. Jokar, M. Correia and K. Loeschner, Food Control,	150	Y. jie Chang, Y. hsin Shih, C. H. Su and H. C. Ho, J.
123	2018, 89 , 77–85. X. He, H. Zhang, H. Shi, W. Liu and E. Sahle-Demessie, <i>J.</i>	151	Hazard. Mater., 2017, 322, 95–104. J. Kidd, Y. Bi, D. Hanigan, P. Herckes and P. Westerho,
124	Am. Soc. Mass Spectrom., 2020, 31, 2180–2190. A. P. Walczak, R. Fokkink, R. Peters, P. Tromp, Z. E.	152	Nanomaterials, 2019, 9 , 1–14. J. Tuoriniemi, M. D. Jürgens, M. Hassellöv and G.
	Herrera Rivera, I. M. C. M. Rietjens, P. J. M. Hendriksen and H. Bouwmeester, <i>Nanotoxicology</i> , 2012, 7, 1198–1210.	153	Cornelis, <i>Environ. Sci. Nano</i> , 2017, 4 , 1189–1197. S. Alizadeh, S. Ghoshal and Y. Comeau, <i>Sci. Total</i>
125	K. Ramos, L. Ramos and M. M. Gómez-Gómez, <i>Food Chem.</i> , 2017, 221 , 822–828.	154	Environ., 2019, 647 , 1199–1210. S. Alizadeh, A. Abdul Rahim, B. Guo, J. Hawari, S.
126	D. M. Mitrano, Y. Arroyo Rojas Dasilva and B. Nowack, <i>Environ. Sci. Technol.</i> , 2015, 49 , 9665–9673.		Ghoshal and Y. Comeau, <i>Environ. Sci. Technol.</i> , 2019, 53 , 9148–9159.
127	M. Sikder, J. Wang, B. A. Poulin, M. M. Tfaily and M. Baalousha, <i>Environ. Sci. Nano</i> , 2020, 7, 3318–3332.	155	A. R. Donovan, C. D. Adams, Y. Ma, C. Stephan, T. Eichholz and H. Shi, <i>Chemosphere</i> , 2018, 195 , 531–541.
128	R. C. Merrifield, C. Stephan and J. Lead, Environ. Sci.	156	Y. Yang, X. Bi, P. Westerhoff, K. Hristovski and J. E.
129	<i>Technol.</i> , 2017, 51 , 3206–3213. L. Telgmann, M. T. K. Nguyen, L. Shen, V. Yargeau, H.	157	McLain, <i>Environ. Eng. Sci.</i> , 2014, 31 , 381–392. L. Torrent, E. Marguí, I. Queralt, M. Hidalgo and M.
	Hintelmann and C. D. Metcalfe, <i>Anal. Bioanal. Chem.</i> , 2016, 408 , 5169–5177.	158	Iglesias, <i>J. Environ. Sci. (China)</i> , 2019, 83 , 205–216. A. H. Jesmer, J. R. Velicogna, D. M. Schwertfeger, R. P.
130	J. Jiménez-Lamana and V. I. Slaveykova, <i>Sci. Total Environ.</i> , 2016, 573 , 946–953.		Scroggins and J. I. Princz, <i>Environ. Toxicol. Chem.</i> , 2017, 36 , 2756–2765.
131	D. C. Rearick, L. Telgmann, H. Hintelmann, P. C. Frost and M. A. Xenopoulos, <i>PLoS One</i> , 2018, 13 , 1–18.	159	D. M. Schwertfeger, J. R. Velicogna, A. H. Jesmer, S. Saatcioglu, H. McShane, R. P. Scroggins and J. I. Princz,
132	L. M. Furtado, M. E. Hoque, D. M. Mitrano, J. F. Ranville, B. Cheever, P. C. Frost, M. A. Xenopoulos, H. Hintelmann	160	Anal. Chem., 2017, 89 , 2505–2513. D. Schwertfeger, J. Velicogna, A. Jesmer, H. McShane, R.
133	and C. D. Metcalfe, <i>Environ. Chem.</i> , 2014, 11 , 419. J. D. Martin, P. C. Frost, H. Hintelmann, K. Newman, M. J.	100	Scroggins and J. Princz, <i>Environ. Chem.</i> , 2017, 14 , 123–133.
133	Paterson, L. Hayhurst, M. D. Rennie, M. A. Xenopoulos, V.	161	J. Navratilova, A. Praetorius, A. Gondikas, W. Fabienke, F.
	Yargeau and C. D. Metcalfe, <i>Environ. Sci. Technol.</i> , 2018, 52 , 11114–11122.		von der Kammer and T. Hofmann, <i>Int. J. Environ. Res. Public Health</i> , 2015, 12 , 15756–15768.
134	A. Urstoeger, A. Wimmer, R. Kaegi, S. Reiter and M. Schuster, <i>Environ. Sci. Technol.</i> , 2020, 54 , 12063–12071.	162	H. El Hadri, S. M. Louie and V. A. Hackley, <i>Environ. Sci. Nano</i> , 2018, 5 , 203–214.
135	F. Loosli, J. Wang, M. Sikder, K. Afshinnia and M. Baalousha, <i>Sci. Total Environ.</i> , 2020, 715 , 136927.	163	L. Li, Q. Wang, Y. Yang, L. Luo, R. Ding, Z. G. Yang and H. P. Li, <i>Anal. Chem.</i> , 2019, 91 , 9442–9450.
136	N. Londono, A. R. Donovan, H. Shi, M. Geisler and Y. Liang, <i>Nanotoxicology</i> , 2017, 11 , 1140–1156.	164	L. Degenkolb, G. Metreveli, A. Philippe, A. Brandt, K. Leopold, L. Zehlike, H. J. Vogel, G. E. Schaumann, T.
137	K. Proulx and K. J. Wilkinson, <i>Environ. Chem.</i> , 2014, 11 , 392–401.		Baumann, M. Kaupenjohann, F. Lang, S. Kumahor and S. Klitzke, <i>Sci. Total Environ.</i> , 2018, 645 , 192–204.
138	D. M. Mitrano, J. F. Ranville, A. Bednar, K. Kazor, A. S. Hering and C. P. Higgins, <i>Environ. Sci. Nano</i> , 2014, 1 ,	165	S. Motellier, D. Locatelli and R. Bera, <i>Environ. Sci. Technol.</i> , 2019, 53 , 10714–10722.
120	248–259.	166	D. M. Peloquin, E. J. Baumann and T. P. Luxton,
139	D. C. António, C. Cascio, Ž. Jakšić, D. Jurašin, D. M. Lyons, A. J. A. Nogueira, F. Rossi and L. Calzolai, <i>Mar</i> .	167	Chemosphere, 2020, 249 , 126173. K. C. Nwoko, A. Raab, L. Cheyne, D. Dawson, E. Krupp
140	Environ. Res., 2015, 111, 162–169. A. Wimmer, A. Urstoeger, N. C. Funck, F. P. Adler, L.		and J. Feldmann, J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2019, 1124, 356–365.
	Lenz, M. Doeblinger and M. Schuster, <i>Water Res.</i> , 2020, 171 , 115399.	168	J. V. Gómez, A. Tarazona, F. Mateo, M. Jiménez and E. M. Mateo, <i>Food Control</i> , 2019, 101 , 58–68.
141	C. Toncelli, K. Mylona, I. Kalantzi, A. Tsiola, P. Pitta, M. Tsapakis and S. A. Pergantis, <i>Sci. Total Environ.</i> , 2017,	169	S. S. D. Kumar, N. N. Houreld, E. M. Kroukamp and H. Abrahamse, <i>J. Photochem. Photobiol. B Biol.</i> , 2018, 178 ,
142	601–602 , 15–21. C. Toncelli, K. Mylona, M. Tsapakis and S. A. Pergantis, <i>J</i> .	170	259–269. B. Gomez-Gomez, M. Corte-Rodríguez, M. T. Perez-
143	Anal. At. Spectrom., 2016, 31 , 1430–1439. P. Cervantes-Avilés, Y. Huang and A. A. Keller, <i>Water</i>	-, -	Corona, J. Bettmer, M. Montes-Bayón and Y. Madrid, <i>Anal. Chim. Acta</i> , 2020, 1128 , 116–128.
144	Res., 2019, 166 , 115072.	171	N. Londono, A. R. Donovan, H. Shi, M. Geisler and Y.
	T. Lange, P. Schneider, S. Schymura and K. Franke, <i>Water</i> , 2020, 12 , 2509.	172	Liang, <i>Chemosphere</i> , 2019, 230 , 567–577. A. Azimzada, N. Tufenkji and K. J. Wilkinson, <i>Environ</i> .
145	J. Vidmar, P. Oprčkal, R. Milačič, A. Mladenovič and J. Ščančar, <i>Sci. Total Environ.</i> , 2018, 634 , 1259–1268.	173	Sci. Nano, 2017, 4 , 1339–1349. I. Aharchaou, J. S. Py, S. Cambier, J. L. Loizeau, G.
146	T. Théoret and K. J. Wilkinson, <i>Anal. Methods</i> , 2017, 9 , 3920–3928.		Cornelis, P. Rousselle, E. Battaglia and D. A. L. Vignati, <i>Environ. Toxicol. Chem.</i> , 2018, 37 , 983–992.
147	M. Azodi, Y. Sultan and S. Ghoshal, <i>Environ. Sci. Technol.</i> , 2016, 50 , 13318–13327.	174	H. Klingberg, L. B. Oddershede, K. Loeschner, E. H. Larsen, S. Loft and P. Møller, <i>Toxicol. Res.</i> , 2015, 4 , 655–
148	A Georgantzonoulou P Almeida Carvalho C Vogelsang		666

A. Georgantzopoulou, P. Almeida Carvalho, C. Vogelsang,

1 2

3

4

5

6

7

8

9

10

11

12

3.4 BML 9.55:04 BML

7079 8

42

43

44

45

46

47 48

49

50

51

52

53

54

55

56

57

58

59 60 148

666.

3

4

5

6

7

8

9

10

11

12

70279

175 no 17

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name ARTICLE

M. Logozzi, D. Mizzoni, B. Bocca, R. Di Raimo, F.
 Petrucci, S. Caimi, A. Alimonti, M. Falchi, F. Cappello, C.
 Campanella, C. C. Bavisotto, S. David, F. Bucchieri, D. F.
 Angelini, L. Battistini and S. Fais, Eur. J. Pharm.
 Biopharm., 2019, 137, 23–36.

- 176 A. Abdelkhaliq, M. van der Zande, A. K. Undas, R. J. B. Peters and H. Bouwmeester, *Nanotoxicology*, 2020, **14**, 111–126.
- 177 A. Abdelkhaliq, M. van der Zande, R. J. B. Peters and H. Bouwmeester, *Part. Fibre Toxicol.*, 2020, **17**, 11.
- 178 I.-L. Hsiao, F. S. Bierkandt, P. Reichardt, A. Luch, Y.-J. Huang, N. Jakubowski, J. Tentschert and A. Haase, *J. Nanobiotechnology*, 2016, **14**, 50.
- T. Lammel, A. Mackevica, B. R. Johansson and J. Sturve, Environ. Sci. Pollut. Res., 2019, 26, 15354–15372.
- Y. Dan, W. Zhang, R. Xue, X. Ma, C. Stephan and H. Shi, Environ. Sci. Technol., 2015, 49, 3007–3014.
- Y. Dan, X. Ma, W. Zhang, K. Liu, C. Stephan and H. Shi, Anal. Bioanal. Chem., 2016, 5157–5167.
- 182 D. Bao, Z. G. Oh and Z. Chen, *Front. Plant Sci.*, 2016, **7**, 1–8.
- J. Jiménez-Lamana, J. Wojcieszek, M. Jakubiak, M. Asztemborska and J. Szpunar, J. Anal. At. Spectrom., 2016, 31, 2321–2329.
- J. Nath, I. Dror, P. Landa, T. Vanek, I. Kaplan-Ashiri and B. Berkowitz, Environ. Pollut., 2018, 242, 1827–1837.
- P. Wang, E. Lombi, S. Sun, K. G. Scheckel, A. Malysheva,
 B. A. McKenna, N. W. Menzies, F.-J. Zhao and P. M.
 Kopittke, *Environ. Sci. Nano*, 2017, 4, 448–460.
- 186 K. Kińska, J. Jiménez-Lamana, J. Kowalska, B. Krasnodębska-Ostręga and J. Szpunar, Sci. Total Environ., 2018, 615, 1078–1085.
- 187 L. Torrent, M. Iglesias, E. Marguí, M. Hidalgo, D. Verdaguer, L. Llorens, A. Kodre, A. Kavčič and K. Vogel-Mikuš, J. Hazard. Mater., 2020, 384, 121201.
- J. Wojcieszek, J. Jiménez-Lamana, K. Bierla, M. Asztemborska, L. Ruzik, M. Jarosz and J. Szpunar, J. Anal. At. Spectrom., 2019, 34, 683–693.
- 189 S. Laughton, A. Laycock, F. von der Kammer, T. Hofmann, E. A. Casman, S. M. Rodrigues and G. V. Lowry, *J. Nanoparticle Res.*, 2019, **21**, 174.
- 190 A. A. Keller, Y. Huang and J. Nelson, *J. Nanoparticle Res.*, 2018, 20, 101.
- 191 F. Dang, Q. Wang, W. Cai, D. Zhou and B. Xing, Nanotoxicology, 2020, 14, 654–666.
- W. Y. Zhang, Q. Wang, M. Li, F. Dang and D. M. Zhou, Nanotoxicology, 2019, 13, 1073–1086.
- 193 Y. Deng, E. J. Petersen, K. E. Challis, S. A. Rabb, R. D. Holbrook, J. F. Ranville, B. C. Nelson and B. Xing, Environ. Sci. Technol., 2017, 51, 10615–10623.
- 194 C. C. Li, F. Dang, M. Li, M. Zhu, H. Zhong, H. Hintelmann and D. M. Zhou, *Nanotoxicology*, 2017, 11, 699–709.
- 195 M. Hayder, J. Wojcieszek, M. Asztemborska, Y. Zhou and L. Ruzik, J. Sci. Food Agric., 2020, 100, 4950–4958.
- J. Wojcieszek, J. Jiménez-Lamana, L. Ruzik, M. Asztemborska, M. Jarosz and J. Szpunar, Front. Environ. Sci., 2020, 8, 1–12.
- J. Wojcieszek, J. Jiménez-Lamana, K. Bierła, L. Ruzik, M. Asztemborska, M. Jarosz and J. Szpunar, *Sci. Total Environ.*, 2019, 683, 284–292.
- 198 E. P. Gray, J. G. Coleman, A. J. Bednar, A. J. Kennedy, J. F. Ranville and C. P. Higgins, *Environ. Sci. Technol.*, 2013, 47, 14315–14323.
- J. G. Coleman, A. J. Kennedy, A. J. Bednar, J. F. Ranville, J. G. Laird, A. R. Harmon, C. A. Hayes, E. P. Gray, C. P. Higgins, G. Lotufo and J. A. Steevens, *Environ. Toxicol*.

- Chem., 2013, 32, 2069–2077.

 S. Makama, R. Peters, A. Undas and W. Wo was den Asim Links Kenviron. Chem., 2015, 12, 643.
- 201 M. E. Johnson, S. K. Hanna, A. R. Montoro Bustos, C. M. Sims, L. C. C. Elliott, A. Lingayat, A. C. Johnston, B. Nikoobakht, J. T. Elliott, R. D. Holbrook, K. C. K. Scott, K. E. Murphy, E. J. Petersen, L. L. Yu and B. C. Nelson, ACS Nano, 2017, 11, 526–540.
- 202 L. D. Scanlan, R. B. Reed, A. V. Loguinov, P. Antczak, A. Tagmount, S. Aloni, D. T. Nowinski, P. Luong, C. Tran, N. Karunaratne, D. Pham, X. X. Lin, F. Falciani, C. P. Higgins, J. F. Ranville, C. D. Vulpe and B. Gilbert, ACS Nano, 2013, 7, 10681–10694.
- 203 F. Gallocchio, G. Biancotto, A. Moressa, F. Pascoli, T. Pretto, A. Toffan, G. Arcangeli, F. Montesi, R. Peters and A. Ricci, *Food Chem.*, 2020, 323, 126841.
- 204 H. K. Sung, E. Jo, E. Kim, S. Yoo, J. Lee, P. Kim, Y. Kim and I.-C. Eom, *Chemosphere*, 2018, 209, 815–822.
- F. Abdolahpur Monikh, L. Chupani, E. Zusková, R. Peters, M. Vancová, M. G. Vijver, P. Porcal and W. J. G. M. Peijnenburg, *Environ. Sci. Technol.*, 2019, **53**, 946–953.
- 206 K. Loeschner, M. S. J. Brabrand, J. J. Sloth and E. H. Larsen, *Anal. Bioanal. Chem.*, 2014, **406**, 3845–3851.
- 207 R. Tassinari, F. Cubadda, G. Moracci, F. Aureli, M. D'Amato, M. Valeri, B. De Berardis, A. Raggi, A. Mantovani, D. Passeri, M. Rossi and F. Maranghi, *Nanotoxicology*, 2014, 8, 654–662.
- 208 R. Álvarez-Fernández García, N. Fernández-Iglesias, C. López-Chaves, C. Sánchez-González, J. Llopis, M. Montes-Bayón and J. Bettmer, *J. Trace Elem. Med. Biol.*, 2019, 55, 1–5.
- F. Aureli, M. Ciprotti, M. D'Amato, E. do Nascimento da Silva, S. Nisi, D. Passeri, A. Sorbo, A. Raggi, M. Rossi and F. Cubadda, *Nanomaterials*, 2020, 10, 888.
- J. Modrzynska, T. Berthing, G. Ravn-Haren, K. Kling, A. Mortensen, R. R. Rasmussen, E. H. Larsen, A. T. Saber, U. Vogel and K. Loeschner, *PLoS One*, 2018, 13, 1–22.
- 211 T. Horváth, A. Papp, N. Igaz, D. Kovács, G. Kozma, V. Trenka, L. Tiszlavicz, Z. Rázga, Z. Kónya, M. Kiricsi and T. Vezér, *Int. J. Nanomedicine*, 2018, Volume 13, 7061–7077.
- 212 L. Campagnolo, M. Massimiani, L. Vecchione, D. Piccirilli, N. Toschi, A. Magrini, E. Bonanno, M. Scimeca, L. Castagnozzi, G. Buonanno, L. Stabile, F. Cubadda, F. Aureli, P. H. B. Fokkens, W. G. Kreyling, F. R. Cassee and A. Pietroiusti, *Nanotoxicology*, 2017, 11, 687–698.
- M. van der Zande, R. J. Vandebriel, E. Van Doren, E.
 Kramer, Z. Herrera Rivera, C. S. Serrano-Rojero, E. R.
 Gremmer, J. Mast, R. J. B. Peters, P. C. H. Hollman, P. J.
 M. Hendriksen, H. J. P. Marvin, A. a C. M. Peijnenburg and
 H. Bouwmeester, ACS Nano, 2012, 6, 7427–7442.
- F. Gallocchio, G. Biancotto, V. Cibin, C. Losasso, S.
 Belluco, R. Peters, G. van Bemmel, C. Cascio, S. Weigel,
 P. Tromp, F. Gobbo, S. Catania and A. Ricci, *J. Agric. Food Chem.*, 2017, 65, 3767–3774.
- J. Vidmar, K. Loeschner, M. Correia, E. H. Larsen, P. Manser, A. Wichser, K. Boodhia, Z. S. Al-Ahmady, J. Ruiz, D. Astruc and T. Buerki-Thurnherr, *Nanoscale*, 2018, 10, 11980–11991.
- 216 R. J. B. Peters, G. van Bemmel, Z. Herrera-Rivera, H. P. F. G. Helsper, H. J. P. Marvin, S. Weigel, P. C. Tromp, A. G. Oomen, A. G. Rietveld and H. Bouwmeester, *J. Agric. Food Chem.*, 2014, 62, 6285–6293.
- 217 S. Candás-Zapico, D. J. Kutscher, M. Montes-Bayón and J. Bettmer, *Talanta*, 2018, **180**, 309–315.
- E. Verleysen, E. Van Doren, N. Waegeneers, P. J. De

ARTI	CLE		Journal Name
	Temmerman, M. Abi Daoud Francisco and J. Mast, <i>J. Agric. Food Chem.</i> , 2015, 63 , 3570–3578.	243	A. R. Donovan, C. D. Adams, Y. Ma, C. Stephan, Ticle Online Eichholz and H. Shi, Anal. Bioanal. Scheme, 20,560,100,0761K
219	O. Geiss, J. Ponti, C. Senaldi, I. Bianchi, D. Mehn, J. Barrero, D. Gilliland, R. Matissek and E. Anklam, <i>Food Addit. Contam Part A Chem. Anal. Control. Expo. Risk</i>	244	5137–5145. K. Phalyvong, Y. Sivry, H. Pauwels, A. Gélabert, M. Tharaud, G. Wille, X. Bourrat and M. F. Benedetti, <i>Front</i> .
220	Assess., 2020, 37 , 239–253. G. Bucher and F. Auger, <i>J. Anal. At. Spectrom.</i> , 2019, 34 ,	245	Environ. Sci., 2020, 8 , 1–14. I. Jreije, A. Azimzada, M. Hadioui and K. J. Wilkinson,
221	1380–1386. B. Kollander, F. Widemo, E. Ågren, E. H. Larsen and K. Loeschner, <i>Anal. Bioanal. Chem.</i> , 2017, 409 , 1877–1885.	246	Molecules, 2020, 25 , 5516. L. Xu, Z. Wang, J. Zhao, M. Lin and B. Xing, <i>Environ</i> .
222	K. Loeschner, M. Correia, C. López Chaves, I. Rokkjær and J. J. Sloth, <i>Food Addit. Contam Part A Chem. Anal.</i>	247	Pollut., 2020, 260 , 114043. J. Sanchís, J. Jiménez-Lamana, E. Abad, J. Szpunar and M. Farré, <i>Environ. Sci. Technol.</i> , 2020, 54 , 3969–3978.
223	Control. Expo. Risk Assess., 2018, 35 , 86–93. I. de la Calle, M. Menta, M. Klein and F. Séby, Food Chem., 2018, 266 , 133–145.	248	R. Vogt, D. Mozhayeva, B. Steinhoff, A. Schardt, B. T. F. Spelz, A. Philippe, S. Kurtz, G. E. Schaumann, C. Engelhard, H. Schönherr, D. K. Lamatsch and J.
224	M. V. Taboada-López, P. Herbello-Hermelo, R. Domínguez-González, P. Bermejo-Barrera and A. Moreda-Piñeiro, <i>Talanta</i> , 2019, 195 , 23–32.	249	Wanzenböck, <i>Sci. Total Environ.</i> , 2019, 696 , 134034. D. M. Mitrano, E. K. Lesher, A. Bednar, J. Monserud, C. P. Higgins and J. F. Ranville, <i>Environ. Toxicol. Chem.</i> , 2012,
225	C. Moens, N. Waegeneers, A. Fritzsche, P. Nobels and E. Smolders, <i>J. Chromatogr. A</i> , 2019, 1599 , 203–214.	250	31, 115–121. P. Cervantes-Avilés, Y. Huang and A. A. Keller, <i>Water</i>
226	M. A. Gomez-Gonzalez, E. Bolea, P. A. O'Day, J. Garcia-Guinea, F. Garrido and F. Laborda, <i>Anal. Bioanal. Chem.</i> ,	251	Res., 2019, 156 , 188–198. J. Tuoriniemi, G. Cornelis and M. Hassellöv, <i>Anal. Chem.</i> ,
227	2016, 408 , 5125–5135. C. D. Metcalfe, T. Sultana, J. Martin, K. Newman, P. Helm, S. Kleywegt, L. Shen and V. Yargeau, <i>Environ. Monit.</i>	252	 2012, 84, 3965–3972. M. Hadioui, V. Merdzan and K. J. Wilkinson, <i>Environ. Sci. Technol.</i>, 2015, 49, 6141–6148.
228	Assess., 2018, 190 , 555. B. Xiao, Y. Zhang, X. Wang, M. Chen, B. Sun, T. Zhang	253	S. Bevers, M. D. Montaño, L. Rybicki, T. Hofmann, F. von der Kammer and J. F. Ranville, <i>Front. Environ. Sci.</i> , 2020,
229	and L. Zhu, <i>Environ. Sci. Nano</i> , 2019, 6 , 3431–3441. S. Baur, T. Reemtsma, HJ. Stärk and S. Wagner,	254	8, 84. L. Li, M. Stoiber, A. Wimmer, Z. Xu, C. Lindenblatt, B.
230	Chemosphere, 2020, 246 , 125765. S. P. Bitragunta, S. G. Palani, A. Gopala, S. K. Sarkar and	255	Helmreich and M. Schuster, <i>Environ. Sci. Technol.</i> , 2016, 50 , 6327–6333.
221	V. R. Kandukuri, <i>Bull. Environ. Contam. Toxicol.</i> , 2017, 98 , 595–600.	255	A. K. Venkatesan, B. T. Rodríguez, A. R. Marcotte, X. Bi, J. Schoepf, J. F. Ranville, P. Herckes and P. Westerhoff,
231	F. Tou, Y. Yang, J. Feng, Z. Niu, H. Pan, Y. Qin, X. Guo, X. Meng, M. Liu and M. F. Hochella, <i>Environ. Sci. Technol.</i> , 2017, 51 , 4831–4840.	256	Environ. Sci. Water Res. Technol., 2018, 4, 1923–1932. A. Wimmer, J. Beyerl and M. Schuster, Environ. Sci. Technol., 2019, 53, 13293–13301.
232	F. Loosli, J. Wang, S. Rothenberg, M. Bizimis, C. Winkler, O. Borovinskaya, L. Flamigni and M. Baalousha, <i>Environ</i> .	257	M. GAJEC, E. KUKULSKA-ZAJĄC and A. KRÓL, <i>Appl. Ecol. Environ. Res.</i> , 2020, 18 , 5775–5788.
233	Sci. Nano, 2019, 6 , 763–777. D. T. Maiga, B. B. Mamba and T. A. M. Msagati, <i>Water</i>	258	I. De la Calle, P. Pérez-Rodríguez, D. Soto-Gómez and J. E. López-Periago, <i>Microchem. J.</i> , 2017, 133 , 293–301.
234	Supply, 2020, 20 , 516–528. A. P. Gondikas, F. Von Der Kammer, R. B. Reed, S. Wagner, J. F. Ranville and T. Hofmann, <i>Environ. Sci.</i>	259260	L. N. Rand and J. F. Ranville, <i>Environ. Sci. Technol.</i> , 2019, 53 , 11214–11222. R. Kaegi, A. Englert, A. Gondikas, B. Sinnet, F. von der
235	Technol., 2014, 48 , 5415–5422. A. Gondikas, F. von der Kammer, R. Kaegi, O.	261	Kammer and M. Burkhardt, <i>NanoImpact</i> , 2017, 8 , 73–79. J. R. Huang, P. Li, J. H. Wen, X. Hu, Y. J. Chen, D. H. Yin
	Borovinskaya, E. Neubauer, J. Navratilova, A. Praetorius, G. Cornelis and T. Hofmann, <i>Environ. Sci. Nano</i> , 2018, 5 ,	262	and H. Z. Lian, <i>Spectrosc. Lett.</i> , 2018, 51 , 252–256. D. Ruhland, K. Nwoko, M. Perez, J. Feldmann and E. M.
236	313–326. R. B. Reed, D. P. Martin, A. J. Bednar, M. D. Montaño, P. Westerhoff and J. F. Ranville, <i>Environ. Sci. Nano</i> , 2017, 4, 69–77.	263	Krupp, <i>Anal. Chem.</i> , 2019, 91 , 1164–1170. J. Jiménez-Lamana, I. Abad-Álvaro, K. Bierla, F. Laborda, J. Szpunar and R. Lobinski, <i>J. Anal. At. Spectrom.</i> , 2018, 33 , 452–460.
237	A. K. Venkatesan, R. B. Reed, S. Lee, X. Bi, D. Hanigan, Y. Yang, J. F. Ranville, P. Herckes and P. Westerhoff, <i>Bull</i> .	264	M. V. Taboada-López, N. Alonso-Seijo, P. Herbello- Hermelo, P. Bermejo-Barrera and A. Moreda-Piñeiro,
238	Environ. Contam. Toxicol., 2018, 100 , 120–126. L. N. Rand, Y. Bi, A. Poustie, A. J. Bednar, D. J. Hanigan, P. Westerhoff and J. F. Ranville, <i>Sci. Total Environ.</i> , 2020,	265	Microchem. J., 2019, 148 , 652–660. M. V. Taboada-López, S. Iglesias-López, P. Herbello-Hermelo, P. Bermejo-Barrera and A. Moreda-Piñeiro, <i>Anal</i> .
239	743, 140845. D. T. Maiga, H. Nyoni, B. B. Mamba and T. A. M. Msagati,	266	Chim. Acta, 2018, 1018 , 16–25. Q. Zhou, L. Liu, N. Liu, B. He, L. Hu and L. Wang,
240	SN Appl. Sci., 2020, 2, 326. JL. Wang, E. Alasonati, M. Tharaud, A. Gelabert, P. Fisicaro and M. F. Benedetti, Water Res., 2020, 176, 115722.	267	Ecotoxicol. Environ. Saf., 2020, 198, 110670. M. Roman, C. Rigo, H. Castillo-Michel, I. Munivrana, V. Vindigni, I. Mičetić, F. Benetti, L. Manodori and W. R. L. Cairns, Anal. Bioanal. Chem., 2016, 408, 5109–5124.
241	A. Wimmer, A. Kalinnik and M. Schuster, <i>Water Res.</i> , 2018, 141 , 227–234.	268	K. Badalova, P. Herbello-Hermelo, P. Bermejo-Barrera and A. Moreda-Piñeiro, <i>J. Trace Elem. Med. Biol.</i> , 2019, 54 ,
242	A. R. Donovan, C. D. Adams, Y. Ma, C. Stephan, T. Fichholz and H. Shi, Chemosphere, 2016, 144, 148–153	269	55–61. K Loeschner C F Harrington L-L Kearney D L

Eichholz and H. Shi, *Chemosphere*, 2016, **144**, 148–153.

K. Loeschner, C. F. Harrington, J.-L. Kearney, D. J.

3

4

5

6

7

8

9

10

11

12

702791

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 Journal Name

Langton and E. H. Larsen, Anal. Bioanal. Chem., 2015,

- 270 J. Schoon, S. Geißler, J. Traeger, A. Luch, J. Tentschert, G. Perino, F. Schulze, G. N. Duda, C. Perka and A. Rakow, Nanomedicine Nanotechnology, Biol. Med., 2017, 13, 2415-2423.
- 271 R. J. B. Peters, A. G. Oomen, G. van Bemmel, L. van Vliet, A. K. Undas, S. Munniks, R. L. A. W. Bleys, P. C. Tromp, W. Brand and M. van der Lee, Nanotoxicology, 2020, 14, 420-432
- 272 M. B. Heringa, R. J. B. Peters, R. L. A. W. Bleys, M. K. van der Lee, P. C. Tromp, P. C. E. van Kesteren, J. C. H. van Eijkeren, A. K. Undas, A. G. Oomen and H. Bouwmeester, Part. Fibre Toxicol., 2018, 15, 15.
- E. Leese, J. F. Staff, V. A. Carolan and J. Morton, Ann. 273 Work Expo. Heal., 2017, 61, 902-906.
- 274 R. d. Heringer and J. F. Ranville, Forensic Sci. Int., 2018, 288, e20-e25.
- K. Proulx, M. Hadioui and K. J. Wilkinson, Anal. Bioanal. 275 Chem., 2016, 408, 5147-5155.
- 276 A. Praetorius, A. Gundlach-Graham, E. Goldberg, W. Fabienke, J. Navratilova, A. Gondikas, R. Kaegi, D. Günther, T. Hofmann and F. von der Kammer, Environ. Sci. Nano, 2017, 4, 307-314.
- 277 M. D. Montaño, H. R. Badiei, S. Bazargan and J. F. Ranville, *Environ. Sci. Nano*, 2014, **1**, 338–346.
- 278 E. Bolea-Fernandez, D. Leite, A. Rua-Ibarz, T. Liu, G. Woods, M. Aramendia, M. Resano and F. Vanhaecke, *Anal*. Chim. Acta, 2019, 1077, 95-106.
- 279 M. D. Montaño, B. J. Majestic, Å. K. Jämting, P. Westerhoff and J. F. Ranville, Anal. Chem., 2016, 88, 4733-4741.
- 280 J. Vidmar, T. Buerki-Thurnherr and K. Loeschner, J. Anal. At. Spectrom., 2018, 33, 752-761.
- 281 A. Urstoeger, A. Wimmer, R. Kaegi, S. Reiter and M. Schuster, Environ. Sci. Technol., 2020, acs.est.0c02878.
- 282 J. Chao, J. Liu, S. Yu, Y. Feng, Z. Tan, R. Liu and Y. Yin, Anal. Chem., 2011, 83, 6875-6882.
- 283 F. Laborda, E. Bolea, G. Cepriá, M. T. Gómez, M. S. Jiménez, J. Pérez-Arantegui and J. R. Castillo, Anal. Chim. Acta, 2016, 904, 10-32.
- 284 S. a Pergantis, T. L. Jones-Lepp and E. M. Heithmar, Anal. Chem., 2012, 84, 6454-6462.
- 285 K. A. Huynh, E. Siska, E. Heithmar, S. Tadjiki and S. A. Pergantis, Anal. Chem., 2016, 88, 4909–4916.
- 286 D. Mozhayeva, I. Strenge and C. Engelhard, Anal. Chem., 2017, 89, 7152-7159.
- 287 J. Tan, J. Liu, M. Li, H. El Hadri, V. A. Hackley and M. R. Zachariah, Anal. Chem., 2016, 88, 8548-8555.
- 288 D. Rakcheev, A. Philippe and G. E. Schaumann, Anal. Chem., 2013, 85, 10643-10647.
- 289 Y. U. Hachenberger, D. Rosenkranz, F. L. Kriegel, B. Krause, R. Matschaß, P. Reichardt, J. Tentschert, P. Laux. N. Jakubowski, U. Panne and A. Luch, Materials (Basel)., 2020, 13, 1-14.
- 290 W.-C. Lee, B.-T. Lee, S. Lee, Y. S. Hwang, E. Jo, I.-C. Eom, S.-W. Lee and S.-O. Kim, Microchem. J., 2016.
- 291 K. Loeschner, J. Navratilova, C. Købler, K. Mølhave, S. Wagner, F. von der Kammer and E. H. Larsen, Anal. Bioanal. Chem., 2013, 405, 8185-8195.
- 292 R. Liu, P. Wu, L. Yang, X. Hou and Y. Lv, Mass Spectrom. Rev., 2014, 33, 373-393.
- 293 M. CAIS, S. DANI, Y. EDEN, O. GANDOLFI, M. HORN, E. E. ISAACS, Y. JOSEPHY, Y. SAAR, E. SLOVIN and L. SNARSKY, Nature, 1977, 270, 534-535.
- 294 C. Zhang, F. Wu, Y. Zhang, X. Wang and X. Zhang, J.

Anal. At. Spectrom., 2001, 16, 1393-1396. O. I. Ornatsky, R. Kinach, D. R. Bandura, N. 1840 Article Online

ARTICLE

- 295 Tanner, V. I. Baranov, M. Nitz and M. A. Winnik, J. Anal. At. Spectrom., 2008, 23, 463-469.
- 296 S. Hu, R. Liu, S. Zhang, Z. Huang, Z. Xing and X. Zhang, J. Am. Soc. Mass Spectrom., 2009, 20, 1096-103.
- 297 R. Liu, Z. Xing, Y. Lv, S. Zhang and X. Zhang, Talanta, 2010, 83, 48-54.
- 298 Z. Huang, C. Wang, R. Liu, Y. Su and Y. Lv, Anal. Chem., 2020, 92, 2876-2881.
- 299 Y. Cao, G. Mo, J. Feng, X. He, L. Tang, C. Yu and B. Deng, Anal. Chim. Acta, 2018, 1028, 22-31.
- 300 Y. Cao, J. Feng, L. Tang, G. Mo, W. Mo and B. Deng, Spectrochim. Acta - Part B At. Spectrosc., 2020, 166,
- 301 G. Han, Z. Xing, Y. Dong, S. Zhang and X. Zhang, Angew. Chemie Int. Ed., 2011, 50, 3462-3465.
- 302 B. Li, H. Tang, R. Yu and J. Jiang, Anal. Chem., 2020, 92, 2379-2382.
- 303 S. Zhang, G. Han, Z. Xing, S. Zhang and X. Zhang, Anal. Chem., 2014, 86, 3541-3547.
- 304 X. Xu, J. Chen, B. Li, L. Tang and J. Jiang, Analyst, 2019, **144**, 1725–1730.

Analytical Methods Accepted Manuscript

View Article Online DOI: 10.1039/D1AY00761K

The authors belong to the Group of Analytical Spectroscopy and Sensors (GEAS) of the University of Zaragoza. The main research area of the group lies in the development and application of analytical techniques and methods in Nanometrology for the detection, characterization and quantification of natural and engineered nanoparticles. The group has made significant contributions in single particle ICP-MS and flow field flow fractionation hyphenated to ICP-MS. The authors have a long experience in these techniques but also in hydrodynamic chromatography, electron microscopy, as well as X-ray and electroanalytical techniques, which leads to a broad analytical platform for solving complex problems involving nanoparticles and colloids. The group has more than 10 year of experience and 40 publications in this field of Analytical Nanometrology.

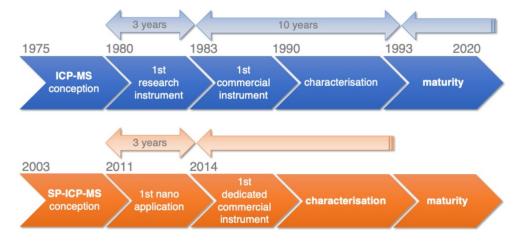


Fig. 1 Comparison of the evolution of SP-ICP-MS with respect to ICP-MS (adapted from $Horlick^{12}$). 99x47mm (600 x 600 DPI)

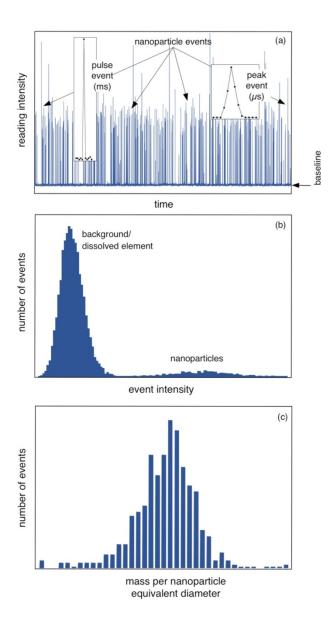


Fig. 2 (a) Time scan of suspension containing nanoparticles and dissolved forms of the same element. (b) Event intensity histogram of data from (a). (c) Mass per nanoparticle/size distribution of spherical nanoparticles calculated from the second intensity distribution in (b).

90x160mm (600 x 600 DPI)

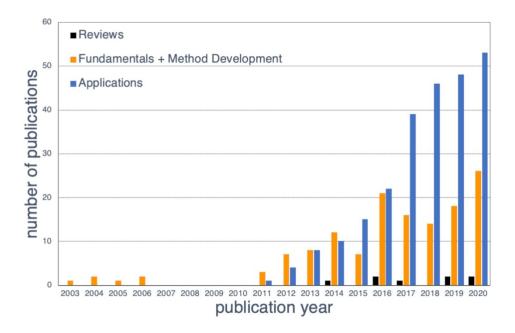


Fig. 3 Evolution of SP-ICP-MS publications related to Reviews, Fundamentals, Method Development and Applications.

99x63mm (600 x 600 DPI)

Fig. 4 Analytical scenarios related to nanoparticles (adapted from Laborda et al. 59). 99x63mm (600 x 600 DPI)

Published out 6, June 2027, Downhorded by NNINERSIRAR, DEZARAGOZA ON 6/16/2021 5/55:04 PM6 L 9 9 9 P W R 1 0 0 8 W 2 9 9 P W R 1 0 0 6 W 2 9 9 P W R 1 0 0 0 W R 1 0 W

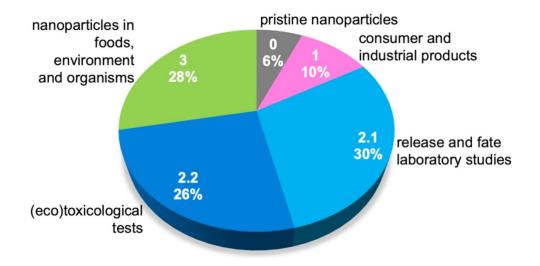


Fig. 5 Distribution of publications related to applications of SP-ICP-MS in different analytical scenarios. 99x56mm~(600~x~600~DPI)

Real-world applications of single-particle ICP-MS are comprehensively and critically reviewed. 79x39mm (600 x 600 DPI)