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Abstract—Analytical methods are useful tools in the design
of rotating electric machines because the simulation times tend
to be low and they provide a good insight. However, in the
analysis of non-traditional machines, like the transverse-flux
machine (TFM), the most common approach is to use finite
element analysis (FEA). In this paper we show how to use the
complex permeance (CP) methodology to obtain the magnetic
field distribution on the air-gap of a homopolar TFM produced by
the stator windings. The properties of the CP function are based
on conformal mapping theory. Also, we propose an algorithm
to estimate the parameters of the CP function after evaluating
the function in a set of randomly generated number of points,
which reduces the computation time significantly. The proposed
methodology is applied to a single-sided TFM showing that the
results are consistent with FEA calculations.

I. INTRODUCTION

The magnetic flux-density distribution in the air-gap of

an electric machine determines the performance parameters

like the torque and the induced electromotive force. For this

reason it is essential to have accurate models to describe

the electromechanical interaction that takes place in order to

design better machines.

Transverse-flux machines (TFM) are very interesting de-

vices because they can achieve high torque densities and

therefore they are suitable for direct drive applications [1],

[2], [3]; in references [1], [2] this device is called variable-

reluctance permanent-magnet (VRPM) machine. However, the

magnetic field distribution is intrinsically three-dimensional

making the task of modelling difficult. For this reason the

current trend is to use 3D finite element analysis (FEA)

which is time consuming and does not readily provide an

insight. Other alternative is to use refined magnetic equivalent

circuits, which is a semi-numerical method and is reported to

have lower computation times than FEA [4], [5]. Therefore

analytical methods remain very useful tools for a quick first

design approach.

The complex permeance method proposed by Zarko et al.

[7], [8], [9] uses conformal mapping to obtain a complex

permeance (CP) function that modulates the magnetic field

distribution from the slotless configuration. One of the main

disadvantages of the complex permeance method proposed by

Zarko is that the computation time is relatively high because

of the necessity of evaluating the permeance function in a

great number of points to generate whole waveform [10]. This

paper presents a different approach to the complex permeance

method adapting it for a homopolar field distribution, which

is the case of the machine under study. The methodology

proposed in this paper to estimate the parameters of the

permeance function reduces the computation time significantly

because the number of points in which the function has

to be evaluated is lower. The significant reduction in the

computation time presents an improvement in the context of

the design and optimisation of electric machines.

The paper starts with a description of the single-sided TFM

under study. Section III describes the application of conformal

mapping to obtain the CP function in the air-gap showing

the two conformal transformations involved in the process.

In section IV the properties of the CP function are described.

Next, in section V the algorithm to estimate the coefficients of

the CP function using random sampling is presented. Finally,

the methodology is applied to the TFM built at the University

of Southampton [1], [2] and the results are compared with 2D

and 3D FEA for validation.

II. THE SINGLE-SIDED TFM MACHINE UNDER STUDY

Fig. 1 shows the front view and the cross-section of the

machine under study, which is an inverted surface-magnet

configuration [1], [2]. The stator is two-phase, each phase

has a circular coil that links and magnetizes 20 C-cores

producing a homopolar magnetic field distribution. The radial

flux interacts with an array of 40 permanent magnets with

alternating polarity. The dimensions of the machine studied

are shown in table I.

Fig. 1. Front view and cut of a single sided TFM under study.
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Fig. 2. Conformal transformations required to obtain the magnetic field distribution in the air-gap.

TABLE I
PARAMETERS OF THE TF MACHINE

Quantity Symbol Value

Stator radius Rs 73 mm
Rotor radius Rr 78.5 mm
Air-gap length gz 5.5 mm
Magnet thickness dm 4.51 mm
Pole pitch θλ 18o

Tooth pitch θt 7.02o

Slot pitch θs 10.98o

Number of C-cores n 20

This particular topology has the property of high torque

density. However, the path of the magnetic flux is three-

dimensional and therefore difficult to model analytically.

III. FIELD SOLUTION IN THE AIR-GAP

The air-gap of the machine under study has a toothed

member (each C-core can be considered a tooth) and a smooth

coreback. Fig. 2 shows the z-plane, which is the real geometry,

and the transformed domains (w and χ planes), which are

described later in the paper. The magnetic field distribution is

obtained using a complex permeance (CP) function [7], [8], [9]

adapted for a homopolar field distribution. We are assuming

that the permeability of the iron is infinite and the effect of

saturation is negligible.

We present an alternative interpretation of the CP function

in order to simplify the final expression of the magnetic field

distribution. The function λ(θ, r) modulates the scalar value of

Bs(t) that is the instantaneous magnetic flux-density produced

by the stator windings in the simplified rectangular slotless

geometry defined as follows:

Bs(t) =
µ0F (t)

gz
, (1)

where F (t) is the instantaneous magneto-motive force (MMF)

produced by the stator windings and g is the effective air-gap

length. The function λ(θ, r) depends only on the geometric

properties of the air-gap that give the shape. The scalar value

of Bs(t) gives the magnitude to the function of the magnetic

field distribution ~B(t, θ, r).
The function λ(θ, r) is calculated in such a way that the real

part corresponds to the radial component and the imaginary

to the tangential one. In this paper the variable θ is expressed

in electrical radians, such that a pole pitch is 2π; to change

to mechanical radians it is necessary to divide by the number

of pairs of poles. Accordingly, the expression of the magnetic

field distribution in the air-gap expressed as a vector is:

~B(t, θ, r) = Bs(t)
[

Re
{

λ(θ, r)
}

~ur + Im
{

λ(θ, r)
}

~uθ

]

. (2)

The value of λ(θ, r) is obtained using conformal mapping

theory by transforming the original domain (z-plane) into a

new one in which we know the solution, in this case the new

domain is a rectangle (χ-plane) where the magnetic field is

constant [11]. To achieve this there are two conformal transfor-

mations to be done, a proportional-logarithmic transformation

[12] that transforms the circular geometry into a rectangular

developed model and a Schwarz-Christoffel transformation

that maps the developed model into a rectangle [11], [13],

[7], [8], [9].

A. Proportional-Logarithmic Transformation (T1)

The first conformal transformation (T1 in Fig. 2) maps the

circular geometry of the z-plane into a rectangular geometry

in the w-plane. To achieve this T1 has to be a proportional-

logarithmic transformation [12]. The proportionality constant

Rg chosen is the radius of the middle of the air-gap in

this case. The transformation to obtain the w-plane is the

following:

w = Rg log(z).

According to the theory of conformal mapping [11], [13],

[14] the relationship between the magnetic field in z and w-

planes expressed as complex numbers:

Bz = Bw

(dw

dz

)

∗

= Bw

(Rg

rz
ejθz

)

(3)



The term that multiplies Bw in (3) has a term that is a scale

factor (
Rg

r
) and a second term (ejθz ) that transforms the real

component into radial and the imaginary one into tangential.

To obtain the magnetic field at a particular point of the z-

plane it is sufficient to know the value of the field on the

w-plane and the derivative of the transformation evaluated in

that point. If we define the relative permeance associated to

the proportional-logarithmic transformation as

λlog(r) =
Rg

r
, (4)

then, the expression of the magnetic field in the z-plane as a

vector ~Bz in radial and tangential components is as follows

~Bz =
[

Re
{

Bw

}

~ur + Im
{

Bw

}

~uθ

]

λlog(r). (5)

B. Schwarz-Christoffel Transformation (T2)

The details of Schwarz-Christoffel transformations and their

application to solve this problem are given in [11], [13], [14].

According to the literature this transformation is sometimes

called Numerical Schwarz-Christoffel Transformation because

the equation of the transformation is not explicit, in this paper

the solution is obtained with the SC Toolbox developed by

Driscoll [15].

The starting point is the polygon in the w-plane that needs

to be transformed into a rectangle that is the χ-plane, shown

schematically in Fig. 2, in which the magnetic field distribution

is known. The general equation of the SC transformation is as

follows [14]:

w = f(χ) = K1

∫ N
∏

k=1

(χ− χk)
αk
π

−1dχ+K2, (6)

where K1 and K2 are integration constants and αk are the

interior angles of the polygon. The function f̂(w) is defined

as the inverse of f(χ):

χ = f̂(w). (7)

Even though there is not an analytical expression of f̂(w)
the derivative of the transformation of the w-plane into the

χ-plane is defined as follows (taking into account that χ is a

function of w)

dχ

dw
= f̂ ′(w). (8)

The relationship between the magnetic fields is given by

Bw = Bχ

( dχ

dw

)

∗

= Bχ

{

f̂ ′(w)
}

∗

. (9)

The functions f̂(w) and f̂ ′(w) can be evaluated in each

point with the SC Toolbox once the map is created.

The SC transformation is such that the domain in the χ-

plane is the rectangle shown in Fig. 2. The solution to the

Laplace equation considering an MMF F (t) is the following:

Bχ(t) =
µ0F (t)

ℓ
, (10)

where the length ℓ can be calculated as the following:

ℓ = |χA − χB |,

The SC Toolbox gives the option of obtaining χi = f̂(wi)
making the calculation of ℓ trivial because is just the length

of the side of the rectangle on the canonical domain. The field

in the w-plane can be expressed as

Bw = Bχ

{

f̂ ′(w)
}

∗

= Bs(t)
gz

ℓ

{

f̂ ′(w)
}

∗

, (11)

the term that multiplies Bs(t) is the relative complex perme-

ance associated with the SC transformation taking into account

that w is a function of θ and r:

λSC(θ, r) =
gz

ℓ

{

f̂ ′
(

w(θ, r)
)

}

∗

. (12)

For the polygon considered here there is not an explicit

expression f̂ but with the SC Toolbox [15] it can be evaluated

at any point and also the derivative can be evaluated. Con-

sequently, the function λSC(θ, r) cannot be obtained directly

but can be evaluated at every point of the domain.

IV. PROPERTIES OF THE CP FUNCTION

The function λlog(r) associated to the logarithmic transfor-

mation is a real number and the function λSC(θ, r) associated

to the SC transformation can be separated into real and

imaginary part that correspond to the radial and tangential

components respectively. The permeance function can be

expressed as the product of these two functions as follows:

λ(θ, r) = λlog(r)
[

λr(θ, r) + jλθ(θ, r)
]

, (13)

where

λSC(θ, r) = λr(θ, r) + jλθ(θ, r). (14)

The function λSC(θ, r) has the same shape as the magnetic

field distribution of the rectangular geometry (w-plane in this

paper, Fig. 2) therefore for each r the real and imaginary parts

can be expressed as Fourier series according to [13] because

of the symmetry of the boundary conditions:

λr(θ, r) = λr

[

1 +
∞
∑

n=1

γn(r) cos(n θ)
]

, (15)

λθ(θ, r) =
∞
∑

n=1

λθn(r) sin(n θ), (16)

with the coefficients calculated accordingly:

λr =
1

π

∫ π

0

Re
{

λSC(θ, r)
}

dθ, (17)

γn(r) =
2

πλr

∫ π

0

Re
{

λSC(θ, r)
}

cos(nθ)dθ, (18)

λθn(r) =
2

π

∫ π

0

Im
{

λSC(θ, r)
}

sin(nθ)dθ. (19)
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The total flux crossing the air-gap has to be constant and

therefore λr is constant and does not depend on r. On the

other hand the functions γn(r) and λθn(r) have an unknown

shape but they can be approximated as polynomials. For the

polynomial approximation, instead of using the variable r the

distance to the coreback δ is used:

δ = Rg +
g

2
− r. (20)

The functions of the Fourier coefficients expressed as poly-

nomials of δ are as follows

γn(δ) = γ0
n + γ1

nδ + γ2
nδ

2 + · · · , (21)

λθn(δ) = λ1
θnδ + λ2

θnδ
2 + λ3

θnδ
3 + · · · , (22)

where γ0
n, γ1

n, γ2
n, . . . , are the Taylor coefficients for the radial

component and λ1
θn, λ2

θn, λ3
θn, . . . , the corresponding ones for

the tangential component1.

V. ESTIMATION OF THE COEFFICIENTS OF THE CP

FUNCTION

One of the main disadvantages of the CP method imple-

mented in [7], [8], [9] is that the computation time is high

because the CP function needs to be evaluated at each point

to obtain the waveform [10]. However, with the proposed

methodology for an arbitrary geometry the machine designer

can decide the harmonic order, Nh, and the order of the

polynomial of the Taylor series, Np, and after that estimate

the number of points that have to be evaluated in order to

obtain the coefficients. For the radial component of there are

Nc coefficients (λr, γ0
n, γ1

n, γ2
n, . . . ) and for the tangential

component of there are Ncθ < Nc coefficients ( λ1
θn, λ2

θn, λ3
θn,

. . . ). Under these conditions the model can be fully defined

by evaluating at least Nc independent points. If Nh is the

higher order harmonic and Np the power of the last term of

the Fourier series, Nc is calculated as follows:

Nc = Nh(Np + 1) + 1. (23)

To describe the following algorithm to identify the param-

eters of the permeance function instead of directly calculating

1The tangential component does not have the λ0

θn
term because there is

not tangential component at δ = 0 in this geometry.

γn(δ) we will first calculate an(δ) that is the harmonic

amplitude before normalisation:

an(δ) = λrγn(δ). (24)

For an arbitrary point (θi, ri) the value of the permeance

function:

Re
{

λSC(θi, ri)
}

= λr +

Nh
∑

n=1

Np
∑

m=0

amn δmi cos(n θi), (25)

where λSC(θi, ri) is calculated as follows:

λSC(θi, ri) = λ(θi, ri)
ri

Rg

. (26)

If we consider K independent points, with K > Nc, we

have an over determined linear system with K equations and

Nc unknowns that are the coefficients. (26) can be written in

a matrix form as follows:

XC = Λ, (27)

where [X]K×Nc
is the matrix with the points in which the

permeance function is evaluated, organised to be consistent

with (26); the full matrix is shown at the top of the page. C

is the matrix with the coefficients that we want to estimate:

[

C

]

Nc×1
=































λr

a01
a11
...

a
Np

1

a02
...

a
Np

Nh































. (28)

Λ is the solution vector

[

Λ

]

K×1
=

















Re
{

λSC(θ1, r1)
}

Re
{

λSC(θ2, r2)
}

...

Re
{

λSC(θK , rK)
}

















. (29)

The coefficients can be estimated using the following linear

least squares algorithm:

C =
[(

X
t
X

)

−1

X
t
]

Λ, (30)



where t denotes the transposed matrix.

Once the vector C is known the real part of the complex

permeance function is fully defined. The procedure for the

imaginary part is completely analogous. Once the real and the

imaginary part are obtained the magnetic field distribution is

known as a vector in all the air-gap.

A. Random Sampling

To improve the reliability of this algorithm we want to make

sure that we avoid having any problem in inverting the the

matrix [Xt
X], or what is the same: that we have at least Nc

independent points. To achieve this we propose to generate

a set of random points. It was observed that if we have a

given number of points distributed uniformly as a grid and we

are trying to detect a high frequency space harmonic whose

period is of a similar order of magnitude as the separation of

the points; then the matrix [Xt
X] may produce problems in

the inversion. Because of the nature of random sampling this

problem does not appear because the points are not equally

spaced. Each point is calculated as follows:

δi = dm ·R(0, 1), (31)

θi = 2π ·R(0, 1), (32)

where R(0, 1) denotes a random variable between 0 and 1
with constant probability density function.
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Fig. 3. The set of random points, S. In this case it consists 250 random
points..

Fig. 3 shows the set of points S, which consists in 250

points generated randomly. The improvement in the stability

of the algorithm is due to the fact that the points are not

equally spaced and therefore the high frequency harmonics

can be detected.

VI. RESULTS

This section illustrates the proposed methodology by its ap-

plication to the transverse-flux (or VRPM) machine described

in section II. This machine was built at the University of

Southampton and has been studied in detail with FEA [1], [2]

making it suitable for validation of the proposed methodology.

The windings of the machine have Nt = 230 turns in the

configuration analysed in this paper and the rated current I is

10 A. The MMF in each C-core head is calculated as follows

F =
1

2
NtI = 1150A, (33)

therefore the magnetic field of the slotless configuration is

Bs =
µ0F

g
=

4π · 10−7 · 1150

4.5 · 10−3
≈ 0.263T. (34)

If the current was a sinusoidal the value of Bs would not

be constant but a sinusoidal function as well, the analysis

here considering a constant current is the case of a square

waveform.
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Fig. 4. λr(θ, r) in the middle of the air-gap, r = Rg .

Fig. 4 shows the real part of the permeance function at

the middle of the air-gap (r = Rg). The green triangles were

obtained using 2D FEA with a scalar potential formulation, the

orange squares were obtained using 3D magnetostatic FEA,

the red crosses are the value of λr(θi, ri) evaluated using

the SC Toolbox and the blue line is the approximated model

considering 500 random points, the harmonic order Nh = 11
and the polynomial order Np = 5. The value of λr obtained

by evaluating the function, 2D FEA and the proposed model

has a less than 0.01 % error in this case.

To study the accuracy of the method in the entire domain

and not only in the air-gap Fig. 5 shows the harmonic

amplitude of the first four harmonics obtained by evaluating

the permeance function, 2D FEA and the proposed method.

The coefficients of the Fourier series for the comparison were

calculated by evaluating (17) and (18) after obtaining the

waveform with FEA or by evaluating points with the SC

Toolbox.
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Fig. 5. The amplitude of the first four harmonics of the radial component of the magnetic field Nh = 11 and Np = 5, with a set of 500 random points.

VII. CONCLUSION

The paper illustrates how to obtain the magnetic field

distribution in the air-gap of electric machines using the CP

method combined with random sampling. The case study is

a TFM but it can be applied to other machines that have a

slotted topology. The results obtained with the methodology

presented here are consistent with FEA and with the traditional

CP method.

Random sampling can effectively improve the computation

time by reducing the number of points at which the CP

function has to be evaluated. To generate the whole waveform

of the CP function at a particular radius, r, it is necessary to

evaluate a large number of points depending on the accuracy

required. With a small set of randomly generated points we

can accurately estimate the CP function coefficients in all the

air-gap. Random sampling was preferred to uniform sampling

because of the improvement of the stability of the algorithm.

The formulation of the problem is such that the shape of the

CP function is deduced from conformal mapping theory and

we only have to calculate the coefficients of the polynomials.

This allows us to directly estimate the amplitude of the har-

monics, which facilitates subsequent analysis of performance.
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