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Abstract. The determination of stress states around cavities in the stressed elastic 
body, regardless of cavity shapes, that may be spherical, cylindrical, elliptical etc. in 
its analytical approach has to be based on selection of a stress function that will satisfy 
biharmonic equation ∇ 2∇ 2Ψ = 0, under given boundary conditions. This paper is 
concerned with formulation and solution of the cited differential equation using 
elliptical coordinates in conformity with the cavity shape of oblong ellipsoid [1]. It is 
therefore considered that the formulation of the stress tensor will be done in conformity 
to the cited coordinates. 
The paper describes basic statements and definitions in connection to harmonic 
functions used for determination of stress states around cavities formed in the stressed 
homogeneous space. The particular attention has been paid to the use of Legendre`s 
functions, with definitions and derivation of recurrent formulas, that have been used 
for determination of stress states around an oblong ellipsoidal cavity, [1]. The paper 
also includes the description of procedures used in forming series based on Legendre`s 
functions of the first order. 
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1. BIHARMONIC DIFFERENTIAL EQUATION SOLUTION BY A STRESS FUNCTION 

In resolving stress states around a cavity having the oblong ellipsoidal shape, the 
starting point is the basic equilibrium equation in terms of displacements, derived for a 
stressed isotropic elastic body (neglecting the gravity). Following this approach the equi-
librium equations can be formulated in a general manner by using a function of coordi-
nates for an arbitrary point in the body, known as "stress function". Selection of stress 
functions that are satisfying equilibrium equations and imposed boundary conditions in 
either isotropic or not isotropic bodies, presents the common task for research activities in 
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this field of applied mechanics. An example of such solutions is referred to Papkovich – 
Neuber [1] set of stress functions, taken as the basis for determination of stress tensor 
coordinates in the following form: 

   3210 Φ+Φ+Φ+Φ=Ψ zyx  (1) 

that in the case of axial symmetry is reduced to: 

   30 Φ+Φ=Ψ z  (2) 

The selected stress function used for determination of stress tensor coordinates shall 
satisfy biharmonic differential equation: 

   022 =Ψ∇∇  (3) 

In an analytical approach this equation shall be formulated in the coordinates selected 
in conformity with the geometry of the cavity around which the stress states are under 
investigation. 

2. BIHARMONIC DIFFERENTIAL EQUATION IN ELLIPTICAL COORDINATES  

The shape of the cited differential equation (3) that the selected stress functions shall 
satisfy, depends on the expression of Laplace's operator (∇2) in the chosen curvilinear 
coordinates. In the case of coordinates suited for oblong rotational ellipsoid, Laplace's 
operator is given in the following form: 
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where u, φ, θ are elliptical coordinates defined by expressions x = L sh u sinφ y = L sh u 
sinφ sinθ z = L ch u cosφ (L − is the focal distance along larger axis, 0 ≤ u ≤ ∞ 0 ≤ φ ≤ π 
0≤θ≤2 π). 

Under condition of axial symmetry state independent of the coordinate θ, the operator 
has the following form [2]: 
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After substitution of expression (5) in equation (3), one can obtain: 
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Therefore the expression (6) has the form of differential equation 022 =Ψ∇∇  in elliptical 
coordinates, for axial symmetry case. 

3. DIFFERENTIAL EQUATION SOLUTION IN ELLIPTICAL COORDINATES 

Differential equation (6) can be commonly transformed in two equations [3] as follows: 

    0A2 =∇  (7) 

 A   2 =Ψ∇  (8) 

The solution of equation (7) by separation of unknowns is to be searched in the form: 

   )(cos)F(ch A ϕΦ= u  (9) 

By application of common mathematical transformations with separation of unknowns, 
one can obtain two equations with independent unknowns "u" and "ϕ", respectively: 
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General solutions of equations (10) are known in the form: 
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After insertion of (11) in (9) one can obtain the expression ( 9 ) in the form: 



D. LUKIĆ, P. ANAGNOSTI 148 

   )](cosQD )(cosPC)][(ch QB  )(ch PA[ A
0 0

ϕ+ϕ+= ∑ ∑
∞

= =

m
nnm

m
nnm

m
nnm

m
nnm

n

n

m
uu  (12) 

Where: )ch (Q  ),(cosP um
n

m
n ϕ  are Legendre's polynomials and functions, that  

For m=0 reduce to the following form: 

 )ch (Q  ),(cosP unn ϕ ; (13) 

In order to satisfy the continuity of expression (12), the condition Dnm = 0 is to be ful-
filled, and therefore the solution of equation (7) has the following form: 
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After insertion of the boundary condition: 
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one can obtain the value of parameter Anm = 0, and the solution of equation (7) gets the 
following form: 
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By substitution anm = Cnm Bnm, one can obtain the solution of equation (7) in its final form: 
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By inserting the expression (17) into equation (8) one can obtain: 
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After the searching its solution in the following form: 

   ph Ψ+Ψ=Ψ  (19) 

it appears that there is a possibility to obtain two differential equations, namely: 

− general solution:   02 =Ψ∇ h  (20)  
and 
− particular solution: A   2 =Ψ∇ p  (21) 

The homogeneous equation (20) can be resolved in the same manner as equation (7) 
and solution can be obtained in the following form: 
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and 
− particular solution is to be searched in the form:  
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Applying differential operator (5) on Ψp in expression (23) and after equating the left 
side of equation (21), and the right side of equation (17) one can obtain the relationship 
between quotients anm and enm. 

The final solution of equation (3) is therefore obtained in the form: 
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or,  
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where: nmnmnm ebf +=   

 m
nP , and m

nQ , are Legendre's polynomials and functions [4]. 

The unknown parameters fnm are to be determined from boundary conditions existing 
on the cavity surface, that have to be given in stresses., and the expression ( 2 ) is to be 
rewritten as: 
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where unknown parameters Anm and Cnm are to be determined from boundary conditions 
existing on the cavity surface, that have to be given in stresses. 

Starting from expression (26) one can obtain analytically defined stresses σ u, σφ, σθ, τuφ 
by well known expressions consisting of the derivatives of functions Ψ and Φ3. On the 
other hand, the stresses acting on the cavity surface are to be derived also from a given 
stress function "f (u,φ,θ)" expressed in infinite series basing on Legendre's functions, and 
equated to the values resolved by stress functions Φo and Φ3, thus forming up the final set 
of linear equations that relate unknown Anm and Cnm parameters to the known values of 
coefficients in the infinite series approximation of the boundary stresses. 

4. LEGENDRE'S POLYNOMIALS AND FUNCTIONS 

Analytical solutions of problems related to stress states determination in vicinity of el-
liptical, spherical and cylindrical cavities formed in the stressed homogeneous space, 
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mostly are based on application of harmonic stress functions. The detailed description of 
harmonic functions and presentation of convenient types of Legendre's functions are al-
ready given in Hobson's publication [2]. In the recent work given as [1], the detailed ad-
ditional analyses of the subject were presented, particularly definitions of necessary recur-
rent formulas, and solutions of stress states with the transformations of functions in infi-
nite series basing on Legendre's functions of the first order. 

The problems of the stress state determination in vicinity of a cavity having the shape 
of oblong ellipsoid with rotational (axial) symmetry can be resolved, as it has been cited 
previously by defining stress functions that shall satisfy the basic differential equation ∇2 
∇2ψ = 0. The solutions are obtainable with the help of Legendre's functions of the first 
and second order, defined by the following expressions: 
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and by use of Legendre's functions of the second order defined by expressions  
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The expressions (28) and (30) define associated Legendre's functions of the first and 
second order, respectively. It is worth to note, that Legendre's functions are frequently 
used due to their orthogonal properties. For the problems of stress state determinations in 
vicinity of the cavities, the particular suitability is stemming from the finiteness of Legen-
dre's functions of the first order, and rapid convergence for Legendre's functions of the 
second order to zero values with enlarging the distance from the cavity boundary. These 
properties are also useful for easier control and follow up of convergence in the derived 
solutions. On the ground of the basic properties of Legendre's functions the derivation of 
recurrent formulas made possible to formulate necessary set of equations and simplifica-
tion of the expressions for stress tensor. In the Hobson's paper [2] a number of recurrent 
formulas had been derived, and supplementary recurrent formulas were derived in the 
recently completed work [1], and presented as follows. 
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The recurrent formulas for Legendre's functions of the first order are: 
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The recurrent formulas of Legendre's functions of the second order are: 
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The given recurrent formulas are to be used in forming the set of equations required 
for determination of unknown parameters Anm and Cnm on the basis of boundary condi-
tion function " f " approximated in series by Legendre's polynomials. 
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5. BOUNDARY STRESS APPROXIMATION IN SERIES BY LEGENDRE'S POLYNOMIALS 

The Legendre's functions of the first order are commonly named as Legendre's poly-
nomials. The boundary stress function approximation in series by Legendre's polynomials 
is particularly suitable for resolving the basic set of equations that is formed in such a way 
that one side consists of Legendre's polynomials (given in the form of series) originated 
from the differential equation solution, and the other side consists of boundary condition 
function also expressed by Legendre's polynomials. 

The development of a boundary stress function "f " in series by trigonometric func-
tions and Legendre's polynomials is given in the form: 
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where Hnm parameters are to be determined on the basis of expression  

 ∫ ∫
π π

ϕϕθϕθ
λπ+
+−

=
2

0 0

  d sin  cos)(cosP   d  
 2  )!(

)!12()!(H mf
mn

nmn m
n

m
nm  (38) 

with 0)(  20 ==λ m , and 0);(  1 ≠=λ mm  [5] 

In case of m = 0, one can obtain: 
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where parameters Hn are to be determined from expression  
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The available literature [1] suggests the development of the function "f " as follows: 
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where parameters Hn can be determined from expression: 
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while, the values of )(cosP(1) ϕn  are defined by: 
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6. CONCLUSIONS 

This paper deals with general form of differential equations for rotational symmetry 
stress conditions. The general solution of biharmonic equation is searched by appropriate 
stress functions expressed in elliptic coordinates. The solution approach is somewhat dif-
ferent to that where the unknown parameters in infinite series can be directly derived from 
boundary conditions [1]. In the presented article, the boundary conditions are defined by 
coordinates of stress tensor, i.e. as the solutions of partial differential equations of stress 
functions. On the basis of such boundary conditions, whose satisfaction is imposed, the 
determination procedure for obtaining values of unknown constants in the solution of dif-
ferential equations defined by infinite series is described. 

In this concise paper the attempt has been made to describe one valuable practical ap-
plication of Legendre's functions in a research where these special functions were used for 
determination of stress states around cavities in a stressed body. Since the researches 
made by Hobson and some other contributors during the second half of 20th century, the 
literature related to application of these special functions is not abundant. It can be in-
ferred that the rapid development of numerical methods based on the finite elements, and 
the prevalence of these types of research in the field of applied mechanics, has put the 
analytical methods in a secondary role, the same situation was apparent in the research 
activities related to special functions. However this paper contains the description of some 
solutions developed in the basic work [1] that may be considered as a kind of a rejuvena-
tion of some analytical methods in applied mechanics fields. The particular attention has 
been paid in this paper, to demonstrate some properties of special functions, not so fre-
quently stated in the literature, namely the properties that appeared rather useful in re-
solving stress states around elliptical cavities formed in the stressed elastic body. 
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MATEMATIČKE OSNOVE ODREĐIVANJA 
NAPONSKIH STANJA OKO ELIPTIČNIH OTVORA 

Dragan Lukić, Petar Anagnosti 

Određivanje naponskih stanja oko otvora predstavlja veoma složen matematički problem. Zbog 
toga, pri razmatranju ovog problema potrebno je najpre definisati pojedine oblasti matematičke 
analize koje se pri tome koriste. 

Prvi deo rada razmatra rešavanje biharmonijskih diferencijalnih jednačina ∇ 2∇ 2ψ = 0 
uzimajući u obzir rešenje Papkovič − Neubera [1]. 

U drugom delu rada definišu se odredjene klase specijalnih harmonijskih funkcija (tipa Ležandra) 
kao posebno značajnih za analizu naponskih stawa.Pored toga, u radu se prikazuju rekurentne 
formule definisane u radu [1] kao i predstavljanje funkcija u obliku reda po Ležandrovim polinomima.  


