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equation

Noboru Sakamoto and Arjan J. van der Schaft

Abstract

In this paper, two methods for approximating the stabilizing solution of the Hamilton-Jacobi equation
are proposed using symplectic geometry and a Hamiltonian perturbation technique as well as stable manifold
theory. The first method uses the fact that the Hamiltonian lifted system of an integrable system is also
integrable and regards the corresponding Hamiltonian system of the Hamilton-Jacobi equation as an integrable
Hamiltonian system with a perturbation caused by control. The second method directly approximates the
stable flow of the Hamiltonian systems using a modification of stable manifold theory. Both methods provide
analytical approximations of the stable Lagrangian submanifold from which the stabilizing solution is derived.
Two examples illustrate the effectiveness of the methods.

I. Introduction

When analyzing a control system or designing a feedback control, one often encounters certain
types of equations that describe fundamental properties of the control problem at hand. It is the
Riccati equation for linear systems and the Hamilton-Jacobi equation plays the same role in nonlinear
systems. For example, an optimal feedback control can be derived from a solution of a Hamilton-Jacobi
equation [25] and H∞ feedback controls are obtained by solving one or two Hamilton-Jacobi equations
[5], [21], [38], [39]. Closely related to optimal control and H∞ control is the notion of dissipativity,
which is characterized by a Hamilton-Jacobi inequality (see, e.g., [19], [42]). Some active areas of
research in recent years are the factorization problem [6], [7] and the balanced realization problem
[36], [15] and the solutions of these problems are again represented by Hamilton-Jacobi equations (or,
inequalities). Contrary to the well-developed theory and computational tools for the Riccati equation,
which are widely applied, the Hamilton-Jacobi equation is still an impediment to practical applications
of nonlinear control theory.

In [27], [16], [30], [17] various series expansion techniques are proposed to obtain approximate solu-
tions of the Hamilton-Jacobi equation. With these methods, one can calculate sub-optimal solutions
using a few terms for simple nonlinearities. Although higher order approximations are possible to
obtain for more complicated nonlinearities, their computations are often time-consuming and there is
no guarantee that resulting controllers show better performance. Another approach is through succes-
sive approximation, where the Hamilton-Jacobi equation is reduced to a sequence of first order linear
partial differential equations. The convergence of the algorithm is proven in [24]. In [9] an explicit
technique to find approximate solutions to the sequence of partial differential equation is proposed
using the Galerkin spectral method and in [41] the authors propose a modification of the successive
approximation method and apply the convex optimization technique. The advantage of the Galerkin
method is that it is applicable to a larger class of systems, while the disadvantages are that it is depen-
dent on how well initial iterate is chosen and requires the calculation of L2 inner products which can
be significantly time-intensive for higher dimensional systems. The state-dependent Riccati equation
approach is proposed in [20], [29] where a nonlinear function is rewritten in a linear-like representation.
In this method, feedback control is given in a power series form and has a similar disadvantage to the
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series expansion technique in that it is useful only for simple nonlinearities. A technique that employs
open-loop controls and their interpolation is used in [28]. The drawback is that the interpolation
of open-loop controls for each point in discretized state space is time-consuming and the computa-
tional cost grows exponentially with the state space dimension. A partially related research field to
approximate solutions of the Hamilton-Jacobi equation is the theory of viscosity solutions. It deals
with general Hamilton-Jacobi equations for which classical (differentiable) solutions do not exist. For
introductions to viscosity solutions see, for instance, [8], [11], [13] and for an application to an H∞

control problem, see [37]. The finite-element and finite-difference methods are studied for obtaining
viscosity solutions. They, however, require discretization of state space, which can be a significant
disadvantage.

Another direction in the research for the Hamilton-Jacobi equation is to study the geometric struc-
ture and the properties of the equation itself and its exact solutions. The papers [38] and [39] give a
sufficient condition for the existence of the stabilizing solution using symplectic geometry. In [35], the
geometric structure of the Hamilton-Jacobi equation is studied showing the similarity and difference
with the Riccati equation. See also [40] for the treatment of the Hamilton-Jacobi equation as well
as recently developed techniques in nonlinear control theory such as the theory of port-Hamiltonian
systems. In [32], the solution structure of a nonlinear optimal control problem is investigated using
the inverted pendulum as an example.

In this paper, we focus on so-called stationary Hamilton-Jacobi equations which are related to,
for example, infinite horizon optimal control problems and H∞ control problems, and attempt to
develop methods to approximate the stabilizing solution of the Hamilton-Jacobi equation based on the
geometric research in [38], [39] and [35]. The main object of the geometric research on the Hamilton-
Jacobi equation is the associated Hamiltonian system. However, most approximation research papers
mentioned above do not explicitly consider Hamiltonian systems, although it is well-known that the
Hamiltonian matrix plays a crucial role in the calculation of the stabilizing solution for the Riccati
equation. One of our purposes in this paper is to fill in this gap.

We will propose two analytical approximation methods for obtaining the stabilizing solution of the
Hamilton-Jacobi equation. In the first method, we try to explore the possibility of using integrability
conditions on the uncontrolled part of the system for controller design. Even when one can completely
solve the equations of motion for a system with zero input, most nonlinear control techniques do not
exploit the knowledge because once a feedback control is implemented, the system is not integrable
anymore. However, within the geometric framework for the Hamilton-Jacobi equation, the effect
of control can be considered as a Hamiltonian perturbation to the Hamiltonian system obtained by
lifting the original equations of motion. Here, a crucial property is that if the equations of motion
are integrable, then its lifted Hamiltonian system is also integrable. By using one of the Hamiltonian
perturbation techniques (see, e.g., [4], [18]) we analyze the behaviors of the Hamiltonian systems with
control effects and try to approximate the Lagrangian submanifold on which the Hamiltonian flow is
asymptotically stable.

The second method in this paper takes the approach based on stable manifold theory (see, e.g., [10],
[34]). Using the fact that the stable manifold of the associated Hamiltonian system is a Lagrangian
submanifold and its generating function corresponds to the stabilizing solution, which is shown in [38],
and modifying stable manifold theory, we analytically give the solution sequence that converges to
the solution of the Hamiltonian system on the stable manifold. Thus, each element of the sequence
approximates the Hamiltonian flow on the stable manifold and the feedback control constructed from
each element may serve as an approximation of the desired feedback. It should be mentioned that
computation methods of stable manifolds in dynamical systems are being developed and a compre-
hensive survey of the recent results in this area can be found in [22]. The proposed method in this
paper, however, is different from the above numerical methods in that it gives analytical expressions of
the approximated flows on stable manifolds, which may have considerable potential for control system
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designs that often lead to high dimensional Hamiltonian systems.
The organization of the paper is as follows. In §II, the theory of 1st-order partial differential

equations is reviewed in the framework of symplectic geometry, stressing the one-to-one correspondence
between solution and Lagrangian submanifold. In §III, a special type of solution, called the stabilizing
solution, is introduced and the geometric theory for the Riccati equation is also reviewed. In the
beginning of §IV a key observation on integrability for Hamiltonian lifted systems is presented. We
apply a Hamiltonian perturbation technique (reviewed in Appendix -A) for the system in which the
Hamiltonian is decomposed into an integrable one and a perturbation Hamiltonian that is related
to the influence of control. By assuming that the linearized Riccati equation at the origin has a
stabilizing solution, we try to approximate the behaviors on the stable Lagrangian submanifold. In
§V, an analytical approximation algorithm for the stable Lagrangian submanifold is proposed, using
a modification of stable manifold theory. The proof of the main theorem in this section will be given
in Appendix -B.

In §VI-A, we address some computational issues. One of the eminent features of the approach taken
in the paper is that we try to obtain not solutions of the Hamilton-Jacobi equation but submanifolds
in the extended state space from which the solutions are produced by geometric integration (for
example, Poincaré’s lemma). However, only approximations of the submanifolds are obtained and the
integrability condition does not hold anymore. We circumvent this difficulty, by obtaining derivatives
of the solutions (§VI-A) or by using integral expressions of value functions in optimal control problems
or storage functions in dissipative system theory (§VI-B). Also in §VI-C, we touch on one of the
advantages of our analytic approach, by showing that approximate solutions can be explicitly obtained
as polynomial functions when the system under consideration has only polynomial nonlinearities. In
§VII-A, we illustrate a numerical example showing the effectiveness of the proposed methods. Since
this is a one-dimensional system, one can obtain the rigorous solution, which is convenient to see the
accuracy and convergence of the methods. In §VII-B, we consider a two-dimensional problem, an
optimal control of a nonlinear spring-mass system, in which the spring possesses nonlinear elasticity.
Lastly, the Appendix includes the expositions for the variation of constants technique in Hamiltonian
perturbation theory, proof of the main theorem in §V and some formulas of the Jacobi elliptic functions
used in §VII-B.

II. Review of the theory of 1st-order partial differential equations

In this section we outline, by using the symplectic geometric machinery, the essential parts of the
theory of partial differential equations of the first order.

Let us consider a partial differential equation of the form

(PD) F (x1, · · · , xn, p1, · · · , pn) = 0,

where F is a C∞ function of 2n variables, x1, · · · , xn are independent variables and p1 = ∂z/∂x1, · · · , pn =
∂z/∂xn with z an unknown function. Since the Hamilton-Jacobi equation in nonlinear control theory
does not explicitly depend on z, we did not include it in (PD). The contact geometry handles the
time-varying case (see, e.g., [26]). Let M be an n dimensional space for (x1, · · · , xn). We regard the
2n dimensional space for (x, p) = (x1, · · · , xn, p1, · · · , pn) as the cotangent bundle T ∗M of M . T ∗M is
a symplectic manifold with symplectic form θ =

∑n
i=1 dxi ∧ dpi.

Let π : T ∗M → M be the natural projection and F−1(0) ⊂ T ∗M be a hypersurface defined by
F = 0. Define a submanifold

ΛZ = {(x, p) ∈ T ∗M | pi = ∂z/∂xi(x), i = 1, · · · , n}
for a smooth function z(x). Then, z(x) is a solution of (PD) if and only if ΛZ ⊂ F−1(0). Furthermore,
π|ΛZ

: ΛZ → M is a diffeomorphism and ΛZ is a Lagrangian submanifold because dim ΛZ = n and

θ|ΛZ
= 0.
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Conversely, it is well-known (see, e.g. [1], [31]) that for a Lagrangian submanifold Λ passing through
q ∈ T ∗M on which π|Λ : Λ → M is a diffeomorphism, there exists a neighborhood U of q and a
function z(x) defined on π(U) such that

Λ ∩ U = {(x, p) ∈ U | pi = ∂z/∂xi(x), i = 1, · · · , n}.
Therefore, finding a solution of (PD) is equivalent to finding a Lagrangian submanifold Λ ⊂ F −1(0)
on which π|Λ : Λ → M is a diffeomorphism.

Let f1 = F . To construct such a Lagrangian submanifold passing through q ∈ T ∗M , and hence to
obtain a solution defined on a neighborhood of π(q), it is necessary and sufficient to find functions
f2, · · · , fn on T ∗M with df1(q) ∧ · · · ∧ dfn(q) 6= 0 such that {fi, fj} = 0 (i, j = 1, · · · , n), where {·, ·}
is the canonical Poisson bracket, and

∣

∣

∣

∣

∂(f1, · · · , fn)

∂(p1, . . . , pn)

∣

∣

∣

∣

(q) 6= 0. (1)

Using these functions, equations f1 = 0, fj = constant, j = 2, . . . , n define a Lagrangian submanifold
Λ ⊂ F−1(0). Note that the condition (1) implies, by the implicit function theorem, that π|Λ is a
diffeomorphism on some neighborhood of q.

Since {F, ·} is the Hamiltonian vector field XF with Hamiltonian F , the functions f2, · · · , fn above
are first integrals of XF . The ordinary differential equations that give the integral curve of XF are
Hamilton’s canonical equations















dxi

dt
=

∂F

∂pi

dpi

dt
= −∂F

∂xi

(i = 1, · · · , n), (2)

and therefore, we seek n − 1 commuting first integrals of (2) satisfying (1).

III. The stabilizing solution of the Hamilton-Jacobi equation

Let us consider the Hamilton-Jacobi equation in nonlinear control theory

(HJ) H(x, p) = pT f(x) − 1

2
pT R(x)p + q(x) = 0,

where p1 = ∂V/∂x1, · · · , pn = ∂V/∂xn with V (x) an unknown function, f : M → R
n, R : M → R

n×n,
q : M → R are all C∞, and R(x) is a symmetric matrix for all x ∈ M . We also assume that f and q
satisfy f(0) = 0, q(0) = 0 and ∂q

∂x
(0) = 0. In what follows, we write f(x), q(x) as f(x) = Ax + O(|x|2),

q(x) = 1
2
xT Qx + O(|x|2) where A is an n × n real matrix and Q ∈ R

n×n is a symmetric matrix.
The stabilizing solution of (HJ) is defined as follows.
Definition 1: A solution V (x) of (HJ) is said to be the stabilizing solution if p(0) = 0 and 0 is an

asymptotically stable equilibrium of the vector field f(x) − R(x)p(x), where p(x) = (∂V/∂x)T (x).

It will be important to understand the notion of the stabilizing solution in the framework of sym-
plectic geometry described in the previous section. Suppose that we have the stabilizing solution V (x)
around the origin. Then, the Lagrangian submanifold corresponding to V (x) is

ΛV = {(x, p) | p = ∂V/∂x(x)} ⊂ T ∗M.

ΛV is invariant under the Hamiltonian flow generated by






ẋ = f(x) − R(x)p

ṗ = −∂f

∂x
(x)T p +

∂(pT R(x)p)

∂x

T

− ∂q

∂x

T

.
(3)

4



To see this invariance, one needs to show that the second equation identically holds on ΛV , which
can be done by taking the derivative of (HJ) after replacing p with p(x). Note that the right-hand
side in the second equation of (3) restricted to ΛV is (∂p/∂x)(f(x) − R(x)p(x)). The first equation is
exactly the vector field in Definition 1. Therefore, any stabilizing solution is a generating function of
the Lagrangian submanifold on which π is a diffeomorphism and the Hamiltonian flow associated with
H(x, p) is asymptotically stable.

It is also useful to see the same picture for the Riccati equation;

(RIC) PA + AT P − PR(0)P + Q = 0,

which is the linearization of (HJ). A symmetric matrix P is said to be the stabilizing solution of (RIC)
if it is a solution of (RIC) and A − R(0)P is stable. The 2n × 2n matrix

Ham =

(

A −R(0)
−Q −AT

)

is called the Hamiltonian matrix of (RIC) corresponding to the Hamiltonian vector field (3). A
necessary and sufficient condition for the existence of the stabilizing solution [3], [33], [14], [23] is that
(i) Ham has no eigenvalues on the imaginary axis, and (ii) the generalized eigenspace E− for n stable
eigenvalues satisfies the following complementarity condition;

E− ⊕ Im

(

0
I

)

= R
2n.

The condition (i) guarantees that the stable Lagrangian submanifold (subspace) does exist while (ii)
corresponds to the diffeomorphism assumption of π on the Lagrangian submanifold. More specifically,
suppose that the assumptions (i), (ii) are satisfied, then the stabilizing solution P exists to (RIC).
Take the solution S to the Lyapunov equation (A − R(0)P )S + S(A − R(0)P )T = R(0) and set

T =

(

I S
P PS + I

)

, (4)

then it holds that

Ham T = T

(

(A − R(0)P ) 0
0 −(A − R(0)P )T

)

. (5)

A nonlinear (Hamilton-Jacobi) extension of (5) is found in [35].
We assume the following throughout the paper.
Assumption 1: The Riccati equation (RIC) satisfies conditions (i) and (ii), and thus has a stabi-

lizing solution P denoted by Γ.

IV. The Hamiltonian perturbation approach

It is well-known that any system described by an ordinary differential equation can be represented as
a Hamiltonian system by doubling the system dimension (Hamiltonian lifting). In [12] this technique
is extended to control systems with inputs and outputs and is known to be effective for fundamental
control problems such as factorization [7], [6] and model reduction problems [15]. We first give a useful
observation on a Hamiltonian lifted system when the original system is integrable. Although it is
simple, we did not find this observation in the literature.

Let the system ẋ = f(x) be completely integrable and u1(x), . . . ,un−1(x) be first integrals. Consider
its Hamiltonian lifted system

{

ẋ = ∂H0

∂p
= f(x)

ṗ = −∂H0

∂x
= −∂f

∂x
(x)T p

(6)
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with Hamiltonian H0 = pT f(x). Let vj(x, p) = uj(x) for j = 1, . . . , n − 1 and vn(x, p) = H0(x, p).
Then,

{vi, vj} =
∂vi

∂x

∂vj

∂p

T

− ∂vi

∂p

∂vj

∂x

T

= 0

for i, j = 1, . . . , n − 1,

{vi, vn} =
∂vi

∂x
f(x) − ∂vi

∂p

∂(pT f(x))

∂x

T

= 0

for i = 1, . . . , n − 1,

which means that v1,. . . , vn are in involution. Therefore, the Hamiltonian system (6) is integrable in
the sense of Liouville. This means that if one can obtain general solutions of the original system by
quadrature, it is also possible for its lifted system.

One may realize that in the analysis of the Hamilton-Jacobi equation (HJ) Hamilton’s canonical
equations (3) contain the same terms as the Hamiltonian lifting (6) of the plant system. The purpose
of this section is to show that one can exploit this property of Hamiltonian lifting for approximation
of the stabilizing solution of (HJ).

Assumption 2: The system under control ẋ = f(x) is completely integrable in the sense that there
exist n − 1 independent first integrals, and thus a solution x = Φ(t, x0) for a general initial condition
x = x0 at t = 0 is obtained.

Define the perturbation Hamiltonian by H1 := H − H0 = −1
2
pT R(x)p + q(x). The Hamiltonian H1

is considered to represent the effect of the control inputs on the integrable system. We first solve the
unperturbed Hamilton’s canonical equations (6) determined by H0 by means of the Hamilton-Jacobi
theory. We take the Hamilton-Jacobi approach because it automatically produces new canonical
variables. It is important to keep working with canonical variables so as not to cause secular terms in
calculations, by which stability analysis may become unreliable (see, e.g., [18]). The Hamilton-Jacobi
equation to solve (6) is

H0

(

x,
∂W

∂x

)

+
∂W

∂t
= 0. (7)

Proposition 2: A complete solution of (7) is obtained as

W (x, t, P ) =
n
∑

j=1

PjΦj(−t, x), Pj’s: arbitrary constants,

where Φ(t, x) = (Φ1(t, x), · · · , Φn(t, x)) is the flow of ẋ = f(x).
Proof: The characteristic equation for (7) is











dx

ds
= f(x(s))

dt

ds
= 1.

Since the general solution is x(s) = Φ(s, x0), t(s) = s + s0, the n independent integrals of the charac-
teristic equation are Φ1(−t, x), . . . , Φn(−t, x). To see this, we note that

Φ(−t(s), x(s)) = Φ(−(s + s0), Φ(s, x0))

= Φ(−s0, x0) (independent of s).

The general solution W of the Hamilton-Jacobi equation (7) is an arbitrary function of the integrals
Φ1(−t, x), . . . , Φn(−t, x). We choose a linear combination of them with constants P1, . . . , Pn.
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From W (x, t, P ), by

pj =
∂W

∂x
, Xj =

∂W

∂Pj

(arbitrary constants),

a general solution of the lifted unperturbed system (6) is obtained as

xj(t) = Φj(t, X), pj(t) =

n
∑

k=1

Pk
∂Φ

∂xj
(−t, x) (8)

or,

x(t, X) = Φ(t, X), p(t, X, P ) =
∂Φ

∂x
(−t, x)T P. (9)

We note that the time-dependent transformation (x, p) → (X, P ) is canonical. In the new coordinates
the free motion (without control) is represented as

Ẋ = 0, Ṗ = 0.

With control, the perturbation Hamiltonian is in the coordinates (X, P )

H1(x, p) = H1(x(t, X), p(t, X, P )) =: H̄1(X, P, t),

and X, P obey

Ẋj =
∂H̄1

∂Pj
, Ṗj = −∂H̄1

∂Xj
, j = 1, . . . , n. (10)

We remark that until now no approximation has been made. If we plug the solution X(t), P (t) of (10)
into (8) or (9), we get exact solutions of Hamilton’s canonical equations (3) for the original control
Hamilton-Jacobi equation (HJ) (see, Appendix -A). However, it is still difficult to solve (10) and we
try to find an approximate solution of (10). Using the solution in Assumption 2, we have

x = Φ(t, X) = eAtX + O(|X|2) (11)

X = Φ(−t, x) = e−Atx + O(|x|2). (12)

Proposition 3: The linearized equation of (10) is

{

˙̄X = −e−AtR(0)e−AT tP̄
˙̄P = −eAT tQeAtX̄.

(13)

Moreover, this can be explicitly solved as

(

X̄(t, X̄0, P̄0)
P̄ (t, X̄0, P̄0)

)

=

(

eAt 0

0 e−AT t

)−1

× exp

[

t

(

A −R(0)
−Q −AT

)] (

X̄0

P̄0

)

.

Proof: The new Hamiltonian in (X, P ) coordinates is

H̄1 = − 1

2
P T ∂Φ̃

∂x
(t, x(t, X))R(x(t, X))

∂Φ̃

∂x
(t, x(t, X))T P

+ q(Φ(t, X)).
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Thus, we have

∂H̄1

∂P

T

= − ∂Φ̃

∂x
(t, x(t, X))R(x(t, X))

∂Φ̃

∂x
(t, x(t, X))T P

∂H̄1

∂X

T

=
∂Φ

∂X

T ∂q

∂x
(Φ(t, X))T

− ∂2Φ̃

∂x2

(

∂Φ

∂X
, R(x(t, X))

∂Φ̃

∂x
P

)T

P

− 1

2

∂(pT R(x(t, X))p)

∂X

T
∣

∣

∣

∣

∣

p= ∂Φ̃

∂x
(t,x(t,X))T P

where we have denoted Φ̃(t, x) = Φ(−t, x) for simplicity and ∂2Φ̃/∂x2(·, ·) is a symmetric bilinear map.
Noting (11) and (12), we collect first order terms of X and P in (10) to get (13). To solve (13), we

set α = eAtX̄, β = e−AT tP̄ . Then, we have

(

α̇

β̇

)

=

(

A −R(0)
−Q −AT

)(

α
β

)

,

from which the claim is derived using the inverse transformation.

Substituting the solution in Proposition 3 into (8) or (9), we obtain approximating flows of the
Hamiltonian system (3). Now, we wish to select, among them, convergent flows to the origin, which
are the approximations of the flows on the stable Lagrangian submanifold.

By Assumption 1, it follows that

exp

[

t

(

A −R(0)
−Q −AT

)](

I
Γ

)

=

(

I
Γ

)

exp [t(A − R(0)Γ)] .

Therefore, if we take the initial conditions X̄0 and P̄0 satisfying P̄0 = ΓX̄0 (stable Lagrangian subspace),
then, we have

(

X̄
P̄

)

=

(

e−At 0

0 eAT t

)(

I
Γ

)

exp [t(A − R(0)Γ)] X̄0.

Let us denote quantities in the left-hand side of the above equation as X̄(t, X̄0, ΓX̄0) and P̄ (t, X̄0, ΓX̄0).
Then, we have the following proposition.

Proposition 4: For sufficiently small |X̄0|,

x(t, X̄0) = x(t, X̄(t, X̄0, ΓX̄0))

= Φ
(

t, e−Ate(A−R(0)Γ)tX̄0

)

p(t, X̄0) = p(t, X̄(t, X̄0, ΓX̄0), P̄ (t, X̄0, ΓX̄0))

=
∂Φ

∂x
(−t, x(t, X̄0))

T eAT tΓe(A−R(0)Γ)tX̄0

(14)

converge to the origin as t → ∞.
Proof: This can be verified from (11), (12) and the fact that A − R(0)Γ is an asymptotically

stable matrix.

From Proposition 4, we think of (14) as approximate behaviors on the stable Lagrangian submanifold,
and thus, (14) can be regarded as parameterized approximations of the Lagrangian submanifold.
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Summarizing, we propose the following method to approximate the stable Lagrangian submanifold
and the stabilizing solution.

Procedure 1: Solve the uncontrolled system equation ẋ = f(x). Form a general solution (8) or
(9) of (6) using the solution Φ(t, x0) of ẋ = f(x). Find the stabilizing solution P = Γ of (RIC) in
Assumption 1. Then,

Λt = {(x, p) | p =
∂Φ

∂x
(−t, x)T eAT tΓeAtΦ(−t, x)} (15)

is a family of approximations of the stable Lagrangian submanifold. That is, ∂Φ
∂x

(−t, x)T eAT tΓeAtΦ(−t, x)
is an approximation of the derivative ∂V/∂x of the stabilizing solution.

Proof: By eliminating X̄0 in (14), one can derive (15).
Remark IV.1: The set Λt in (15) includes the linearized solution p = Γx for t = 0. Also, it can

be seen that for sufficiently small |x|, each surface in (15) is tangent to p = Γx, from which one can
expect that the performance of the feedback control using (15) is better than that of linear control
using P = Γ of (RIC). For a practical method of determining the value of t, see §VI-D.

V. The stable manifold theory approach

A. Approximation of stable manifolds

We consider the following system

{

ẋ = Fx + f(t, x, y)

ẏ = −F T y + g(t, x, y).
(16)

Assumption 3: F is an asymptotically stable n × n real matrix and it holds that ‖eFt‖ 6 ae−bt,
t > 0 for some constants a > 0 and b > 0.

Assumption 4: f, g : R × R
n × R

n → R
n are continuous and satisfy the following.

i) For all t ∈ R, |x| + |y| < l and |x′| + |y′| < l,

|f(t, x, y)− f(t, x′, y′)| 6 δ1(l)(|x − x′| + |y − y′|).

ii) For all t ∈ R, |x| + |y| < l and |x′| + |y′| < l,

|g(t, x, y)− g(t, x′, y′)| 6 δ2(l)(|x − x′| + |y − y′|),

where δj : [0,∞) → [0,∞), j = 1, 2 are continuous and monotonically increasing on [0, Lj] for
some constants L1, L2 > 0.

Furthermore, there exist constants M1, M2 > 0 such that δj(l) 6 Mjl holds on [0, Lj] for j = 1, 2.

Let us define the sequences {xk(t, ξ)} and {yk(t, ξ)} by















xk+1 = eFtξ +

∫ t

0

eF (t−s)f(s, xk(s), yk(s)) ds

yk+1 = −
∫ ∞

t

e−F T (t−s)g(s, xk(s), yk(s)) ds

(17)

for k = 0, 1, 2, . . . , and

{

x0 = eFtξ

y0 = 0
(18)

with arbitrary ξ ∈ R
n.
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The following theorem states that the sequences {xk(t, ξ)}, {yk(t, ξ)} are the approximating solutions
to the exact solution of (16) on the stable manifold with the property that each element of the sequences
is convergent to the origin.

Theorem 5: Under Assumptions 3 and 4, xk(t, ξ) and yk(t, ξ) are convergent to zero for sufficiently
small |ξ|, that is, xk(t, ξ), yk(t, ξ) → 0 as t → ∞ for all k = 0, 1, 2, . . . Furthermore, xk(t, ξ) and yk(t, ξ)
are uniformly convergent to a solution of (16) on [0,∞) as k → ∞. Let x(t, ξ) and y(t, ξ) be the limits
of xk(t, ξ) and yk(t, ξ), respectively. Then, x(t, ξ), y(t, ξ) are the solution on the stable manifold of
(16), that is, x(t, ξ), y(t, ξ) → 0 as t → ∞.

Proof: See Appendix -B.

B. The approximation algorithm

Extracting the linear part in (HJ), (3) can be written as
(

ẋ
ṗ

)

=

(

A −R(0)
−Q −AT

)(

x
p

)

+ higher order terms. (19)

Using the linear coordinate transformation
(

x′

p′

)

= T

(

x
p

)

, (20)

where T is defined in (4), the linear part of (19) is diagonalized as
(

ẋ′

ṗ′

)

=

(

A − R(0)Γ 0
0 −(A − R(0)Γ)T

)(

x′

p′

)

+ higher order terms. (21)

For (21), Assumption 1 implies Assumption 3 and Assumption 4 is satisfied if f , R and q in (HJ)
are sufficiently smooth. Thus, we propose the following procedure for parametrized approximation of
the stable Lagrangian submanifold.

Procedure 2: (i) Construct the sequences (17) for (21) and obtain the sequences {xk(t, ξ)},
{pk(t, ξ)} in the original coordinates using (20).

(ii) Take a small r > 0 so as for the convergence of (17) to be guaranteed for ξ in

Sr = {(ξ1, . . . , ξn) |
n
∑

j=1

ξ2
j = r2}.

Then,
Λk = {(xk(t, ξ), pk(t, ξ)) | t ∈ R, ξ ∈ Sr} (22)

is an approximation of the stable Lagrangian submanifold and Λk → Λ as k → ∞, where Λ is
the stable Lagrangian submanifold whose existence is assured by Assumption 1 and the results
in [38].

Remark V.1: Procedure 1 applies, compared to Procedure 2, to a smaller class of systems and
does not provide a sequential method. However, since a nonlinearity is fully taken into account in
Procedure 1, it gives a qualitatively good approximation with a large valid range (see, Example VII-
A). Nevertheless, one may wish to obtain better approximations in the Hamiltonian perturbation
approach. To this end, we have included the dependence on t in (16), so as to be able to apply

Procedure 2 to (10). More specifically, one applies the transformation α = eAtX, β = e−AT tP as in
the proof of Proposition 3 to get

(

α̇

β̇

)

=

(

A −R(0)
−Q −AT

)(

α
β

)

+ higher order terms,

where the higher order terms above are dependent on t since H̄1 is time-dependent. Thus, Procedure
2 can be employed while the first approximation corresponds to the one in Procedure 1.
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VI. Computational issues

One of the unique features of the approach taken in this paper is to obtain a certain n-dimensional
surface (Lagrangian submanifold) in 2n-dimensional space, which is a graph of the derivative of the
solution, and from the integrability property of the surface, the existence of the solution is guaranteed.
For the purpose of the control system design, however, the actual computation of the solution and/or
its derivative is necessary.

A. Computation of ∂V/∂x

In §IV, the computation for ∂V/∂x is possible by eliminating X̄0 in (14). To obtain an approximation
of ∂V/∂x in (22), suppose that Sr is parametrized with (η1, . . . , ηn−1). If one eliminates t, η1, . . . , ηn−1

from 2n equations x = xk(t, ξ(η1, . . . , ηn−1)), p = pk(t, ξ(η1, . . . , ηn−1)), the relation p = πk(x) is
obtained and πk(x) will serve as an approximation of ∂V/∂x. The elimination of variables in this
case is, however, not easy to carry out in practice. An effective use of software is required for this
purpose. In §VII, we interpolate the values of pk for sample points of xk to get the function πk(x)
using MATLABr commands such as griddatan and interpn.

B. Computation of V

The approximations of the stable Lagrangian submanifold Λt in Procedure 1 and Λk in Procedure
2 do not satisfy the integrability condition. Therefore, it is difficult to get an approximation of the
generating function for the Lagrangian submanifold in a geometric manner. However, since we have
analytical expressions of the approximations, we can write down approximations of the generating
function as described below.

B.1 Optimal control problem

Let us consider the following optimal control problem:

ẋ = f(x) + g(x)u, f(0) = 0 (23)

with the cost function

J =

∫ ∞

0

L(x(t), u(t)) dt,

where g(x) is a smooth n × m matrix-valued function and L takes the form of, for example, L =
(h(x)T h(x) + uT u)/2 with smooth h(x) ∈ R

r, h(0) = 0. The optimal feedback control is given by

u = −g(x)T ∂V

∂x
(x)

T

,

where V (x) is the stabilizing solution of the corresponding Hamilton-Jacobi equation

∂V

∂x
f(x) − 1

2

∂V

∂x
g(x)g(x)T

(

∂V

∂x

)T

+
1

2
hT (x)h(x) = 0.

By Procedure 2, the k-th approximation of the Lagrangian submanifold is parametrized as Λk in (22),
and the k-th approximation of the optimal feedback can be described with t and ξ as

uk(t, ξ) = −g(xk(t, ξ))
Tpk(t, ξ).

Since the generating function is the minimum value of J for each ξ, its approximation can be written
as

Vk(ξ) =

∫ ∞

0

L(xk(t, ξ), uk(t, ξ)) dt. (24)
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The same computation is possible in the Hamiltonian perturbation approach, when ẋ = f(x) is
integrable, by using (14).

B.2 H∞ control problem

Let us consider the nonlinear system (23) with disturbances w ∈ R
q

ẋ = f(x) + g(x)u + l(x)w,

where l(x) is a smooth n × q matrix function. The state feedback H∞ control problem is to find a
feedback control law u = u(x) such that the closed loop system is asymptotically stable and has the
L2-gain (see, e.g., [39] for definition) from w to y = h(x) less than or equal to γ > 0.

A sufficient condition for the solvability of the H∞ problem is that there exists a stabilizing solution
V (x) > 0 to

∂V

∂x
f(x) +

1

2

∂V

∂x

[

1

γ2
l(x)l(x)T − g(x)g(x)T

]

·
(

∂V

∂x

)T

+
1

2
hT (x)h(x) = 0,

and the feedback law is given by

u∗ = −g(x)T

(

∂V

∂x

)T

.

Procedure 2 can be applied if the linearized H∞ problem is solvable and we can construct k-th ap-
proximation Λk as in (22). From Pontryagin’s minimum principle, one can show that

V (x) = − min
w∈L2

x(0)=x
x(∞)=0

1

2

∫ ∞

0

γ2|w(t)|2 − |y(t)|2 dt

= −1

2

∫ ∞

0

γ2w∗(x(t))T w∗(x(t)) − h(x(t))T h(x(t)) dt,

where

w∗ =
1

γ2
l(x)T p(x)

is the worst disturbance, p(x) = (∂V/∂x)T and x(t) is the solution of the system ẋ = f(x)+g(x)u∗(x)+
l(x)w∗(x). Then, k-th approximation for V is given, by replacing x, p(x) with xk(t, ξ), pk(t, ξ) respec-
tively, as

Vk(ξ) =
1

2

∫ ∞

0

γ2wT
k (t, ξ)wk(t, ξ) − h(xk(t, ξ))

Th(xk(t, ξ)) dt, (25)

where wk(t, ξ) = 1
γ2 l(xk(t, ξ))

Tpk(t, ξ).

When one designs a feedback control law and only the derivative of the solution of (HJ) is necessary,
we recommend to employ the method in §VI-A. This is because the operations in (24) or (25) have no
effect of approximating the exact solution and the derivatives of these functions may be less accurate
than those obtained by the method in §VI-A for the same k. The accuracy can be increased by taking
larger k and the two kinds of approximate derivatives coincide when k → ∞.

C. A special case–polynomial nonlinearities

When (HJ) contains only polynomial nonlinearities, computations for ∂V/∂x and V are carried out
with elementary functions in the stable manifold theory approach in §V. In this case, the higher order
terms in (19) are second or higher order polynomials, and so are f , g in (17).
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The first approximations, corresponding to the linear solution, are x0 = eFt, y0 = 0 consisting of
exponential and trigonometric functions. They are substituted in (17) yielding also exponential and
trigonometric functions since f and g are polynomial. The second approximations are obtained by
integrating them after multiplication of the matrix exponential eFt, thus consisting of exponential and
trigonometric functions. This continues for all k. Moreover, the integrands in (24) and (25) are also
polynomials of x and p, and therefore, Vk(ξ)’s are obtained as polynomial functions of ξ.

D. Determination of parameters and the radius of convergence

In the perturbation methods, one needs to determine the value of t so that (15) gives a good
approximation of ∂V/∂x in some sense. We propose a practical method of doing that using the
value of Hamiltonian H. If V (x) is a solution of (HJ), H(x, ∂V/∂x) = 0. Thus, if p = p(x; t) is an
approximation of ∂V/∂x with parameter t, it may be reasonable to chose t so as

∫

|H(x, p(x; t))| dx to
be minimized.

In the stable manifold approach, on the other hand, one needs to estimate the radius of convergence
|ξ| of the sequence (17). Since obtaining a theoretical estimation for such a convergence domain is
quite difficult and it tends to be conservative, we propose a practical method using the values of H for
each iteration. If |ξ| is such that the iteration (22) is convergent, then H(xk(0, ξ), pk(0, ξ)) is small.
However, as |ξ| grows beyond the radius of convergence, the value may rapidly increase. By looking
at this change of H for each k, one can reasonably estimate the radius of convergence.

The radius of convergence in the stable manifold approach is generally small, meaning that the
resultant solution surface (22) is small around the origin if only positive t is used. To enlarge the
domain of the solution, one may try to use negative t. This, however, is an unstable direction of the
flows and creates a divergent effect. We employ a similar idea to the above to see how much negative
t can be substituted in (22). For a fixed value of ξ, where |ξ| is the radius of convergence, calculate
H(xk(t, ξ), pk(t, ξ)). Then, for negative t, as long as (xk(t, ξ), pk(t, ξ)) stays near the exact solution
(Lagrangian submanifold), the value is small. By looking at the growth of this value with respect to t,
one can see how much negative t can be substituted. If the domain thus obtained is not large enough,
raise k and use smaller t.

All of these methods are effectively applied using analytical expressions. We will demonstrate them
in the next example.

VII. Examples

A. A numerical example

Let us consider the 1-dimensional nonlinear optimal control problem;

ẋ = x − x3 + u (26)

J =

∫ ∞

0

q

2
x2 +

r

2
u2 dt.

The Hamilton-Jacobi equation for this problem is

H = p(x − x3) − 1

2r
p2 +

q

2
x2 = 0 (27)

and Hamilton’s canonical equations are







ẋ = x − x3 − 1

r
p

ṗ = −(1 − 3x2)p − qx.
(28)
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A.1 The Hamiltonian perturbation method

The Hamiltonian H is split into the integrable and perturbation parts;

H0 = p(x − x3), H1 = − 1

2r
p2 +

q

2
x2.

The solution of (26) with the initial condition x = X at t = 0 without control is obtained from

x2

1 − x2
=

X2

1 − X2
e2t, (29)

and is denoted as x = Φ(t, X). The solution of the canonical equations for H0 corresponding to (8) is

x = Φ(t, X), p =
∂Φ

∂x
(−t, x)P =

X3e2t

x3
P,

where P is an arbitrary constant and the last equation is derived from (29).
Based on the linearization of (26), the linearized canonical equations for perturbation that correspond

to (10) are






˙̄X = −1

r
e−2tP̄

˙̄P = −qe2tX̄.

The solution of the above equations for the initial condition in the stable Lagrangian subspace of the
linearized Riccati equation of (27) is

{

X̄(t, X̄0, ΓX̄0) = e−(1+λ)tX̄0

P̄ (t, X̄0, ΓX̄0) = e(1−λ)tΓX̄0,

where Γ = r+
√

r2 + qr is the stabilizing solution of the Riccati equation and −λ = −
√

1 + q/r is the
closed loop matrix (eigenvalue). The family of approximations of the stable Lagarangian submanifold
in Procedure 1 is

Λt : p =
Γx

((e−2t − 1)x2 + 1)2
.

The feedback function with t = −0.2 is shown in Fig. 1. Also, we showed the result by the Taylor
series expansion of order n = 6 for the sake of comparison. Since the integrable nonlinearity is fully
taken into account in this approach, the feedback function is better approximated in the region further
from the origin.

The value t = −0.2 was chosen by the method in §VI-D. Fig. 2 shows that
∫ 5

0
|H(x, p(x; t))| dx takes

the minimum value at t = −0.2.

A.2 The stable manifold approximation method

The coordinate transformation that diagonalizes the linear part of (28) is
(

x
p

)

= T

(

x′

p′

)

,

T =

(

1 −(1 +
√

1 + q/r)

r +
√

r2 + qr q

)

.

The equations in the new coordinates are
(

ẋ′

ṗ′

)

=

(

−
√

1 + q/r x′
√

1 + q/r p′

)

+

(

−x(x′, p′)3

3x(x′, p′)2p(x′, p′)

)

,
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where

x(x′, p′) = x′ − (1 +
√

1 + q/r)p′,

p(x′, p′) = (r +
√

r2 + qr)x′ + qp′.

We construct the sequences (17) with

f(x′, p′) = −x(x′, p′)3,

g(x′, p′) = 3x(x′, p′)2p(x′, p′),

and q = 1, r = 1. From xk(t, ξ) and pk(t, ξ), the relation of xk and pk is obtained by eliminating t,
which will be denoted as p = πk(x). We note that πk(x) depends on ξ. The approximated feedback
functions are u = −(1/r)πk(x) = −πk(x).

Figures 3-5 show the results of calculation for πk(x). To guarantee the convergence of solution
sequence (17), |ξ| has to be small enough (Theorem 5). If |ξ| is too large, the sequence is not convergent
(compare Fig. 3 and Fig. 5). We have estimated the radius of convergence using the method in §VI-D.
From Fig. 6, one can see that |ξ| 6 0.42 may be a reasonable estimation.

If |ξ| is small and only positive t is used in xk(t, ξ) and pk(t, ξ), then the resulting trace in the
x − p plane is short, hence, the function πk(x) is defined in a small set around the origin. Therefore,
we substitute negative values in t to extend the trace toward the opposite direction. This, however,
creates a divergent effect on the sequence and this effect becomes smaller as k increases (see, Fig. 4).
We employed the approach in §VI-D to see how much negative time can be used in (22) to create a

15



larger domain of πk(x). From Fig. 7, one can see that the domain of π2(x) may be enlarged up to
t = −0.5. If this domain is not large enough, one should raise k and substitute smaller t (see, Fig. 3
and Fig. 4).
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Fig. 3. ξ = 0.42 and extended to the negative time −0.5
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B. Optimal control of a nonlinear spring-mass system

In this example, let us consider an optimal control problem for a spring-mass system with input u:

mẍ + κx + εx3 = u (30)

J =

∫ ∞

0

(x2 + ẋ2)/2 + u2 dt,

where, m is the mass of an object attached to the spring, x is the displacement of the object from rest
(at rest, x = 0; the spring generates no force), κ and ε are the linear and nonlinear spring constants,
respectively. Hereafter, we set m = 1, κ = 1 for the sake of simplicity. The Hamilton-Jacobi equation
for this problem is

H = ẋ p1 +
(

−x − ε x3
)

p2 −
1

2
p2

2 +
1

2
x2 +

1

2
ẋ2 = 0. (31)
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B.1 The perturbation approach

Equation (30) with initial condition x0, ẋ0 and no input (u = 0) is integrated as follows

x = a cn(
√

1 + εa2 (t0 − t), k), (32)

where, a =
√√

1+4 ε E−1
ε

with E = 1
2
x2

0+
1
4
ε x4

0+
1
2
ẋ2

0, cn is the Jacobi elliptic function, and k =
√

εa2

2(1+εa2)

is the elliptic modulus. t0 is a constant of integration and can be expressed using a and k as follows

t0 =
1√

1 + εa2
cn−1

(x0

a
, k
)

.

Note that a, k, t0 are functions of x0, ẋ0. To express x as a function of t, x0 and ẋ0, we substitute
a(x0, ẋ0), k(x0, ẋ0), t0(x0, ẋ0) into (32) and use the addition formulas of the Jacobi elliptic functions
(see, Appendix -C). Thus, Φ(t, x) in §IV is given as

Φ(t, x0, ẋ0) =

(

x(t, x0, ẋ0)
d
dt

x(t, x0, ẋ0)

)

.
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The family of approximations of the stable Lagrangian submanifold in Procedure 1

Λt =

{

(x, p)

∣

∣

∣

∣

p =
∂Φ

∂x
(−t, x)T eAT tΓeAtΦ(−t, x)

}

is calculated with

A =

(

0 1
−1 0

)

, Γ =

(
√

2
√

2 − 1
√

2
√

2 − 1√
2 − 1

√

2
√

2 − 1

)

(33)

where Γ is the stabilizing solution of

PA + AT P − PRP + Q = 0,

R =

(

0 0
0 1

)

, Q = I2 (34)

and we have written x = (x, ẋ)T , p = (p1, p2)
T .

For the calculation of Λt, it is necessary to differentiate the Jacobi elliptic functions with respect to
the elliptic modulus, because Φ is differentiated by initial states x, ẋ0 and k in (32) is dependent on
x, ẋ0. We have listed some of the formulas required for this calculation in Appendix -C.

In Figures 8 and 9, approximations of ∂V/∂x and ∂V/∂ẋ with t = −0.25 are illustrated with
the linear solution p = Γx. The semi-transparent surfaces represent p = Γx. It is seen that the
approximate functions are tangent to the linear functions at the origin.
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Fig. 8. ∂V/∂x with the perturbation method and the first entry of the linear solution

Fig. 9. ∂V/∂ẋ with the perturbation method and the second entry of the linear solution

B.2 The stable manifold theory approach

The associated Hamiltonian system to (31) is

(

ẋ

ṗ

)

=

(

A −R
−Q −AT

)(

x

p

)

+

(

f̄(x, p)
ḡ(x, p)

)

, (35)

f̄(x, p) =

(

0
−εx3

)

, ḡ(x, p) =

(

3εp2x
2

0

)

.
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The matrix T that diagonalizes the linear part of (35) is













1 0 −
√

2+4

4(2
√

2+1)
√

2
√

2−1
0

0 1 0 − 1

2

√
2
√

2−1√
2
√

2−1
√

2
√

2−1 1/2 −
√

2−1

2

√
2
√

2−1

√
2−1

√
2
√

2−1 −
(
√

2−1)(
√

2+4)

4(2
√

2+1)
√

2
√

2−1
1/2













.

In the new cordinates
(

x′

p′

)

= T
(

x
p

)

, (35) is represented as

(

ẋ
′

ṗ
′

)

=

(

A − RΓ 0
0 −(A − RΓ)T

)(

x
′

p
′

)

+

(

f(x′, p′)
g(x′, p′)

)

, (36)

where R, Γ are in (33), (34) and f , g are obtained, using
(

x
p

)

= T−1
(

x′

p′

)

, as

(

f(x′, p′)
g(x′, p′)

)

= T

(

f̄(x(x′, p′), p(x′, p′))
ḡ(x(x′, p′), p(x′, p′))

)

.

Now, Procedure 2 can be applied to (36), and sequences (17) are transformed into the original coor-

dinates with
(

x′

p′

)

= T
(

x
p

)

. Fig. 10 shows the second-order approximation (k = 2) of ∂V/∂ẋ and

the second entry of the linear solution (semi-transparent surface). Also, Fig. 11 shows the surfaces
representing ∂V/∂ẋ with the perturbation and stable manifold (k = 2) methods to compare the two
methods. The semi-transparent surface corresponds to the one with the perturbation method (the
same surface in Fig. 9). Figures 9-11 are drawn from the same directions with the same scales to
compare the surfaces. Since the optimal feedback law of this problem does not require ∂V/∂x, the
surface for this derivative is not presented.

VIII. Concluding remarks

In this paper, we proposed two analytical approximation approaches for obtaining the stabilizing
solution of the Hamilton-Jacobi equation using a Hamiltonian perturbation technique and stable man-
ifold theory. The proposed methods give approximated flows on the stable Lagrangian submanifold of
the associated Hamiltonian system as functions of time and initial states. The perturbation approach
provides a set of approximations for the derivative of the stabilizing solution. On the other hand, in
the stable manifold approach, parametrizations of the stable Lagrangian submanifold are given. Since
these methods produce analytical expressions for approximations, it is possible to compute the solution
of the Hamilton-Jacobi equation using its integral expressions (§VI-B). Moreover, in the case of poly-
nomial nonlinear systems, each approximation step yields the Hamiltonian flows with exponential and
trigonometric functions in the stable manifold method, providing approximate solutions as polynomial
functions (§VI-C). In this case, the calculations are all algebraic, that is, no numerical integration is
required and no equations need to be solved. Since these methods focus on the stable manifold of the
Hamiltonian system, the closed loop system stability is guaranteed and can be enhanced by taking
higher order approximations. A one-dimensional example shows that they are effective in that the
optimal feedback is well approximated and that, compared to the Taylor expansion method, they give
better results especially further from the equilibrium. An example of a nonlinear spring-mass system
is illustrated to show how they work for a higher dimensional system.
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Fig. 10. ∂V/∂ẋ with the stable manifold method and the second entry of the linear solution

Fig. 11. ∂V/∂ẋ with the perturbation and stable manifold methods
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Appendix

A. The variation of constants technique in Hamiltonian perturbation theory

We review, in this section, one of the Hamiltonian perturbation techniques which is a simple conse-
quence of the Hamilton-Jacobi theory (see, e.g., [4], [18]).

Let
H(x, p) = H0(x, p) + H1(x, p)

be the Hamiltonian with the integrable part H0 and the perturbation H1. By the integrability condi-
tion, the Hamilton-Jacobi equation

H0

(

x,
∂S

∂x

)

+
∂S

∂t
= 0 (37)

has a complete solution S(x1, . . . , xn, t, P1, . . . , Pn), where P1,. . .,Pn are arbitrary constants. By the
canonical coordinate transformation (x, p) → (X, P ) defined by

pj =
∂S

∂xj
, Xj =

∂S

∂Pj
, (38)
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the unperturbed Hamiltonain in the coordinates (X, P ) becomes 0 and the unperturbed equations of
motion

ẋj =
∂H0

∂pj

, ṗj = −∂H0

∂xj

are converted into

Ẋj = 0, Ṗj = 0.

By the canonical transformation (38), the new Hamiltonian for the perturbed equations of motion is
H1(x, p) since by (37) S satisfies

H

(

x,
∂S

∂x

)

+
∂S

∂t
= H1(x, p).

Therefore,

ẋj =
∂H

∂pj

, ṗj = −∂H

∂xj

are converted into

Ẋj =
∂H1

∂Pj
(x, p) Ṗj = −∂H1

∂Xj
(x, p),

where, from (38), xj = xj(t, X, P ) and pj = pj(t, X, P ).

B. Proof of Theorem 5

From Assumptions 3 and 4, the following inequalities are derived. (In this section, we leave out the
dependence of xk and yk on ξ for the sake of simplicity.)

• If |x| + |y| 6 L1, then

|f(t, x, y)| 6 δ1(|x| + |y|)(|x| + |y|)
6 M1(|x| + |y|)2. (39)

If |x| + |y| 6 L2, then

|g(t, x, y)| 6 δ2(|x| + |y|)(|x| + |y|)
6 M2(|x| + |y|)2. (40)

• If |x|, |x′| 6 x̄ and |y|, |y′| 6 ȳ for some positive constants x̄, ȳ satisfying x̄ + ȳ 6 L1, then

|f(t, x, y) − f(t, x′, y′)|
6 δ1(x̄ + ȳ)(|x − x′| + |y − y′|)
6 M1(x̄ + ȳ)(|x − x′| + |y − y′|). (41)

If |x|, |x′| 6 x̄ and |y|, |y′| 6 ȳ for some positive constants x̄, ȳ satisfying x̄ + ȳ 6 L2, then

|g(t, x, y) − g(t, x′, y′)|
6 δ1(x̄ + ȳ)(|x − x′| + |y − y′|)
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6 M2(x̄ + ȳ)(|x − x′| + |y − y′|). (42)

(i) First, we show that the limits of sequences (17) and (18) satisfy (16). By taking limit in (17), we
have the integral equations for x(t) and y(t)

x(t) = eFtξ +

∫ t

0

eF (t−s)f(s, x(s), y(s)) ds

y(t) = −
∫ ∞

t

e−F T (t−s)g(s, x(s), y(s)) ds,

from which one can see that x(t) and y(t) satisfy (16).
(ii) For each k = 0, 1, 2, . . . , xk(t) and yk(t) have the following estimates;

|xk(t)| 6 αke
−bt, |yk(t)| 6 βke

−2bt, (43)

where αk and βk are the constants defined by






















αk+1 =
2aM1

b
(αk

2 + βk
2) + a|ξ|

βk+1 =
2aM2

3b
(αk

2 + βk
2)

α0 = a|ξ|, β0 = 0.

(44)

Indeed, |x0(t)| 6 a|ξ|e−bt from Assumption 3 and y0(t) = 0 from which the claim for n = 0
follows. Let us assume that the claim holds for k.

|xk+1(t)|

6 a|ξ|e−bt +

∫ t

0

ae−b(t−s)|f(s, xk(t), yk(s))| ds

6 a|ξ|e−bt + aM1e
−bt

∫ t

0

ebs(|xk(s) + yk(s)|)2 ds

6 a|ξ|e−bt + 2aM1e
−bt

∫ t

0

ebs(αk
2e−2bs + βk

2e−4bs) ds

6 a|ξ|e−bt + 2aM1(αk
2 + βk

2)e−bt

∫ t

0

e−bs ds

6 a|ξ|e−bt +
2aM1

b
(αk

2 + βk
2)e−bt

=

{

2aM1

b
(αk

2 + βk
2) + a|ξ|

}

e−bt,

where we have used (39) and (40). Similar calculations give

|yk+1(t)| 6

∫ ∞

t

ae−b(s−t)|g(s, xk(s), yk(s))| ds

6
2aM2

3b
(αk

2 + βk
2)e−2bt.

Thus, (43) for k + 1 holds with αk+1 and βk+1 in (44).
(iii) Next, we show that for sufficiently small |ξ|, {αk} and {βk} are bounded and monotonically

increasing sequences and therefore, limk→∞ αk =: α, limk→∞ βk =: β exists. Furthermore, we
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show that α, β → 0 when |ξ| → 0. Let = 2aM1/b, c2 = a|ξ|(= α0), and c3 = 2aM2/(3b). Then,
it follows that

αk+1 − αk

= c1{(αk + αk−1)(αk − αk−1) + (βk + βk+1)(βk − βk−1)}
βk+1 − βk

= c3{(αk + αk−1)(αk − αk−1) + (βk + βk+1)(βk − βk−1)},

therefore, αk+1 > αk and βk+1 > βk if α1 > α0 and β1 > β0, which is readily verified. We next
claim that the equation

{

α = c1(α
2 + β2) + c2

β = c3(α
2 + β2)

(45)

has a solution for sufficiently small |ξ|. To prove the claim, define a map T : R
2 → R

2 by

T (α, β) =

(

c1(α
2 + β2) + c2

c3(α
2 + β2)

)

.

Since

|T (α, β)− T (α′, β ′)|
6 (c1 + c3){(α + α′)|α − α′| + (β + β ′)|β − β ′|},

it follows that for small |ξ|, T (U) ⊂ U and T : U → U is a contraction map in a neighborhood
U of (0, 0). Therefore, T has the unique fixed point (α, β) in U , which is a solution of (45). We
note that when |ξ| 6= 0, α > 0 and β > 0. It can be shown, in the same way as the monotonicity
proof of {αk} and {βk}, that αk 6 α and βk 6 β as long as α0 6 α and β0 6 β, which is obvious
from (44) and (45). Thus, we have shown that {αk} and {βk} are bounded. Therefore, their
limits exist and coincide with (α, β) since there is no other solution of (45) in U . Because (α, β)
is the solution of (45), it is clear that (α, β) → (0, 0) as |ξ| → 0.

(iv) Next, we show that

|xk(t) − xk+1(t)| 6 γke
−bt (46)

|yk(t) − yk+1(t)| 6 εke
−2bt, (47)

where {γk}, {ε} are the positive sequences defined by































γk+1 =
a(α + β)M1

b
(γk + εk)

εk+1 =
a(α + β)M2

3b
(γk + εk)

γ1 =
a3M1|ξ|2

b
, ε1 =

a3M2|ξ|2
3b

.

Indeed, for k = 1, using (41) and (42), we have

|x1(t) − x0(t)|

6

∫ t

0

ae−b(t−s)|f(s, x0(s), y0(s))| ds
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6 aM1e
−bt

∫ t

0

ebs(|x0(s)| + |y0(s)|)2 ds

6 a3M1|ξ|2e−bt

∫ t

0

e−bs ds

6
a3M1|ξ|2

b
e−bt,

|y1(t) − y0(t)|

6

∫ ∞

t

ae−b(s−t)|g(s, x0(s), y0(s))| ds

6 aebt

∫ ∞

t

e−bsM2|x0(s)|2 ds

6 a3M2|ξ|2ebt

∫ ∞

t

e−3bs ds

=
a3M2|ξ|2

3b
e−2bt.

Let us assume (46) and (47) for k. For k + 1, using (41) and the monotonicity of δ1

|xk+1(t) − xk(t)|

6

∫ t

0

ae−b(t−s)|f(s, xk(s), yk(s)) − f(s, xk−1(s), yk−1(s))| ds

6 ae−bt

∫ t

0

ebsδ1(αe−bs + βe−2bs)

× (|xk − xk−1| + |yk − yk−1|) ds

6 a(α + β)M1e
−bt

∫ t

0

(|xk − xk−1| + |yk − yk−1|) ds

6 a(α + β)M1e
−bt

∫ t

0

(γke
−bs + εke

−2bs) ds

6 a(α + β)M1(γk + εk)e
−bt

∫ t

0

e−bs ds

6
a(α + β)M1

b
(γk + εk)e

−bt,

and using (42) and the monotonicity of δ2

|yk+1(t) − yk(t)|

6

∫ ∞

t

ae−b(s−t)|g(s, xk(s), yk(s)) − g(s, xk−1(s), yk−1(s))| ds

6 a(α + β)M2e
bt

∫ ∞

t

e−2bs(|xk − xk−1| + |yk − yk−1|) ds

6
a(α + β)M2

3b
(γk + εk)e

−2bt.

(v) Lastly, we prove that for sufficiently small |ξ|, {γk} and {εk} are monotonically decreasing se-
quences and limt→∞ γk = limt→∞ εk = 0. As a matter of fact, it can be easily seen, from the
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definition of the sequences, that γk > γk+1 and εk > εk+1 for all k = 1, 2, . . . if γ1 > γ2 and
ε1 > ε2. However, these can be verified from

γ1 − γ2 =

{(

1 − a(α + β)M1

b

)

a3M1

b
− a(α + β)M1

b

a3M2

3b

}

|ξ|2

ε1 − ε2 =

{(

1 − a(α + β)M2

3b

)

a3M1

b
− a(α + β)M2

3b

a3M2

3b

}

|ξ|2,

and from the fact that α, β → 0 as |ξ| → 0. Therefore, the limits limk→∞ γk, limk→∞ εk exist and
coincide with the solution of











γ =
a(α + β)M1

b
(γ + ε)

ε =
a(α + β)M2

3b
(γ + ε),

which has the unique solution (0, 0).

C. The Jacobi elliptic functions[2]

C.1 Derivation of (32)

Let x2 = a2 be the solution of 2E −x2 − (ε/2)x4 = 0. Then, from E (constant) = 1
2
x2

0 + 1
4
ε x4

0 + 1
2
ẋ2

0,

t = ±
∫

dx
√

2E − x2 − (ε/2)x4

= ±
∫

dx
√

(ε/2)(a2 − x2)(x2 + a2 + ε/2)

=
±1√

1 + εa2

∫ ϕ

0

dθ
√

1 − k2 sin2 θ
+ t0

=
±1√

1 + εa2
am−1(ϕ, k) + t0,

where we have set x = a cos θ, k =
√

εa2

2(1+εa2)
and am is Jacobi’s amplitude function. Thus, we get

(32) from cn(x, k) = cos(am(x, k)).

C.2 Formulas

Differentiations with respect to x:

∂ sn(x, k)

∂x
= cn(x, k) dn(x, k),

∂ cn(x, k)

∂x
= − sn(x, k) dn(x, k),

∂ dn(x, k)

∂x
= −k2 sn(x, k) cn(x, k).

Addition formulas:

sn(x + y, k)

=
sn(x, k) cn(y, k) dn(y, k) + sn(y, k) cn(x, k) dn(x, k)

1 − k2 sn2(x, k) sn2(y, k)
,

cn(x + y, k)
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=
cn(x, k) cn(y, k) − sn(x, k) sn(y, k) dn(x, k) dn(y, k)

1 − k2 sn2(x, k) sn2(y, k)
,

dn(x + y, k)

=
dn(x, k) dn(y, k)− k2 sn(x, k) sn(y, k) cn(x, k) cn(y, k)

1 − k2 sn2(x, k) sn2(y, k)
.

Differentiation with respect to the elliptic modulus k:

∂ sn(x, k)

∂k
=

k(sn(x, k) − sn3(x, k))

1 − k2
+

x cn(x, k) dn(x, k)

k

− cn(x, k) dn(x, k)

k(1 − k2)

(

zn(x, k) +
xE(x, k)

K(k)

)

,

∂ cn(x, k)

∂k
= − k sn2(x, k) cn(x, k)

1 − k2
− dn(x, k) sn(x, k)x

k

+
dn(x, k) sn(x, k)

k(1 − k2)

(

zn(x, k) +
xE (k)

K (k)

)

,

∂ dn(x, k)

∂k
= − k cn(x, k) sn(x, k)x − k sn2(x, k) dn(x, k)

1 − k2

+
k cn(x, k) sn(x, k)

1 − k2

(

zn(x, k) +
xE (k)

K (k)

)

,

where K(k) and E(k) are the complete elliptic integrals of the first and second kind, respectively,
defined by

K(k) =

∫ 1

0

dt
√

(1 − t2)(1 − k2t2)
,

E(k) =

∫ 1

0

√
1 − k2t2√
1 − t2

dt,

and zn is Jacobi’s zeta function defined by

zn(x, k) =

∫ x

0

dn2(t, k) dt − E(k)

K(k)
x.
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