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Abstract

An analytical approach based on the scalar diffraction theory is presented for design of blazed

diffraction gratings for maximizing the light trapping in solar cells. The model provides a

conceptual insight into the behaviour of blazed structures. The predictions of the analytical

model are checked against numerical results obtained using the commercial FDTD modelling

software. Within the limits of the scalar diffraction theory, this analytical approach can be used

to design gratings with arbitrary shapes.

(Some figures in this article are in colour only in the electronic version)

A significant challenge facing the current photovoltaics

industry is to bring down the cost of solar electricity to a level

comparable to electricity generated from conventional sources

such as fossil fuels. A substantial reduction in materials

costs, and hence in the cost of electricity generated, can be

achieved by developing thin film solar cells with an active

layer thickness of a few micrometres, deposited on low-cost

substrates. Because of the lower active region thickness the

material quality required is also much lower than in wafer-

based cells, reducing the material costs further. However, a thin

active layer means reduced light absorption, especially near the

band edge of silicon (Si). In order to maximize light absorption

efficiency it is essential to increase the optical thickness of the

active layer by trapping light inside the active material.

Light trapping in thin solar cells can be achieved by

directing light at large angles (outside the escape cone) into the

absorbing layer using metal/dielectric scatterers or diffraction

gratings [1–7]. For light trapping using diffraction gratings,

light should be efficiently coupled into diffraction orders

propagating outside the escape cone of Si. The light trapping

characteristics of rectangular diffraction gratings have been

extensively studied using the modal expansion method [8],

proposed by Botten et al [9]. However, it has been proposed

that symmetric grating structures such as rectangular gratings

may not be the most efficient structures for light trapping

[4, 5]. The light-trapping efficiency of symmetric gratings

is limited by coupling of diffracted light, after reflection

from the opposite surface of the solar cell, to the outgoing

zero-order wave. By employing asymmetric gratings, the

coupling efficiency of diffracted light, reflected back from the

opposite surface of the solar cell to the outgoing wave can

be significantly reduced thereby increasing the light-trapping

efficiency of the diffraction grating.

Unlike for rectangular diffraction gratings, there has been

no simple analytical approach to date to design the blazed

diffraction gratings for light-trapping applications. Even

though it has been demonstrated, for a specific case [5],

that blazed gratings can provide better light trapping than

symmetric, rectangular groove grating structures, there has

been no report on techniques to optimize the performance

of blazed gratings. In this paper, we introduce a simple

analytical approach for the design of blazed diffraction

structures to maximize their light-trapping efficiency. The

technique is applicable only for gratings with periods larger

than the wavelength of the incident light, as it is based

on the scalar diffraction theory [10, 11]. We determine

the transmission function for the periodic arrangement of

blazed structures and compute the corresponding far-field

diffraction pattern by applying a Fourier transform [12].

The model provides a conceptual understanding of the

behaviour of the blazed structures. We show that the results

of the analytical modelling agree well with the numerical
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Figure 1. The blazed grating structure considered for demonstration of our analytical approach. The transmission function of the blazed
grating is represented as the convolution of the transmission function of a periodic structure with periodicity d, and a blazed component with
base d and height h. N is the number of periods considered for calculations and n is the refractive index of the grating material. The
expressions for the transmission functions are indicated below the corresponding structure.

results obtained using FDTD modelling. The proposed

analytical modelling can be used to design and analyse

various diffractive elements for light-trapping applications,

without the need for the time and resource intensive

numerical modelling/simulation techniques. And unlike the

numerical modelling techniques that can only determine the

response of the gratings, our analytical approach provides

a phenomenological understanding of the physical concepts

dictating the response of the gratings. In this paper, we

illustrate the approach using blazed gratings, but it can also

be used to design periodic structures with arbitrary shapes, as

long as the period is larger than the wavelength of incident light.

Key advantages of relatively large period diffraction gratings

is that they are less wavelength sensitive, which is important

in achieving light trapping for thin films which are weakly

absorbing over a broad wavelength range. Relatively larger

periods would also be expected to provide better coupling over

a range of incident angles over the day, since small periods can

only couple to normally incident light. The periods considered

here are small enough to be able to be implemented in cells

with few micrometre thick absorbing layers such as c-Si or

a-Si/c-Si tandem thin-film cells.

The structure we consider to demonstrate our approach is

illustrated in figure 1. We consider a periodic arrangement

of N right-angled prisms with a base dimension of d and

height h in air. N has to be a large number for light-trapping

applications. The total transmission function of the blazed

grating T (x) is expressed as the convolution of transmission

function of a periodic arrangement (irrespective of the structure

within the period) with a period d, Tperiodic(x), and that of a

right-angled prism with base d and height h, Tprism(x). The

periodic transmission function is 1 at integral multiples ofd and

0 elsewhere over a spatial range Nd and is expressed as [12]

Tperiodic(x) =
∑

m

δ(x − md)rect
( x

Nd

)

, (1)

where rect(x) represents a rectangle function and is defined as

rect(x) = 1 if |x| < 1/2 and 0 elsewhere. Each individual

right-angled prism has a transmission of 1 over a width d,

but introduces a position (x) dependent phase shift into the

transmitted light. Thus the transmission function of the right-

angled prism is expressed as [12]

Tprism(x) = exp

[

ikε(n − 1)

(

x +
d

2

)]

rect
(x

d

)

, (2)

where the exponential term represents the phase function

introduced by the prism, k is the wave-vector of the incident

light, n is the refractive index of the grating material and the

prism angle, and ε is defined as tan−1(h/d).

The far-field light distribution resulting from the grating

can now be evaluated using the Fourier transform of the total

transmission function [11]. According to the convolution

theorem, the Fourier transform of the convolution of two

functions is the product of the Fourier transforms of the

individual functions. Hence, the transmitted far-field light

distribution due to the grating can now be evaluated from the

Fourier transforms of the individual transmission functions

represented in equations (1) and (2). Hence the normalized

(to the maximum intensity) far-field intensity distribution

resulting from transmission through the blazed grating

structure becomes [11, 12]

I (ν) = Iperiodic(ν)Iprism(ν), (3)

where Iperiodic(ν) is the Fourier transform of Tperiodic(x) and

Iprism(ν) is the Fourier transform of Tprism(x). Iperiodic(ν) and

Iprism(ν) are given by

Iperiodic(ν) =
∑

m

sin c2
[

ν −
m

d

]

Nd (4)

and

Iprism(ν) = sin c2

{[

ν − ε
n − 1

λ

]

d

}

, (5)

where the sin c function is defined as sin c(x) = sin(πx)/πx,

ν is the position of observation in the Fourier plane and λ is

the wavelength of the incident light.

To gain a conceptual understanding of the effect of varying

grating parameters on the intensity distribution of the light
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Figure 2. Normalized transmitted intensity distribution of a blazed Si grating with a period, d 1500 nm. The intensity distribution of the
periodic arrangement (obtained using equation (4)) is represented in red, while the intensity distribution from a single prism (obtained using
equation (5)) is represented in blue and the net intensity (evaluated using equation (3)) is represented in black. The wavelength of the
incident light is fixed at 800 nm and the grating height is (a) 50 nm, (b) 150 nm, (c) 300 nm, (d) 500 nm or (e) 600 nm.

transmitted from the grating, we look at the effect of varying
the height h of a blazed Si grating on a Si substrate for a fixed
period of 1500 nm and an incident wavelength of 800 nm. The
far-field intensity distribution from the blazed grating, along
with the distribution for the periodic arrangement and a single
prism, is shown in figure 2 for h = 50, 150, 300, 500 or 600 nm.
The propagation-angle-dependent intensity distribution data
can be obtained from the position-dependent data presented in
figure 2 by determining the propagation angle corresponding
to each diffraction order using the one-dimensional grating
equation. For h = 50 nm, the intensity distribution of a single
prism is concentrated near the 0th order transmission peak of
the periodic structure. Hence the net transmission intensity of
the blazed grating is mostly concentrated in 0th or principal
diffraction order, with only a very small fraction of light
coupled into +1 and −1 diffraction orders. When the grating
height is increased to 150 nm, the transmission peak from the
single prism is centred between the 0th and −1 diffraction
orders of the periodic structure, resulting in equal intensity
distribution among the 0 and −1 diffraction orders for the

blazed grating. Most of the transmitted light is concentrated in
these two diffraction orders, with only a small fraction of light
coupled into +1 and −2 diffraction orders, as the positions of
these diffraction orders coincide with the position of secondary
maxima of the prism diffraction pattern. By increasing the
grating height to 300 nm, the principal maxima of the prism
diffraction pattern coincides exactly with the position of −1
diffraction order of the periodic structure and the position of the
rest of the diffraction orders of the periodic structure coincide
with the minima in the diffraction pattern of the prism. As
a result, all the light transmitted from the blazed grating is
coupled into −1 diffraction order. By increasing the grating
height to 500 nm, the principal maxima in the prism diffraction
pattern moves closer to −2 diffraction order of the periodic
structure. In this case, the light transmitted from the blazed
grating is mostly coupled to −1 and −2 diffraction orders,
with a larger fraction being coupled into the −2 diffraction
order.

For light-trapping applications, a large fraction of the
light transmitted from the blazed grating should be coupled
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into diffraction orders propagating outside the escape cone of

Si. For incident light with wavelength of 800 nm (at 800 nm,

refractive index of Si is 3.67), the half-angle for the escape

cone calculated using Snell’s law is 15.8◦. For a period

of 1500 nm (the parameter chosen figure 2), ±1 diffraction

orders propagate at an angle of 8.4◦ and ±2 diffraction orders

propagate at an angle of 16.9◦ with respect to the surface

normal. So light should be coupled into ±2 or higher

diffraction orders for getting trapped inside Si. For a grating

height of 500 nm, a large fraction of the transmitted light is

trapped inside Si. For all the transmitted light to be trapped, a

grating height of at least 600 nm should be chosen, as for this

condition the principal maxima in the diffraction pattern of the

prism coincides with the position of −2 diffraction order of

the periodic structure. All the transmitted light of wavelength

800 nm will be trapped for grating heights larger than 600 nm.

While a grating height of 600 nm is sufficient to trap

incident light of wavelength 800 nm inside the solar cell, for

light-trapping applications, gratings have to be optimized for

trapping light over a broad spectral range. Light trapping

becomes critical for light in the long wavelength region

(>800 nm) of the solar spectrum. From figure 2, we can

infer that for efficient light trapping, grating height larger

than 600 nm should be used. By employing grating height

>600 nm, a larger fraction of light of wavelength >800 nm will

be coupled to diffraction orders propagating outside the escape

cone inside Si. The increase in percentage absorption over

the solar spectrum can be used to quantify the efficiency of a

grating for light-trapping applications. We use a commercially

available package from Lumerical [13] to determine the

percentage absorption over the solar spectrum for different

grating parameters through FDTD simulations. A planar Si

film of thickness 1 µm absorbs 13.3% of the solar spectrum.

By using a blazed, non-absorbing diffraction grating of period

1500 nm and height 50 nm on the front, the absorption in the

same thickness of Si is increased to 14.7%, while by employing

a grating of height 900 nm, the absorption is increased to 38%.

These results are consistent with the prediction of the analytical

modelling that a grating height of at least 600 nm is required

for efficient light trapping in the wavelength range >800 nm.

The above numbers indicate that the analytical model is a

simple and efficient means of determining the optimal grating

parameters for light-trapping applications.

We now compare the results of the analytical modelling

with results obtained using FDTD simulations (using a

commercially available package from Lumerical [13]) to check

the validity of the technique. FDTD gives numerical results

for the field intensities in the region of interest, by solving

the complete set of Maxwell’s equations. Figures 3(a), (b)

and (c) show the fraction of light transmitted through a Si

grating that is coupled into 0, −1 and −2 diffraction orders in

a Si substrate at different wavelengths, as the grating height

is varied. The grating has a period of 1500 nm. The data

represented in the contour plots on the top row are obtained

using FDTD. The data presented in the contour plots on the

bottom row in figures 3(a)–(c) are obtained using the analytical

modelling. Figure 3(d) shows line plots of the data obtained

using FDTD and the analytical modelling for the fraction of

light coupled into various diffraction orders, as a function of

wavelength, for a fixed grating height of 100 nm. Figure 3(e)

shows the line plots of the data obtained using FDTD and

the analytical modelling for the fraction of light coupled into

various diffraction orders, as a function of grating height, for

a fixed wavelength of 700 nm.

From the top row of contour plots (figures 3(a), (b)

and (c)), for small grating heights, FDTD results show that

most of the diffracted light is coupled into the 0th diffraction

order. As the grating height increases, the fraction of light

coupled into the −1 diffraction order increases gradually,

reaches a maximum and then starts to decrease again. As

the light coupled into −1 diffraction order begins to fall, the

fraction of light coupled into the −2 diffraction order begins

to increase. This trend agrees very well with the predictions

of the analytical modelling (bottom row of figures 3(a)–(c)).

As also can be seen from the line plots in figures 3(d) and

(e), the fraction of light coupled into various diffraction orders

calculated using the analytical modelling matches well with

the data from FDTD.

We would like to note that the analytical modelling

presented here does not take into account the wavelength scale

edge effects occurring in the grating. Also, the model does not

account for index matching between the grating material and

the substrate/superstrate. As can be observed from figures 3(d)

and (e), the variation between the Lumerical data and the

analytical modelling data is maximum for small wavelengths

or for larger angle of propagation of light because of the above

two effects. For example, for a grating height of 100 nm,

at a wavelength of 500 nm (figure 3(d)), the fraction of light

coupled into −1 diffraction order, as predicted by the analytical

modelling exceeds the value determined by Lumerical by 17%.

For a grating height of 500 nm and an incident light wavelength

of 700 nm (figure 3(e)), the fraction of light coupled into

−2 diffraction order as predicted by the analytical modelling

exceeds the value determined by Lumerical by 40%. The above

two effects should also be accounted for in order to get more

accurate results. However, the approach outlined here does

provide us with a conceptual understanding of the phenomena

determining the light coupling into various diffraction orders

from a blazed grating.

We now demonstrate with an example how the analytical

modelling can be used to design structures for specific

applications. The dashed blue line in figure 4(a) shows the

diffraction intensity, for an incident wavelength of 800 nm,

from an asymmetric prism (structure considered thus far, and

illustrated in figure 1) of base, d = 1500 nm and height, h =

200 nm. The diffraction peak is positioned between the 0th

and −1 diffraction orders arising from a periodic arrangement

with a periodicity 1500 nm. Hence the diffracted light from the

asymmetric blazed grating is coupled mostly into the 0th and

−1 diffracted orders. ∼70% of transmitted light is coupled

into −1 diffraction order and ∼20% of transmitted light is

coupled into 0th diffraction order, as shown by the solid blue

lines in figure 4(a). These results are in agreement with results

obtained using Lumerical. Lumerical simulations show that

for the above grating parameters, ∼50% of transmitted light is

coupled to −1 diffraction order and 25% of the transmitted
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Figure 3. Fraction of transmitted light coupled into (a) 0, (b) −1 and (c) −2 diffraction orders. The contour plots on the top row show data
obtained using numerical modelling (FDTD) and the contour plots on the bottom row show data obtained using the analytical model. The
data are for Si gratings on Si substrates. Grating period is 1500 nm and the grating height is varied between 50 and 500 nm. (d) and (e) show
line plots representing selected cross-sections of (a) and (b) for ease of comparison. (d) shows fraction of light coupled into 0 and −1
diffraction orders for a grating height of 100 nm as the wavelength of incident light is varied. (e) shows fraction of light coupled into 0, −1
and −2 diffraction orders at a wavelength of 700 nm as the grating height is varied. The lines are from numerical modelling and the points
are from analytical modelling.

light is coupled into 0th diffraction order. The difference

between the values predicted by the analytical modelling and

by Lumerical simulations is again attributed to the causes

described earlier. As discussed earlier, for light trapping, the

diffracted light needs to be coupled into higher order (>±2)

diffraction orders. One approach to achieve this would be to

increase the grating (prism) height such that the diffraction

peak from a single prism is positioned closer to a higher order

diffraction mode from the periodic arrangement, as illustrated

in figure 2. Alternatively, keeping the grating height the

same, the structure within a single period can be modified,

as shown in the inset of figure 4(b), to direct light into higher
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Figure 4. Normalized transmitted intensity distribution for (a)
blazed and (b) symmetric Si gratings with a period, d 1500 nm. The
intensity distribution of the periodic arrangement is represented in
red dotted lines. The blue dashed line represents the diffraction
intensity from a single linearly blazed, asymmetric prism; the green
dashed line represents the diffraction intensity from a symmetrical
prism. The solid lines represent the transmitted intensities from the
respective gratings.

order diffraction modes. The transmission function of this

symmetric prism grating within a single period is now the

convolution of the transmission functions of two asymmetric

prisms with base dimension d/2, and height h and is given by

Tsymm-prism(x) = exp[ikε(n − 1)x]

[

rect

(

2x

d
−

1

2

)]

⊗ exp[ikε(1 − n)]

[

rect

(

2x

d
+

1

2

)]

. (6)

The narrower transmission function for the modified structure

indicates that the far-field diffraction intensity, which is

the Fourier transform of Tsymm-prism(x), will be broader

compared with that of a prism with base dimension d . Because

of the way the two asymmetric prisms are positioned within a

period, each of them directs light onto opposite sides of the

0th diffraction order, as shown by the dotted green line in

figure 4(b). The light transmitted through the symmetric prism

grating is now coupled into higher order diffraction modes, as

shown by the solid green lines in figure 4(b). The analytical

model predicts that ∼20% of transmitted light is coupled into

0th diffraction order, ∼50% of transmitted light is coupled into

±1 diffraction orders and ∼30% of transmitted light is coupled

into ±2 diffraction orders. Lumerical simulations show that

∼20% of transmitted light is coupled into 0th diffraction

order and ∼80% of transmitted light is coupled into the ±1

diffraction orders. Again, we attribute the differences between

the values predicted by the analytical model and Lumerical to

the causes described earlier. This example illustrates how the

analytical modelling can be used to design diffraction gratings

to achieve a desired diffraction pattern.

In summary, we have presented a simple analytical

modelling technique to design diffraction gratings for light-

trapping applications in solar cells. The model is applicable

(in the limits of the scalar diffraction theory) to gratings of

any shape as long as the transmission function for a single

period can be defined. The results of the analytical model

agree very well with that of numerical results obtained using

FDTD. Unlike numerical techniques that can be time- and

resource-intensive, this simple analytical approach provides

a phenomenological understanding of the behaviour of blazed

structures.
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