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[1] An analytical basis for the determination of slope lines in grid digital elevation models
is provided by using the D8-LTD method (eight slope directions, least transverse deviation).
The D8-LTD method’s capability to predict consistently exact slope lines as the grid cell
size goes to zero is shown analytically by applying mathematical analysis methods. The use
of cumulative, least transverse deviations is found to be the key factor allowing for globally
unbiased approximations of slope lines. The D8-LTD method’s properties are also
demonstrated numerically by using digital elevation models of a synthetic sloping surface
obtained from the Himmelblau function. It is shown that slope lines obtained from the D8-
LTD method can approximate the exact slope lines as close as desired by selecting a grid
cell size that is small enough. In contrast, the standard D8 method is found to produce
significantly biased results even when small grid cells are used. The D8-LTD method
outperforms the D8 method over a wide range of grid cell sizes (up to 20 m in this
application), beyond which grid cell size becomes too large to validly represent the
underlying sloping surface. It is therefore concluded that the D8-LTD method should be
used in preference to the standard D8 method in order to obtain slope lines that are only
limited in reliability by the detail of topographic data, and not by the accuracy of the slope
direction method applied.

Citation: Orlandini, S., G. Moretti, and A. Gavioli (2014), Analytical basis for determining slope lines in grid digital elevation
models, Water Resour. Res., 50, 526–539, doi:10.1002/2013WR014606.

1. Introduction

[2] Slope lines were defined by Cayley [1859] and Max-
well [1870] as those lines that intersect contour lines at
right angles. If overland flows are laminar and purely
driven by gravity, then slope lines provide a perfect match
to the theoretical flow lines. As also reported by Gallant
and Hutchinson [2011], however, a distinction should be
made in hydrology and geomorphology between slope lines
and flow lines when dispersion is a relevant process as a
results of turbulence or diffusional effects. In this case,
flow lines and slope lines differ. Multiple flow direction
methods were postulated to describe overland flow disper-
sion [e.g., Freeman, 1991; Quinn et al., 1991; Seibert and
McGlynn, 2007]. However, a more cautious modeling phi-
losophy may be adopted by determining slope lines from
topographic data with the minimum usage of geomorpho-
logic dispersion and, if necessary, by modeling hydrologic
dispersion separately [Tarboton, 1997; Orlandini et al.,
2003]. The analysis shown by Orlandini et al. [2012]

reveals that the dispersion produced by multiple flow direc-
tion methods strongly depends on grid cell size, and sug-
gests therefore that caution must indeed be exercised in the
application of multiple flow direction methods for the
description of overland flow dispersion. Even under a broad
perspective, slope lines remain essential topographic attrib-
utes for the description of overland flows because (1) they
provide the surface flow paths along which gravity-driven,
nondispersive flows of water and sediments extend, and (2)
they provide the skeleton around which dispersive overland
flow patterns are likely to develop.

[3] Slope lines and related flow nets can be determined
directly from contour elevation data as shown by Moretti
and Orlandini [2008]. However, a classical flow net is not
suited to natural landscapes because flow strips continually
merge or split, and the flow net has to be modified by amal-
gamating excessively small elements and subdividing
excessively large elements [Moore and Grayson, 1991].
Hence, the determination of slope lines in grid digital ele-
vation models remains a relevant problem. This problem is
commonly addressed by connecting cell centers along sin-
gle slope directions obtained from O’Callaghan and
Mark’s [1984] D8 method. Several methods have been pro-
posed in the literature to mitigate the artifacts produced by
the D8 method while still using the minimum amount of
dispersion [e.g., Fairfield and Leymarie, 1991; Tarboton,
1997; Orlandini et al., 2003; Paik, 2008; Orlandini and
Moretti, 2009a]. Reviews of these methods can be found in
Tarboton [1997] and Gallant and Hutchinson [2011]. Other
algorithms based on the aspect driven method are not
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considered in the present investigation [e.g., Lea, 1992;
Costa-Cabral and Burges, 1994; Zhou et al., 2011]. The
D8-LTD (eight slope directions, least transverse deviation)
method introduced by Orlandini et al. [2003] was shown
numerically to improve the standard D8 method while also
preserving important qualities of the D8 method such as
being deterministic, nondispersive, robust, and computa-
tionally efficient [Orlandini and Moretti, 2009b]. However,
as pointed out by Paik [2008], an analytical basis of the
D8-LTD method having general validity has not been pro-
vided so far.

[4] In the present study, an analytical basis for determin-
ing slope lines in grid digital elevation models is provided
by combining the D8-LTD method with methods of algebra
and calculus. This analytical basis makes it possible to ver-
ify the capabilities of the D8-LTD method to approximate
consistently the exact slope lines of any sloping surface as
the grid cell size goes to zero. The D8-LTD method is
described in section 2. The analytical basis of the D8-LTD
method is provided in section 3. The capabilities of the D8-
LTD method over other nondispersive methods are demon-
strated numerically in section 4. The numerical analysis
reported in section 4 is extended by evaluating the capabil-
ities of dispersive methods to provide simulated propaga-
tion patterns that develop around the exact slope lines.
Discussion of results and conclusions are reported in sec-
tions 5 and 6, respectively.

2. The D8-LTD Method

2.1. Steepest Slope Directions

[5] The elementary computational system sketched in
Figure 1a is used to compute the steepest (downward) slope
direction for all cells of a grid-based digital elevation
model [Tarboton, 1997]. Square cells having size equal to
h are considered and a block-centered scheme with each
elevation value taken to represent the elevation of the cen-
ter (or the average elevation) of the corresponding cell is
adopted. Eight planar triangular facets are formed between
the center of the cell and the centers of the eight neighbor-
ing cells. The three-dimensional geometry of each facet is
characterized by the elevations eiði50; 1; 2Þ. These eleva-
tions are arranged so that e0 is in the center point, e1 is in
the point to the side, and e2 is in the diagonal point. For a
generic triangular facet, the slope (downward) can be repre-
sented by the vector ðs1; s2Þ, where s15ðe02e1Þ=h and
s25ðe12e2Þ=h. The direction (angle from the cardinal edge
of the facet) of the steepest slope line in the facet is com-
puted as a5arctan ðs2=s1Þ for s1 6¼ 0; a51p=2 rad for s15
0 and s2 > 0; a52p=2 rad for s150 and s2 < 0, or is con-
ventionally set equal to zero for s150 and s250. The
related slope magnitude is computed as smax 5ðs2

11s2
2Þ

1=2.
If a is not in the angle range of the facet at the center point
0; p=4 rad½ �, then a needs to be set as the direction along the

appropriate edge and smax assigned as the slope along the
edge. If a < 0, then a and smax are set equal to 0 and s1,
respectively. If a > p=4 rad, then a and smax are set equal
to p=4 rad and ðe02e2Þ=ð

ffiffiffi
2
p

hÞ, respectively. Table 1 gives
the node elevations corresponding to the corners of each of
the triangular facets used to compute slopes and angles.
The steepest slope direction associated with a grid cell is
determined in the direction of the steepest (downward)

slope on the eight triangular facets centered on that cell.
Equalities are resolved by selecting (among the equal pos-
sibilities) the steepest flow directions along the facet that is
processed first, starting conventionally from facet 021 in
Figure 1a and proceeding in a clockwise manner.

2.2. Least Angular and Transverse Deviations

[6] The steepest slope direction computed at a grid cell
can vary continuously as an angle between 0 and 2p rad
and does not generally follow one of the cardinal (0,
p=2; p, and 3p=2 rad) or diagonal (p=4; 3p=4; 5p=4, and
7p=4 rad) directions that can be selected. Possible slope
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Figure 1. Sketches of (a) the elementary computational
systems used to formulate numerically the D8-LTD method
and (b) the concepts used to provide an analytical basis for
this method.
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directions from a grid cell are identified by a pointer d indi-
cating the local cell number of the draining cell. The
pointers associated to the cardinal and diagonal directions
of the facet containing the steepest slope direction, denoted
as d1 and d2, respectively, are reported in Table 1. The
choice between d1 and d2 in order to approximate the steep-
est slope direction with a single slope direction can be
made by computing the angular deviations a15a and a25p=
4rad 2a shown in Figure 1a and by ensuring the least angu-
lar deviation (LAD). The direction d1 is chosen if a1 � a2,
whereas the direction d2 is chosen if a1 > a2. Alternatively,
this choice can be made by computing the transverse devia-
tions d15h sin a1 and d25

ffiffiffi
2
p

h sin a2 shown in Figure 1a
and by ensuring the least transverse deviation (LTD). The
direction d1 is chosen if d1 � d2, whereas the direction d2 is
chosen if d1 > d2. The LAD criterion is exactly equivalent
to selecting the steepest direction among the eight possible
direction as made by the classical D8 method. The LTD cri-
terion was introduced to ensure an accurate control of the
cumulative deviation along a slope line so as to provide a
path-based analysis.

2.3. Path-Based Analysis

[7] A path-based analysis of a slope line is performed by
accumulating (transverse) deviations along the slope line
approximation. A sign r is assigned to each deviation that
may occur in the eight triangular facets of the elementary
computational system as reported in Table 1. With the val-
ues of r reported in Table 1, an observer looking in the
direction of the steepest (downward) slope finds the posi-
tive transverse deviations on his right and the negative
transverse deviations on his left. At the first cell along a
path (k 5 1), the local (transverse) deviations associated to
d1 and d2 are d1ð1Þ5d1 and d2ð1Þ5d2, respectively. The
corresponding cumulative (transverse) deviations are d1

1 ð1Þ
5rd1ð1Þ and d1

2 ð1Þ52rd2ð1Þ. The slope direction from
the first cell along the path (k 5 1) and the cumulative
(transverse) deviation d1ð1Þ conveyed to the downslope
cell are determined as follows:

If jd1
1 ð1Þj � jd1

2 ð1Þj; then d5d1; d
1ð1Þ5d1

1 ð1Þ: (1)

If jd1
1 ð1Þj > jd1

2 ð1Þj; then d5d2; d
1ð1Þ5d1

2 ð1Þ: (2)

[8] On subsequent cells along the path ðk52; 3; � � �Þ,
the local (transverse) deviations associated to d1 and d2 are
d1ðkÞ5d1 and d2ðkÞ5d2, respectively. The corresponding
cumulative (transverse) deviations are computed as

d1
1 ðkÞ5rd1ðkÞ1d1ðk21Þ (3)

and

d1
2 ðkÞ52rd2ðkÞ1d1ðk21Þ; (4)

where d1ðk21Þ is the cumulative (transverse) deviation
conveyed to the kth cell along the path. The slope direction
from the kth cell along the path ðk52; 3; � � �Þ and the cumu-
lative (transverse) deviation d1ðkÞ conveyed to the down-
slope cell are determined as follows:

If jd1
1 ðkÞj � jd1

2 ðkÞj; then d5d1; d
1ðkÞ5d1

1 ðkÞ: (5)

If jd1
1 ðkÞj > jd1

2 ðkÞj; then d5d2; d
1ðkÞ5d1

2 ðkÞ: (6)

[9] The term d1ðk21Þ in equations (3) and (4) is given
by (1) and (2) for k 5 2, or by (5) and (6) for k> 2. The
path-based analysis described in the present section is
denoted as D8-LTD method when the LTD criterion (sec-
tion 2.2) is used, or D8-LAD method when the LAD crite-
rion (section 2.2) is used [Orlandini et al., 2003]. It is
highlighted here that no boundary conditions nor parame-
ters need to be specified in the D8-LTD and D8-LAD meth-
ods. The fundamental case of a single slope line beginning
at a point is considered in the present study. Slope lines
that join to form a network can be handled as reported in
Orlandini and Moretti [2009b]. Clearly, an accurate
description of a slope line network is obtained by describ-
ing accurately each single slope line composing this
network.

3. Analytical Basis of the D8-LTD Method

[10] In the present section, an analytical basis for the D8-
LTD method is provided by introducing suitable mathemat-
ical notations. Methods of algebra and calculus are applied
to a generic C2 function with nonzero gradient representing
a sloping surface in order to obtain results having general
validity. It is shown that slope lines determined in grid digi-
tal elevation models by using the D8-LTD method can
approximate the exact slope lines as close as desired by
selecting a grid cell size that is small enough.

[11] Let land surface topography be represented by a suf-
ficiently smooth (in the sense specified below) function z5
zðxÞ describing the variation of land surface elevation z as a
function of points whose planar position vector is x5ðx; yÞ.
The land surface gradient is denoted by rz5ðz0x; z0yÞ, where
z0x and z0y denote the derivatives of z with respect to x and y,

Table 1. Values Taken by the Variables Involved in the D8-LTD Slope Direction Method

Variable

Facet

21 23 063 069 089 087 047 041

e0 zi, j zi, j zi, j zi, j zi, j zi, j zi, j zi, j

e1 zi21, j zi21, j zi, j11 zi, j11 zi11, j zi11, j zi, j21 zi, j21

e2 zi21, j21 zi21, j11 zi21, j11 zi11, j11 zi11, j11 zi11, j21 zi11, j21 zi21, j21

d1 2 2 6 6 8 8 4 4
d2 1 3 3 9 9 7 7 1
r 11 21 11 21 11 21 11 21
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respectively. A slope line C beginning at the initial point x0

5ðx0; y0Þ is denoted as

C5fxðtÞ; t � t0g; (7)

where t is an independent variable and the function xðtÞ is
the solution of the initial value problem given by the differ-
ential equation

x0ðtÞ52rzðxðtÞÞ; (8)

where x0ðtÞ is the derivative of x with respect to t, together
with the specified initial condition

xðt0Þ5x0: (9)

[12] To ensure that the solution of the initial value
(Cauchy) problem given by equations (8) and (9) is unique,
it is required that z is a C2 function (i.e., a function that has
continuous partial derivatives up to the second order). This
requirement does not affect the generality of the analysis
presented because any complex topography or microtopog-
raphy can, at least in principle, be represented by a C2 func-
tion that is detailed enough. It is also required that rz 6¼ 0
everywhere, so that the solution xðtÞ never stops. This
requirement is consistent with the use of grid digital eleva-
tion models displaying no sinks (i.e., cells having no neigh-
bors at a lower elevation). Such digital elevation models
are obtained from raw digital elevation models by applying,
if necessary, algorithms that identify and treat all flat areas
and close depressions [e.g., Martz and Garbrecht, 1992;
Grimaldi et al., 2007]. It is finally assumed that C lies
entirely within the considered domain and is therefore not
constrained by boundary conditions. Under this assump-
tion, z can be thought to be defined on the whole plane R2,
where R denote the set of real numbers, without loss of
generality.

[13] Let GðhÞ5fðih; jhÞ; i; j 2 Zg denote the set of cell
centers in which the elevations z of the grid digital eleva-
tion model are provided, where h is the grid cell size, i and
j are counters belonging to the set of integer numbers Z
(section 2, Figure 1b). In our coordinate system, G(h) is
made up by points x5ðx; yÞ such that both x and y are inte-
ger multiples of h. As shown in Figure 1b, for any point p
2 GðhÞ (p5pk in Figure 1b), the notation Qðp; hÞ denotes
the square having center in p and size 2h. In accordance to
the scheme shown in Figure 1a, Qðp; hÞ is divided into
eight triangles, with a common vertex at p. The exact slope
direction we should follow at p is given by the unit vector

TðpÞ52rzðpÞ=jjrzðpÞjj: (10)

[14] When a grid digital elevation model is used as
reported in section 2, z is only known at the points of G(h).
Then we take, instead of TðpÞ, a vector ThðpÞ which mini-
mizes, among all possible unit vectors m, the value Dhðp; mÞ
of the one-sided directional derivative at p, along m, of the
function which agrees with z on the vertices of the eight
triangles, and is linear on each of these triangles. Then, by
denoting as vi

hðpÞ the gradient of this function on the
ith triangle, for any h> 0 there is at least one index iðhÞ
2 f1; � � � ; 8g such that

Dhðp; ThðpÞÞ5viðhÞ
h ðpÞ � ThðpÞ � Dhðp; mÞ; m 2 S; (11)

where � denotes the (dot) scalar product of two vectors,
while S stands for the set of all unit vectors of the plane.
Since, however, we can only move along the eight admissi-
ble vectors D1; � � � ;D8, we replace in turn ThðpÞ by one of
these vectors, say T̂hðpÞ, whose norm can either be equal
to 1 or

ffiffiffi
2
p

depending on whether a cardinal or a diagonal
direction is selected. The choice of T̂hðpÞ is performed
according to the procedure we explained in section 2. In
the present section, however, the scripts diðk; hÞði51; 2Þ
and d1ðk; hÞ are adopted in preference to diðkÞði51; 2Þ and
d1ðkÞ in order to put in evidence the dependence on the
parameter h. As sketched in Figure 1b, starting from a
given point p0 the discrete vector field T̂h determines a
sequence of points p0ðhÞ; p1ðhÞ; p2ðhÞ; � � � in G(h), which
are defined by recurrence as

p0ðhÞ5p0; (12)

pkðhÞ5pk21ðhÞ1hqkðhÞ; k51; 2; � � � ; (13)

where

qkðhÞ5T̂hðpk21ðhÞÞ: (14)

[15] In particular, the transverse deviation dðk; hÞ of h
qkðhÞ with respect to the direction given by the vector
Thðpk21ðhÞÞ is expressed by dðk; hÞ5j~dðk; hÞj, where

~dðk; hÞ5hqkðhÞ � AThðpk21ðhÞÞ: (15)

[16] In equation (15), A is the clockwise rotation matrix
by the angle p=2 rad. It can be noted that ~dðk; hÞ5rdðk; hÞ,
where r is the sign which appears in equations (3) and (4).
We also note that ~dðk; hÞ is the determinant of the 2 3 2
matrix whose columns are the vectors hqkðhÞ and
Thðpk21ðhÞÞ. Since jjThðpk21ðhÞÞjj51; ~dðk; hÞ is the prod-
uct between the norm of hqkðhÞ with the sine of the ori-
ented angle a between the two vectors. The norm of hqkðhÞ
is equal to

ffiffiffi
2
p

h for D5D1;D3;D5;D7 (diagonal directions),
or rather equal to h for D5D2;D4;D6;D8 (cardinal direc-
tions). We also recall that T̂hðpk21ðhÞÞ is chosen between
two vectors of the finite set fD1; � � � ;D8g, which we
denote, respectively, by q1

kðhÞ and q2
kðhÞ. Accordingly, the

transverse deviation dðk; hÞ is one of the two numbers j~d1ð
k; hÞj and j~d2ðk; hÞj which we get on replacing qkðhÞ in
equation (15) by q1

kðhÞ and q2
kðhÞ, respectively. Now, since

2p=4 � a � p=4 rad, one obtains that

2h � ~d1ðk; hÞ � 0 � ~d2ðk; hÞ � h (16)

and

h=
ffiffiffi
2
p
� gðk; hÞ �

ffiffiffi
2
p

h; (17)

where gðk; hÞ5hqkðhÞ � Thðpk21ðhÞÞ is the component of h
qkðhÞ along the tangent to the slope line.

[17] With the preliminary remarks reported above, the
central question of the present investigation is: what hap-
pens to the sequence p0ðhÞ; p1ðhÞ; p2ðhÞ; � � � (equations
(12–14)) as the size h of the cells converges to zero? To
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answer this question, let us fix a number r> 0 and consider,
for any n 2 Z1, the polygonal path Cn whose vertices are
the n 1 1 points

p0; p1 r=nð Þ; p2 r=nð Þ; � � � ; pn r=nð Þ; (18)

according to the notation introduced in equation (13).
When n diverges to 11, the size hn5r=n of the cells con-
verges to zero. Our aim is to show that Cn approaches C in
a sense that we are going to explain. To this end, for any
e > 0, we introduce the e-neighborhood of the slope line C
in equation (7), namely

Ce5 [
x2C

Bðx; eÞ; (19)

where Bðx; eÞ stands for the disk with center x and radius e
(Figure 1b). Now we are able to state our approximation
result in a rigorous form.

[18] Theorem 3.1. Let z : R2 ! R be a C2-function
whose gradient rz never vanishes. Let p0 2 R2 be given,
and xðtÞ be the solution of equations (8) and (9) with
x05p0. Let us recall the definition of C;Cn, and Ce in equa-
tions (7), (18), and (19). Then, for any e > 0, there exists ne
2 Z1 such that

Cn � Ce; n � ne: (20)

[19] In order to prove Theorem 3.1, we need some prelim-
inary results. First of all, we point out that our assumptions
on z allow us to find, whenever x ranges over a bounded
region of the plane, three constants m, M, and K such that

0 < m � jjrzðxÞjj � M ; (21)

jjr2zðxÞjj5ðz0 0xxðxÞ
2
12z0 0xyðxÞ

2
1z0 0yyðxÞ

2Þ1=2 � K: (22)

[20] Actually, since we are always working in a region
which can be bounded a priori (such as, for instance, a
drainage basin), it is right to suppose that m, M, and K are
fixed. Furthermore, we point out that we are interested in C
as a set of points, not in the way xðtÞ runs over it. From this
point of view, the differential equation in equation (8) can
be replaced by more general conditions. Roughly speaking,
the important feature of the vector at the right-hand side of
equation (8) is not the norm, but rather the oriented direc-
tion. We are going to state this property in a more precise
form, through the next result.

[21] Lemma 3.2. Let p0 2 R2; r > 0, x̂ : ½0; r� ! R2

be a Lipschitz continuous function [e.g., Vulikh, 1963, p.
109] such that x̂ð0Þ5p0 and, for almost every t 2 ½0; r� :

x̂0ðtÞ k rzðx̂ðtÞÞ; (23)

x̂0ðtÞ � rzðx̂ðtÞÞ � 2c; (24)

where the symbol k in equation (23) means ‘‘parallel to’’
and c> 0 is given. Then, x̂ðtÞ 2 C for any t 2 ½0; r�.

[22] The proof of Lemma 3.2 is reported in Appendix A.
[23] We recall that, according to our previous notations,

the cumulative deviation at the kth step can be written as
d1ðk; hÞ5

Xk

j51
~dðj; hÞ.

[24] Lemma 3.3. jd1ðk; hÞj � h.
[25] Proof of Lemma 3.3. Let us fix h> 0 and, for

notational convenience, let us drop the dependence on h in
the scripts ~dðk; hÞ, d1ðk; hÞ; ~diðk; hÞði51; 2Þ. We recall
that, according to the D8-LTD method (section 2.3):

If jd1ðk21Þ1~d2ðkÞj � jd1ðk21Þ1~d1ðkÞj; then ~dðkÞ5~d2ðkÞ:
(25)

If jd1ðk21Þ1~d2ðkÞj > jd1ðk21Þ1~d1ðkÞj; then ~dðkÞ5~d1ðkÞ:
(26)

[26] Now, since our claim obviously holds for k 5 1, let
us argue by induction and suppose that jd1ðk21Þj � h. In
order to fix ideas, let d1ðk21Þ � 0. Then, according also
to equation (16):

2h � d1ðkÞ � d1ðk21Þ1d1ðkÞ � d1ðk21Þ � h; (27)

jd1ðkÞj5jd1ðk21Þ1dðkÞj � jd1ðk21Þ1d1ðkÞj � h; (28)

where the last inequality of equation (28) follows from
equation (27). In the same way, we can proceed if d1ðk21Þ
� 0 so as to complete the proof.

[27] Now, in order to parameterize Cn, let us divide [0, r]
into n intervals J(n, k), where Jðn; kÞ5 rðk21Þ=n; rk=n½ Þ
for k51; � � � ; n21, and Jðn; nÞ5 rðn21Þ=n; r½ �. Now, define
a map xn : ½0; r� ! R2 by putting xnðtÞ5pk21 r=nð Þ1
t2rðk21Þ=nð Þqk r=nð Þ, where t 2 Jðn; kÞ. Note that xn is

the piecewise linear function on [0, r] which takes the val-
ues pkðr=nÞ at the points kr/n, where k50; 1; � � � ; n. In par-
ticular : x0nðtÞ5qk r=nð Þ, whenever t 2 Jðn; kÞ,
t 6¼ rðk21Þ=n. Hence, the following evaluations hold:

jjx0nðtÞjj �
ffiffiffi
2
p

; jjxnðtÞjj � jjp0jj1r
ffiffiffi
2
p

: (29)

[28] From equation (29) and the Arzel�a-Ascoli theorem
[e.g., Taylor and Lay, 1980, p. 295], we argue that xn con-
verges uniformly to a continuous function x̂ along a suita-
ble sequence of indexes n 2 Z1. In order to simplify the
exposition we suppose, at least for the moment, that the
whole sequence converges uniformly on [0, r] :

xn ! x̂ as n! 11: (30)

[29] Toward the end of the section, we shall explain how
to remove this additional assumption. From equations (30)
and (29), we also infer what follows: x̂ is Lipschitz contin-
uous and, for any continuous function v : ½0; r� ! R2 and
any s; t 2 ½0; r� :

ðt

s
x0nðsÞ � vðsÞds!

ðt

s
x̂0ðsÞ � vðsÞds as n! 11: (31)

[30] The proof of this assertion can be provided by using
well-known results on weak compactness in functional
spaces [e.g., Brezis, 2010, p. 55]. Now, let us define a step
function q̂n : ½0; r� ! R2 as q̂nðtÞ5Tr=nðpk21ðr=nÞÞ for
t 2 Jðn; kÞ, where Th is defined by equation (11). Then,
one can check that
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ðrk=n

0
x0nðsÞ � Aq̂nðsÞds5d1ðk; r=nÞ: (32)

[31] In particular, by virtue of Lemma 3.3:

ðrkn=n

0
x0nðsÞ � Aq̂nðsÞds! 0 as n! 11; (33)

whenever the integers kn are chosen between 1 and n. Since
any point t 2 ½0; r� can be approximated by points of the
kind rkn=n, from (33) we argue that actually, for any
t 2 ½0; r�,

ðt

0
x0nðsÞ � Aq̂nðsÞds! 0 as n! 11: (34)

[32] As we already explained, Th can be regarded as a
discrete approximation, on the grid G(h), of the field T of
equation (10). In order to be more precise, let us recall the
constant K from equation (22) and the vectors vi

hðpÞ which
were defined before equation (11). Then some technical
computations yield the following estimate, which will be
useful in the next result:

jjvi
hðpÞ2rzðpÞjj � 4Kh; h > 0; p 2 R2; i51; � � � ; 8: (35)

[33] Lemma 3.4. Let us put h�5m=ð8KÞ;
C56

ffiffiffiffiffiffiffiffiffiffiffiffi
2K=m

p
, where m and K come from equations (21)

and (22). Then jjThðpÞ2TðpÞjj � C
ffiffiffi
h
p

for any
h 2 ð0; h��; p 2 R2.

[34] Lemma 3.5. For any n 2 Z1; t 2 ½0; r� let us put
q̂ðtÞ5 Tðx̂ðtÞÞ. Then q̂n ! q̂ as n! 11 uniformly on [0, r].

[35] Lemma 3.6. The function x̂ fulfills equations (23)
and (24).

[36] The proofs of the previous three lemmas are post-
poned to Appendices B, C, and D, respectively.

[37] Proof of Theorem 3.1. Let us first assume that the
whole sequence xn satisfies equation (30), fix e > 0, and take
ne 2 Z1 such that jjxnðtÞ2x̂ðtÞjj � e for any
n � ne; t 2 ½0; r�. Hence, for such indexes n, we get Cn � Ĉ

e
,

where Ĉ5x̂ð½0; r�Þ and Ĉ
e

is the e-neighborhood of Ĉ, which
is defined in the same way as in equation (19). On the other
hand, by virtue of Lemmas 3.6 and 3.2 the inclusion Ĉ � C
holds as well, and obviously entails Ĉ

e � Ce. Then,

Cn � Ĉ
e � Ce; n � ne: (36)

[38] Now we only need to prove our claim in lack of the
additional assumption (30). So, by contradiction, let the
thesis of Theorem 3.1 be false. Then there exists e > 0
such that

Cn 6�Ĉ
e
; n 2 H : (37)

where H is a suitable, infinite subset of Z1. By virtue of
Ascoli-Arzel�a theorem, we can now suppose that (30) holds
when n ranges over a suitable, infinite subset H

0
of H. Now

we can argue as before, but on the subsequence
fxn; n 2 H 0g, and infer the following property. For any
e > 0, there exists ne 2 H 0 such that

Cn � Ĉ
e
; n 2 H 0; n � ne: (38)

[39] Since H 0 � H , (38) is in contrast with (37), so we
got the required contradiction.

[40] Remark 3.7. The control on the cumulative trans-
verse deviation d1ðk; hÞ (Lemma 3.3) is the key factor for
proving that the limit function x̂ fulfills condition (23),
since it entails, by virtue of equation (32), the convergence
in (34). In lack of such a control, the thesis of Theorem 3.1
could be false.

[41] Remark 3.8. The D8-LAD method (section 2.3)
can be examined by applying an analysis similar to the one
reported above for the D8-LTD method, in which the quan-
tity dðk; hÞ defined in equation (15) is replaced by an ori-
ented angle, say hðk; hÞ, between the two vectors qkðhÞ and
Thðpk21Þ. In this different setting, the inductive argument
of Lemma 3.3 applies again to the corresponding cumula-
tive angular deviation, say d1

a ðk; hÞ, and shows obviously
that its absolute value does not exceed p=4 rad. We note,
however, that d1

a ðk; r=nÞ cannot replace d1ðk; r=nÞ in equa-
tion (32), and it looks difficult, without such an equality, to
estimate properly the integral on the left-hand side to obtain
(34).

4. Numerical Demonstrations

[42] The capability of the D8-LTD method to predict
consistently exact slope lines as the grid cell size goes to
zero is demonstrated numerically. In addition, the capabil-
ities of the Tarboton’s [1997] D1, Seibert and McGlynn’s
[2007] MD1, and Quinn et al.’s [1991] MD8 dispersive
methods to provide simulated propagation patterns that
develop around the exact slope lines are evaluated. It
should be pointed out here that these dispersive methods
are not designed to predict slope lines but rather to describe
overland flow patterns affected by dispersion. The analysis
of dispersive methods reported in this section is only meant
to illustrate how dispersive propagation patterns from point
sources develop in relation to the exact slope lines from the
same point sources.

4.1. Test Cases

[43] Suitable synthetic test cases are obtained by using a
modified form of the Himmelblau’s [1972] function
Z5ðX 21Y211Þ21ðY 21X27Þ2, namely

Z5 X 21Y24
� �2

1 Y 21X27
� �2

; (39)

where Z is the vertical coordinate, X and Y are planar coor-
dinates ranging in the intervals 25 � X � 5 and
25 � Y � 5, respectively. In order to obtain a test case
representing real topographic systems, the spatial coordi-
nates X, Y, and Z are scaled and translated by using the
relationships

x550 X1250; (40)

y550 Y1250; and (41)

z520:75 Z1450: (42)

[44] The portion of the surface defined by equations (39–
42) satisfying 75 � x � 400 m and 50 � y � 450 m is
shown in Figure 2. For this surface portion
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300 � z � 450 m. Other portions of the same surface are
considered in Figure 3 (0 � x � 350 m and
130 � y � 280 m) and in Figures 4 and 5 (0 � x � 500 m
and 0 � y � 500 m). Around the corners of the maps
reported in Figures 4 and 5, where the surface is very steep,
contour lines are not reported. In the maps reported in Fig-
ures 3–5, the intervals between dark gray contour lines are
equal to 50 m, and each of these intervals is subdivided if
necessary into five subintervals equal to 10 m by using four
light gray contour lines.

[45] Along any slope line defined in the space XY, the
slope line element dS5ðdX ; dY Þ and the gradient rZ5ðZ 0x;
Z 0yÞ must obey the relation dS3rZ50, where the symbol
3 denotes the (cross) vector product, implying that
dY=dX52Z 0x=Z 0y. From equation (39), it can therefore be
obtained that

dY

dX
5

X 21Y2412Y Y 21X27ð Þ
2X X 21Y24ð Þ1Y 21X27

: (43)

[46] A slope line beginning at a given point ðX0; Y0Þ can
be delineated by integrating equation (43) from the initial
conditions X5X0 and Y5Y0. Similarly, in the space xy a
slope line beginning at a given point ðx0; y0Þ can be
delineated by integrating equation (43) combined with
equations (40–42) from the initial conditions x5x0 and
y5y0. In the present study, such an integration is performed
numerically by applying an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order
two (ode23tb solver available in Matlab). The obtained
slope lines provide suitable benchmark solutions for the
evaluations of the D8, D8-LAD, D8-LTD, D1, MD1, and
MD8 methods. It is remarked that these terrain analysis

methods are not classical finite difference methods approxi-
mating the derivatives of a differential equation with quo-
tients. A differential equation governing the delineation of
slope lines is only known for sloping surfaces defined ana-
lytically, such as the one considered in the present section
(equations (39–43)). The terrain analysis methods consid-
ered in the present investigation are rather designed to
determine slope lines in grid digital elevation models of
any (analytically unknown) sloping surface by using slope
line elements connecting cell centers. The test cases
reported in Figures 2–5 are obtained by considering the ini-
tial points P1, P2, and P3, the exact slope lines beginning at
these points (red lines), and the corresponding simulated
propagation patterns resulting from slope direction methods
(cells with blue shades).

[47] In Figure 3, simulated propagation patterns from P1
are obtained by applying the D8, D8-LAD, and D8-LTD
methods to a 0.5 m resolution digital elevation model of
the surface defined by equations (39–42). It is specified
here that the D8 method can be obtained from a local scale
application of the LAD criterion (section 2.2), whereas the
D8-LAD method is rather obtained from a path-based
application the LAD criterion (section 2.3). The simulated
propagation patterns from P1 obtained by applying the D8,
D8-LAD, and D8-LTD methods in digital elevation models
having resolutions of 1, 5, and 10 m are reported in Figure
4. The simulated propagation patterns from P2 and P3
obtained by applying the D8, D8-LAD, D8-LTD, D1,
MD1, and MD8 methods in a 10 m digital elevation
model are reported in Figure 5.

4.2. Evaluation Metrics

[48] Two evaluation metrics are used in the present study
to quantify the capabilities of slope direction methods to
provide simulated propagation patterns that reproduce or
develop around the exact slope lines. The first metric is the
weighted mean of the deviation distance between the cells
of the simulated propagation pattern and the exact slope
line. This mean is defined as

Figure 2. Grid digital elevation model of the modified
Himmelblau function (equations (39–42)) used to demon-
strate the capabilities of slope direction methods to provide
simulated propagation patterns that reproduce or develop
around the exact slope lines. Grid cell size is equal to 10 m.
Exact slope lines from the initial points P1, P2, and P3 are
reported in red. The propagation patterns simulated, for
demonstration, by using the D8-LTD method are shown by
blue cells.

 

h = 0.5 m

P1
D8

m = −8.69 m
s = 5.24 m

D8−LAD
m = 0.10 m
s = 1.53 m

D8−LTD
m = −0.07 m
s = 0.23 m

exact slope line

P1

Figure 3. Numerical demonstration of the D8-LTD
method propagation pattern (blue cells) capabilities to
reproduce the exact slope line (red line) beginning at point
P1 when a small grid cell size (h 5 0.5 m) is used. These
capabilities are not displayed by the D8 method (black
cells) or by the D8-LAD method (green cells) propagation
patterns. The interval between light gray contour lines is
equal to 10 m and the interval between dark gray contour
lines is equal to 50 m.
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m5

XN

i51
diaiXN

i51
ai

; (44)

where the summations extend over the N cells of the simu-
lated propagation pattern beginning at a given point (P1,
P2, or P3), di ði51; � � � ;NÞ is the distance with sign
between the center of the ith cell of the pattern and the
exact slope line beginning at the given point (P1, P2, or

P3), and aiði51; � � � ;NÞ is the fraction of flow released at
the cell source centered in the given point (P1, P2, or P3)
that propagates through the ith cell of the pattern. As
sketched in Figure 6, the distance diði51; � � � ;NÞ is com-
puted as the minimum distance from the center of the ith
cell (e.g., C1, C2, C3, C4, C5, and C6 in Figure 6) and the
exact slope line (red line in Figure 6). This minimum dis-
tance can occur along the normal to the exact slope line
(e.g., distance of cells C1, C2, C3, and C4 in Figure 6) or

 

a

P1

h = 1 m
D8

m = −8.86 m
s = 5.41 m

fraction
of flow, a

exact slope line

0

1

b

P1

h = 1 m
D8−LAD

m = 0.19 m
s = 1.57 m c

P1

h = 1 m
D8−LTD

m = −0.10 m
s = 0.44 m

d

P1

h = 5 m
D8

m = −8.83 m
s = 6.11 m e

P1

h = 5 m
D8−LAD

m = 0.56 m
s = 2.45 m f

P1

h = 5 m
D8−LTD

m = −0.20 m
s = 1.87 m

g

P1

h = 10 m
D8

m = −5.62 m
s = 4.90 m h

P1

h = 10 m
D8−LAD

m = 0.81 m
s = 4.29 m i

P1

h = 10 m
D8−LTD

m = −0.45 m
s = 3.49 m

Figure 4. Propagation patterns predicted in grid digital elevation models having variable resolution
(h 5 1 m in maps a, b, and c; h 5 5 m in maps d, e, and f; h 5 10 m in maps g, h, and i) by using the D8
(maps a, d, and g), D8-LAD (maps b, e, and d), and D8-LTD (maps c, f, and i) methods. For any cell, the
blue shade indicates the fraction of the cell source centered in P1 that propagates through that cell. The
exact slope line beginning at point P1 is shown in red. Weighted means m and standard deviations s of
the deviation distance between the centers of the cells of the propagation pattern and the exact slope line
are reported in the bottom left corner of each map. The intervals between dark gray contour lines are
equal to 50 m, and each of these intervals is subdivided if necessary into five subintervals equal to 10 m
by using four light gray contour lines.
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a

P2

h = 10 m
D8

m = −7.71 m
s = 6.49 m

fraction
of flow, a

exact slope line

0

1

b

P2

h = 10 m
D8−LAD

m = −2.50 m
s = 2.46 m c

P2

h = 10 m
D8−LTD

m = −0.13 m
s = 3.93 m

d

P3

h = 10 m
D8

m = 15.83 m
s = 7.37 m e

P3

h = 10 m
D8−LAD

m = 12.20 m
s = 5.57 m f

P3

h = 10 m
D8−LTD

m = 6.48 m
s = 3.92 m

g

P2

h = 10 m
D∞

m = 5.65 m
s = 29.65 m h

P2

h = 10 m
MD∞

m = 18.14 m
s = 40.47 m i

P2

h = 10 m
MD8

m = 11.13 m
s = 38.08 m

j

P3

h = 10 m
D∞

m = 6.31 m
s = 10.14 m k

P3

h = 10 m
MD∞

m = −11.83 m
s = 46.16 m l

P3

h = 10 m
MD8

m = −54.33 m
s = 75.58 m

Figure 5. Propagation patterns predicted in grid digital elevation models having resolution h 5 10 m
by using the (maps a and d) D8, (maps b and h) D8-LAD, (maps c and f) D8-LTD, (maps g and j) D1,
(maps h and k) MD1, and (maps i and l) MD8 methods. For any cell, the blue shade indicates the frac-
tion of the cell source centered in P2 (maps a, b, c, g, h, and i) or P3 (maps d, e, f, j, k, and l) that propa-
gates through that cell. The exact slope lines beginning at points P2 and P3 are shown in red. Weighted
means m and standard deviations s of the deviation distance between the centers of the cells of the propa-
gation pattern and the exact slope line are reported in the bottom right corner of each map. The intervals
between dark gray contour lines are equal to 50 m, and each of these intervals is subdivided if necessary
into five subintervals equal to 10 m by using four light gray contour lines.
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along the line connecting the cell center to the given initial
point P (e.g., cells C5 and C6 in Figure 6). The sign of diði51;
� � � ;NÞ is determined by considering the local coordinate sys-
tem nd defined in such a way that the origin is lying on the
exact slope line, the n-axis is tangent to the exact slope line,
and the d-axis is normal to the exact slope line. The value of
diði51; � � � ;NÞ is considered to be positive when the cell cen-
ter lies to the right-hand side of an observer traveling down-
slope along the exact slope line (d > 0, blue lines in Figure
6), null when it lies on the exact slope line (d50), negative
when it lies to the left-hand side of the exact slope line
(d < 0, bright green lines in Figure 6). When the distance
diði51; � � � ;NÞ is computed along the line connecting the cell
center and the given initial point P, the sign is determined by
considering the coordinate system nd having origin in P. The
weighted mean m given by equation (44) provides a measure
of the bias with which the simulated propagation pattern
reproduces or develops around the exact slope line.

[49] The second metric is the weighted standard devia-
tion of the deviation distance between the cells of the simu-
lated propagation pattern and the exact slope line. This
standard deviation is defined as

s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
XN

i51
aiðdi2mÞ2

ðN21Þ
XN

i51
ai

vuuut : (45)

[50] The weighted standard deviation s given by equa-
tion (45) provides a measure of dispersion of the distances

diði51; � � � ;NÞ around their mean value m. The mean dis-
tance m (equation (44)) and the standard deviation s (equa-
tion (45)) are suitable metrics for the evaluation of the
simulated propagation patterns’ capabilities to reproduce or
develop around exact slope lines. A perfect reproduction of
the exact slope line provides m 5 0 and s 5 0, implying that
all the centers of the grid cells of the propagation pattern
lay on the exact slope line. Propagation patterns providing
small values of m and significantly high values of s are
unbiased, but may only be suitable to describe dispersive
flows. Propagation patterns providing significantly high
values of m are biased, and may therefore be unsuitable to
describe both nondispersive and dispersive flows. The val-
ues of m and s obtained for the numerical cases considered
in section 4 are reported in the maps of Figures 3–5. The
variations of m and s with grid cell size h
ðh50:01; 0:05; 0:1; 0:5; 1; 5; 10; 20; 30; 40; 50 mÞ, for the
slope lines beginning at points P1, P2, and P3, and for the
various slope direction methods considered in the present
study (D8, D8-LAD, D8-LTD, D1, MD1, and MD8
methods) are reported in Figure 7. The mean absolute value
of the mean distance m, namely hjmji, and the mean value
of the standard deviation s, namely hsi, computed for each
grid cell size h over the selected test cases (i.e., the slope
lines beginning at points P1, P2, and P3) are reported in
Table 2 and Figure 8. The domain used in the maps reported
in Figures 4 and 5 (0 � x � 500 m and 0 � y � 500 m) are
also used for the computation of the values of m and s
reported in Figure 7, Table 2, and Figure 8.

5. Discussion

[51] The D8-LTD method provides slope lines in grid
digital elevation models that approximate consistently the
exact slope lines as the grid cell size goes to zero. This is
shown analytically for any C2 surface by using mathemati-
cal analysis methods (section 3, Figure 1). The use of
cumulative transverse deviations is found to be the key fac-
tor allowing for globally unbiased approximations of slope
lines (section 3, Remark 3.7). The D8 method does not dis-
play the same capabilities of the D8-LTD method because
it performs for each grid cell a local analysis rather than a
path-based analysis (sections 2 and 3, Remark 3.7). The
D8-LAD method is not as accurate as the D8-LTD method
because angular deviations are unsuitable for path-based
analyses along slope lines as compared to transverse devia-
tions (section 3, Remark 3.8). To demonstrate these analyti-
cal results, numerical experiments are performed by
considering a synthetic drainage system based on the Him-
melblau function (Figure 2). The D8-LTD method provides
close approximations of the exact slope lines when a small
grid cell size is used. In the case illustrated in Figure 3,
h 5 0.50 m, m 5 – 0.07 m, and s 5 0.23 m. The D8 method
may provide a close approximation of the exact slope line
from point P1 where the terrain is markedly convergent
(e.g., along the valley located around the central part of the
slope line reported in Figure 3), but it is unable to provide
predictions that approximate closely this exact slope line
over a divergent or feebly convergent terrains (e.g., around
the upper and lower parts of the slope line reported in Fig-
ure 3). The overall performance of the D8 method is repre-
sented in this case by the values m528:69 m and s 5 5.24

propagation pattern

C5

C2

C6

C3

C4

d > 0

d < 0

exact slope line

cell of the simulated

C1

P

δ

ξ

Figure 6. Sketch of an exact slope line initiating at point P
(red line) and of the quantities involved for the computation of
bias and dispersion (equations (44) and (45), respectively)
with which this line is approximated by the cells of a simu-
lated propagation pattern (e.g., light blue cells C1, C2, C3, C4,
C5, and C6). For each of these cells, the deviation distance d
is computed as the minimum distance from the cell center and
the exact slope line (blue and bright green lines for positive
and negative values, respectively). This distance is computed
along the normal to the exact slope line (e.g., distances of cells
C1, C2, C3, and C4) or along the line connecting the cell cen-
ter to the initial point P (e.g., distances of cells C5 and C6).
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m. The D8-LAD method outperforms significantly the D8
method (m 5 0.10 m and s 5 1.53 m), but it does not ensure
the same degree of accuracy of the D8-LTD method (Fig-
ure 3).

[52] It is found numerically that the D8-LTD method
provides better approximations of exact slope lines than the
D8 and D8-LAD methods over a wide range of grid cell
sizes (Figures 4, 5, 7, and 8; Table 2). The mean distance
m displayed by the D8 method ranges from 28.86 to 15.83
m as h goes from 1 to 10 m (Figures 4a, 4d, 4g, 5a, and 5d),

revealing that the limitations of the D8 method are relevant
even when small grid cell sizes are used to provide a
detailed description of land surface topography. The values
of the mean distance m displayed by the D8-LTD method
ranges from 20.10 to 6.48 m as h goes from 1 to 10 m
(Figures 4c, 4f, 4i, 5c, and 5f), revealing that the use of the
D8-LTD method is especially justified when an accurate
description of land surface topography is available. This
does not necessarily mean that a high-resolution digital ele-
vation model must be available, but rather that the

Table 2. Mean Absolute Value of the Mean Deviation Distance, hjmji, and Mean Standard Deviation, hsi, Computed Over the Selected
Test Cases (Slope Lines Beginning at Points P1, P2, and P3)

h (m)

Method 0.01 0.05 0.1 0.5 1 5 10 20 30 40 50

Mean Absolute Value of the Mean Deviation Distance hjmjiðmÞ
D8 7.35 7.58 7.58 7.37 7.40 7.41 9.72 9.84 23.49 40.57 40.28
D8-LAD 0.64 0.64 0.65 0.82 0.94 2.47 5.17 4.57 20.38 40.57 40.28
D8-LTD 0.00 0.03 0.05 0.17 0.37 1.58 2.36 5.26 23.56 40.57 40.28
D1 0.62 0.58 0.56 0.59 0.55 2.27 4.12 6.27 21.68 27.74 39.06
MD1 0.62 0.58 0.56 0.60 0.64 3.39 10.54 13.98 27.61 26.83 33.28
MD8 0.14 0.20 0.26 1.93 5.81 21.03 25.23 25.58 26.12 22.54 23.62
Mean Standard Deviation hsiðmÞ
D8 5.12 5.27 5.27 5.18 5.31 5.71 6.26 9.24 21.37 36.31 39.13
D8-LAD 1.48 1.48 1.48 1.43 1.46 2.52 4.11 6.89 21.28 36.31 39.13
D8-LTD 0.00 0.07 0.09 0.23 0.43 1.79 3.78 7.42 22.99 36.31 39.13
D1 1.51 1.63 1.76 2.58 4.97 7.29 15.47 19.07 23.13 35.16 39.68
MD1 1.51 1.63 1.76 2.58 4.49 21.22 33.27 41.00 49.28 50.98 56.21
MD8 0.73 1.68 2.71 12.81 24.05 44.84 49.66 54.39 56.47 57.56 64.82
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Figure 7. Weighted means m and standard deviations s of the deviation distance d between the centers
of the cells of the predicted propagation patterns and the exact slope lines beginning at point (a and d)
P1, (b and e) P2, and (c and f) P3 (equations (44) and (45)). The D8, D8-LAD, D8-LTD, D1, MD1,
and MD8 methods and the grid cell sizes h50:01; 0:05; 0:1; 0:5; 1; 5; 10; 20; 30; 40; and 50 m are
considered.
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resolution of the digital elevation model should be adequate
to describe the spatial variability of the considered terrain
topography. This is clearly not the case of the resolutions
h� 40 m used to describe the sloping surface considered in
section 4, where equally unsatisfactory values of m and s
are obtained from the D8, D8-LAD, and D8-LTD methods
(Table 2). Further research is needed to identify the maxi-
mum grid cell size required to describe adequately a given
land surface topography and related slope lines. An inter-
mediate behavior is displayed by the D8-LAD method,
which displays values of m relatively more uniform over
the investigated range of h. As shown in Figures 4b, 4e, 4h,
5b, and 5e, m ranges from 0.19 to 12.20 m as h goes from 1
to 10 m. As also reported in Figure 7, Table 2, and Figure
8, the D8-LTD method outperforms significantly the D8

method for small grid cell sizes (h� 20 m in this applica-
tion), and it is normally not outperformed by other nondis-
persive methods for any grid cell size. One can note that
for h� 40 m, the MD1 and MD8 (fully dispersive) meth-
ods provides smaller values of hjmji than other methods
(hjmji < 33:28 m in Table 2 and Figure 8a). It is noted,
however, that these results are obtained by allowing a large
dispersion to occur (hsi � 50:98 m in Table 2 and Figure
8b).

[53] As reported in Figure 5 for h 5 10 m, the D8-LTD
method (m ranging from 20.13 to 6.48 m and s ranging
from 3.92 to 3.93 m in Figures 5c and 5f) provides the most
accurate approximations of the exact slope lines as com-
pared to the other methods (m ranging from 254.33 to
18.14 m and s ranging from 2.46 to 75.58 m in Figures 5a,
5b, 5d, 5e, and 5g–5l). Specifically, the D1, MD1, and
MD8 (dispersive) methods display larger values of s (rang-
ing from 10.14 to 75.5 m in Figures 5g–5l) and therefore
these methods can only be used to describe overland flows
dominated by dispersion. Among these dispersive methods,
the D1 method yields more unbiased simulated propaga-
tion patterns (m ranging from 5.65 to 6.31 m in Figures 5g
and 5j) than the MD1 and MD8 methods (m ranging from
254.33 to 18.14 m in Figures 5h, 5i, 5k, and 5l). As also
reported in Orlandini et al. [2012], the description of dis-
persive overland flows developing around slope lines
remains an open issue that needs to be addressed in future
investigations.

[54] The results reported in Figure 7, Table 2, and Figure
8 demonstrate that the D8-LTD method displays values of
m and s that tend to zero as the grid cell size h goes to zero
(hjmji50:00 m and hsi50:00 m for h 5 0.01 m in Table 2
and Figure 8), confirming that the D8-LTD method predicts
consistently the exact slope lines. Small values of hjmji and
hsi, namely hjmji � 5:26 m and hsi � 7:42m, are displayed
by the D8-LTD method for h � 20 m (Table 2 and Figure
8). For h> 20 m, the values of hjmji and hsi displayed by
the D8-LTD method may become large (hjmji � 23:56 m
and hsi � 22:99 m in Table 2 and Figure 8), revealing that
the use of excessively large grid cell sizes h may undermine
the reliability of the slope lines obtained (Figures 7a, 7b,
7d, and 7e). The D8-LAD method is significantly outper-
formed by the D8-LTD method as the grid cell size h goes
to zero (Table 2 and Figure 8). For values of the grid cell
size h that go to zero, the D8 method provides larger values
of m (Figures 7a–7c, hjmji57:35 m for h 5 1 m in Table 2
and Figure 8a) than other methods, revealing that the prop-
agation patterns simulated by the D8 method are signifi-
cantly biased even for small grid cell sizes. The values of m
provided by the D8 method become comparable with those
provided by other methods for large grid cell sizes (Figures
7a–7c, hjmji � 23:49 m for h � 30 m in Table 2 and Figure
8a). In these cases, however, all the approximations of the
exact slope lines provided by the considered slope direction
methods are poor as a result of an inadequate description of
the surface topography. The D8 method provides larger
values of s than other nondispersive methods for small val-
ues of the grid cell size (hsi � 5:12 m for h� 1 m in Table
2 and Figure 8b) and comparable with those provided by
other nondispersive methods for large values of the grid
cell size (hsi � 21:37 m for h � 30 m in Table 2 and Figure
8b).
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Figure 8. (a) Mean absolute value of the mean deviation
distance hjmji and (b) mean standard deviation hsi over the
selected test cases (slope lines beginning at points P1, P2,
and P3) for the D8, D8-LAD, D8-LTD, D1, MD1, and
MD8 methods and the grid cell sizes h50:01; 0:05; 0:1; 0:5;
1; 5; 10; 20; 30; 40; and 50 m (Table 2).
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[55] In the range 1 � h � 20 m, the values of m dis-
played by the D1 method (0:55 � hjmji � 6:27 m in Table
2) are comparable with those provided by the D8-LTD
method (0:37 � hjmji � 5:26 m in Table 2), revealing that
the propagation patterns simulated by the D1 method may
be affected by little bias (Figures 7a–7c and 8a). As
expected, however, the dispersion provided by the D1
method (4:97 � hsi � 19:07 m in Table 2) is larger than
the one provided by D8-LTD (nondispersive) method
(0:43 � hsi � 7:42 m in Table 2, Figures 7d–7f and 8b).
The MD1 (fully dispersive) method provides simulated
propagation patterns affected by significant bias
(hjmji � 10:54 m for h � 10 m in Table 2 and Figure 8a)
and large dispersion (hsi � 21:22 m for h � 5 m in Table 2
and Figure 8b). It is, however, noted that results compara-
ble with those provided by the D1 method are provided by
the MD1 method as the grid cell size h goes to zero
(hjmji � 0:64 m and hsi � 4:49 m for h � 1 m in Table 2
and Figure 8). The MD8 (fully dispersive) method provides
simulated propagation patterns affected by significant bias
(hjmji � 21:03 m for h � 5 m in Table 2 and Figure 8a) and
large dispersion (hsi � 24:05 m for h � 1 m in Table 2 and
Figure 8b). As the grid cell size h goes to zero, the MD8
method displays less bias (hjmji50:14 m for h50:01 m in
Table 2 and Figure 8a) and dispersion (hsi50:73 m for h5
0:01 m in Table 2 and Figure 8b) than all the other methods
with except for the D8-LTD method.

6. Conclusions

[56] The analysis carried out in this study reveals that :
(1) The D8-LTD (nondispersive) method provides slope
lines in grid digital elevation models that consistently
approximate the exact slope lines as the grid cell size goes
to zero (sections 3 and 4; Figures 3, 4, 7, and 8; Table 2).
(2) At least for grid cell sizes that are not excessively large
(up to 20 m in this application), the D8-LTD method out-
performs significantly the D8 and D8-LAD (nondispersive)
methods (sections 3 and 4; Figures 3, 4, 5, 7, and 8; Table
2). (3) The D1 (moderately dispersive) method and the
MD1 (fully dispersive) method provide propagation pat-
terns that develop around the exact slope lines in a reason-
ably unbiased manner, whereas the MD8 (fully
dispersive) method may produce unreliable propagation
patterns (section 4; Figures 5, 7, and 8; Table 2). From
these results, it can be argued that the D8-LTD method
should be used in preference to the standard D8 method
in order to obtain slope lines that are only limited in reli-
ability by the detail of topographic data, and not by the
accuracy of the slope direction method applied. While
the D1 and MD1 methods can be used to describe
overland flow dispersion, the D8-LAD and MD8 methods
do not seem to offer significant advantages over the other
methods. Future research is needed to identify criteria for
the determination of the range of grid cell sizes that
ensure meaningful representations of land surface topog-
raphy, slope lines, and propagation patterns in grid digital
elevation models. These meaningful representations of
land surface topography and related attributes are the
essential basis that needs to be considered to develop
hydrodynamically realistic descriptions of overland flows
along complex hillslope systems.

Appendix A: Proof of Lemma 3.2

[57] Since x̂ is bounded, we can find two constants m
and M in such a way that equation (21) holds for x5x̂ðtÞ.
Now, from (23), we infer the existence of a scalar, measur-
able function kðtÞ such that x̂0ðtÞ5kðtÞrzðx̂ðtÞÞ. In particu-
lar, we get jkðtÞj � L=m, where L> 0 is a Lipschitz
constant for x̂, that is: jjx̂0ðtÞjj � L for almost every
t 2 ½0; r�. On the other hand, equation (24) entails
kðtÞ � 2c=m2, so that 2L=m � kðtÞ � 2c=m2. Hence, the

function KðtÞ52

ðt

0
kðsÞds is one to one on [0, r], and

admits a differentiable inverse function s, whose derivative
fulfills the identity kðsðsÞÞs0ðsÞ521 for any
s 2 J5½0;KðrÞ�. Now it is possible to see that the function
wðsÞ5x̂ðsðsÞÞ solves the differential equation w052rzðwÞ
on J, together with the initial condition wð0Þ5p0. Hence, w
5x on J, where x comes from equations (8) and (9) with
x05p0. In particular : x̂ð½0; r�Þ5wðJÞ5xðJÞ � C.

Appendix B: Proof of Lemma 3.4

[58] Let wi
hðpÞ denote the unit vector of vi

hðpÞ, and put
vh5viðhÞ

h ðpÞ;wh5wiðhÞ
h ðpÞ, where i(h) comes from equation

(11). Let j(h) be such that the vector uh5vjðhÞ
h ðpÞ fulfills the

equality Dhðp; 2whÞ5uh � ð2whÞ. Then

jjvh2uhjj � 8Kh; jjvhjj � m=2; 0 < h � h�: (B1)

[59] Indeed, from equation (35) we argue that the dis-
tance of both vectors vh and uh fromrzðpÞ does not exceed
4 Kh, so as to infer the first inequality of equation (B1). On
the other hand, the latter follows from equation (35) as well
thanks to our choice of h� and the first inequality in equa-
tion (21). Furthermore

jjThðpÞ1whjj22252wh � ThðpÞ5

52jjvhjj21Dhðp; ThðpÞÞ �

� 2jjvhjj21Dhðp; 2whÞ522jjvhjj22ðuh � vhÞ5

52jjvhjj22ðvh2uhÞ � vh22:

(B2)

[60] The first equality in equation (B2) holds because
both ThðpÞ and wh are unit vectors, while the second one
and the inequality are due to equation (11). Hence

jjThðpÞ1whjj �
ffiffiffi
2
p
jjvhjj21=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjvh2uhjj

p
� 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kh=m

p
; (B3)

where the last inequality follows from equation (B1). Now,
let us put i5iðhÞ in equation (35), and recall that wh and 2
TðpÞ are the unit vectors of vh and rzðpÞ, respectively.
Thanks to the first inequality in equation (21), we argue
that the norm of wh1TðpÞ is bounded from above by the
number 8 Kh/m. Even more so, it cannot exceed its square
root 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kh=m

p
since the inequality h � h� entails

8Kh=m � 1. Then, by virtue of equation (B3), the last esti-
mate and the definition of C we get our claim as follows:

jjThðpÞ2TðpÞjj � jjThðpÞ1whjj1jjwh1TðpÞjj �

� 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kh=m

p
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kh=m

p
5C

ffiffiffi
h
p

:
(B4)
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Appendix C: Proof of Lemma 3.5

[61] For any t 2 ½0; r�, there exists just one integer k such
that t 2 Jðn; kÞ. Then, we put snðtÞ5ðk21Þr=n. According
to this notation, one can write

jsnðtÞ2tj � r=n; (C1)

xnðsnðtÞÞ5xnðkr=nÞ5pkðr=nÞ; (C2)

q̂nðtÞ5Tr=nðpkðr=nÞÞ5Tr=nðxnðsnðtÞÞ; r=nÞ; (C3)

jjq̂nðtÞ2TðxnðsnðtÞÞÞjj � C
ffiffiffiffiffiffiffi
r=n

p
: (C4)

[62] In particular, equation (C4) follows from equation
(C3) and Lemma 3.4, provided that in the latter we put
h 5 r=n. Furthermore, as n! 11 :

sup fjjxnðsnðtÞÞ2x̂ðtÞjj; 0 � t � rg ! 0; (C5)

sup fjjTðxnðsnðtÞÞÞ2q̂ðtÞjj; 0 � t � rg ! 0: (C6)

[63] Indeed, equations (30) and (C1) entail (C5) because
the convergence in equation (30) is uniform. On the other
hand, (C5) implies in turn (C6), thanks to the definition of
q̂ and the continuity of T. Finally, our claim follows from
equations (C4) and (C6).

Appendix D: Proof of Lemma 3.6

[64] From the first estimate in equation (29) and Lemma
3.5 we argue that, as n! 11,

ðt

0
x0nðsÞ � ðAq̂nðsÞ2Aq̂ðsÞÞds! 0: (D1)

[65] On the other hand, by putting s 5 0 and v5Aq̂ in
(31) we get

ðt

0
x0nðsÞ � Aq̂ðsÞds!

ðt

0
x̂0ðsÞ � Aq̂ðsÞds: (D2)

[66] Finally, when combining (34), (D1), and (D2), we getðt

0
x̂0ðsÞ � Aq̂ðsÞds50 for any t 2 ½0; r�. Then, actually, x̂0

�Aq̂50 on [0, r], so that, according to our definition of A,
x̂0ðtÞ k q̂ðtÞ. Hence (23) holds true, since q̂ðtÞ k rzðx̂ðtÞÞ.
Furthermore, thanks to the first inequality in (17), the
scalar product pnðtÞ5x0nðtÞ � q̂nðtÞ is bounded from

below by 1=
ffiffiffi
2
p

: then

ðt

s
pnðsÞds � ðt2sÞ=

ffiffiffi
2
p

whenever

0 � s < s � r. Now, by virtue of Lemma 3.5 and (31), the
left-hand side of the previous evaluation is easily shown to

converge to

ðt

s
pðsÞds, where pðtÞ5x̂0ðtÞ � q̂ðtÞ, so the limit

inequality shows that the integral of pðsÞ2ð1=
ffiffiffi
2
p
Þ over [s,t]

is nonnegative: since s and t are arbitrary, we necessarily
infer pðsÞ � 1=

ffiffiffi
2
p

for any s 2 ½0; r�. Now equation (24) is
surely satisfied as well, provided we take c5m=

ffiffiffi
2
p

, where m
comes from equation (21).
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