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Analytical Aspects of Population-Specific
DNA Fingerprinting for Individuals
P. E. Smouse and C. Chevillon

An emerging problem of some interest is whether we can determine the population
membership of a single individual, using a population-specific ‘‘genetic finger-
print.’’ The levels of accuracy and precision required are beyond the reach of allo-
zyme analysis, and attention has shifted to DNA polymorphisms. There are different
types of DNA markers available for population surveys: RFLPs, mini- and micro-
satellites, and RAPDs, and each type has its own strengths and weaknesses. We
present a generic analysis that relates gene pool separation to our ability to assign
individuals, an analysis that does not depend on the type of marker. We then review
strengths and weaknesses of different DNA markers, in the context of DNA finger-
printing. Codominant loci are best. It is possible to gain more information per mark-
er with multiallelic loci, but diminishing returns set in rapidly, and it is better to
add loci. A modest number of independent loci is best, each locus with a modest
number of alleles and with each allele in modest frequency.

The use of genetic data for population
structure analysis is based on the idea
that polymorphic genetic markers can be
used to distinguish among individuals
and/or populations. Until the development
of protein electrophoresis in the 1960s
(Hubby and Lewontin 1966; Lewontin and
Hubby 1966), such studies were limited to
organisms that exhibited polytene chro-
mosome polymorphisms (Dobzhansky et
al. 1954; Lewontin and White 1960) or mor-
phologically detectable variation (Cain
and Sheppard 1954; Kettlewell 1955). Pro-
tein assay allowed serious ‘‘population
structure’’ analysis in a number of species
for the first time, and the literature on the
subject has since become voluminous.

Although assay protocols for a great
many allozymic loci are available (David-
son et al. 1989), we seldom have more
than a dozen loci in any particular organ-
ism that are sufficiently polymorphic to be
useful for population structure analysis.
Although that is sufficient for population
structure analysis, one of the problems of
growing interest is whether we can genet-
ically determine the population member-
ship of a single individual, thus allowing
us to define a population-specific ‘‘finger-
print.’’ The levels of genetic accuracy and
precision required are far beyond the
reach of routine allozyme analysis, so in-
asmuch as DNA-based markers are com-
monly thought to be available in almost

limitless supply, recent attention has shift-
ed to them.

While DNA-based markers have in-
creased our genetic resolution, they are
not without their own limitations, some of
which can be traced to deeper analytic is-
sues. Our purpose here is to explore some
of those issues, by way of providing a re-
ality check on the use of DNA markers for
population work. In particular we will (1)
elucidate an organizing principle that re-
lates the separation of gene pools to our
ability to assign individuals, (2) discuss
various implications of increased genetic
and/or population sampling relative to
population structure analysis, and (3) re-
view characteristics and limitations of dif-
ferent DNA methodologies in that context.

Gene Pools as Probability Clouds

Molecular Confetti
The natural inclination is to generate a
vast array of polymorphic markers, based
on the idea that with enough markers, ev-
ery individual becomes genetically
unique. But consider a set of 25 codomi-
nant, unlinked, polymorphic loci, each
with two alleles (p 5 0.3, q 5 0.7). The
most likely genotype is the 25-locus ho-
mozygote aabbcc . . . , with a frequency of
(q2)25 , 2 3 1028; the rarest genotype,
aabbcc . . . has a frequency of (p2)25 ,
10226. Thus every genotype has a frequen-
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Figure 1. Two-locus genotype frequency arrays for a pair of gene pools: upper panel—separate panmictic equi-
libria, where the first gene pool has pA 5 pB 5 0.3 and the second gene pool has pA 5 pB 5 0.7, also plotted as a
histogram, where the ordinate is a count of the number of cap-alleles (A or B); lower panel—a 50:50 mixture of
the separate gene pools (on the left), a panmictic gene pool with the same allele frequencies, pA 5 pB 5 0.5, in
the middle, and a histogram of the frequencies along the same discriminant axis (on the right).

cy in the range [10227 , fr(genotype) , 2
3 1028]. Now draw a random genetic sam-
ple of 100 individuals. The expected out-
come is a collection of unique genotypes,
none of which is aabbcc . . . ; draw a sec-
ond random sample of 100—the most like-
ly outcome is the same. In fact, the two
samples (from the same gene pool) will
probably not share a single genotype in
common. The gene pool is a thinly dis-
persed probability cloud; the probability
of drawing any particular genotype, even
the most likely genotype, is virtually nil.
Any particular sample will contain an un-
predictable collection of unique geno-
types.

Now imagine a second gene pool having
the same 25 polymorphic loci and the
same alleles, but with the allele frequen-
cies reversed (p 5 0.7, q 5 0.3). The most
likely genotype in this second population
is the 25-locus homozygote AABBCC . . . ,
with a frequency of (q2)25 , 2 3 1028; the
rarest genotype—aabbcc . . . —has an ex-
pected frequency of (p2)25 , 10226. The
sampling implications for this second
gene pool are the same as those for the
first, an unpredictable mix of unique ge-
notypes. Given two samples, we should
anticipate no genetic overlap, whether
they are drawn from the same or from dif-
ferent gene pools. How are we to distin-
guish between one gene pool, sampled
twice, and two gene pools, sampled once
each? The uniqueness of the sampled ge-
notypes does not help, and viewing the
gene pool as a collection of molecular con-
fetti is not the answer.

An Organizing Principle
We need an organizing principle that tells
us when we are sampling from one prob-
ability cloud and when we are sampling
from two different clouds. We cannot pre-
dict the precise genotype of a random in-
dividual, but we can determine which part
of the probability space it occupies, and
from that we can determine its most likely
gene pool of origin, post hoc. To do that
convincingly, we require a large number of
well-behaved and statistically indepen-
dent genetic markers that exhibit suffi-
cient allele-frequency divergence between
gene pools.

Return to the example, but consider just
the first two loci, with frequencies p 5 0.3
and q 5 0.7 in the first gene pool and p 5
0.7 and q 5 0.3 in the second. Since the
loci are segregating independently, each
population is in two-locus panmictic equi-
librium; we have Hardy–Weinberg equilib-
rium for both loci, as well as gametic equi-

librium between them. All nine genetic
phenotypes (10 genotypes, but AB/ab and
Ab/aB are not usually distinguishable) are
present in each population, but most of
the probability mass is in the lower right
corner of the first population and in the
upper left corner of the second (Figure 1,
upper panel). That probability separation
provides a key to the solution of our iden-
tification problem.

If we know the frequency composition
of the two gene pools, we can use discrim-
inant analysis to assign individuals to one
or the other gene pool (Smouse et al.
1982; Spielman and Smouse 1976). A pic-
ture of the analytic situation is provided
by projection of the probabilities onto the
principal axis of the two-dimensional ge-
notype array (right-hand side of Figure 1).
That diagonal axis is a discriminant func-
tion, a count of the number of cap-alleles
(A and B) within a genotype: AABB (4),
AABb and AaBB (3), AAbb, AaBb, and
aaBB (2), Aabb and aaBb (1), and aabb (0).
Scanning along the diagonal (discrimi-
nant) axis, we see a partial separation of
the two gene pools.

Of course, we may be in ignorance of
the allele frequencies within the separate
gene pools; we may not even realize that
we have more than one gene pool. In such
cases, the procedure is the same, except
that we have to extract the principal axis
from the mixed-population data them-
selves. For instance, consider a 50:50 mix-
ture of the two gene pools ( lower panel,

Figure 1). By contrivance, the allele fre-
quencies for both loci are p 5 0.5 5 q for
the mix. For this simple example, the prin-
cipal axis is unchanged, and the projec-
tion of the frequencies onto that axis
yields the result on the right-hand side of
the lower panel of Figure 1. For a single
panmictic gene pool with the same (p 5
0.5 5 q) allele frequencies, the genotype
array is frequency symmetric around the
central (AaBb) genotype; that translates
into a unimodal, roughly normal distribu-
tion along the principal axis. By contrast,
the genotype array of the two-population
mixture is overdispersed along the prin-
cipal diagonal axis relative to the bell-
shaped panmictic reference distribution.
The mix shows too many homozygotes
(Wahlund effect), as well as gametic phase
disequilibrium (Smouse and Neel 1977;
Smouse et al. 1983). Both features are in-
trinsic signatures of a heterogeneous mix-
ture; the magnitudes of both are increas-
ing functions of the allele-frequency diver-
gence between the two gene pools.

Now extend the argument to four loci,
each with the same 30:70 versus 70:30 al-
lele-frequency split. We create a four-di-
mensional cube, with the first gene pool
having its probability mass concentrated
near the aabbccdd corner, and the second
gene pool with its mass near the
AABBCCDD corner. Again using a principal
axis rotation, we portray the frequency
profiles in the upper left corner of Figure
2. Divergence of the two gene pools is
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Figure 2. A projection of frequency profiles from two separate gene pools (top panel), their 50:50 mix, and a
panmictic reference (bottom panel) onto the discriminant axis. Each locus has the same 30:70 versus 70:30 fre-
quency split of Figure 1: left-hand pair, 4 loci; middle pair, 9 loci; right-hand pair, 16 loci. Resolution improves with
the number of loci.

Figure 3. A projection of frequency profiles from two separate gene pools (top panel), their 50:50 mix, and a
panmictic reference (bottom panel) onto a 16-locus discriminant axis: (a) loci with a 45:55 versus 55:45 split; (b)
loci with a 40:60 versus 60:40 split; (c) loci with a 30:70 versus 70:30 split. Resolution improves with allele frequency
divergence.

even more evident with four loci than with
two, and the mixture shows overt evi-
dence of genetic bimodality ( lower left
corner). Four loci are better than 2, 9 loci
are better than 4 (middle entries of Figure

2), and 16 are better than 9 (right-hand
side of Figure 2). Each locus, viewed in iso-
lation, shows substantial overlap of gene
pools, but with as many as 25 loci, there
would be little doubt that the collection of

genotypes represents two multidimension-
al probability clouds, whether we knew
their probability distributions in advance
or not, and in spite of the fact that every
genotype in the sample was unique. Sep-
aration would emerge clearly from the
data themselves.

The example is an illustration, but the
real world involves loci with smaller di-
vergence among gene pools. To see the
frequency implications, compare the 16-lo-
cus results of a 45:55 versus 55:45 split
(Figure 3, left-hand side), or those from a
40:60 versus 60:40 split (Figure 3, middle
entries), with those from our 30:70 versus
70:30 split (Figure 3, right-hand side). With
the 30:70 versus 70:30 split, the separation
is self-evident and almost obvious; with
the 40:60 versus 60:40 split, it is evident
but less than categorical; with the 45:55
versus 55:45 split, we will need a priori
gene pool identification; there is little
hope of discerning the divergence from
the data themselves. In addition, real or-
ganisms present loci with allele frequen-
cies that are not conveniently balanced
around p 5 0.5 5 q, multiple alleles, mul-
tiple populations, mixture fractions that
are not equal, and myriad other depar-
tures from the simple assumptions of our
example. Statistical aggravations aside,
however, the basic principle remains.
Each gene pool is a probability cloud, and
the greater the allele-frequency divergence
among gene pools, the less the overlap of
those probability clouds, and the more
likely we are to be able to assign individ-
uals to the correct population, based on
genetic criteria.

A Formal Translation
We need a formal translation that converts
allele frequency divergence into a measure
of genetic overlap and/or the efficacy of
assigning individuals to their proper gene
pools. This treatment should convert dif-
ferent sorts of genetic data into a common
statistical currency, allowing comparison
of different molecular methodologies. We
note that if populations do not overlap at
all, we can use genetic data to assign an
individual to its correct population with
certainty. To the extent that the probabil-
ity clouds overlap, we will make some mis-
takes; the more overlap we have, the more
mistakes we will make. Allele frequency di-
vergence, probability cloud overlap, and
the probability of correct allocation are
three closely related measures of the same
thing, and we can exploit that relationship
to our advantage.

The probability of correctly allocating
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Figure 4. Linear relationship between the probit of correct allocation rate and the average genetic distance
between populations. For loci of equal discriminatory power, average genetic distance increases with the square
root of the number of loci. Shaded areas are correct allocation fractions lacking genetic data on population diver-
gence.

an individual is directly related to the av-
erage pairwise genetic distance between
populations, defined as

D 5 [{2J(J 2 1)}21 SjSlSk{(ȳjk 2 ȳlk)2/ȳ●k}]½

(1)

where J is the number of candidate pop-
ulations, and where ȳjk, ȳlk, and ȳ●k are es-
timated frequencies of the kth allele in the
jth and lth populations and the global col-
lection, respectively. The relationship be-
tween allocation success and average ge-
netic distance is shown in Figure 4, where
the probit of the correct allocation frac-
tion is shown on the ordinate and the av-
erage genetic distance (D) on the abscis-
sa. [Recall that probit [p] is the number of
standard deviations, left or right of the
mean (zero) of an N(0,1) distribution, that
corresponds to an upper tail probability of
(1 2 p). Thus, for example, probit [0.50]
5 0, and probit [0.05] 5 21.645.] The
slope of the line is 1/2, irrespective of the
number of candidate populations. The in-
tercept is probit [1/J]; if there are J can-
didate sources, there are (J 2 1) ways to
misallocate. In the absence of genetic di-
vergence, the probability of correct allo-
cation is 1/J. The more candidate popula-
tions there are, the harder it is to allocate
accurately for a given value of D (Smouse
et al. 1982). For example, while a D value
of 2 would indicate minimal overlap for a
pair (J 5 2) of populations and would pro-
vide impressive allocation success; that

same D value for J 5 20 populations would
not provide much resolution (Figure 4).
The more candidate populations we have,
the greater the value of D we will need to
achieve the same degree of discriminabil-
ity.

Multiple Loci and Multiple Alleles
While the probit of the correct allocation
fraction is linear in D, it is linear in the
square root of the number of two-allele
loci, provided each locus contributes
equally and independently. The linear pro-
gression is thus from 1 locus to 4 loci, to
9 loci, to 16 loci, to 25 loci, etc. This is also
shown in Figure 4, for the special case
where each locus contributes D 5 1. We
will need a daunting number of polymor-
phic loci, especially with multiple candi-
date populations. The addition of nonin-
dependent loci ( linkage disequilibria with-
in populations) reduces genetic resolu-
tion; the marginal information provided by
a second locus derives from discrimina-
tion within genotypes of the first locus.
Addition of statistically correlated loci is
informationally redundant.

It is also possible to extract more infor-
mation per unit locus by using a technol-
ogy that uncovers multiple alleles, a strat-
egy that also reduces the cost per unit as-
say. It can be shown that increasing the
number of alleles increases the value of D
to some degree, but beyond some point it
is more efficacious to deploy another lo-

cus than to add more alleles. The precise
trade-off point will depend on the (unpre-
dictable) allele-frequency profiles of the
loci being used. In addition, with increas-
ing numbers of rare alleles, we encounter
some sampling difficulties that are difficult
to circumvent.

The Sample Size Problem
To elucidate the sample size problem, we
begin with the distance between the ith
individual in the jth population and the av-
erage of the lth population,

Dij,l 5 [Sk(yijk 2 ȳlk)2/ȳ●k]½. (2)

Now, yijk is the frequency of the kth allele
in the ith individual of the jth population
(1 if homozygous, ½ if heterozygous, 0 if
absent); ȳlk and ȳ●k are the estimated fre-
quencies of the kth allele for the lth pop-
ulation and total collection, respectively.
The idea is to assign the ith individual to
that population for which D is smallest,
that is, to the genetically most similar pop-
ulation.

The difficulty is that the procedure is bi-
ased in favor of correct allocation. This is
especially a problem for rare alleles,
which not uncommonly appear as single
heterozygotes for the entire study. An al-
lele whose frequency is r 5 0.001 is un-
likely to occur even once in a sample of
50 diploid individuals. An allele whose fre-
quency is q 5 0.01 will probably occur
once or not at all. Conversely an allele
whose frequency is p 5 0.10 will almost
surely be seen more than once in a sample
of 50 individuals. The absence of a rare
allele from a sample may indicate its ab-
sence from the gene pool, but it may
equally well be interpreted as the expect-
ed sampling outcome for a rare allele that
really is present in the gene pool.

Because we use the yijk to produce the
ȳjk, singletons are invariably closest to
their observed sample of occurrence, and
they are thus invariably allocated ‘‘cor-
rectly.’’ Unfortunately the procedure is cir-
cular; we have ‘‘stacked the deck’’ in favor
of correct allocation. With a large number
of rare alleles, the upward bias in the es-
timated success rate will be substantial.
We have (Smouse et al. 1982) shown that
to avoid this allocation bias, one removes
the individual from its own population be-
fore computing Dij,j, asking instead how
close the individual is to others in its pop-
ulation. For polymorphic alleles, removal
of an index individual simply removes the
bias, but removing a singleton amounts to
removal of the rare allele entirely from the
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Figure 5. The gametic phase ambiguity of a two-site RFLP locus, and how that can be resolved with a double-
digest procedure.

study, and we have nowhere to allocate it.
Singletons are utterly useless.

We need to ensure that 2Nj 3 pjk $ 2 for
all alleles, so that removal of the index in-
dividual creates no confusion. We can do
that if we increase sample sizes. For ex-
ample, with a sample size of Nj 5 1000,
relatively low-frequency alleles will be
seen more than once. Of course, such
sample sizes represent severe overkill for
the common alleles that make up the bulk
of the sample, and on which the overall
success of the enterprise depends. The al-
ternative is to reduce the numbers of al-
leles. With many loci to choose from, we
can concentrate on those with allele fre-
quency spectra compatible with limited
sample sizes. Alternatively we can pool al-
leles into a smaller number of higher fre-
quency ‘‘allelic classes.’’ We need a mod-
est number of alleles per locus, each of
modest frequency. Large numbers of rare
alleles per locus should not be viewed as
a substitute for large numbers of loci.

Beyond this concern with rare alleles,
there are some minimal sample size re-
quirements for the description of popula-
tions in multidimensional genetic space.
We need large numbers of genetic char-
acters for large numbers of candidate pop-
ulations, but it would be silly to have
many more characters sampled than indi-
viduals per population. The number of
characters, K, is the total number of al-
leles at all loci minus the number of loci.
We need to put a tight confidence ellipse
around each population mean vector, of
length K, if we are to establish population
divergence credibly. The degrees of free-
dom for an estimate of the within-popula-
tion covariance matrix are (Nj 2 1) for the
jth population (Anderson 1958). If we use
K 5 100 characters, for example, we need
a bare minimum sample size of Nj 5 101
to have enough degrees of freedom to es-
timate a non-singular within-population
covariance matrix for the jth population.
If we can make the assumption that the
within-population covariance matrices
from the J populations are homogeneous,
we can pool the separate within-popula-
tion matrices, none of them estimated
very well, to obtain an estimate of the av-
erage within-population matrix, with (N 2
J) degrees of freedom. At the very least,
we need (N 2 J) . K degrees of freedom
and a sample size such that (N 2 J) . 2K
would not be excessive, since the vari-
ances of variance/covariance terms are
fourth order. There is no justification for
viewing large numbers of characters as a
substitute for inadequate sample sizes. In-

deed, they make larger sample sizes im-
perative.

Competing Molecular
Methodologies

RFLP Markers
There are several alternative molecular
methodologies we might employ, each
with its own strengths and weaknesses,
vis-à-vis population identification. Con-
sider first a single restriction fragment
length (RFLP) marker, assayed with one
molecular probe and one restriction en-
zyme, yielding a pair of codominant al-
leles, the informational equivalent of a
two-allele, codominant allozyme locus.
The cost of developing RFLP assays is
high, so the usual strategy is to assay for
multiple restriction sites detectable with
the same probe, often requiring two or
more restriction enzymes. With additional
recognition sites, we can detect multiple
haplotypes, increasing the level of poly-
morphism per unit locus.

The difficulty, of course, is that double-
marker heterozygotes are linkage-phase
ambiguous. It is possible, using double di-
gest methods (Figure 5) or combination
probes, to resolve some of that phase am-
biguity. In other cases, data on relatives
can be used to accomplish the same end.
With multiple markers, however, all the
multiple-site heterozygotes are phase am-
biguous. Moreover, since all the markers
are tightly linked, linkage disequilibrium

guarantees high correlations within the
set. The marginal information added by
each successive marker of the set decreas-
es rapidly; we quickly reach the point
where it is better to deploy another probe
with a small number (1–3) of informative
sites (see Smouse and Chakraborty 1986).
The consequence is a meaningful increase
in the cost per unit information.

Mini- and Microsatellite Markers
Minisatellite methods also reveal multiple
length alleles, but without phase ambigu-
ity. Such markers have proven useful in
human forensic analysis (Budowle et al.
1994; Chakraborty et al. 1992; Devlin
1993), as well as in population surveys of
other organisms (Bentzen and Wright
1993; Dias et al. 1996; Kempenaers et al.
1992; Rave et al. 1995), and there are some
meaningful cost advantages. Problems
arise when the sheer number of length al-
leles is large and their separation is diffi-
cult to establish in routine assay. The usu-
al strategy is to enforce some sort of bin-
ning (Weir and Gaut 1993), which reduces
the ambiguity to manageable levels. Given
the informational redundancy inherent in
multiple alleles, we are better served by a
small set of ‘‘allele classes,’’ all of moder-
ate frequency, than we are by a very large
number of rare alleles, whose identities
and frequencies are difficult to establish
precisely. Modest numbers of alleles are
preferable.

An attractive variation on this theme is
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Figure 6. A schematic of diploid, codominant phe-
notypic resolution for a typical microsatellite locus
with multiple alleles, showing an absence of phase am-
biguity.

Figure 7. Expected frequency distributions for differ-
ent types of biallelic genetic markers at each of two
loci. Population 1 is characterized by pA 5 pB 5 0.3,
while population 2 is characterized by pA 5 pB 5 0.7
in each case: (a) the frequency distribution of domi-
nant (RAPD) phenotypes for a diploid organism; (b)
the distribution of codominant (RFLP or microsatellite)
phenotypes for a diploid organism; (c) the distribution
of alleles for a haploid (mtDNA or chloroplast) genome.

provided by microsatellite loci, based on
polymerase chain reaction (PCR) assay.
The idea is that small repeating motifs are
flanked by a particular pair of primer rec-
ognition sequences (Hammond et al.
1994). With PCR amplification we can as-
say a series of unambiguous length alleles
(Figure 6). There are a large number of as-
sayable polymorphic loci available with
this technique, and with appropriate pre-
liminary work we can obtain single-locus
assay systems with simple banding pat-
terns. Mini- and microsatellite systems
have been useful in humans (Chakraborty
et al. 1992; Gomolka et al. 1994), other
mammals (Dallas et al. 1995; Ellegren et al.
1992), birds (Dias et al. 1996; Dixon et al.
1994), fish (Brooker et al. 1994), insects
(Estoup et al. 1995; Peters et al. 1995), and
fungi (Stendid et al. 1994).

RAPD Markers
The DNA methods described thus far re-
quire major R&D investments to support
high- volume survey work. There are in-
teresting organisms, still in the early
stages of exploration and/or domestica-
tion, for which a large-scale R&D effort is
neither timely nor cost effective. If we can
accept answers that are approximate,

polymerase chain reaction (PCR) methods
can be employed to produce large num-
bers of random amplified polymorphic
DNA (RAPD) markers. Given that a primer
recognition sequence is present on one
strand of the double helix, a PCR reaction
will begin in one direction. If the same se-
quence is found downstream, but on the
other strand of the double helix and in the
opposite orientation, the reaction will go
in both directions. Amplification occurs
everywhere in the genome that the flank-
ing sequences are just right. If some indi-
viduals have an unrecognizable flanking
sequence (due to mutation), amplification
fails; the locus becomes polymorphic and
useful (Welsh and McClelland 1990; Wil-
liams et al. 1990).

We begin with an oligonucleotide primer
of arbitrary sequence. Hundreds of such
primers are commercially available, each
with its own profile of amplification prod-
ucts, to a first approximation—one prod-
uct per locus. We use the term ‘‘locus’’
here advisedly; we observe amplification
products whose genetic inheritance re-
mains unexplored. PCR amplification
tends to be an all-or-nothing phenomenon.
It is difficult to distinguish between ho-
mozygous (1 1) and heterozygous (1 2)
individuals; the (2 2) individuals are un-
ambiguous, but dominance transforms the
example in Figure 1 (re-created as Figure
7b) to the form shown in Figure 7a. It takes
a lot more dominant than codominant
markers to achieve the same population
resolution, but we can assay a great many
loci for minimal effort (Huff et al. 1993).

Haploid Genetic Systems

All of the preceding is based on the use of
diploid loci. There are haploid organisms
and organelles that can be examined in
much the same fashion. Most work to date
has been devoted to animal mtDNA (Avise
et al. 1987; Cann et al. 1987; Moritz et al.
1987), which shows large amounts of vari-
ation within many species. The major ad-
vantage of assaying a haploid genome is
that dominant markers and linkage phase
become transparent. In the absence of re-
combination, however, mtDNA markers
are not independent and multimarker
mtDNA haplotypes are best treated as
multiple alleles, with all of the inherent
statistical limitations. The major limitation
of haploid analysis, however, is that we
lose the considerable advantages of the
diploid, Hardy–Weinberg reference frame
(Xu et al. 1994). To put that in context,
consider two populations with four mt-

DNA haplotypes and our (by now familiar)
30:70 versus 70:30 polymorphic frequency
split. Known gene pools will show obvious
differences (Figure 7c), but mixtures leave
no obvious signature, since single gene
pools are themselves out of linkage equi-
librium, and there is no Wahlund effect to
detect. The separate probability clouds
exist, but we need a great deal of mito-
chondrial divergence to have any realistic
hope of clear-cut separation.

On the other hand, we can usually relate
the haplotypes to each other by single-
step (mutation) links. That fact can some-
times provide us with useful information
on population membership, the idea being
that populations may evolve and diverge
along the network (Excoffier et al. 1992).
The ability to measure along the net pro-
vides an alternative organizing principle,
and can make up for the loss of the Hardy–
Weinberg reference frame (Excoffier and
Smouse 1994; Takahata and Palumbi 1985;
but see Epifanio et al. 1995). Plant chlo-
roplast and mitochondrial genomes are
now coming under scrutiny for population
work (Birky 1988; Harris and Ingram 1991;
Mason-Gamer et al. 1995; Soltis et al.
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1992), and we can anticipate the same
sorts of problems and opportunities as we
have encountered with animal mitochon-
dria. Haploid analysis, either alone or in
parallel with diploid analysis, is also pos-
sible for conifers, fungi, ferns, and other
organisms with a pronounced alternation
of generations. The combination of hap-
loid and diploid analysis can be useful in
resolving otherwise intractable linkage
phase problems (Adams 1992; Gibson and
Hamrick 1991).

Conclusions

We need a large number of polymorphic
markers to assign individuals to their cor-
rect populations; allozyme methods have
proven inadequate, but newer DNA meth-
ods are capable of providing the resolu-
tion required. There is a natural tendency
to assay myriad markers, so that each in-
dividual is genetically unique, but chop-
ping the genome into molecular confetti is
counterproductive. We need an organizing
principle to extract information from
those genotypes, and it is provided by the
multiple-locus Hardy–Weinberg equilibri-
um.

Probit [p] is essentially linear in the av-
erage genetic distance between pairs of
populations, and theory leads to several
conclusions: (1) The greater the allele fre-
quency divergence among populations,
the better is our discriminatory power. (2)
The more candidate populations we have,
the harder it is to assign correctly for a
particular level of genetic divergence, and
the greater is the number of loci required.
(3) Probit [p] is linear in the square root
of the number of loci, everything else be-
ing equal. (4) The informational require-
ment for strong discrimination of a large
number of candidate populations is se-
vere.

It is possible to extract more informa-
tion per unit locus by using multiallelic
methods, but diminishing returns set in
quickly with more than two alleles. More-
over, if one uses sample sizes that are too
small or loci with too many alleles, rare
alleles occur as singletons, and singletons
are useless. Beyond some point, it is bet-
ter to deploy another locus than to distin-
guish among more alleles. We need sample
sizes that are sufficient (Nj . K) to de-
scribe the candidate gene pools credibly.

There are several alternative molecular
methodologies we might employ. RFLP
methods can be used to describe single
loci with multiple, codominant alleles, but
linkage disequilibria are large and gametic

phase ambiguous. Mini- and microsatellite
methods can also generate multiallelic
loci, but without the linkage phase ambi-
guity; the numbers of alleles are often so
large that one must pool alleles into length
classes. RAPDs can be generated with min-
imal cost and R&D investment, but their
limitation is that they are dominant, and
we require many more dominant than co-
dominant markers to accomplish the same
resolution. We can also examine haploid
organisms and organelles, avoiding domi-
nance problems altogether. Two major dis-
advantages are the loss of the diploid Har-
dy–Weinberg reference frame and the ex-
istence of tight linkage among markers. We
prefer a modest number of independently
segregating, multiallelic, codominant loci,
each locus with a small number of alleles,
with each allele in moderate frequency.
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