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Abstract

This paper deals with the non-linear oscillation of a simple pendulum and presents an

approach for solving the non-linear differential equation that governs its movement by

using the harmonic balance method. With this technique it is possible to easily obtain

analytical approximate formulas for the period of the pendulum. As we shall see, these

formulas show excellent agreement with the exact period calculated with the use of

elliptical integrals, and they are valid for both small and large amplitudes of oscillation.

The most significant feature of the treatment presented is its simplicity because for the

level of approximation considered in this paper the required work can be done “by

hand”.

KEY WORDS: Simple pendulum, large-angle period, harmonic balance method
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1. Introduction

In physics there are some simple systems for which the equations governing their

behaviour are easy to formulate but whose mathematical resolution is complicated. Of

all such systems, perhaps the paradigm that is usually considered in physics courses at

university level is the simple pendulum. Application of Newton’s second law to this

physical system gives a differential equation with a non-linear term (the sine of an

angle). It is possible to find the integral expression for the period of the pendulum and to

express it in terms of elliptic functions. Although it is possible in many cases to replace

the non-linear differential equation by a corresponding linear differential equation that

approximates the original equation, such linearization is not always feasible. In such

cases, the actual non-linear differential equation must be directly dealt with.

There are many approaches for approximating solutions of non-linear oscillatory

systems. The most common and most widely studied approximation methods for non-

linear differential equations are the perturbation methods, whereby the solution is

analytically expanded in the power series of a small parameter. The simplest of all

perturbation methods was developed by Lidstedt and Poincaré and this is the method

considered in Marion’s book1 to approximately solve non-linear differential equations

of oscillating systems. Another method of determining the perturbation solution to a

non-linear oscillator differential equation was developed by Krylov and Bogoliubov.

This method was used by Fulcher and Davis2 to calculate the two lowest-order

corrections to the period of the simple pendulum. However all these perturbation

methods apply to weakly non-linear oscillations only. Through the use of ingenious

strategies, different authors3-9 have obtained explicit formulas for the period of the

pendulum, all of which are accurate for large amplitudes. The non-linear differential

equation is linearized by replacing sinθ by f(θ0)θ instead of by θ, where f(θ0) is an

unknown function of the amplitude of oscillation to be determined. The approximate

period is then a function of f(θ0). These authors suggest different functional forms for

f(θ0) with a set of unknown parameters that are evaluated by comparing the power-series

expansions of the approximate and exact periods. However all these authors do a

heuristic derivation of their formulas.
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The harmonic balance method10,11 is another procedure for determining analytical

approximations to the periodic solutions of differential equations by using a truncated

Fourier series representation. An important advantage of this method is that it can be

applied to non-linear oscillatory problems where the non-linear terms are not small, i. e.,

no perturbation parameter needs to appear.10 The perturbation methods are, in principle,

for solving problems with a small parameter. In that case, the solution is analytically

expanded in power series of the parameter. However, there exist many non linear

problems in which parameters are not small and other methods such as that of the

harmonic balance are able to provide analytical approximations valid for large values of

the amplitude. With the aid of this method it is possible to produce analytical

approximations to the period and periodic solution of non-linear oscillators. These

approximated solutions are valid even for rather large amplitudes of oscillation. There

exists an ample literature on the harmonic balance method and a wide range of analysis

and applications of this method to a great variety of differential equations, which can be

found in Mickens’ book10, where the details of the general procedures for calculating

solutions by means of this method are specified. This book also illustrates the use of

harmonic balance by applying it to a number of important non-linear differential

equations and the application of this method to more complex oscillatory systems11,12

has also been successfully done. An important aspect to take into account is that for

conservative systems in which the non-linear differential equation has the expression

d2u/dt2 + u = εF(u), where F(-u) = - F(u), for small values of the parameter ε, the

harmonic balance first approximation solution agrees well with the determined by

means of the Lindstedt-Poincaré technique10. Moreover, for these systems, the harmonic

balance method provides good analytical approximations to the periodic solutions even

for large values of ε10.

In this paper we obtain analytical approximate formulas for the period of a simple

pendulum by using the harmonic balance method. Firstly the non-linear differential

equation that governs the oscillatory movement of the simple pendulum is considered.

Next the trigonometrical function sinθ that appears in this non-linear differential

equation is replaced by its power series expansion, and the resulting equation is

approximately solved by means of the harmonic balance method. To do this the power

series expansion of sinθ is truncated by considering different terms. When we apply the
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harmonic balance method we only consider the first approximation to the periodic

solution to the non-linear differential equation, because for this approximation the

required work can usually be done “by hand”. We can also see that this method is

capable of producing a first analytical approximation to the solution to the simple

pendulum, and its accuracy is very good in a wide range of amplitudes of oscillation (as

high as 117º). Finally, we will see that one of the most interesting features of this

approximation is its simplicity.

2. Exact solution

The differential equation modeling the free, undamped simple pendulum is

0sin

d

d
2

=+ θ
θ

l

g

t2
(1)

where θ is the angular displacement, l is the length of the pendulum, t is the time and g

is the acceleration due to gravity. The oscillations of the pendulum are subjected to the

initial conditions
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where θ0 is the amplitude of oscillation. The system oscillates between symmetric limits

[−θ0,+θ0]. The periodic solution θ(t) of equation (1) and the angular frequency ω (also

with the period T = 2π/ω) depend on the amplitude θ0.

Equation (1), although straightforward in appearance, is in fact rather difficult to

solve because of the non-linearity of the trigonometric function sinθ. There are no

analytical solutions for the above differential equation. In fact, the solution is expressed

in terms of elliptic integrals8. Hence, equation (1) is either solved numerically or various

approximations are used. In the most simple of these approximations we consider that

the angle θ is small, and then the function sinθ can be approximated by θ. Then the non-

linear differential equation (1) becomes a linear differential equation that can easily be

solved, and the period T0 of the oscillation is given by
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g

l
T π20 = (3)

The period for this case is independent of the amplitude θ0 of oscillations and it is only a

function of the length l of the pendulum and the acceleration of gravity g.

The exact value of the period of oscillations is given by the equation1
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2
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where k = sin2(θ0/2) and K(k) is the complete elliptic integral of the first kind. Its values

have been tabulated for various values of k. The power-series expansion of the equation

(4) is2
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Using the power series expansion of k = sin2(θ0/2), we may write another series for the

exact period
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Equations (4) and (6) are the forms that we shall use to compare with the harmonic

balance method calculation in the following sections.

3. Formulation and approximate solution method

As we mentioned previously , to obtain an analytical approximate solution for equation

(1) using the harmonic balance method, first we expand sinθ in its Maclaurin series

expansion
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and substituting equation (7) into equation (1) gives
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where ω0 is a known constant parameter that is given by the expression

l

g
=0ω (9)

The harmonic balance method is very simple and allows us to obtain high quality

approximate solutions if the exact solution (which is unknown) resembles a harmonic

function (sine or cosine). If the unknown solution is periodic, this solution can be

expressed as a Fouries series10
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where An and Bn are the Fourier coefficients.

Based on equation (1), the periodic solution θ(t) for the simple pendulum has a

Fourier series expansion

[ ]tnAt

n

n
ωθ )12(cos)(

0

12 +=∑
∞

=

+
(11)

which contains only odd multiples of ωt.10,11

The purpose of the harmonic balance method is to approximate the periodic

solution of equation (11) by a trigonometric polynomial
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and determine both the coefficients A2n+1 and the angular frequency ω. All of these

quantities are to be expressed finally in terms of the initial conditions -in this problem

they will be a function of the amplitude θ0-. 

Following the lowest order harmonic balance method, a reasonable and simple

initial approximation satisfying initial conditions in equation (2) can be taken as

tt ωθθ cos)( 0= (13)

where we have taken into account the initial condition θ(0) = θ0 and θ(t) is a periodic

function of t, of period T = 2π/ω. Equation (13) is the first analytical approximate

periodic solution of equation (8), known as the “first approximation”.
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Applying the harmonic balance method we need to obtain an approximate

solution of equation (8) with the functional form of equation (13). It is necessary to

obtain the optimal expression of the frequency ω (or the period T) which makes the

approximate periodic solution proposed a good representation of the unknown exact

periodic solution. With this method, the value of ω determined is such that the

approximate solution proposed (13) satisfies equation (8) (or equation (1)) in its highest

harmonics, which are usually those of the lowest order10.

Substituting equation (13) into equation (8) gives
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The formula that allows us to obtain the odd power of the cosine is
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Substituting equation (15) into equation (14) gives
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where HOH are high order harmonics, in other words, proportional to cos[(2n+1)ωt] for

n ≥ 1. Equation (16) can be rewritten as follows
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For the lowest order harmonic to be equal to zero, it is necessary to set the

coefficient of cosωt equal to zero in equation (17), and for ω we obtain the following

expression
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which gives us the approximate frequency ω as a function of θ0.

Taking into account the relation T = 2π/ω and equations (3) and (9), the

approximate period Tapp of oscillations can be obtained as follows
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which allows us to obtain Tapp as a function of the amplitude θ0 of oscillation.

We shall now study various specific cases in which a different number of terms is

considered in the power-series expansion of equation (7). Thus, if we take N terms of

this series the values of the different approximate periods TappN may be calculated using

the equation
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Specific case N = 0

This situation implies taking only N = 0 in equation (7) and then θθ ≈sin .

Therefore, from equation (20) the approximate period is Tapp0 = T0 (equation (3)).

Specific case N = 1

Now the approximation considered in equation (7) is

3
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and equation (20) becomes

2/1
2
00app1

8

1
1

−









−= θTT (22)

which is only applicable for 80 <θ rad = 2.828 rad (≈ 162º).

For small angles it is possible to do the power-series expansion of the right-hand

side of equation (22). Doing this gives the result
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It is important to point out that in equation (23) the first two terms are the same as

the first two terms of the equation obtained in the power-series expansion of the exact

period (equation (6)), whereas, in equation (23) the third term is 18/3072 as compared

with 11/3072 in the series expansion of the exact period.

Specific case N = 2

Now the approximation considered in equation (7) is
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and equation (20) becomes
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doing the power-series expansion of the right-hand side of equation (25) the following

equation can be obtained
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In this equation, as in the case N = 1, the first two terms are the same as the first

two terms obtained from the expansion of T of the elliptic integral (equation (6)),

whereas the third term of the expansion of the exact period is 11/3072 compared with

10/3072 obtained in our study, that is, the relative error in this term is 10%. In the fourth

term a coefficient of 90/737280 is obtained whereas the exact value is 173/737280.

Specific case N = 3

The approximation considered in equation (7) is now:
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and from equation (17) the following expression can be obtained
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The power-series expansion of the right-hand side of equation (28) gives
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As in the cases N = 1 and N = 2, the first two terms are the same as the first two

terms obtained from expansion of the exact period T of the elliptic integral (equation

(6)), whereas the third term of the expansion of the exact period is 11/3072 compared

with 10/3072 obtained in this study. However, compared with the value obtained with n

= 2, in this case we obtain a coefficient of the fourth term of 130/737280 whereas the

exact value is 173/737280.

Specific case N = 4

The approximation considered in equation (7) is now:
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and equation (20) may be written
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As in the previous cases, the power-series expansion of equation (31) is done and

this gives
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which coincides up to the fourth term with the series expansion of equation (29).

General case N = ∞

In the most general case no approximation of the series expansion of equation (7)

is made, and this amounts to solving the differential equation (1) or its equivalent

equation (8). In order to obtain the approximate solution to equation (8) it is only

necessary to take into consideration that the series-expansion of Bessel’s function of the

first kind and order is
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Comparing equation (20) and equation (33) it can be seen that the approximate

equation for the period (19) may also be written as

)(2 01

0
0app

θ

θ

J
TT = (34)

In this case, we do not obtain an analytical function for the period and in principle

evaluation of equation (34) poses the same difficulties as calculation of the exact period

from elliptic functions. However, we have included it since it represents the best

approximation bearing in mind the first approximation in the harmonic balance method.

In the following section it will be seen that for errors less than 1% when N = 3

practically the same results are obtained as in this general case.

The power-series expansion of equation (34) is
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which coincides up to the fifth term with the series expansion of equation (32).

However, both equations differ in the sixth term of the series (power of 10
θ ).

4. Comparison between exact and approximate solutions

In this section, we illustrate the applicability, accuracy and effectiveness of the approach

by comparing the analytical approximate period with the exact solution.

The values of four expressions Tex/T0 (equation (6)), Tapp1/T0 (equation (22)),

Tapp2/T0 (equation (25)), Tapp3/T0 (equation (28)), Tapp4/T0 (equation (31)) and Tapp/T0

(equation (34)) for different values of the amplitude θ0 are presented in Table 1. This

table illustrates very good agreement between approximate periods and the exact period

for a wide range of values of oscillation amplitude. Table 1 also shows that the

analytical approximate period Tapp3 gives better accuracy than the other approximations

and similar accuracy to the non-analytical approximation period Tapp. This means that

for the first approximation of the harmonic balance method, it is sufficient to consider

up to N = 3 in equation (7), since for N ≥ 4 the results cannot be improved. In order to

achieve an improvement it is necessary to construct the second approximation to the
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periodic solution (taking into consideration two terms in equation (12), that is, N = 2).

This is shown in the appendix, since as can be seen higher approximations do not add

anything new from the qualitative point of view. The relative error between the

approximate values and the exact value is less than 1% for θ0 < 23º if we consider the

approximation N = 0, θ0 < 78º for N = 1, θ0 < 107º for N = 2, θ0 < 117º for N = 3, θ0 <

117º for N = 4 and θ0 < 117º for N = ∞.

In figure 1, we also present a comparison of approximations Tapp2, Tapp3, Tapp4 and

Tapp. In this figure the relative error obtained for each approximation is represented as a

function of the amplitude in a range of values from 80º to 150º. Tapp1 is not presented,

since a relative error higher than 1% is obtained in this range of values. As can be seen

in the figure, the best approximation is the one given by Tapp3. The relative error of this

approximation and that of Tapp4 and Tapp is kept even lower than 5% for amplitudes as

high as 150º, whereas in the case of Tapp2, the relative error is maintained lower than 5%

when the amplitude is smaller than 138º.

Taking into account Table 1 and figure 1 it may be concluded that if the approximate

solution considered is the cosenoidal function of equation (13), that is, ts ωθθ cos)( 0= ,

the maximum value of the amplitude of oscillation, for which the relative error of the

approximate period compared with the exact period is less than 1%, is θ0 = 117º, and it

is impossible to obtain relative errors less than 1% for values greater than θ0 = 117º. In

order to maintain the relative error at less than 1% with greater amplitudes, it is

necessary to consider a solution like that in equation (12) but including a term

corresponding to the higher harmonic, that is tωcos3 . Since we wish to calculate

manually the analytical approximations to the exact solutions, the number of harmonics

have to be small. The main reason is the complexity of the algebra involved. However,

this is not a major restriction because, as we have shown, equations obtained in the

previous section are capable of providing excellent analytical approximate

representations of the exact period for small as well as large amplitudes of oscillation. In

the appendix the solutions obtained when the second approximation in the harmonic

balance method is considered are presented.
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5. Conclusions

The formula for the period of the simple pendulum for small angles commonly given in

introductory textbooks is only the limiting case of a much wider range of real world

behavior. We have shown that it is easy to extend the theory to the case of large

amplitudes and to obtain analytical approximate expressions for the period. In

particular, various analytical approximation formulas for the period of a simple

pendulum have been obtained by using the harmonic balance method. As can be seen

the analysis of the non-linear pendulum by means the application of this technique using

the first analytical approximation is very simple in its principle, and is very easy to

implement. Excellent agreement of the analytical approximate period with the exact

period has been demonstrated not only for small but also for large amplitudes (as high

as 117º). The analysis considered in this paper demonstrates that, unlike perturbation

approximations, the present analytical approximate periods apply well to small as well

as large values of amplitude of oscillation. Finally, in this paper not only did we reveal

some interesting aspects of the study of non-linear oscillating systems -such as the

simple pendulum- or procedures for determining analytical approximations to the

periodic solutions of non-linear differential equations, but we also presented an

application of one of these procedures -the method of harmonic balance- to easily obtain

analytical approximations for the period which have some pedagogical value to both

graduate as well as undergraduate students.

Appendix

This appendix presents the details of how to construct the second approximation to the

periodic solutions to different approximate nonlinear differential equations for the

simple pendulum. In order to obtain the second approximation we use the approach

developed by Lim et al11,12. They simplify the harmonic balance method by imposing

linearization of the governing equation in order to avoid numerically solving sets of

equations with very complex nonlinearities and accurate analytical approximate periods
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can be obtained easily. This linearization is performed prior to proceeding with

harmonic balancing.

We only consider in detail the specific case N = 2. For this case Eq. (8) can be

written as follows:

0)(
d
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=+++ θθθω
θ

ba

t
2

(A1)

where a = -1/6 and b = 1/120. By using Eq. (12), the second approximation form for the

periodic solution to Eq. (A1) is:
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Since θ(0) = θ0, it follows that:

210 AA +=θ (A3)

and then:

201 AA −= θ (A4)

Substituting Eq. (A4) into Eq. (A2) we obtain:
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Eq. (A5) can be rewritten in the form:

)()()( tvtut +=θ (A6)

Where u(t) is the main part satisfying initial conditions in Eq. (2)

0)0( θ=u 0
d

d

0

=








=t
t

u
(A7)

and takes the form of Eq. (13):
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and v(t) is a correction term
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It is easy to verify that:
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Substituting Eq. (A6) into Eq. (A1) and making linearization of the resulting equation

with respect to the correction v(t), we obtain:
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where in the linearization process the terms containing the nth powers of v with n ≥ 2,

have been removed. Solving the resulting Eq. (A11) by the method of harmonic balance,

it could be obtained the approximate period and the periodic solution. Substituting Eqs.

(A8) and (A9) into Eq. (A11), and taking into account the trigonometric relation

ttt ωωω cos3cos43cos
3

−= (A12)

we obtain, after some algebraic manipulation, that:

[ ] [ ] +−+−−−+−− tAaAaAtAA ωωθθωωωθωθ
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0 =+−+−+ tAbtAbbAa ωωθωωθθθ (A13)

and taking into account Eq. (15) for cos3ωt, cos5ωt and cos7ωt, we obtain:

[ ] +−−+−+− tAAbbAaa ωωωθωθθθθ cos))((16)25102412(
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1 22
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[ ] 03cos))51216(144()54(
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0
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0
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0 =+++++++ HOHtAbaba ωωθωωθθ (A14)

where HOH are high order harmonics, in other words, proportional to cos[(2n+1)ωt] for

n ≥ 2. Equating the coefficients of cosωt and cos3ωt to zero gives the two equations:

0))((16)25102412( 22
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0 =++−−+ Ababa ωθωωθθ (A16)

Eliminating A2 from Eqs. (A15) and (A16), we get

0
24

=++ CBA ωω (A17)

which can be solved for ω as a function of θ0. In Eq. (A17) coefficients A, B and C are

given by

02304θ=A (A18)
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Eq. (A17) can be solved for the second analytical approximate frecuency ω as a function

of the amplitude of the oscillations, θ0:

)(506280
12

)( 0

4

0

2

0
0

0 θθθ
ω

θω ∆+++= ba (A21)

where:

8

0
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0
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0

4
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22

00 92526005120168458884096)( θθθθθθ babbaa +++++=∆ (A22)

The sign “+” before )( 0θ∆ in Eq. (A21) has been determined by the condition that the

ratio ω approaches ω0 for θ0 approaching 0. Furthemore, A2 in Eq. (A9) can be obtained

by using either Eq. (A15) or Eq. (A16): i.e.,

[ ]

[ ]2
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/)(16252416
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The corresponding period for the second approximation as a function of θ0 is given by:

)(506280

12

0
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2
0

0app2

θθθ ∆+++

=

ba

TT (A24)

where ∆(θ0) is given by Eq. (A22) and a = -1/6 and b = 1/120. The relative error

between the approximate value and the exact value (Eq. (4)) is less than 1% for θ0 <

122º. Furthermore, the second analytical approximate periodic solution is given by:

[ ] tAtAt ωωθθ 3coscos)( 220 −−= (A25)

By expanding in power-series the right-hand side of equation (A24) and taking

into account that a = -1/6 and b = 1/120, the following equation can be obtained









+++++≈ ...

1321205760

67.9356

737280

75.133

3072

11

16

1
1

8
0

6
0

4
0

2
00app2 θθθθTT (A26)

In this equation, the first three terms are the same as the first three terms obtained from

the expansion of the exact period T (Eq (6)), whereas the fourth term of the expansion of

the exact period is 173/737280 compared with 133.75/737280 obtained in this study,

that is, the relative error in this term is 23%.
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By doing the same procedure in the case N = 3, it can be obtained a new period,

Tapp3, and it can be checked that now the relative error between the approximate value

and the exact value is less than 1% for θ0 < 151º. By expanding in power-series the

analytical period obtained by using the second approximation for N = 3, it is obtained:









+++++≈ ...

1321205760

7.24140

737280
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3072

11

16

1
1

8
0

6
0

4
0

2
00app3 θθθθTT (A27)

In this equation, the first three terms are the same as the first three terms obtained from

the expansion of the exact period T (Eq. (6)), whereas the fourth term of the expansion

of the exact period is 173/737280 compared with 173.75/737280 obtained in our study,

that is, the relative error in this term is 0.4%. In the fifth term a coefficient of

24140.7/1321205760 is obtained whereas the exact value is 22931/1321205760. The

relative error for this coefficient is 5%.

Next, by doing the same procedure in the case N = 4, it can be obtained a new

period, Tapp4, and it can be checked that now the relative error between the approximated

value and the exact value is less than 1% for θ0 < 162º. Doing the power-series

expansion of analytical period obtained by using the second approximation for N = 4, it

is obtained: 







+++++≈ ...

1321205760

7.23244

737280
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3072

11

16

1
1

8
0

6
0

4
0

2
00app4 θθθθTT (A28)

In this equation, the first three terms are the same as the first three terms obtained from

the expansion of the exact period T (Eq. (6)), whereas the fourth term of the expansion

of the exact period is 173/737280 compared with 173.75/737280 obtained in our study,

that is, the relative error in this term is 0.4%. In the fifth term a coefficient of

23244.7/1321205760 is obtained whereas the exact value is 22931/1321205760. The

relative error for this coefficient is 1.4%.

Finally, it is necessary to point out that only the second approximation for N = 2,

3 and 4 has been obtained, since these are the ones for which the third term of the power

series expansion of the obtained periods with the first approximation (Eqs. (26), (29)

and (32)) is 10/3072 against a 11/3072 of the third term of the series expansion of the

exact period (Eq. (6)). In the case N = 1, the second approximation is also easily

obtained, since it is only needed to make b = 0 in Eqs. (A22) and (A.24). The obtained

result is:
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Doing the power-series expansion of Eq. (A29) taking into account that a = -1/6, it is

obtained:
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+++++≈ ...
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419
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8
0
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0

4
0

2
00app1 θθθθTT (A30)

It can be seen how for the case N = 1, both for the second approximation and for the first

of the harmonic balance method, only the first two terms of the series expansion of the

approximate periods (Eqs. (23) and (A30)) coincide with those of the exact period of

the pendulum (Eq. (6)). This is due to the fact that for N = 1 the exact differential

equation of the pendulum and the approximated differential equation, where sinθ has

been substituted by Eq. (21), coincide only for small angles. In order to check the

validity of the second approximation of the harmonic balance method in this case, it

should be necessary to compare the approximate period of Eq. (A29) with the exact

period of the linear differential equation:

0
6

1

d

d 32

0

2

=







−+ θθω

θ

2
t

(A31)

which corresponds to a potential energy of the form:









−= 4222

0
24

1

2

1
)( θθωθ lmU (A32)

It is possible to exactly solve the differential equation (A31) by using a similar

procedure to that used to solve the exact differential equation of the simple pendulum

for large amplitudes10. In this way it can be calculated the exact period for the

oscillating system subject to the potential energy of Eq. (A32). Integrating Eq. (A31)

and using the initial conditions in Eq. (2), it is possible to obtain the exact period of the

oscillations as

)(
12

122
2

0

0ex qKTT
θπ −

= (A33)

where K(q) is the complete elliptical integral of the first kind

and q is given by the expression:
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θ
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=q (A34)

If we expand in power-series this exact period (Eq. (A33)) we obtain the following

expression:


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It can be observed that the three first terms of Eqs. (A30) and (A33) coincide, whereas

the difference in the fourth term is 0.23% and that of the fith term is 0.72%.
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Figure captions

Figure 1.- Relative error as a function of the amplitude for four different

approximations.
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Table 1

θ0

Tex/T0

Eq. (4)

Tapp1/T0

Eq. (22)

Tapp2/T0

Eq. (25)

Tapp3/T0

Eq. (28)

Tapp4/T0

Eq. (31)

Tapp/T0

Eq. (34)

10º 1.00191 1.00191 1.00191 1.00191 1.00191 1.00191

20º 1.00767 1.00770 1.00766 1.00766 1.00766 1.00766

30º 1.01741 1.01759 1.01738 1.01738 1.01738 1.01738

40º 1.03134 1.03193 1.03125 1.03126 1.03126 1.03126

50º 1.04978 1.05129 1.04954 1.04957 1.04957 1.04957

60º 1.07318 1.07650 1.07261 1.07270 1.07270 1.07270

70º 1.10214 1.10877 1.10095 1.10119 1.10118 1.10118

80º 1.13749 1.14988 1.13512 1.13571 1.13569 1.13569

90º 1.18034 1.20249 1.17583 1.17716 1.17712 1.17712

100º 1.23223 1.27079 1.22393 1.22675 1.22664 1.22664

110º 1.29534 1.36175 1.28034 1.28608 1.28582 1.28583

120º 1.37288 1.48792 1.34607 1.35738 1.35675 1.35678
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Figure 1
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